永磁同步电机双闭环矢量控制系统仿真实验指导书
双闭环永磁同步电机矢量控制仿真研究
TECHNIQUE RESEARCH双闭环永磁同步电机矢量控制仿真研究Research on Vector Control Simulation of Double Closed Loop Permanent MagnetSynchronous Motor大连交通大学电气信息工程学院严航 (Yan Hang) 唐明新(Tang Mingxin) 聂启鹏(Nie Qipeng)永磁同步电机因其运行稳定、体积小、结构灵活等优点,在空调压缩机、电梯传动、船舶推进以及电动汽车领域都有着越来越广泛的应用。
在此根据永磁同步电机的结构,通过数学模型对永磁同步电机进行描述,并在Matlab/Simulink中搭建了一种用于汽车能量回收的矢量控制模型。
采用空间矢量脉宽调制技术和速度、电流双反馈的方式,控制永磁同步电机恒转速输出。
同时该双闭环永磁同步电机矢量控制能够在高性能电机驱动控制系统方面提供一定的指导意义。
关键词:永磁同步电机;矢量控制;电动汽车;MATLAB/Simulink软件Abstract: Permanent magnet synchronous motor (PMSM) is widely used in air-conditioning compressor, elevator drive, ship propulsion and electric vehicle because of its stable operation, small size and flexible structure. Accordi ng to the structure of permanent magnet synchronous motor, the permanent magnet synchronous motor is describ ed by mathematical model, and a vector control model for vehicle energy recovery is built in MATLAB/Simulink. The output of permanent magnet synchronous motor (PMSM) at constant speed is controlled by space vector pulse wi dth modulation (SVPWM) and double feedback of speed and current. At the same time, the vector control of doub le closed-loop permanent magnet synchronous motor can provide guidance for high performance motor drive con trol system.Key words: Permanent magnet synchronous motor; Vector control; Electric vehicle; MATLAB/Simulink software 【中图分类号】TM743【文献标识码】B 【文章编号】1561-0330(2019)05-0072-061 引言当今时代,全球气温变暖、生物多样性的锐减及雾霾的肆虐使得环境保护成为人们关注的大问题。
MATLABSIMULINK永磁同步电机矢量控制系统仿真
MATLABSIMULINK永磁同步电机矢量控制系统仿真一、本文概述随着电机控制技术的快速发展,永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)在工业、交通和能源等领域的应用越来越广泛。
矢量控制作为PMSM的一种高效控制策略,能够实现对电机转矩和磁链的精确控制,从而提高电机的动态性能和稳态性能。
然而,在实际应用中,矢量控制系统的设计和调试过程往往复杂且耗时。
因此,利用MATLAB/Simulink进行永磁同步电机矢量控制系统的仿真研究,对于深入理解矢量控制原理、优化控制策略以及提高系统性能具有重要意义。
本文旨在通过MATLAB/Simulink平台,建立永磁同步电机矢量控制系统的仿真模型,并对其进行仿真分析。
本文将对永磁同步电机的基本结构和数学模型进行介绍,为后续仿真模型的建立提供理论基础。
本文将详细阐述矢量控制策略的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。
在此基础上,本文将利用MATLAB/Simulink中的电机控制库和自定义模块,搭建永磁同步电机矢量控制系统的仿真模型,并对其进行仿真实验。
本文将根据仿真结果,对矢量控制系统的性能进行分析和评价,并提出优化建议。
通过本文的研究,读者可以全面了解永磁同步电机矢量控制系统的基本原理和仿真实现方法,为后续的实际应用提供有益的参考和指导。
本文的研究结果也为永磁同步电机控制技术的发展和应用提供了有益的探索和启示。
二、永磁同步电机数学模型永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高性能的电机,广泛应用于各种工业领域。
为了有效地对其进行控制,我们需要建立其精确的数学模型。
PMSM的数学模型主要包括电气方程、机械方程和磁链方程。
PMSM的电气方程描述了电机的电压、电流和磁链之间的关系。
在dq旋转坐标系下,电气方程可以表示为:V_d &= R_i I_d + \frac{d\Phi_d}{dt} - \omega_e \Phi_q \ V_q &= R_i I_q + \frac{d\Phi_q}{dt} + \omega_e \Phi_d其中,(V_d) 和 (V_q) 分别是d轴和q轴的电压;(I_d) 和 (I_q) 分别是d轴和q轴的电流;(\Phi_d) 和 (\Phi_q) 分别是d轴和q轴的磁链;(R_i) 是定子电阻;(\omega_e) 是电角速度。
永磁同步电动机矢量控制调速系统建模与仿真
永磁同步电动机矢量控制调速系统建模与仿真第1章引言随着电动机在社会生产中的广泛应用,电机研究成为必不可少的研究课题。
电动机是生产和生活中最常见的设备之一,电动机一般分为直流电动机和交流电动机两大类。
交流电动机的诞生已经有一百多年的历史。
交流电动机又分为同步电动机和感应(异步)电动机两大类。
直流电动机的转速容易控制和调节,在额定转速以下,保持励磁电流恒定,通过改变电枢电压的方法实现恒转矩调速;在额定转速以上,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
20世纪80年代以前,在变速传动领域,直流调速一直占据主导电位。
随着交流调速技术的发展使交流电机的应用更加广泛,但是其转矩控制性能却不如直流电机。
因此如何使交流电机的静态控制性能与直流系统相媲美,一直是交流电机的研究方向。
1971年,由F.Blaschke提出的矢量控制理论第一次使交流电机控制理论获得了质的飞跃。
矢量控制采用了矢量变换的方法,通过把交流电机的磁通与转矩的控制解耦使交流电机的控制类似于直流电动机。
矢量控制方法在实现过程中需要复杂的坐标变换,而且对电机的参数依赖性较大。
矢量控制的基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使得两个分量互相垂直,彼此独立,然后分别进行调节。
这样交流电动机的转矩控制,从原理和特性上就和直流电动机相似了。
永磁同步电机(PMSM)采用高能永磁体为转子,具有低惯性、快响应、高功率密度、低损耗、高效率等优点,成为了高精度、微进给伺服系统的最佳执行机构之一。
永磁同步电机构成的永磁交流伺服系统已经向数字化方向发展,因此如何建立有效的仿真模型具有十分重要的意义。
对于在Simulink中进行永磁同步电机(PMSM)建模仿真方法的研究已经受到广泛关注。
第2章 电压空间矢量技术的基本原理PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲序列,并通过控制电压脉冲宽度或周期以达到变频、调压及减少谐波含量的一种控制技术。
永磁同步电机矢量控制系统仿真研究
总第329期2017年第3期计算机与数字工程Computer &• Digital EngineeringVol.45 No.3459永磁同步电机矢量控制系统仿真研究|郎宝华1康标1孙鲁艳2(1.西安工业大学电子信息工程学院西安710021) (2.西北工业集团有限公司西安710043)摘要矢量控制是永磁同步电机控制系统中非常重要的一种控制方式,通过分析永磁同步电机数学模型和矢量控 制原理的基础上,采用Matlab/Smulmk搭建永磁同步电机矢量控制系统的仿真模型,对PMSM矢量控制系统进行仿真和 实验分析,经过比较仿真结果和实验结果证明该仿真模型的有效性以及控制算法的正确性,为永磁同步电机控制系统设计 和调试提供了理论基础。
关键词永磁同步电机;矢量控制;Matlab/Simulink仿真中图分类号TP273 DOI:10. 3969/j. issa 1672-9722. 2017. 03. OilSimulation of PMSM Vector Control SystemLANG Baohua1KANG Biao1SUN Luyan2(1. School of Electronic Information Engineering,Xi’an Technological University,Xi’an 710021)(2. Northwest Industrial Group Co. , Ltd, Xi’an 710043)Abstract Vector control of permanent magnet synchronous motor control system is very important in a controlled manner, by analyzing the mathematical model and the permanent magnet synchronous motor vector control theory, Matlab/Simu- lation is used to build a simulation model of PMSM vector control system, PMSM vector control system is simulated and experimentally analyzed, by comparison simulation and experimental results demonstrate the validity of the simulation model and correctness of the control algorithm, a theoretical bosis is provided for permanent magnet synchronous motor control system design and commissioning.KeyWords PMSM, vector control, Matlab/Simulink simulationClass Number TP273i引言近些年来,随着电力电子技术及微电子技术的 快速发展,新型电机控制理论的不断涌现,稀土永 磁材料性能的大幅度提高和价格的降低,各种交流 7欠磁同步电动机伺服系统成为交流伺服系统的主 流。
永磁同步电机矢量控制matlab仿真
永磁同步电机矢量控制matlab仿真永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)的矢量控制(也称为场向量控制或FOC)是一种先进的控制策略,用于优化电机的性能。
这种控制方法通过独立控制电机的磁通和转矩分量,实现了对电机的高性能控制。
在MATLAB中,你可以使用Simulink和SimPowerSystems库来模拟永磁同步电机的矢量控制。
以下是一个基本的步骤指南:1.建立电机模型:使用SimPowerSystems库中的Permanent Magnet SynchronousMachine模型。
你需要为电机提供适当的参数,如额定功率、额定电压、额定电流、极对数、转子惯量等。
2.建立控制器模型:矢量控制的核心是Park变换和反Park变换,用于将电机的定子电流从abc坐标系变换到dq旋转坐标系,以及从dq坐标系变换回abc坐标系。
你需要建立这些变换的模型,并设计一个适当的控制器(如PI控制器)来控制dq轴电流。
3.建立逆变器模型:使用SimPowerSystems库中的PWM Inverter模型。
这个模型将控制器的输出(dq轴电压参考值)转换为逆变器的开关信号。
4.连接模型:将电机、控制器和逆变器连接起来,形成一个闭环控制系统。
你还需要添加一个适当的负载模型来模拟电机的实际工作环境。
5.设置仿真参数并运行仿真:在Simulink的仿真设置中,你需要设置仿真时间、步长等参数。
然后,你可以运行仿真并观察结果。
6.分析结果:你可以使用Scope或其他分析工具来查看电机的转速、定子电流、电磁转矩等性能指标。
这些指标可以帮助你评估控制算法的有效性。
请注意,这只是一个基本的指南,具体的实现细节可能会因你的应用需求和电机参数而有所不同。
在进行仿真之前,建议你仔细阅读相关的文献和教程,以便更好地理解永磁同步电机的矢量控制原理。
工程项目永磁同步电机矢量控制调速系统仿真
综合训练项目三题目:永磁同步电机矢量控制调速系统仿真1学期期:2014-2015学年第学业:自动化专1班级班级:2011 姓名:官均涛1105010105 号:学指导教师:侯利民辽宁工程技术大学成绩评定表综合训练项目三题目:永磁同步电机矢量控制调速系统仿真目的:通过搭建仿真模型,克服了传统教学中枯燥、抽象、难于理解等弊端,消化知识单元六中矢量控制的理论知识,达到良好的教学效果。
要求: 利用MATLAB/simulink中的电力系统工具箱搭建PMSM矢量控制系统仿真模型,通过调节PI参数,得到良好的动静态性能,观察系统突加减变负载运行工况下的速度、电流及转矩变化情况。
任务:1、学习永磁同步电机矢量控制技术;2、搭建永磁同步电机矢量控制系统仿真模型;3、调试PI调节器参数满足各种工况;4、针对仿真模型进行演示答辩,考查其掌握程度。
成果形式:现场演示+书面报告永磁同步电机矢量控制调速系统仿真目录1 永磁同步电动机的矢量控制原理 (1)1.1 永磁同步电动机的矢量控制原理 (1)1.2 永磁同步电动机矢量控制运行时的基本电磁关系 (1)1.3 永磁同步电动机的矢量控制策略 (2)2 永磁同步电动机矢量控制系统i=0控制的simulink仿真 (4)d2.1 永磁同步电动机矢量控制系统的建模 (4)2.2 永磁同步电动机矢量控制系统的simulink仿真 (5)2.2.1 空载启动仿真 (5)2.2.2转速突变仿真 (6)2.2.3 负载突变仿真 (8)3 仿真结果分析 (11)综合训练项目三1 永磁同步电动机的矢量控制原理1.1 永磁同步电动机的矢量控制原理近二十多年来电动机矢量控制、直接转矩控制等控制技术的问世和计算机人工智能技术的进步,使得电动机的控制理论和实际控制技术上升到了一个新的高度。
目前,永磁同步电动机调速传动系统仍以采用矢量控制技术为主。
矢量控制实际上是对电动机定子电流矢量相位和幅值的控制。
基于MATLAB永磁同步电动机矢量控制系统的仿真研究
基于MATLAB永磁同步电动机矢量控制系统的仿真研究永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)是一种应用广泛的高性能电机。
在工业领域,PMSM通常采用矢量控制方法来实现精确的速度和位置控制。
本文基于MATLAB对PMSM矢量控制系统进行仿真研究,探讨其工作原理及性能。
首先,PMSM的矢量控制系统由控制器、电机和传感器三部分组成。
其中,控制器根据电机的反馈信号和期望输出来计算电机的控制信号。
传感器用于测量电机的转速、位置和电流等参数,反馈给控制器。
通过调节控制信号,控制器可以实现电机的速度和位置控制。
在PMSM的矢量控制系统中,通常采用dq轴矢量控制方法,将三相电流转换为直流参考轴和旋转参考轴的dq坐标系,进而对电机进行控制。
其次,本文利用MATLAB软件对PMSM矢量控制系统进行了仿真实验。
首先,建立了PMSM电机的数学模型,包括电机的动态方程、反电动势方程和电流方程。
然后,在MATLAB环境中编写程序,实现电机模型的数值求解和控制算法的计算。
通过调节控制参数,可以对电机的速度和位置进行精确控制,并实时监测电机的工作状态。
在仿真实验中,通过改变电机的负载情况、工作电压和控制参数等条件,分析了PMSM矢量控制系统的性能。
实验结果表明,当负载增加时,电机的转动惯量增大,控制系统的响应时间变长,但依然可以实现精确的速度和位置控制。
当电机的工作电压增加时,电机的输出功率和转速增大,但也会产生更大的电流和损耗。
当控制参数的比例增益和积分时间常数变化时,系统的稳定性和动态性能均会受到影响,需要进行合理的调节。
总结起来,本文基于MATLAB对PMSM矢量控制系统进行了仿真研究,探讨了其控制原理和性能。
通过仿真实验,可以深入理解PMSM矢量控制系统的工作原理,优化系统的参数和性能,并为实际应用提供参考。
永磁同步电机矢量控制系统建模与仿真
第31卷 第6期2011年 11月河北大学学报(自然科学版)Journal of Hebei University(Natural Science Edition)Vol.31No.6Nov.2011永磁同步电机矢量控制系统建模与仿真王涛1,李勇2,王青1,贾克军1(1.河北大学质量技术监督学院,河北保定 071002;2.北京科技大学车辆工程研究所,北京 100083) 摘 要:基于永磁同步电机具有多变量、非线性的复杂特性,为研究需要,对其物理模型进行简化,建立了电机的数学模型及其基本方程.在矢量控制众多方法中采用最为简单的使直轴电流id=0方法进行研究,得到了基于转子磁场定向矢量控制下的电机电磁转矩方程.在Matlab/Simulink搭建整个系统仿真模型、转速和电流控制模块,并对这些模块进行仿真.仿真结果表明所得波形符合理论分析,系统响应快、超调量小,系统运行稳定,具有良好的动、静态特性.该模型的建立和分析对电机的实际控制提供了新的研究思路.关键词:永磁同步电机;矢量控制;建模;仿真中图分类号:TH 39 文献标志码:A 文章编号:1000-1565(2011)06-0648-05Modeling and Simulation Research on PMSM Vector Control SystemWANG Tao1,LI Yong2,WANG Qing1,JIA Ke-jun1(1.College of Quality and Technology Supervision,Hebei University,Baoding 071002China;2.Institute of Vehicle Engineering,Beijing University of Science and Technology,Beijing 100083,China)Abstract:Based on the complex system of Permanent Magnetic Synchronous Motor(PMSM)withmulti-variable and nonlinear,in this paper,the physical model of PMSM is simplified and the mathematicalmodel of the motor is established in order to facilitate research.This paper uses id=0control mannerwhich is the simplest manner in vector control methods,motor electromagnetic torque equation is estab-lished based on rotor field oriented vector control.The system model,speed and current control block arebuilt and simulated with Matlab/Simulink.Simulation results show that the waveform is consistent withtheoretical analysis;the model has fast response and small overshoot.The system runs stably with gooddynamic and static characteristics.So,the establishment and analysis of PMSM model provide a new studyfor its actual control.Key words:permanent magnetic synchronous motor;vector control;modeling;simulation永磁同步电机与励磁同步电机相比取消了励磁电源和励磁绕组,取而代之的是能够产生稳定磁场的永磁体,这就使得永磁同步电机结构更加紧凑,重量减轻,体积减小,又由于同时也取消了励磁系统的损耗, 收稿日期:2011-06-11 基金项目:河北省教育厅高等学校科学技术研究青年基金项目(2011206);2011年河北大学自然科学研究计划项目;校企横向课题项目(2011-3) 第一作者:王涛(1982-),男,山东泰安人,河北大学讲师,博士,主要从事新能源电动汽车研发技术. 通信作者:李勇(1986-),男,山东菏泽人,北京科技大学在读博士,主要从事交流传动控制系统、故障诊断方向的研究.E-mail:liyongthinkpad@gmail.com第6期王涛,等:永磁同步电机矢量控制系统建模与仿真其效率、功率因数得到了很大的提高[1-2].永磁同步电机的励磁磁场由转子上的永磁体产生,按转子磁场定向的矢量控制实现类似于直流电机对转矩和转子磁链的分别控制,从而获得类似于直流电机的宽范围调速性能.随着电力电子技术和控制技术的发展,永磁同步电机具有精度高、动态性能好、调速范围大以及定位控制准确等优点,常被应用于伺服系统和高性能的调速系统,因此引起了国内外越来越多学者的广泛关注[3].本文对永磁同步电机建立数学模型得到其基本方程,对矢量控制众多控制方法中最为简单的id=0方法进行研究,在Matlab/Simulink平台下建立该控制方法的仿真模型并进行仿真,并对仿真结果进行分析.该模型的建立和分析对电机的实际控制提供了新的研究思路.1 永磁同步电机的数学模型1.1 永磁同步电机基本结构永磁同步电机的定子与一般交流电机的定子绕组相同,采用三相交流绕组.定子铁心由带有齿和槽的冲片叠成,在槽中嵌入交流绕组.当三相对称电流通入三相对称绕组时,在气隙中产生同步旋转磁场,为简化问题同时又不影响数学模型的精度,常作如下假设:1)气隙磁场即永磁体产生的励磁磁场和三相绕组产生的电枢反应磁场呈正弦分布,定子三相绕组磁通产生的感应电动势也呈正弦分布;2)由于永磁同步电机的气隙比较大,所以不计定子磁路的饱和和铁损;3)转子上没有阻尼绕组,永磁体没有阻尼作用[4-5].1.2 永磁同步电机基本方程将永磁同步电机模型建立在三相静止坐标系(abc坐标系)上,可得到其各绕组电压平衡方程[6-7]uaubu熿燀燄燅c=Rs+ddtLa ddtMab ddtMcaddtMab Rs+ddtLb ddtMbcddtMca ddtMbc Rs+ddtL熿燀燄燅ciaibi熿燀燄燅c+eaebe熿燀燄燅c,(1)式中,ea,eb,ec为永磁体磁场在a,b,c三相电枢绕组中感应的旋转电动势,Rs为定子绕组电阻,La,Lb,Lc为定子绕组自感,Mab,Mbc,Mca为绕组间的互感.由于转子结构不对称,将abc坐标系(三相静止坐标系)中的a,b,c三相绕组先变换到αβ坐标系(两相静止坐标系),然后再由αβ坐标系变换到dq坐标系(两相旋转坐标系)中.采用的坐标变换关系式为[8-11]idi[]q=cosθ cosθ-2π()3 cosθ+2π()3-sinθ -sinθ-2π()3 -sinθ+2π()熿燀燄燅3iaibi熿燀燄燅c,(2)得到dq坐标系上的电压方程为udu[]q=Rs+ddtLd -ωLq-ωLd Rs+ddtL熿燀燄燅qidi[]q+0ωrψ[]f,(3)式中,Ld,Lq为定子绕组自感,id,iq为d,q轴电流分量,Rs为定子绕组电阻,ud,uq为d,q轴电压分量,ωr为转子角速度,ψf=槡6ψfm/2,ψfm为与定子a,b,c三相绕组交链的永磁体磁链的幅值.电机在dq坐标系中转矩方程为Te=32p(ψdiq-ψqid),(4)dq向abc转换关系如式(5)所示.·946·河北大学学报(自然科学版)2011年iaibi熿燀燄燅c=槡23 cosθ -sinθcosθ-2π()3 -sinθ-2π()3cosθ+2π()3 -sinθ+2π()熿燀燄燅3idi[]q.(5)永磁同步电机的矢量控制方法有很多种,其中使直轴电流id=0控制是最常用的方法.此时电流矢量随负载状态的变化在q轴上移动.根据式(4),id=0时的电磁转矩为Te=32pψdiq.采用该方法消除了直轴电流带来的电枢反应,电机所有电流都用来产生电磁转矩,电流控制效率得到提高,产生最大的电磁转矩.永磁同步电机矢量控制结构图1所示.图1 永磁同步电机矢量控制结构Fig.1 PMSM vector control structure2 Simulink仿真模型根据永磁同步电机矢量控制结构图[12-15],在Matlab/Simulink中搭建仿真模型,如图2所示.图2 永磁同步电机仿真模型Fig.2 PMSM simulation mode本文采用永磁同步电机电流、速度的双闭环控制,如图3所示.内环为电流环,外环为速度环.·056·第6期王涛,等:永磁同步电机矢量控制系统建模与仿真图3 永磁同步电机电流、转速控制系统结构Fig.3 PMSM speed &current control system structure将电流环看作是速度调节系统中的一个环节,其作用是提高系统的快速性,抑制电流环内部干扰,限制最大电流以保障系统安全运行,速度环的作用是增强系统抗负载扰动的能力,抑制速度波动[16].转速调节模块如图4所示.该模块由PI调节器和限幅输出模块组成.通过反复调整kp,ki参数使系统输出达到最佳状态.电流调节其实就是转矩调节模块,将转速调节器的输出电流作为转矩调节器的输入.该模块也由PI调节器和限幅输出模块组成,电流调节模型图与转速调节模型图相同[17-18].图4 永磁同步电机转速调节器仿真模型Fig.4 PMSM ASR simulation model3 仿真和结果分析仿真参数设置:逆变器直流电源电压380V,永磁同步电机定子绕组电阻Rs=2.67Ω,d轴电感Ld=0.007H,q轴电感Lq=0.007H,极对数p=2,电机转动惯量J=0.006kg·m2.电机空载启动,启动转速给定n=3 000r/min;待系统进入稳态后在0.05s时突加Tl=6N·m的负载,仿真时间t=0.1s.仿真结果如图5a-c所示.从图5a中可以看出电机在启动后的0.02s内转速快速上升,并在经过0.01s的波动之后迅速达到稳定状态,电机动态响应性能良好.图5b中看出0.03s之前出现很大的振荡,这是因为电机启动初期转子转速低于定子旋转磁场转速,定子磁链和永磁体磁链产生的转矩在较短的时间内起到制动作用.当牵引转矩小于制动转矩时,电机总转矩下降,从而出现振荡现象.在0.05s突加6N·m的负载时,转速、转矩均有相应响应,但经过短暂的波动之后均达到稳定状态.由于仿真过程中使用PWM逆变器供电,定子电流中出现一定的谐波分量,影响到电磁转矩,使转矩和转速均出现一定的脉动,但不影响系统的稳定性.图5c为电机的机械特性曲线,可以看出机械特性较为理想.a.转速响应曲线;b.转矩响应曲线;c.机械特性曲线.图5 永磁同步电机转速、扭矩及机械特性曲线Fig.5 Curve of the PMSM speed response、torque response and mechanical characteristic·156·河北大学学报(自然科学版)2011年4 结论在分析永磁同步电机数学模型的基础之上,建立了电机的数学方程,通过数学的方法去研究永磁同步电机,并在Matlab/Simulink里搭建模型并进行仿真.由电机仿真波形可以看出,系统响应快速且平稳,转速和转矩超调量非常小,系统起动后保持恒定转矩;突加扰动时系统波动较小,充分说明系统具有较好的鲁棒性.仿真结果证明了本文所提出的永磁同步电机仿真建模方法的有效性.参 考 文 献:[1]曾毅.变频调速控制系统的设计和维护[M].2版.济南:山东科学技术出版社,2002.[2]张铁军.永磁同步电机数字化控制系统研究[D].长沙:湖南大学,2006.[3]王成元.电机现代控制技术[M].北京:机械工业出版社,2007.[4]杨文峰,孙韶元.参数自调整模糊控制交流调速系统的研究[J].电工技术杂志,2001(9):11-13.[5]BARRERO F,GONZ LEZ A,TORRALBA A,et al.Speed control of induction motors using a novel fuzzy sliding modestructure[J].IEEE Transactions on Fuzzy Systems,2002,10(3):375-380.[6]薛峰,谢运祥,吴捷.直接转矩控制系统的转速估算模型及其参数补偿方法[J].电工技术学报,1998,13(5):26-30.[7]EBERHART R,KENNEDY J.A new optimizer using particl swarm theory[Z].Proceedings of Sixth International Sym-posium MicroMachine and Human Science,Nagoya,Japan,1995.[8]陈伯时.电力拖动自动控制系统[M].2版.北京:机械工业出版社,2001.[9]陈荣.永磁同步电机伺服系统研究[D].南京:南京航空航天大学,2004.[10]黄永安,马路,刘慧敏.MATLAB 7.1/Simulink 6.1建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005.[11]李学文,李学军.基于SIMULINK的永磁同步电机建模与仿真[J].河北大学学报:自然科学版,2007,27(S1):28-31.[12]BOUCHIKER S,CAPOLINO G A.Vector control of a permanent magnet synchronous motor using AC matrix converter[J].IEEE Transactions on Power Electronics,1998,13(6):1089-1099.[13]沈艳霞,吴定会,李三东.永磁同步电机位置跟踪控制器及Backstepping方法建模[J].系统仿真学报,2005,17(6):1318-1321.[14]薛花,姜建国.基于EKF永磁同步电机FMRC方法的仿真研究[J].系统仿真学报,2006,18(11):3324-3327.[15]林伟杰.永磁同步电机两种磁场定向控制策略的比较[J].电力电子技术,2007,41(1):26-29.[16]LI Yong,MA Fei,CHEN Shunxin,et al.PMSM simuation for AC drive in mining dump truck[Z].The Ninth Interna-tional Conference on Information and Management Sciences(IMS2010),Urumchi,2010.[17]KENNEDY J,EBERHART R.Particle swarm optimization[Z].Pro IEEE Int Conf on Neural Networks,Perth,1995.[18]钱昊,赵荣祥.永磁同步电机矢量控制系统[J].农机化研究,2006(2):90-91.(责任编辑:孟素兰)·256·。
永磁同步电机矢量控制仿真
永磁同步电动机矢量控制仿真1.前言随着微电子和电力电子技术的飞速发展, 越来越多的交流伺服系统采用了数字信号处理器(DSP) 和智能功率模块( IPM ) , 从而实现了从模拟控制到数字控制的转变。
空间矢量PWM 调制, 它具有线性范围宽, 高次谐波少, 易于数字实现等优点, 在新型的驱动器中得到了普遍应用。
永磁同步电机(PM SM ) 具有较高的运行效率、较高的转矩密度、转动惯量小、转矩脉动小、可高速运行等特点, 在诸如高性能机床进给控制、位置控制、机器人等领域PMSM得到了广泛的应用。
近几年来, 国内外学者将空间矢量脉宽调制算法应用于永磁同步电机控制中, 并取得了一定的成就。
同时, 永磁同步电机交流变频调速系统发展也很快, 已成为调速系统的主要研究和发展对象。
数字仿真技术一直是交流调速系统分析计算的有用工具。
但随着对PM SM 控制技术要求的提高, 空间矢量PWM 控制系统成为首选方案。
本文对其进行MA TLAB S IMUL IN K下仿真, 并给出了仿真结果。
2.永磁同步电动机矢量控制原理矢量控制的目的是为了改善转矩控制性能,而最终实施仍然是落实到对定子电流(交流量)的控制上。
由于在定子侧的各个物理量,包括电压、电流、电动势、磁动势等等,都是交流量,其空间矢量在空间以同步转速旋转,调节、控制和计算都不是很方便。
因此,需要借助于坐标变换,使得各个物理量从静止坐标系转换到同步旋转坐标系,然后,站在同步旋转坐标系上进行观察,电动机的各个空间矢量都变成了静止矢量,在同步坐标系上的各个空间矢量就都变成了直流量,可以根据转矩公式的几种形式,找到转矩和被控矢量的各个分量之间的关系,实时的计算出转矩控制所需要的被控矢量的各个分量值,即直流给定量。
按照这些给定量进行实时控制,就可以达到直流电动机的控制性能。
由于这些直流给定量在物理上是不存在的,是虚构的,因此,还必须再经过坐标的逆变换过程,从旋转坐标系回到静止坐标系,把上述的直流给定量变换成实际的交流给定量,在三相定子坐标系上对交流量进行控制,使其实际值等于给定值。
永磁同步电机矢量控制仿真实验总结
永磁同步电机矢量控制实验总结矢量控制是交流电机的一种高性能控制技术,最早由德国学者Blaschke 提出。
其基本思想是根据坐标变换理论将交流电机两个在时间相位上正交的交流分量转换为空间上正交的两个直流分量,从而把交流电机定子电流分解成励磁分量和转矩分量两个独立的直流控制量,分别实现对电机磁通和转矩的控制,然后再通过坐标变换将两个独立的直流控制量还原为交流时变量来控制交流电机,大大提高了调速的动态性能。
随着新型电机控制理论和稀土永磁材料的快速发展,永磁同步电机(PMSM )成为近年来发展较快的一种电机。
它具有气隙磁密度高、转矩脉动小、转矩/ 惯量比大的优点,与传统的异步电机相比,节能效果明显、效率高、结构轻型化、维护容易、运行稳定、可靠性高、输出转矩大,得到了越来越广泛的应用和重视,是目前交流伺服系统中的主流电机。
1 永磁同步电机的数学模型永磁同步电机模块可工作于电动机方式或发电机方式,运行方式由电机电磁转矩符号决定(为正则是电动机状态,为负则是发电机状态)。
对永磁同步电机模型作如下假设:不考虑铁心饱和,忽略端部效应;涡流损耗、磁滞损耗忽略不计;定子三相电流产生的空间磁势及永磁转子的磁通分布呈正弦波形状,忽略磁场的高次谐波;不考虑转子磁场的突极效应;永磁材料的电导率为零,永磁体的磁场恒定不变。
运用坐标变换理论,可以得到在同步旋转的两相坐标系下(d-q )的永磁同步电机的数学模型。
电压方程为:q d d d P Ri u ωψψ-+=d q q q P Ri u ωψψ-+=定子磁链方程为:f d d d i L ψψ+=q q q i L =ψ电磁转矩方程为:)(q d d q p e i i n T ψψ-=式中:d u 、q u 、d i 、q i 、d ψ、q ψ分别为d-q 轴上的定子电压、电流和磁链分量;R 为电机定子绕组电阻;d L 和q L 分别为永磁同步电机d-q 轴上的电感;f ψ为永磁体在定子上产生的耦合磁链;ω 为d-q 坐标系的旋转角频率;e T 为电机电磁转矩;p n 为磁极对数;p 为微分算子。
永磁同步电机矢量控制系统仿真实验设计
永磁同步电机矢量控制系统仿真实验设计
周晓华,蓝会立,王 晨,张 银,杨 叙,廖凤依,吴国强
(广西科技大学 电气与信息工程学院,广西 柳州 545616)
摘 要:利用 Matlab/Simulink 仿真平台建立了永磁同步电机的电流滞环跟踪调制矢量控制系统和 SVPWM 调制
矢量控制系统的仿真模型,给出了相关模型参数。针对永磁同步电机负载起动、参考转速变化、负载转矩变化等
情形,开展了两种永磁同步电机矢量控制系统的仿真实验教学。实验结果与理论推导一致,验证了所建立仿真模
型的正确性。
关键词:永磁同步电机;矢量控制;电流滞环跟踪调制;SVPWM 调制;仿真实验
中图分类号:TM921
文献标识码:A 文章编号:1002-4956(2020)01-0126-06
Design on simulation experiment of vector control system for permanent magnet synchronous motor
127
子电流分量;ψf 为转子永磁励磁磁链。 定子电压方程为
ud Rsid p d q uq Rsiq p q d
(2)
式中:ud、uq 分别为 d、q 轴定子电压分量;Rs 为定子 电阻;p 为微分算子;ω 为转子角速度。
电磁转矩方程为
Te pn ( d iq qid )
平台,设计了永磁同步电机电流滞环跟踪调制矢量控 制 和 空 间 矢 量 脉 宽 调 制 ( space vector pulse width modulation,SVPWM)矢量控制的仿真实验。通过电 机起动、参考转速及负载转矩变化等动态过程的仿真 实验教学,激发了学生的学习兴趣,加深了学生对永 磁同步电机矢量控制系统的理解和应用,提高了教学 质量。
双闭环永磁同步电机伺服系统 仿真算例
双闭环永磁同步电机伺服系统一.系统介绍译文:这个算例使用的永磁同步电机(1.1KW,3000rpm)由转速闭环和电流闭环共同控制。
电路描述:这台三相电机由脉宽调制逆变器来供电,电机额定值是1.1kw,220v,3000rpm.脉宽调制逆变器完全由标准simulink模块建立。
它的输出通过受控电压源作用与永磁同步电机的定子绕组。
作用到电机转轴的负载转矩初始值设置为3n.m 在0.04秒时,跳变为1n.m。
两个控制环被使用,内环是用来稳恒电机的定子电流的,外环是控制电机的转速的。
观察定子电流的波形是很“吵杂”的,这是使用脉宽调制变频调制可以预料到的。
当负载在0.04s减小时,电流的幅值也减小了。
由PWM产生的噪声同样可以在电磁转矩的波形中看到,然而电机的惯性阻止了它出现在转速的波形中。
二.系统电路元件简介(从左至右)1.转速给定模块 700rpm2.比较器3.PI调节器4.低电平输入模块5.矢量运算器6.电流跟踪式PWM逆变器7.电压测量元件8.负载转矩信号输入模块9.永磁同步电机10.电机测试信号分配器11.信号放大器双闭环回路包括:三相定子电流反馈环,转速反馈环。
由于转子角位移反馈环参与的是矢量控制,并不直接控制电机运行,因此它不再算作第三个独立的闭环。
三.重要模块介绍对于上述的11个模块,相信大家对1,2,3,4,7,9,11都能根据已学的专业知识很直接的理解,所以这里不再重点介绍了。
下面要重点介绍的是大家比较陌生的以下四个模块:5.矢量运算器 6.电流跟踪式PWM变频器 8.负载转矩信号输入模块 10.电机测试信号分配器。
其中更为重要的是:矢量运算器和PWM 变频器。
由于本系统采用了矢量控制技术和变频调速,所以它们是这个系统的两个核心控制元件,也是这个算例的难点。
矢量运算器(dq2abc):它的左侧有四个输入端,从上至下分别是:交轴电流输入端(iq),直轴电流输入端(id),零序电流输入端(i0),转子角位移输入端(the)。
【精选】基于Matlab永磁同步电机矢量控制的仿真分析 doc资料
基于Matlab永磁同步电机矢量控制的仿真分析《工业控制计算机》2021年第24卷第9期本文应用Matlab 强大的建模和仿真能力,在Matlab /Simulink 中搭建PMSM 矢量控制系统的仿真模型,这为PMSM伺服控制系统的分析与设计提供了有效的手段和工具。
1PMSM 的数学模型以及矢量控制原理1.1PMSM 的数学模型为了便于分析,电机的数学模型推导前作如下假设:①忽略铁心饱和、涡流和磁滞损耗;②永磁转子没有阻尼作用;③三相定子绕组在空间呈星形对称分布,定子各绕组的电枢电阻和电感相等;④感应电动势及气隙磁场均按正弦分布,且不计磁场的各项谐波。
则电机三相绕组的电压回路方程如下:u au b u c=r 000r 000M M r i ai b i c+p L M M M L M M M M MLi ai b i c+p φf sin (θr φf sin (θr -2π3φf sin (θr +2π3(1其中:u a 、u b 、u c 分别为三相定子绕组电压;i a 、i b 、i c 分别为三相定子绕组电流;r 每相定子绕组电阻;φf 转子永磁体磁链;L 每相绕组的自感;M 每相绕组的互感;θr 转子位置角,即转子q 轴与a 相轴线的夹角;p 微分算子,p=d /dt 。
因为三相绕组为星形连接,有i a +i b +i c =0(2将(2代入(1中,则可得到PMSM 在abc 静止坐标系的电压方程:u a u b u c MM =r+p (L-M000r+p (L-M00r+p (L-M MMi a i b i cMM+pφfsin (θrφfsin (θr-2πφfsin (θr +2π3(3利用clark 和park 变换,先将三相abc 静止坐标系变换到两相αβ静止坐标系,再变换到两相dq 旋转坐标系,得到相应的动态磁链以及电压方程:φd =L d i d +φf φq =L q i qM (4u d =ri d +L d pi d -ωr φq u q =ri q +L q pi q +ωr φdM(5其中:ωr 为转子电角速度,有θr =ωr t ;电机是表面式PMSM ,所以L d =L q =L-M ,分别为直、交轴同步电感;u d ,u q ,i d ,i q ,φd ,φq 分别为直、交轴上的电压、电流和磁链分量。
永磁同步电动机两种矢量控制方式的仿真研究
2 转子磁场定向下的永磁同步电动机数学模型
永磁同步电动机是交流同步调速系统的主要环节,分 析其数学模型对把握其调速特性尤为重要。取转子永磁体基 波励磁磁场轴线为 d 轴,q 轴顺着旋转方向超前 d 轴 90 度 电角度,dq 轴系随同转子以电角度ωr 一道旋转,它的空间 坐标以 d 轴与参考轴 as 间的电角度θr 来表示,则理想永磁
通过 MATLAB 语言中的 Simulink 和 Power System Block 模块建立了控制系统的仿真模型,并将
得出的仿真结果进行了分析比较。
关键词: 永磁同步电机; 矢量控制; 仿真
中图分类号:TP391.9
文献标识码: A
Simulation of Permanent Magnet Synchronous Motor Using Two Vector Control Methods
PMSM 测量
图 5 转子磁场定向前馈型矢量控制电路仿真
4.3 永磁同步电机反馈型矢量控制
反馈型矢量控制又名直接型矢量控制,这类控制系统 也有多种组成方案,图 6 仅是其中一种方案的 MATLAB 仿真模型。图中最关键的部分是磁通运算器,用 simulink 建立了磁通运算器模块如图 7 所示。根据永磁同步电机在 同步旋转 d,q,0 坐标系中的电压方程,将检测到得两相定 子电流和电压用于计算磁链参数,于是可以得到 d,q,0 坐 标系的磁链ψ d 和ψ q ,经过矢量合成可以得到全交链磁通
GU Guang-xu, DENG Zhi-quan
(Department of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224003, China)
基于Matlab的永磁同步电机矢量控制系统仿真研究
中图分类号:T M351 T M341 文献标识码:A 文章编号:100126848(2007)022*******基于Matlab 的永磁同步电机矢量控制系统仿真研究龚云飞,富历新(哈尔滨工业大学机器人研究所,哈尔滨 150001)摘 要:在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(S VP WM )技术使得交流电机能够获得和直流电机相媲美的性能。
为了更好地验证基于DSP 的交流调速矢量控制系统实际设计过程中各部分输出特性的正确性并为其设计提供必要的设计参数,利用Matlab /Si m ulink 工具箱搭建了系统的仿真模型。
仿真结果符合电机实际运行特性,为实际系统的设计提供了理论依据。
关键词:永磁同步电动机;建模;仿真;空间电压矢量脉宽调制;交流调速S i m ul a ti on of P M S M Vector Con trol Syste m ba sed on M a tl abG ONG Yun 2fei,F U L i 2xin(Robot I nstitute of Harbin I nstitute of Technol ogy,Harbin 150001,China )ABSTRACT:I n t oday πs AC servo syste m ,the vect or contr ol theory and S VP WM technique make the AC mot or can achieve the perfor mance as good as DC mot or .W hen designing the AC servo syste m ,in order t o test the correctness of every part πs out puts and p r ovide the necessary design para meters f or the re 2al syste m ,we built the si m ulati on model of the whole syste m with si m ulink t oolbox in matlab .The si m u 2lati on results accord with the real mot or πs perf or mance and p r ovide the theory basis for the designing of re 2al syste m.KEY WO R D S:P MS M;Modeling,Si m ulati on;S VP WM;AC servo syste m收稿日期:2005212227修改日期:20062032211 控制原理永磁同步电机矢量控制系统基本框图如图1所示。
基于Matlab的永磁同步电机矢量控制系统仿真研究
基于Matlab的永磁同步电机矢量控制系统仿真研究一、本文概述随着电机控制技术的快速发展,永磁同步电机(PMSM)因其高效率、高功率密度和优良的调速性能,在众多工业领域得到了广泛应用。
为了充分发挥永磁同步电机的性能优势,需要对其进行精确的控制。
矢量控制作为一种先进的电机控制策略,能够实现对电机转矩和磁链的独立控制,从而提高电机的动态和稳态性能。
对基于Matlab的永磁同步电机矢量控制系统进行仿真研究,对于深入理解电机控制原理、优化控制系统设计以及推动电机控制技术的发展具有重要意义。
本文旨在通过Matlab仿真平台,构建永磁同步电机的矢量控制系统模型,并对其进行仿真分析。
文章将介绍永磁同步电机的基本结构和工作原理,为后续的控制系统设计奠定基础。
接着,将详细阐述矢量控制的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。
在此基础上,文章将构建基于Matlab的永磁同步电机矢量控制系统仿真模型,并对其进行仿真实验。
通过对仿真结果的分析,文章将评估矢量控制策略在永磁同步电机控制中的应用效果,并探讨可能的优化措施。
二、永磁同步电机的基本原理和特性永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种利用永久磁铁作为转子励磁源的同步电机。
其工作原理主要基于电磁感应定律和电磁力定律,结合现代电力电子技术和先进的控制理论,实现了对电机的高性能控制。
永磁同步电机的核心构造包括定子绕组和永磁体转子两大部分。
定子绕组与交流电源相连,通入三相对称电流后会产生旋转磁场,类似于异步电机中的定子磁场。
不同于异步电机的是,PMSM的转子上镶嵌有高性能稀土永磁材料,这些永磁体在电机运行时不需外部电源励磁,即可产生恒定的磁场。
当定子旋转磁场与转子永磁磁场相互作用时,便会在电机内部形成一个合成磁场,从而驱动转子跟随定子磁场同步旋转。
高效节能:由于取消了传统同步电机所需的励磁绕组和励磁电源,永磁电机减少了励磁损耗,效率通常能达到90以上,尤其在宽负载范围内保持较高的效率水平。
MATLABSIMULINK永磁同步电机无传感器矢量控制系统仿真word精品文档6页
MATLABSIMULINK永磁同步电机无传感器矢量控制系统仿真Abstract:The vector control system of PMSM(Permanent Magnetic Synchronization Motor)has a wide application prospect in the fields of electric cars and steamship etc.The simulation research of vector control PMSM system can provide methods for PMSM vector control system design and realization.This thesis involves in simulation research of speed loop modulation,PI(Proportion Integration)adjustment and dq/αβ transformation,gaining SVPWM(Space Vector Pulse Width Module)waves and double loop systems based on module structure under the environment of MATLAB/SIMULINK.Scope module was used to observe the stator current,rotating angle,revolution speed of rotator and rotating of torque.Through adjusting the module parameters timely,vector control and velocity modulation of PMSM was realized.The simulation results indicate that vector control system has the characteristics of fast speed up,strong overload capacity and ideal speed adjustment.1.引言随着高性能永磁材料、大规模集成电路和电力电子技术的发展,永磁同步电机因为其功率密度高,体积小,功率因数和高效率而得到发展,且引起了国内外研究学者的关注[1]。
永磁同步电机双闭环矢量控制系统仿真实验指导书
题目1永磁同步电机双闭环矢量控制系统仿真实验目的1. 加深理解永磁同步电机矢量控制系统的工作原理2. 掌握永磁同步电机驱动系统仿真分析方法1. 永磁同步电机双闭环控制系统建模2. 电流控制器设计3. 电流环动态跟随性能仿真实验4. 转速控制器设计5. 转速环抗负载扰动性能仿真实验6. 给出仿真实验结果与理论分析结果的对比及结论三.预习内容注:以下所有找不到的器件均可以通过搜索框搜索Simulink 的启动 在 MATLAB^键入 >>Simulink ,进入 Simulink library , 2014版本的可直接点击MATLAB^面上的Simulink library ,在Simulink 界面 上选择File->New->Model 。
如图1所示:图1 Simuli nk 界面在Simulink —级标题下点击source 将step (阶跃函数)拖入空白文件作为实验要求:一二|一=二二fa-frw|wir-I4MVUMWil^nl转速给定,也可用两个ramp 函数相减,使转速缓慢达到预定转速,如图 2:图2转速给定在Simulink —级标题下点击 Ports & Subsystems 选择Subsystem 放入空 白文件并双击,删除In1和Out1的连线,如图3:图3子函数模块选择 Simulink>Continuous 下的 integrator 、Simulink>discontinuous 下 的 Saturation 、Simulink>math operation 下的 gain 和 Add,连好线后保存并 返回,作为PI 调节器,其中saturation 可设置上下限为100和-100,如图4:EOE1㈢』SRfflECvmvpl> DtocvK 白■tihing ZjBnzFirbJRM □UoTtrt«|iE «I4 *1Q WBMAO Lwtttfi Tjt.«i^rT^ihcp击<4 世更jHirz 詡n*胛―5dnu ^QIFEVt -^ti -Zcrh±d F jTKlicjniBkK>»4C^n-ndrii :.4liE<kk-却 wjn 1 Contwlir Vna^ 3戸tsnr CortnJ &ysJer "ibbhm Wljrfh?rfiTMiKa ;K N II I 士Mrt 11UHLrteddbl Z Edfer VlhECV L 榔 Tge乜虹Hl Bcckl^l PDLCrtVEZ3Enizi ■tuiMrtrtefT!>ooSTm-i一二upFr/fi -derailbCcriQ^tJeT Jfl - 'X J ^^jk>-3iii —印心皿One»3to*MWHIfNFAB4BS^WfW图4 PI 子函数模块设置此PI 调节器输出结果作为lq 的电流给定,同样方法得到一个 PI 调节器, 输出结果作为电压给定,并设置 saturation 上下限为380和-380, Simulink 下 math operation 选择sum 双击并修改第二个“ +”为“-”,如图5:图5转速和电流反馈PI 调节选择Simulink>Ports & Subsystems 下的Subsystem 拖入并双击进入子系 统,并添加2个In1和1个Out1如图6:图6接口模块Simulink>math operation 下选择 Trigonometric Function 、Product 、Subtract 、Add 加入文件,设置好后保存并退出,作为逆 Park 变换,如图7:st&pl. ---------------- ------------------ Im* CJutl ■ -------- —Ini Outl pPIPillr Lith>-flry BrO-^S-e*1 列«.—■ 二 i和応 Edm W l^lp忸口■ CH T *・M 亠LMIWC1k'toW^ ^nidFlnlu*drb A SdEn-^alcrTa-H H M . J F » lilGF } r ■«!P弭―iLCcrrarKir V Ll.«d SteEica £40141*1 Uh I DfSt^rrimbLDQk : dr - El£ JpM-dbMliS- L&fl TkAHH' ■It' Opiaanibar s IM (M >E 磺Mictun LW 匪」■兀济常!IBBff m WflW -------------Si[|ru AIZ.-|Qu££-l HDW N&uipg 5ankH SKMJrr-.es&忙iVil Fu'^fiiW 4 Zd*n. 朗・h ■□■rzr -vta0i4eM4*iCamr —u ncabc: na. Spvfji m "Ik f&ffvUh ■- V'MvH- ^yKtairi CflsfWW &W*H1 T M I WK &&P台戸TboSwK P-plB E-rnh*didKd C«larLs^lcOdufe4 Bio<:l-tM H0L CKteT "OL iris** AcQMiLiUDni T IHMDCFJI . Hi-lfirfm«Ht C-Mtra TtMtENK il (!d«l R^CHI "DntTii E 昭hM^Ek : O0C TitBtoQHW::“-Tfr£ 询山|3口占・口『口 寸• iDFloS^»VI 4HEu u jullu-»>Caii3^M¥«WH■YiiwnSillily* j*iT1OL :1Ei£flM 33- Z-JIH! A&- I HJ *恥enm 忻图7反Park变换再生成一个PI调节器,作为d轴电流调节器,Simulink>source中选择constant 并设置为0,如图8:图8静止坐标系电压生svpwm模块建立过程过于复杂,可参考文献[1][2],只列出总体框图如图9和图10,其中Ts为开关周期,Udc为直流母线电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目1:永磁同步电机双闭环矢量控制系统仿真
一.实验目的
1.加深理解永磁同步电机矢量控制系统的工作原理
2.掌握永磁同步电机驱动系统仿真分析方法
二.实验要求:
1.永磁同步电机双闭环控制系统建模
2.电流控制器设计
3.电流环动态跟随性能仿真实验
4.转速控制器设计
5.转速环抗负载扰动性能仿真实验
6.给出仿真实验结果与理论分析结果的对比及结论
三.预习内容
注:以下所有找不到的器件均可以通过搜索框搜索
Simulink的启动在MATLAB中键入>>Simulink,进入Simulink library,2014版本的可直接点击MATLAB界面上的Simulink library,在Simulink界面上选择File->New->Model。
如图1所示:
图1 Simulink界面
在Simulink一级标题下点击source将step(阶跃函数)拖入空白文件作为
转速给定,也可用两个ramp函数相减,使转速缓慢达到预定转速,如图2:
图2 转速给定
在Simulink一级标题下点击Ports & Subsystems 选择Subsystem放入空白文件并双击,删除In1和Out1的连线,如图3:
图3 子函数模块
选择Simulink>Continuous下的integrator、Simulink>discontinuous下的Saturation、Simulink>math operation下的gain和Add,连好线后保存并返回,作为PI调节器,其中saturation可设置上下限为100和-100,如图4:
图4 PI子函数模块设置
此PI调节器输出结果作为Iq的电流给定,同样方法得到一个PI调节器,输出结果作为电压给定,并设置saturation上下限为380和-380,Simulink下math operation选择sum双击并修改第二个“+”为“-”,如图5:
图5 转速和电流反馈PI调节
选择Simulink>Ports & Subsystems下的Subsystem 拖入并双击进入子系统,并添加2个In1和1个Out1如图6:
图6 接口模块
Simulink>math operation 下选择 Trigonometric Function、Product、Subtract、Add加入文件,设置好后保存并退出,作为逆Park变换,如图7:
图7 反Park变换
再生成一个PI调节器,作为d轴电流调节器,Simulink>source中选择constant并设置为0,如图8:
图8 静止坐标系电压生
svpwm模块建立过程过于复杂,可参考文献[1][2],只列出总体框图如图9和图10,其中Ts为开关周期,Udc为直流母线电压。
图9 SVPWM生成结构
图10 SVPWM生成模块
三相桥模块:早期版本MATLAB选择SimPowerSystems>specialized Technology>Power Electronics 文件下的Universal Bridge(ATTENTION:这一步不在Simulink一级标题下,往下寻找), 2014 版本在Simscape> SimPowerSystems> Technology>Power Electronics, 找不到可以在搜索框中
输入对应器件名称搜索。
直流母线电压源:SimPowerSystems>specialized Technology>Electrical sources 选择DC voltage source,电压设置为530V,如图11:
图11 三相桥模块
添加PM电机模块:SimPowerSystems>specialized Technology>Machines 选择Permanent Magnet Synchronous Motor, 在添加Step信号作为转矩输入,暂时设置为0,如图12:
图12 PMSM电机模块设置
选择Simulink>Signal routing下的Bus selector,PMSM上的m连接到Bus selector 上的输入端,双击Bus selector, 选择 Signals in the bus下的项,点击中间的select,可以全部添加。
如图13:
图13 输出参数设置
选择Simulink>Signal routing下的Mux, 双击将数字改为3,将Bus selector输出端的A BC相电流连接到Mux的输入端,如图,并选择simulink>Sink 添加示波器Scope观测电流, 如果需要查看波形的FFT,双击
scope>parameters>history, 去掉limit data point to last并勾选save data to workspace如图14:
图14电流解耦
Clark变换:simulink>Ports & Subsystems选择Subsystem,双击进入添加Mux 和DeMux,user-defined Functions 选择Fcn, 其中Iabc为三相电流,设置如图15:
图15 Clark变换参数设置
Park变换:Clark变换的输出Ia、Ib和电机的theta角作为park变换的输入,需要添加Mux模块,其中Function设置如图16所示:
图16 park变换参数设置
双击点击模型,点击parameter选项,根据设置的电机极对数选择对电机转子输出的机械角度乘以极对数得到电角度,如图17红色圈所示.电机为感性负载,Clark电流变换的角度有90°相位差,所以需要减去90度. Simscape>SimpowerSystem>specialized Technology选择powergui添加到仿真图中,最终仿真图如图17所示:
图17 总体框图
仿真参数设置Simulation>model configuration parameters,仿真步长可以设置为定步长或者变步长,定步长,此处设置为开关周期的一百分之一即
1/600000,变步长可以设置最大步长为开关周期的百分之一,在不同步长情况下查看仿真结果:
图18 仿真参数设置
如果仿真过程中出现Data logging exceeded available memory,可以在示波器parameters中的参数, limit to last选项后的勾去掉,或者修改图18中仿真步长。
若要添加转矩反馈,可以添加在电流反馈环之前。
调整转速PI参数看看结果变化。
以上得到了最简易的电路图,反馈的转速单位为rad/s,给定转速单位若为r/min,需要在反馈的转速乘以30/pi。
线电压显示:simpower下面找到voltage measurement 添加三个到电路图,+端连接三相桥的A相,“-”连接三相桥的B相,其余两个分别连接B-C,C-A。
相电压显示:将三相桥的直流电压给定分为两个,中间接地ground,A B C相通过voltage measurement 与ground相减连接示波器即可,如图19:
图19 实验电路全图(可加测相电压)
四.实验报告要求:
1.对电机驱动系统的转速、电流、电压等仿真波形进行分析。
2.研究转速和电流调节器参数对驱动系统动态性能的影响。
参考文献:
[1] 范心明. 基于SIMULINK的SVPWM仿真[J]. 电气传动自动化,
2009,03:19-21+34.
[2] SVPWM的原理及法则推导和控制算法详解。