化学气相沉积(CVD)技术梳理
cvd化学气相沉积工艺
CVD(化学气相沉积)是一种重要的薄膜生长工艺,广泛应用于半导体、光电子、纳米材料和涂层工业中。
以下是CVD工艺的基本概述:1. 概念:CVD是一种通过将气体前体化合物沉积在固体表面上来生长薄膜或涂层的工艺。
这些前体气体通过加热可升华或分解,然后在基底表面反应并形成所需的材料。
2. 基本步骤:CVD工艺包括以下基本步骤:a. 前体气体引入:气体前体化合物以气体或液体形式引入反应室。
b. 基底准备:基底通常是硅片、玻璃、金属等,必须事先准备,例如清洗和加热,以确保薄膜附着良好。
c. 气体分解或反应:前体气体在高温下分解或反应,生成反应产物。
d. 反应产物沉积:反应产物沉积在基底表面,形成所需的薄膜或涂层。
e. 废气排放:废气将未反应的气体和副产物排出反应室。
3. 温度和压力控制:控制CVD工艺的温度和压力非常重要。
温度通常高于反应气体的沸点,以确保气体前体可以蒸发或分解。
压力可以调整以控制气体的浓度和反应速率。
4. 类型:CVD工艺有多种类型,包括:a. 热CVD:在高温下进行,常用于硅片生产等。
b. 低压CVD(LPCVD):在较低的压力下进行,适用于高质量薄膜的生长。
c. PECVD(等离子体增强化学气相沉积):使用等离子体激活气体前体,通常用于生长氢化非晶硅薄膜等。
d. MOCVD(金属有机化学气相沉积):用于生长半导体材料,如GaAs、InP等。
5. 应用:CVD工艺在半导体制造、光电子器件、太阳能电池、涂层技术、纳米材料制备等领域具有广泛应用。
它用于生长晶体薄膜、导电涂层、光学涂层、硅片的外延生长等。
6. 控制和监测:CVD工艺需要精确的温度、压力和气体流量控制,以及监测反应产物和废气的化学成分。
总之,CVD是一种重要的化学气相沉积工艺,可用于生长各种薄膜和涂层,广泛应用于多个工业领域,是现代微电子和纳米技术的基础之一。
化学气相沉积
缓且不明显。
4.2 化学气相沉积原理
CVD反应的进行涉及到能量、动量及质量的传递。反应气体是 借着扩散效应来通过主气流与基片之间的边界层,以便将反学气相沉积合成方法发展
20世纪50年代 主要用于道具
涂层
古人类在取暖 或烧烤时在岩 洞壁或岩石上
的黑色碳层
近年来PECVD 、LCVD等高
速发展
20世纪60-70 年代用于集成
电路
80年代低压 CVD成膜技术 成为研究热潮
2
4.2 化学气相沉积原理
一、基本概念
化学气相沉积(CVD):
14
4.2 化学气相沉积原理
二、化学气相沉积法原理
2、CVD技术的热动力学原理
CVD反应结构分解:
不同物质状态的边界层对CVD沉积至关重要。所谓边界层,就是流体及物 体表面因流速、浓度、温度差距所形成的中间过渡范围。 (a)反应物已扩散通过界面边界层; (b)反应物吸附在基片的表面; (c)化学沉积反应发生; (d) 部分生成物已扩散通过界面边界层; (e)生成物与反应物进入主气流里,并离开系统 。
流速与流向均 平顺者称为 “层流”;
流动过程中产 生扰动等不均 匀现象的流动 形式,则称为
其中,d为流体流经的管径,ρ为流体的密度,
“湍流”。
ν为流体的流速,μ则为流体的粘度
两种常见的流体流动方式
20
4.2 化学气相沉积原理
假设流体在晶座及 基片表面的流速为 零,则流体及基片 (或晶座)表面将 有一个流速梯度存 在,这个区域便是 边界层。
其中:hc为“对流热传系数”
19
4.2 化学气相沉积原理
二、化学气相沉积法原理 2、CVD技术的热动力学原理
化学气相沉积法的原理和材料制备
化学气相沉积法的原理和材料制备化学气相沉积法(Chemical Vapor Deposition,简称CVD)是一种常用于材料制备的技术方法。
它利用气体化学反应,在高温下生成固态材料,并将其沉积在基底表面上形成薄膜或纳米结构。
CVD方法广泛应用于半导体、纳米材料、涂层等领域,并在电子、光学、能源等产业中发挥重要作用。
CVD的原理是利用气体在高温下分解反应,生成高纯度材料。
首先,将所需材料的前体化合物(一种或多种)以气体形式引入反应室。
然后,通过加热反应室使其达到适宜的温度,并在此温度下维持一定时间。
在高温下,前体分子会分解为活性物种(如原子、离子或自由基),这些活性物种与基底表面发生反应,生成所需材料的沉积物。
反应过程中,通常还会加入载气(如氢气)以稀释和传递反应物质。
CVD方法提供了一种有效的材料制备手段,其优势在于能够实现高纯度、均匀性好的材料生长,并且可以控制沉积速率和沉积形貌。
其适用范围广泛,不仅可以制备块体材料,也可以制备薄膜、纳米颗粒等纳米结构材料。
此外,CVD还可以在不同的温度下进行,因此能够适应多种材料的生长需求。
CVD方法主要分为热分解CVD、化学气相沉积CVD和物理气相沉积CVD等几种类型。
在热分解CVD中,通过加热气体源使之分解,产生所需材料的沉积物。
这种方法常用于制备碳纳米管、金属纳米线等纳米结构材料。
在化学气相沉积CVD中,主要利用气体的化学反应生成沉积物。
通过选用合适的前体化合物及反应条件,可以实现对材料成分和结构的控制。
物理气相沉积CVD则是通过物理过程实现材料的沉积,如物理吸附或辐射捕捉。
CVD方法可以制备多种材料,例如二氧化硅、氮化硅、氮化铝、碳化硅等。
其中,二氧化硅是一种广泛应用于微电子器件中的重要材料。
通过CVD方法可以在硅基底上沉积高纯度、均匀性好的二氧化硅薄膜,用于制备晶体管、电容器等器件。
同样,氮化硅和氮化铝等氮化物材料也可以通过CVD方法制备,用于制备高能效LED、功率器件等光电子器件。
化学气相沉积CVD
这些具有高反应活性的物质很容易被吸附到较低温度的基
体表面上,于是,在较低的温度下发生非平衡的化学反应
沉积生成薄膜,这就大大降低了基体的温度,提高了沉积
速率。
16
3. PECVD装置
普通CVD+高频电源(用于产生等离子体)
用高频产生辉光放电等离子体的卧式反应
主要由反应器(室)、供气系统和加热系统等组成
图8.3.1
Si片PN结构微细加工的CVD装置意示图
6
反应器的类型:
图8.3.2 CVD反应器的类型
7
沉积过程:
① 在主气流区域,反应物从反应器入口到分解区域的质
量输运;
② 气相反应产生膜形成的前驱体和副产物;
③ 成膜前驱体质量输运至生长表面;
④ 成膜前驱体吸附在生长表面;
可有效解决普通CVD基体温度高,沉积速率慢的不足。
1.等离子体
(1)物质的第四态
给物质以能量,即T↗:
固 液 气 电离,离子+自
由电子,等离子体,第四态。
(2)产生
自然界:大气电离层,高温太阳
实验室:气体放电,供给能量,维持;
图8.3.3 物质的四态
15
(3)性质及应用
气体高度电离的状态;
下进行沉积的某些场合,如沉积平面
硅和MOS集成电路的纯化膜。
(2)按照沉积时系统压强的大小分类:
常压CVD(NPCVD),~1atm;
低压CVD(LPCVD),10~100Pa;
LPCVD具有沉积膜均匀性好、台阶覆盖及一致性较好、
针孔较小、膜结构完整性优良、反应气体的利用率高等优
点,不仅用于制备硅外延层,还广泛用于制备各种无定形
化学气相沉积(CVD)技术及应用
CVD的应用-半导体
➢低介电常数薄膜—布线间绝缘用的SiO2系薄膜 (F的加入)
➢微小电容器—铁电体的CVD,良好的台阶涂敷, 适合微细加工,保证高介电常数
➢高容量电容—半球形晶粒多晶Si-CVD
CVD的应用-半导体
➢对高密度LSI的超微细孔(连接孔或通孔)进行 处理—金属CVD,膜层纯度高,深孔埋入和孔 底涂敷效果好
➢高纯度单晶—有机金属CVD
CVD的其他应用
➢TFT(thin film transistor,薄膜晶 体管)
➢大面积且性能一致的低成本薄膜 ➢PCVD温度低,适合连续化生产
S.M. Han, J.H. Park, S.G. Park et al.,Thin Solid Films, 515 (2007) 7442-7445
源瓶 载带 气体
MFC 纯化
MFC 纯化
真空泵
气 瓶
源 气体
气 瓶
置换 气体
排气 处理装置
基板进出
废气排放 (或储存)
热CVD法成膜原理
原料气体 热分解 化学反应
排气
成膜过程:
二次生成物
未反应气体 1.反应气体被基体表面吸附;
2.反应气体向基体表面扩散;
抽取
3.在基体表面发生反应;
吸附 表面反应
脱离 沉积
类金刚石薄膜: 理想的刀具材料,国 内外研究热点,已经 有相关产品。
胡如夫, 孙方宏,制造工艺与制造技术 ,1 (2007)74-76
CVD的应用-半导体
➢LSI(large scale integrated circuit) 大规模集成电路
➢多层布线的层间绝 缘膜,金属布线, 电阻及散热材料等
Y. Akasaka, Thin Solid Films, in press
cvd化学气相沉积
cvd化学气相沉积
cvd化学气相沉积(CVD)是一种利用特定剂量的一氧化碳(CO)、氨(NH3)、甲烷等气体,在温度和压力特定的情况下,以一定比例的能量进行添加,使这些气体在表面形成单一或多层膜的一种技术。
传统的cvd方法已经开发出很多种,如固体化学气相沉积,液体化学气相沉积,电化学气相沉积,光致电化学气相沉积,电子束气相沉积等。
这些技术在应用于金属、硅、陶瓷、复合物和有机体等材料表面时,都可以获得良好的膜层,从而可以用于改善材料的物理和化学性能。
cvd技术以精细、灵活、高效地进行表面改性而闻名。
首先,cvd 技术最大的优点是可以在大规模产品上进行表面改变,并且能够满足用户的高要求,从而节省生产时间和费用,且具有一定的环保性能。
其次,cvd技术也可以提高材料的抗污性能,从而提高材料的防腐蚀性能,从而大大延长产品的使用寿命。
此外,cvd技术还可以提高材料的光学性能,如它可以使材料具有抗反射和吸收可见光的特性,从而大大提高材料的光学特性。
由于cvd技术具有多种优点,因此它在很多领域都有应用,如用于汽车制造业形成防护层,或用于日常消费类型制造业,多用于涂料和电子行业,以及航空、航天等领域。
由于cvd技术可以使材料具有良好的抗磨损性能和抗静电性能,因此在电子行业的应用尤其广泛。
总之,cvd技术在低温下高效地形成表面膜层,同时它可以提高材料的物理和化学性能,并且可以满足用户的高要求,因此它已被广
泛地应用于各行各业。
CVD化学沉积法
CVD) )
气体分子
成核
晶粒聚结 晶粒聚结
连续薄膜
基板
化学气相沉积 (CVD) )
1)反应物质 量传输 气体输送 7)副生成物的后处理 2)薄膜生成物 反应 3)气体分子扩 散 4)生成物吸附 8)副产物移除 副产物移除 副产物 出口
CVD反应器
5)生成物扩散进 6)表面反应 入基板
化学气相沉积 (CVD) )
CVD技术是建立在化学反应基础上的,在CVD过程中,只有发生 技术是建立在化学反应基础上的, 过程中, 技术是建立在化学反应基础上的 过程中 在气相----固相交界面的反应才能在基体上形成致密的固态薄膜 在气相 固相交界面的反应才能在基体上形成致密的固态薄膜 CVD过程可分为七步: 过程可分为七步: 过程可分为七步 1. 反应组份气体进入反应室 2. 由反应气组份形成中间反应物 3. 中间反应物气份扩散通过气相边 界区到达沉积基体表面 界区到达沉积基体表面 4. 气份在基材表面被吸附 5. 在基材表面发生单步或多步反应发生沉积 6. 反应产物气份自基材表面发生解吸和扩散 7. 从系统中排出反应产物气份
连续薄膜
基板
For your time
cvd化学气相沉积的原理及应用
CVD化学气相沉积的原理及应用1. 概述CVD(Chemical Vapor Deposition)化学气相沉积是一种广泛应用于材料合成及薄膜制备中的技术。
通过将化学物质蒸发并传输到表面上,形成固态的薄膜或涂层。
本文将介绍CVD技术的原理以及其在不同领域的应用。
2. CVD技术原理CVD技术基于化学反应,在特定的温度和压力条件下,气相中的化学物质分解或反应生成可沉积的固态产物。
以下是CVD技术的基本原理:2.1 蒸发与传输CVD过程首先涉及将化学物质蒸发至气态状态。
这可以通过加热源加热化学物质,使其转变为气相。
然后,通过气流或扩散的方式将气态物质传输到需要沉积的表面。
2.2 反应与沉积在表面上,传输的气态物质与反应室中的预先存在的化学物质接触发生化学反应。
这些反应导致气态物质在表面上沉积形成固态产物,例如薄膜、涂层或晶体。
2.3 控制参数CVD过程的成功依赖于多个控制参数,例如温度、压力、化学物质浓度以及反应时间。
这些参数的调整可以控制沉积速率、物质的晶体结构以及沉积薄膜的性质。
3. CVD应用领域CVD技术在多个领域中得到广泛应用,下面将介绍其中几个应用领域。
3.1 薄膜制备CVD技术可以用于制备各种类型的薄膜,例如金属薄膜、氧化物薄膜、硅薄膜等。
这些薄膜可以应用于电子器件、光学涂层以及防护涂层等方面。
3.2 半导体制造CVD技术在半导体制造过程中起到了关键作用。
它可以用于生长单晶硅、氮化硅、化合物半导体等材料,以及制备光刻掩膜、薄膜晶体管等器件。
3.3 生物医学领域CVD技术在生物医学领域也有广泛应用。
它可以用于制备生物兼容的涂层、生物传感器以及药物控释系统。
这些应用有助于提高医疗器械的性能和生物相容性。
3.4 纳米材料制备CVD技术在纳米材料制备中发挥重要作用。
通过调控反应条件,可以制备出具有特定结构和形状的纳米材料,例如纳米线、纳米粒子以及纳米薄膜。
3.5 其他应用除了上述领域,CVD技术还被广泛应用于涂层保护、化学气相仿生等方面。
CVD-化学气相沉积
何为化学气相沉积(CVD )?newmakerCVD 是Chemical VaporDeposition 的简称,是指高温下的气相反应,例如,金属卤化物、有机金属、碳氢化合物等的热分解,氢还原或使它的混合气体在高温下发生化学反应以析出金属、氧化物、碳化物等无机材料的方法。
这种技术最初是作为涂层的手段而开发的,但目前,不只应用于耐热物质的涂层,而且应用于高纯度金属的精制、粉末合成、半导体薄膜等,是一个颇具特征的技术领域。
其技术特征在于:(1)高熔点物质能够在低温下合成;(2)析出物质的形态在单晶、多晶、晶须、粉末、薄膜等多种;(3)不仅可以在基片上进行涂层,而且可以在粉体表面涂层,等。
特别是在低温下可以合成高熔点物质,在节能方面做出了贡献,作为一种新技术是大有前途的。
例如,在1000℃左右可以合成a-Al2O3、SiC ,而且正向更低温度发展。
CVD 工艺大体分为二种:一种是使金属卤化物与含碳、氮、硼等的化合物进行气相反应;另一种是使加热基体表面的原料气体发生热分解。
CVD 的装置如图1所示,由气化部分、载气精练部分、反应部分和排除气体处理部分所构成。
目前,正在开发批量生产的新装置。
CVD是在含有原料气体、通过反应产生的副生气体、载气等多成分系气相中进行的,因而,当被覆涂层时,在加热基体与流体的边界上形成扩散层,该层的存在,对于涂层的致密度有很大影响。
图2所示是这种扩散层的示意图。
这样,由许多化学分子形成的扩散层虽然存在,但其析出过程是复杂的。
粉体合成时,核的生成与成长的控制是工艺的重点。
作为新的CVD技术,有以下几种:(1)采用流动层的CVD;(2)流体床;(3)热解射流;(4)等离子体CVD;(5)真空CVD,等。
应用流动层的CVD如图3所示,可以形成被覆粒子(例如,在UO2表面被覆SiC、C),应用等离子体的CVD同样也有可能在低温下析出,而且这种可能性正在进一步扩大。
(end)。
化学气相沉积法cvd
化学气相沉积法cvd1. 什么是化学气相沉积法(CVD)?CVD是chemical vapor deposition的缩写,是一种用于有机薄膜或无机薄膜制造的技术。
它是一种通过将溶剂热散发形成薄膜的过程。
在溶剂中添加了几种原料,其原理是热释放过程中会产生气态原料。
当这些气态化合物沉积(即固化)在共晶材料表面(如金属和绝缘体表面)上,就形成了膜。
2. CVD的工艺流程CVD的工艺流程大体由以下几步组成:(1)预处理:为了提高沉积物的附着性,之前必须进行表面清洁处理,以去除表面杂质或灰尘,在清洁过程中包括清洁、光饰、腐蚀等工艺;(2)CVD反应:使用适当的存在溶解性的原料制成气相,并将其放入加热的真空容器中,使存在的气态原料发生反应,被吸附在真空容器中的易沉积材料上,以形成膜;(3)膜层检测:膜厚测量或影像技术,横断面或芯片的扫描电子显微镜技术或接触角测量等方法;(4)产品评估:分析能够表明膜的界面强度,膜厚,抗划痕性能,耐腐蚀性以及相关介电性质等,为满足不同产品要求,对CVD参数进行适当调整,确保产品达到规定的质量。
3. CVD的优缺点(1)优点:(a)CVD制备的膜可以用于制备多种复合薄膜,可以使用单种原料或多个原料来改变所需的膜功能;(b)CVD可以成功地在某些维持低工作温度、低原料充放温度的薄膜制备中,能够有效地防止薄膜退化及基材损坏;(c)比较适合制备大区域的膜,且制备的膜厚度一致性良好,沉积膜所需时间比较短;除此之外,CVD还有改变膜特性可控性高,维护简单等优点。
(2)缺点:(a)制备多金属复合膜时易出现困难;(b)CVD由多个立体结构构成的微纳米膜在活度调节和温度控制方面难以得到一致的条件;(c)当原料遇到有机结构时,很容易产生氧化,从而减弱了其膜性能;(d)还容易出现沉积反应系统中氧化物及污染阴离子等杂质污染物,影响膜层的清洁性及性能。
4. CVD的应用范围CVD非常适合制备有机薄膜以实现有效阻挡载流子(如氧)和气体(如水蒸气)的分子穿过,保护容器不受环境污染。
第六讲化学气相沉积CVD技术
如:当反应速度与物质浓度的一次方成正比时 ,则反应属于一级反应。如下述的正向反应
SiCl4+2H2Si+4HCl SiCl3H+H2Si+3HCl SiCl2H2Si+2HCl SiClH3Si+HCl+H2 SiCl2+H2Si+2HCl SiH4Si+2H2
6个反应,6个平衡常数 K
化学气相沉积化学反应平衡的计算
将各反应的平衡常数记为 K1、K2 至 K6,写出 G 与各组元活度(压力 pi)的关系;固态 Si 的活度可认为等于 1
化学气相沉积化学反应平衡的计算
热力学计算不仅可预测CVD过程进行的方向, 还可提供化学平衡的详细信息,这提供了对过程 进行优化的可能性
为此,需要给定温度T、压力P、初始化学组成 x0,求解反应在化学平衡时各组分的分压 pi 或 浓度 xi
但在这种计算中,需要加以考虑的物质种类往往很 多
化学气相沉积化学反应平衡的计算
第一个例子:利用 H2 还原 SiCl4 制备硅薄膜时:
SiCl4(g)+2H2(g)Si(s)+4HCl(g)
(1200C)
这样一个简单的反应平衡问题,人们认为: 至少要考虑八个
气体组分:SiCl4、SiCl3H、SiCl2H2、SiClH3、SiH4、SiCl2、 HCl 和 H2,它们之间由以下六个化学反应联系在一起:
和由六氟化物制备难熔金属 W、Mo 薄膜的反应
WF6(g)+3H2(g)W(s)+6HF(g) (300C)
化学气相沉积反应的类型
氧化反应
如利用 O2 作为氧化剂制备 SiO2 薄膜的氧化反应
SiH4(g)+O2(g)SiO2(s)+2H2(g)
化学气相沉积技术
化学气相沉积技术化学气相沉积技术(Chemical Vapor Deposition,CVD)是一种在气体环境下进行的化学反应过程,通过在固体表面上沉积出一层薄膜或涂层的方法。
该技术在材料科学、纳米技术、电子学、光学等领域得到了广泛应用。
一、化学气相沉积技术的基本原理化学气相沉积技术是利用气相中的化学反应来生成或沉积出所需的薄膜或涂层。
通常情况下,该技术需要将一种或多种反应物气体输送到反应室中,然后在固体表面上发生化学反应,最终生成所需的薄膜或涂层。
根据反应条件和反应机理的不同,化学气相沉积技术可以分为几种不同的类型,如下所述:1. 热化学气相沉积(Thermal CVD):该技术是利用高温下气体分子的热运动来促进化学反应的进行。
常见的热化学气相沉积技术包括低压化学气相沉积(LPCVD)和气相外延(Gas Phase Epitaxy,GPE)等。
2. 液相化学气相沉积(Liquid Phase CVD,LPCVD):该技术是将固体表面浸泡于一种含有反应物的溶液中,通过溶液中的化学反应生成所需的沉积物。
液相化学气相沉积技术主要用于纳米颗粒的制备。
3. 辅助化学气相沉积(Assisted CVD):该技术是在化学气相沉积的过程中引入外部能量或辅助剂来促进反应的进行。
常见的辅助化学气相沉积技术包括等离子体增强化学气相沉积(Plasma Enhanced CVD,PECVD)和光辅助化学气相沉积(Photo-Assisted CVD)等。
三、化学气相沉积技术的应用领域化学气相沉积技术在材料科学、纳米技术、电子学、光学等领域有着广泛的应用。
下面列举几个常见的应用领域:1. 半导体器件制造:化学气相沉积技术可以用于制备半导体材料的薄膜,如硅、氮化硅等。
这些薄膜可以作为半导体器件的绝缘层、隔离层或介质层。
2. 硬质涂层:化学气相沉积技术可以用于制备硬质涂层,如碳化硅、氮化硼等。
这些硬质涂层具有优异的耐磨损性和高温稳定性,广泛应用于刀具、模具等领域。
薄膜制备技术化学气相沉积(CVD)
1200 0 C
2WF6(g) +3Si (s) 2W(s) +3SiF4(g)
MoF6 3H 2 ( g ) Mo(s) 6HF(g)
300 0 C
3) 氧化反应(Oxidation)
SiH 4(g) +O2(g) SiO2(s) +2H 2(g) SiCl4(g) +O2(g) +2H 2(g) SiO2(s) +4HCl(g) 2AlCl3(g) 3H 2(g) +3CO2(g) Al2 O3(s) +3CO(g要性
CVD技术沉积薄膜中的气体输运和反应过程
CVD过程
在主气流区域,反应物从反应器入口到分解区域的
质量输运;
气相反应产生新的反应物(前驱体)和副产物;
初始反应的反应物和生成物输运到衬底表面;
这些组分在衬底表面的吸附; 衬底表面的异相催化反应,形成薄膜; 表面反应产生的挥发性副产物的脱附; 副产物通过对流或扩散离开反应区域直至被排出。
圆管中的流动:
Le
雷诺数 Re 20 r0 / r0管子半径
Le 0.07r0 Re
体积流速:
超过Le后,都是边界层,气 流的剖面图不再变化。 平均流速: 速率分布:
r P V 8 x
4 0
V /r
2 i 0
2 0
(r ) max (1 r / r )
三、气体输运
Le
Laminar gas flow patterns. (Top) Flow across flat plate. (Bottom) Flow through circular pipe.
CVD沉积技术
1.1 CVD的化学反应 CVD的化学反应
CVD反应有以下特点 ①在中温或高温下,通过气态的初 始化合物之间的气相化学反应而沉积固 体。 ②可以在大气压(常压)或者低于大气 压下(低压)进行沉积。一般来说低压效果 要好些。
1.1 CVD的化学反应 CVD的化学反应
③采用等离子体或激光辅助 技术可以显著地促进化学反应, 使沉积可在较低的温度下进行。 ④沉积层的化学成分可以改 变,从而获得梯度沉积物或者得 到混合沉积层。
1.3 等离子体增强化学气相沉积
从热力学上讲,在反应虽能发生 但反应相当迟缓的情况下,借助等离 子体激发状态,可促进反应,使通常 从热力学上讲难于发生的发应变为可 能。在等离子体沉积过程中,参与的 粒子包括电子、原子、分子(基态与激 发态)、离子原子团、光子等。这一过
1.3 等离子体增强化学气相沉积
1.4.1 微波等离子体增强CVD 微波等离子体增强CVD 5.氢原子同非金刚石结构 的固相碳(如石墨)和气相碳 (如多碳烃)转化为甲烷,增大 气相碳的浓度。
1.4.1 微波等离子体增强CVD 微波等离子体增强CVD
金刚石具体生长条件一般为: 温度:700-1000℃ 压力:几个-几十个Pa 功率:几百-几千VA 时间:视膜厚而定 检 测 : X- 射 线 , SEM , Raman,等
1.4.1 微波等离子体增强CVD 微波等离子体增强CVD 衬底的表面处理对沉积非 常重要,主要是增加缺陷,提 高成核密度。衬底的温度由微 波源功率和气压决定。一般为 700-1200℃。
1.4.1 微波等离子体增强CVD 微波等离子体增强CVD
当CH4 和H2 的混合气体(CH4 比例0.3-8%)进入沉积室后,被 微波激发后等离子化,分解成C, H, H2, CH3, CH2等,形成等离子 体,气相碳源吸收能量后,其
化学气相沉积CVD
化学气相沉积1 前言化学气相沉积CVD(Chemical Vapor Deposition)是利用加热,等离子体激励或光辐射等方法,使气态或蒸汽状态的化学物质发生反应并以原子态沉积在置于适当位置的衬底上,从而形成所需要的固态薄膜或涂层的过程。
一般地说,化学气相沉积可以采用加热的方法获取活化能,这需要在较高的温度下进行;也可以采用等离子体激发或激光辐射等方法获取活化能,使沉积在较低的温度下进行。
另外,在工艺性质上,由于化学气相沉积是原子尺度内的粒子堆积,因而可以在很宽的范围内控制所制备薄膜的化学计量比;同时通过控制涂层化学成分的变化,可以制备梯度功能材料或得到多层涂层。
在工艺过程中,化学气相沉积常常在开放的非平衡状态下进行,根据耗散结构理论,利用化学气相沉积可以获得多种晶体结构。
在工艺材料上,化学气相沉积涵盖无机、有机金属及有机化合物,几乎可以制备所有的金属(包括碳和硅),非金属及其化合物(碳化物、氮化物、氧化物、金属间化合物等等)沉积层。
另外,由于气态原子或分子具有较大的转动动能,可以在深孔、阶梯、洼面或其他形状复杂的衬底及颗粒材料上进行沉积。
为使沉积层达到所需要的性能,对气相反应必须精确控制。
正是由于化学气相沉积在活化方式、涂层材料、涂层结构方面的多样性以及涂层纯度高工艺简单容易进行等一系列的特点,化学气相沉积成为一种非常灵活、应用极为广泛的工艺方法,可以用来制备各种涂层、粉末、纤维和成型元器件。
特别在半导体材料的生产方面,化学气相沉积的外延生长显示出与其他外延方法(如分子束外延、液相外延)无与伦比的优越性,即使在化学性质完全不同的衬底上,利用化学气相沉积也能产生出晶格常数与衬底匹配良好的外延薄膜。
此外,利用化学气相沉积还可生产耐磨、耐蚀、抗氧化、抗冲蚀等功能涂层。
在超大规模集成电路中很多薄膜都是采用CVD方法制备。
经过CVD 处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。
化学气相沉积CVD
化学气相沉积1 前言化学气相沉积CVD(Chemical Vapor Deposition)是利用加热,等离子体激励或光辐射等方法,使气态或蒸汽状态的化学物质发生反应并以原子态沉积在置于适当位置的衬底上,从而形成所需要的固态薄膜或涂层的过程。
一般地说,化学气相沉积可以采用加热的方法获取活化能,这需要在较高的温度下进行;也可以采用等离子体激发或激光辐射等方法获取活化能,使沉积在较低的温度下进行。
另外,在工艺性质上,由于化学气相沉积是原子尺度内的粒子堆积,因而可以在很宽的范围内控制所制备薄膜的化学计量比;同时通过控制涂层化学成分的变化,可以制备梯度功能材料或得到多层涂层。
在工艺过程中,化学气相沉积常常在开放的非平衡状态下进行,根据耗散结构理论,利用化学气相沉积可以获得多种晶体结构。
在工艺材料上,化学气相沉积涵盖无机、有机金属及有机化合物,几乎可以制备所有的金属(包括碳和硅),非金属及其化合物(碳化物、氮化物、氧化物、金属间化合物等等)沉积层。
另外,由于气态原子或分子具有较大的转动动能,可以在深孔、阶梯、洼面或其他形状复杂的衬底及颗粒材料上进行沉积。
为使沉积层达到所需要的性能,对气相反应必须精确控制。
正是由于化学气相沉积在活化方式、涂层材料、涂层结构方面的多样性以及涂层纯度高工艺简单容易进行等一系列的特点,化学气相沉积成为一种非常灵活、应用极为广泛的工艺方法,可以用来制备各种涂层、粉末、纤维和成型元器件。
特别在半导体材料的生产方面,化学气相沉积的外延生长显示出与其他外延方法(如分子束外延、液相外延)无与伦比的优越性,即使在化学性质完全不同的衬底上,利用化学气相沉积也能产生出晶格常数与衬底匹配良好的外延薄膜。
此外,利用化学气相沉积还可生产耐磨、耐蚀、抗氧化、抗冲蚀等功能涂层。
在超大规模集成电路中很多薄膜都是采用CVD方法制备。
经过CVD 处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。
cvd化学气相沉积
cvd化学气相沉积
CVD(化学气相沉积)是一种从气体中利用化学反应合成出新的物质的技术,它已被用于制造出多种多样的材料,如金属、碳纳米管以及其他复合材料。
本文将探讨CVD的原理,方法以及其在工业界的应用。
CVD技术是通过将特定成分的气体混合在一起,再采用一定温度和压力环境下施加电压进行电弧分解,利用热力学原理,使气体中的原材料发生反应,生成新的物质,从而达到所需的形态以及性能的目的。
CVD的技术可以分为三类,即低温CVD(LTCVD)、中温CVD(MTCVD)和高温CVD(HTCVD),根据施工温度的不同而区分。
低温CVD使用温度较低,常在室温到200℃之间;中温CVD温度一般在200-600℃之间;而高温CVD温度大多在600℃以上,最高可达1200℃。
CVD技术在工业界的应用主要有两方面。
一是在半导体工艺中用它来制备晶体硅、硅钝化等;二是在机械制造及包装,它可用于制造电子组件、集成电路零件等。
例如,CVD技术可以用来弥补喷涂的不足,可以用来在定尺寸结构体上制造出精细的层状结构,如电路板中的互连层、腐蚀抑制剂层等。
此外,CVD技术还可以用来制造碳纳米管、金属纳米管、有机结构体和金属复合材料等。
这些新材料在电子、机械、橡胶、塑料等行业有广泛的应用。
综上所述,CVD技术的特点是简便、快速、成本低,是制造金属、
碳纳米管以及其他复合材料的理想方法。
因而,它在工业界中得到了广泛的应用,是当今材料制备和技术发展的重要途径。
8.3 化学气相沉积(CVD)
图8.3.1
Si片PN结构微细加工的CVD装置意示图
反应器的类型:
图8.3.2 CVD反应器的类型
沉积过程:
① 在主气流区域,反应物从反应器入口到分解区域的质量输 运;
② 气相反应产生膜形成的前驱体和副产物;
③ 成膜前驱体质量输运至生长表面; ④ 成膜前驱体吸附在生长表面; ⑤ 成膜前驱体表面扩散至生长点; ⑥ 表面反应和构成膜的生长;
普通的CVD需在T=1050~1200℃,1atm or(5.3~13.3)×103Pa的减压气氛中才 能进行以SiH4为源的硅外延层生长。
图8.3.5 立式PECVD反应器
4. PECVD的特点
(1)影响沉积速率的主要因素是高频功率,而T基体、P、气 相组分的影响在其次。 (2)PECVD工艺的主要优点是:显著降低沉积时的T基体, 并且沉积速率快,成膜质量好、针孔少、不易龟裂等。 (3) PECVD工艺的主要缺点是:由于等离子体轰击,使沉 积膜表面产生缺陷,反应复杂,也会使薄膜的质量有 所下降。
1.用Hg作敏化剂的光解反应
低压Hg灯 发射出 UV共振线:253.7nm和184.9nm敏化 剂Hg
激发 Hg* 碰撞 将能量传递给反应气体( M+h
M*)
反应物分解↓
(1)成膜反应过程 Hg吸收253.7nm波长的UV而被激活 : Hg hv Hg* Hg*通过碰撞将能量传递给反应气体N2O: 基态氧(O)与SiH4反应生成氧化物:
出现NH4Cl一类的中间产物;
为了得到较高的沉积速率和高质量的BN薄膜,必须通 过实验来确定各物质间的最佳流量比!
(3)基体对沉积膜层的影响
要得到质量较好的沉积膜,基体应满足以下条件:
cvd 化学气相沉积
cvd 化学气相沉积CVD(化学气相沉积)是一种重要的薄膜制备技术,广泛应用于微电子、材料科学、纳米技术等领域。
本文将介绍CVD的基本原理、应用领域以及未来发展方向。
让我们来了解CVD的基本原理。
化学气相沉积是一种在气相条件下通过化学反应生成固体薄膜的技术。
它的基本原理是在高温下,将气体或液体前体物质引入反应室中,通过化学反应形成气相中间体,然后在衬底上沉积出所需的固体薄膜。
CVD的反应过程主要包括气体输运、吸附、表面反应和膜沉积等步骤。
CVD技术具有许多优点,如制备的薄膜具有高纯度、均匀性好、可控性强等特点。
此外,CVD还可以在复杂的表面形貌上进行薄膜沉积,如纳米颗粒、多孔膜等。
因此,CVD被广泛应用于微电子行业,用于制备晶体管、集成电路、显示器件等。
同时,它也被应用于材料科学领域,用于制备超硬材料、陶瓷薄膜、光学薄膜等。
除了微电子和材料科学领域,CVD还在纳米技术领域得到了广泛应用。
纳米领域的发展对CVD技术提出了更高的要求,例如制备纳米线、纳米颗粒和纳米薄膜等。
由于CVD具有优异的可控性和均匀性,它成为了纳米材料制备的重要工具。
通过调节反应条件和前体物质的选择,可以实现对纳米材料形貌、大小和组成的精确控制。
未来,CVD技术在能源领域和生物医学领域的应用也备受关注。
在能源领域,CVD可以用于制备高效的太阳能电池、燃料电池等器件。
通过优化薄膜的能带结构和界面特性,可以提高能源转换效率。
在生物医学领域,CVD可以用于制备生物传感器、药物传递系统等。
通过在表面修饰功能性薄膜,可以实现对生物分子的高灵敏检测和精确控制。
CVD是一种重要的化学气相沉积技术,广泛应用于微电子、材料科学、纳米技术等领域。
它具有优异的可控性和均匀性,可以制备高纯度、均匀性好的薄膜。
随着纳米技术和能源领域的快速发展,CVD技术在这些领域的应用前景非常广阔。
未来,我们可以期待CVD技术在更多领域的突破和创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学气相沉积(CVD)技术梳理
1. 化学气相沉积CVD的来源及发展
化学气相沉积(Chemical Vapor Deposition)中的Vapor Deposition意为气相沉积,其意是指利用气相中发生的物理、化学过程,在固体表面形成沉积物的技术。
按照机理其可以划分为三大类:物理气相沉积
(Physical Vapor Deposition,简称PVD),化学气相沉积
(Chemical Vapor Deposition,简称CVD)和等离子体气相沉积(Plasma Chemical Vapor Deposition,简称PCVD)。
[1]目前CVD的应用最为广泛,其技术发展及研究也最为成熟,其广泛应用于广泛用于提纯物质、制备各种单晶、多晶或玻璃态无机薄膜材料。
CVD和PVD之间的区别主要是,CVD沉积过程要发生化学反应,属于气相化学生长过程,其具体是指利用气态或者蒸汽态的物质在固体表面上发生化学反应继而生成固态沉积物的工艺过程。
简而言之,即通过将多种气体原料导入到反应室内,使其相互间发生化学反应生成新材料,最后沉积到基片体表面的过程。
CVD这一名称最早在Powell C F等人1966年所著名为《Vapor Deposition》的书中被首次提到,之后Chemical Vapor Deposition才为人广泛接受。
[2]
CVD技术的利用最早可以被追溯到古人类时期,岩洞壁或岩石上留下了由于取暖和烧烤等形成的黑色碳层。
现代CVD技术萌芽于20世纪的50年代,当时其主要应用于制作刀具的涂层。
20世纪60~70年代以来,随着半导体和集成电路技术的发展,CVD技术得到了长足的发展和进步。
1968年Nishizawa课题组首次使用低压汞灯研究了光照射对固体表面上沉积P型单晶硅膜的影响,开启了光沉积的研究。
[3] 1972年Nelson和Richardson用CO2激光聚焦束沉积碳膜,开始了激光化学气相沉积的研究。
[4] 继Nelson之后,研究
者们采用功率为几十瓦的激光器沉积SiC、Si3N4等非金属膜和Fe、Ni、W、Mo等金属膜和金属氧化膜,推动了激光化学气相沉积的发展。
[5-7] 前苏联Deryagin和Fedoseev等在1970年引入原子氢开创了激活低压CVD金刚石薄膜生长技术,80年代在全世界形成了研究热潮。
[8,9] 目前CVD技术在电子、机械等工业部门中发挥了巨大作用,特别对一些如氧化物、碳化物、金刚石和类金刚石等功能薄膜和超硬薄膜的沉积。
尤其目前超纯硅原料-超纯多晶硅的生产只能通过CVD技术。
2. 化学气相沉积CVD反应机理[10-12]
如前所述化学气相沉积是建立在化学反应之上的,选择合适的反应原料和沉积反应有助于得到高性能的材料。
a)高温分解反应
CVD沉积反应里最简单直接的方式就是热分解反应,其原理主要是固态化合物升温到一定温度会分解为固态目标产物和气态副产物。
操作步骤一般是向真空或惰性气氛下的单温区管式炉导入反应气体,将炉温升至化合物的分解温度使之发生分解,在基片上沉积得到目标产物。
热分解反应的关键在于合适挥发源和分解温度的选择,尤其需要特别注意原材料在不同温度下的分解产物。
目前常使用的原料有氢化物、羰基化合物和金属有机化合物等,因其化学键的解离能都普遍较小,易分解,分解温度相对较低,尤其氢化物分解后的副产物是没有腐蚀性的氢气。
热分解反应主要适用于金属、半导体、绝缘体等材料的制备。
1)氢化物分解制备多晶硅和非晶硅:SiH4 (g) → Si (s)+2H2 (g) 650℃
2)羰基氯化物分解沉积贵金属或者过渡金属:Ni(CO)4 (s) → Ni (s)+4CO
(g) 140-240℃
3)金属有机物分解沉积Al2O3:2Al(OC3H7)3 (s) →
Al2O3 (s)+6C3H6 (g)+3H2O (g) 420℃
b)化学合成反应
CVD沉积反应里应用最广泛的当属化学合成反应,其主要涉及到多种反应气体在基片表面相互反应沉积生成固体薄膜的过程,因此称为化学合成反应,CVD沉积反应大多都属于此类。
一般是将多种反应气体通入向真空或惰性气氛下的单温区管式炉中,炉温升至合适的温度使之在基片上发生合成反应得到目标产物。
化学合成反应的关键在于反应产物的选择,原则要尽量避免副产物的生成。
因为利用热分解沉积目标产物的原料选择范围相对狭窄,而理论上任意一种无机材料都可以通过多种原料的化合反应来得到。
因此,与热分解反应相比,化学合成反应应用最为广泛,其主要应用于制备各种多晶态和玻璃态的沉积层、绝缘膜等,如SiO2、Al2O3、Si3N4。
1)四氯化硅外延法生长硅外延片:SiCl4 (s)+ 2H2 (g) → Si (s)+ 4HCl
(g) 1150-1200℃
2)半导体SiO2掩膜工艺:SiH4 (s)+2O2 (g) → SiO2 (s)+2H2O (g) 325-475℃
3)Si3N4等绝缘膜的沉积:3SiCl4 (s)+4NH3 (g) → Si3N4 (s)+12HCl
(g) 850-900℃
c)化学传输反应
化学输运反应将目标产物作为挥发源,借助于平衡反应来沉积目标产物,其借助于气体与之反应生成气态化合物,生成的气态化合物经载气运输到与挥发区温度不同的沉积区发生逆向反应,在基底上生成源物质。
化学传输反应的关键在于输运反应体系及其条件(温度、输运剂用量等等)的选择,这其中涉及
到部分化学热力学相关的知识,一般生成气态化合物的温度往往比重新反应沉积时要高一些。
稀有金属的提纯和ZnSe等单晶的生长:ZnSe (s)+I2 (g)ZnI2 (g)+1/2
Se2 (g)
ZnS (s)+I2 (g)ZnI2 (g)+1/2 S2 (g)
3. 化学气相沉积CVD技术的基本要求
使用CVD技术沉积目标产物时,其目标产物、原材料及反应类型的选择通常要遵循以下3项原则:
(1)原材料在较低温度下应具有较高的蒸气压且易于挥发成蒸汽并具有很高的纯度,简而言之原材料挥发成气态的温度不宜过高,一般化学气相沉积温度都在1000℃以下。
(2)通过反应类型和原材料的选择尽量避免副产物的生成,若有副产物的存在,在反应温度下副产物应易挥发为气态,这样易于排出或分离。
(3)尽量选择沉积温度低的反应沉积目标产物,因大多数基体材料无法承受CVD的高温。
(4)反应过程尽量简单易于控制。