大学物理马文蔚版高等教育出版社作业模拟及答案

合集下载

大学物理活页作业(马文蔚主编)答案

大学物理活页作业(马文蔚主编)答案

运动方程。)
7.解:(1)
r

2ti

(2

t
2
)
j
( SI )
r1 2i j (m)
r2 4i 2 j (m)
r r2 r1 2i 3 j (m)
v

r

2i

3j
t
(m / s)
(2) v
mr 2 J
(2)设绳子对物体(或绳子对轮轴)的拉力为 T,则根据牛顿运动定律和转动定律 得:
mg – T=ma
T r=J
由运动学关系有: a = r
联立解得:
mgJ T
J mr 2
1 质点运动学单元练习一答案—11
10.解:以中心 O 为原点作坐标轴 Ox、Oy 和 Oz 如图所示,取质量为 dm dxdy
式中面密度 为常数,按转动惯量定义,
Jz
(x2

y 2 )dm

b
2 b
dx

a
2 a
(
x
2


y 2 )dy

(ab3 12
a3b)
2
2
薄板的质量 m ab
所以
Jz

m (a2 12

b2 )
7.刚体转动单元练习(二)答案
1.C
2.A
3.D
4.B
5.
3
o

1 3
Ep

1 2
mv12

1 2
m2v
2 2

1 2
(m1
m2 )v 2

大学物理活页作业(马文蔚主编)答案

大学物理活页作业(马文蔚主编)答案

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:第一分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速度为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的概念能够求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时刻t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r-+=)(21m j i r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的概念)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的概念)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥ 3.牛顿定律单元练习答案1.C 2.C 3.A4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x22=;x x x v k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdvmmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,那么对小珠可列方程1. av m f mg 2cos =-θ,tv mmg d d sin =θ, 和 tav d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳索完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变成零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:依照牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点离开球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞进程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 抵达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理活页作业答案(全套)马文蔚

大学物理活页作业答案(全套)马文蔚

⼤学物理活页作业答案(全套)马⽂蔚1.质点运动学单元练习(⼀)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提⽰:⾸先分析质点的运动规律,在t <2.0s 时质点沿x 轴正⽅向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反⽅向运动;由位移和路程的定义可以求得答案。

)6.135m (提⽰:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动⽅程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=?)/(32s m ji t r v -=??=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==sin cos 2t A tdt A A vdt A x totoω=ωω-=+=??cos sin9.解:(1)设太阳光线对地转动的⾓速度为ωs rad /1027.73600*62/5-?=π=ωs m th dt ds v /1094.1cos 32-?=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=?=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(⼆)答案1.D 2.A 3.B 4.C5.14-?==s m t dt ds v ;24-?==s m dtdva t ;2228-?==s m t Rv a n ;2284-?+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:⽕箭竖直向上的速度为gt v v o y -?=45sin ⽕箭达到最⾼点时垂直⽅向速度为零,解得s m gtv o /8345sin =?=3.⽜顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωµ2Rg o µ≥ω 8.解:由⽜顿运动定律可得dtdv t 1040120=+ 分离变量积分()??+=tovdt t dv 4120.6 )/(6462s m t t v ++=()++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由⽜顿运动定律可得dtdv mmg kv =+- 分离变量积分-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=+ln+=???? ??+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对⼩珠可列⽅程 a v m f mg 2 cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代⼊初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(⼀)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +?=;2212m t F v v ?+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=?J x F W 800=?=(2)s N Fdt I ?==40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解:物体m 落下h 后的速度为 gh v 2=当绳⼦完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,⼈、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+??totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(⼆)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦⼒mg f µ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=µ.8.解:根据⽜顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球⾯时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两⼩球间距离最⼩ v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两⼩球间距离最⼩,形变最⼤,最⼤形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=②联⽴①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统⽔平⽅向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2 =-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(⼀)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理学教程第二(马文蔚)练习册答案6第六章 机械波

大学物理学教程第二(马文蔚)练习册答案6第六章 机械波

解:

6-8 图示为平面简谐波在t=0时刻的波形图,此简谐波 的频率为250Hz,且此图中P点的运动方向向上,求: 第 (1)此波的波动方程;(2)距原点7.5m处质点的运 六 动方程与t=0时该点的振动速度。 y/m 章 解: P点的运动方向向上
习 题 分 析
6-8
波向负方向传播
0.10 0.05 O
6-9
六 章 习 题 分 析
解:
xP 0.2 m
O 0.04
P
0.2 0.4 0.6
x/m
2 0.2 y P 0.04cos[ (t ) ]m 5 0.08 2 2 3 0.04cos[ t ] m 5 2 2 x y 0.04cos[ (t ) ]m 5 0.08 2
第 六 章 习 题 分 析
6-7
y15 A cos 100 t 15 cm 2
y5 A cos 100 t 5 cm 2
解:
15 15.5
5 5.5
2 2 波源振动方程: y0 A cos t cm 2 T 2 x 波动方程:
6-11
6-11 平面简谐波的波动方程为:
第 六 章 习 题 分 析
求:(1)t=2.1s时波源及距波源0.10m两处的相位;(2)离 波源0.80m及0.30m两处的相位差。 解:(1)
y 0.08cos 4 t 2 x (SI 制)
t 2.1s, x 0处, 4 2.1 8.4
x t x y A cos[ (t ) ] A cos[ 2 π ( ) ] u T
) 14-3 已知一波动方程为 y 0.05sin(10 t 2 x)(SI , (1)求波长、频率、波速和周期; (2)说明 x 0 第 六 时方程的意义,并作图表示。

大学物理活页答案(马文蔚 版)高等教育出版社

大学物理活页答案(马文蔚 版)高等教育出版社

10.机械波单元练习(一)答案 1. B 2. C 3. B 4. 1.67m 5.0cos[()]x ly A t uωϕ-=-+ 6. 6,307. 解:(1)由波动方程可知振幅0.05m A =,角频率20πω=,/3πu ω=,则波速16.67m s u-=⋅,频率/2π10Hz νω==,波长2π2/3m uλω==。

(2)maxπ 3.14m/s A ω==≈v8. 解:(1)由图可知振幅0.1m A =,波长4m λ=,波速1100m s u -=⋅ 则2π2π/50πuT ωλ===。

又O 点初始时刻位于平衡位置且向y 轴正向运动,则由旋转矢量法可得π/2ϕ=-,因此波动方程为0.1cos[50π(/100)π/2](m)y t x =--(2)P 处质点的振动方程为0.1cos(50π3π/2)(m)y t =-9. 解:由图可知振幅0.1m A =,波长100m λ=,则角频率2π2ππuT ωλ===。

由P 点的运动方向可知波向x 轴负方向传播。

又由图可知原点O 初始时刻位于A /2处,且向y 轴负方向运动,则由旋转矢量法可得0π/3ϕ=。

则波动方程为0.1cos[π(/50)π/3](m)y t x =++10.解:(1)以A 点为坐标原点的波动方程为2310cos[3π(/30)](m) y t x -=⨯-(2)π2π2BA ABABuωϕϕλ=-=-=-则以B 点为坐标原点的波动方程为2310cos[3π(/30)π/2](m)y t x -=⨯--11.机械波单元练习(二)答案1. C 2. B 3. C 4./2λ,π5. 550Hz ,458.3Hz 6. 0.08W/m 2 7. 解:两列波传到1S 2S 连线和延长线上任一点P 的相位差212120102ππ2πr r r r ϕϕϕλλ--∆=--=--1S 左侧各点:2110π2ππ2π6π4r r ϕλ-∆=--=--=-,振动都加强; 2S 右侧各点:2110π2ππ2π4π4r r ϕλ--∆=--=--=,振动都加强;1S 、2S 之间:2111110π2ππ2π6ππ(21)π4r r r r r k ϕλ---∆=--=--=-+=+则距1S 点为:11m,3m,5m,7m,9m r =处各点静止不动。

马文蔚大学物理下册课后习题答案

马文蔚大学物理下册课后习题答案

马文蔚大学物理下册课后习题答案【篇一:大学物理马文蔚第五版下册第九章到第十一章课后答案】一个质点作简谐运动,振幅为a,在起始时刻质点的位移为?动,代表此简谐运动的旋转矢量为()a,且向x 轴正方向运2题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-a/2,且投影点的运动方向指向ox 轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2 已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()22?2??2?a?x题9-2图9-3 两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位()分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).题9-3图(a) v (b)v (c)2v (d)4v 21222分析与解质点作简谐运动的动能表式为ek?m?asin??t???,可见其周期为简谐2分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差a于这样两个简谐运动,可用旋转矢量法,如图(b)很方便求得合运动方程为x1?cos?t.因2是?(即反相位).运动方程分别为x1?acos?t和x2?而正确答案为(d).题9-5图题9-6 图振子的速度和加速度分别为x?t、v?t及a?t图如图所示.分析可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式??t???作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、x?acos加速度的表达式,代入t值后,即可求得结果.(2)t?2s时的位移、速度、加速度分别为 ?1证货轮处于平衡状态时[图(a)],浮力大小为f =mg.当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点o,竖直向下为x 轴正向,如图(b)所示.则当货轮向下偏移x 位移时,受合外力为?f?p?f?其中f?为此时货轮所受浮力,其方向向上,大小为f??f??gsx?mg??gsx题9-8图则货轮所受合外力为?f?p?f????gsx??kx式中k??gs是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由2?f?mdx/dt可得货轮运动的微分方程为 22d2x/d2t??gsx/m?0 令???gs/m,可得其振动周期为9-9 设地球是一个半径为r 的均匀球体,密度??5.5?10kg?m.现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1)证明此质点的运动是简谐运动;(2)计算其周期.3?3题9-9图分析证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证(1)取图所示坐标.当质量为m 的质点位于x处时,它受地球的引力为【篇二:大学物理_物理学下册_马文蔚_第五版_答案】物体沿x轴作谐振动的方程为x?0.10cos(2?t??),式中x,t的单位分别为m,s.试求:4(2)t?0.5s时,物体的位移、速度和加速度. acos(?t??);(1)振幅,周期,频率和初相x?解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅a?0.10m,角频率周期为t,初???4.由此,?2???1s 频????1hz率为2?(2)t?1s时,?)?0.10cos(2??0.5?)m??7.07?10?2m 44物体位移x?0.10cos(2?速度v???dx????0.2?sin(2?t?)??0.2?sin(2??0.5?)m/s?0.44m/s dt44dv??加速度a???4?2sin(2?t?)??4?2cos(2??0.5?)m/s2?28m/s2dt44-2-1-2??4.0?10?2 m, v0?0(题取向上为正方向,且平衡位置处为原km,而 mg又???kx0,kg?所以mx0,???29.8?109-4-1图所以谐振动方程:(2)据题意,得t?0时,x0?0,v0??0.6 m.s?1,其旋转矢量应为如图9-4-2图位置则v00.22a?x?()?0?2?2?10?2m?10222?0?(x?0的投影有上、下两个om矢量,但v0为负值,故只能选上面的om矢量),所以谐振动方程为x?4.0?10?2cos(10t?)m。

大学物理第五版马文蔚课后答案(上)7-8

大学物理第五版马文蔚课后答案(上)7-8

实用文档7-1 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7-2 分析与解 作半径为r 的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7-3 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7-4 分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).7-5 分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B )7-6 分析 一个电子绕存储环近似以光速运动时,对电流的贡献为cI e I /Δ=,因而由l Nec I =,可解出环中的电子数。

解 通过分析结果可得环中的电子数实用文档10104⨯==ecIl N 7-7 分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率e m kTπ8=v其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v(2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为 81042.2π81⨯≈=ed d m kT v v v实用文档室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.7-8 分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据 恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rl I j π2/=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m m A 3.13π2/-⋅==rl I j7-9 解 设赤道电流为I ,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度()RI μR R IR μB 24202/3220=+= 因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.7-10 分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线实用文档通过点O ,由于0Idl r ⨯=,由毕-萨定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB =其中I 1 、I 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将B1 、B2 叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 7-11 分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0解 (a) 长直电流对点O 而言,有0=⨯r l Id ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有R IμB 800=B 0 的方向垂直纸面向外.实用文档(b) 将载流导线看作圆电流和长直电流,由叠加原理可得R I μR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得 R I μR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.7-12 分析 由教材7 -4 节例题可知,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R I μB π40=,磁感强度的方向依照右手定则确定。

第五版大学物理答案(马文蔚)

第五版大学物理答案(马文蔚)

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v &(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ r ,即|v |≠v .但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确,分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变!(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =【分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t = s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx >得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t = s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a "1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v <由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为$2412x y -= 这是一个抛物线方程,轨迹如图(a)所示. (2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为[m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为¥t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为 —222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度 m·s-2上升,当上升速度为 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即…20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d¥1 -11一质点P 沿半径R=m的圆周作匀速率运动,运动一周所需时间为s,设t=0 时,质点位于O点.按(a)图中所示Oxy坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析该题属于运动学的第一类问题,即已知运动方程r=r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x=x0 +x′和y=y0 +y′,将所得参数方程转换至Oxy坐标系中,即得Oxy坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为 t T R x π2sin=', t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有 t T R x x π2sin='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为 j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=,(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至 m分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分. ,解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t(1)由 ⎰⎰=t xx t x 0d d 0v 得 00421212x t t t x ++-=v (2)将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0= m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. ~解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-v v (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--= {得石子运动方程)1(2-+=-Bt e BA tB A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==t t rr t t t t 00)d 46(d d 0j i r v -j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.!由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得(R a 219003.0v ≈,R a 229886.0v ≈R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r = + )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1= 到t 2 = 时间内的平均速度;(3) t 1 =s时的速度及切向和法向加速度;(4) t = 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =, y =消去t 得质点的轨迹方程:y =(2) 在t 1 =s 到t 2 =s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v 、(3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =s时的速度v (t )|t =1s=切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =s质点的速度大小为122s m 47.4-⋅=+=y x v v v…则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远 (2) 投放物品时,驾驶员看目标的视线和水平线成何角度(3) 物品投出s后,它的法向加速度和切向加速度各为多少分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 ! o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan ==取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为~αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得"αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 gh ωR x 2222= !由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v =为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前 m 处以 m·s-1 的初速率罚任意球,已知球门高为 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球 (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v >消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x = m,v = m·s-1 及 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取°与°之间的任何值.当倾角取值为°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b (3) 当加速度达到b 时,质点已沿圆周运行了多少圈分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt t s -==0d d v v "其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= }因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =s 时测得轮缘一点的速度值为 m·s-1.求:(1) 该轮在t′=s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα :2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少(3) t 为多少时,法向加速度和切向加速度的值相等分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n*2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t 此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =s1 -25 一无风的下雨天,一列火车以v 1= m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)…分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v :⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以 m·s-1 的速度划船前进.今欲横渡一宽为 ×103 m 、水流速度为 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向 到达正对岸需多少时间 (2)如果希望用最短的时间过河,应如何确定划行方向 船到达对岸的位置在什么地方分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要。

大学物理(马文蔚版)高等教育出版社作业模拟及答案

大学物理(马文蔚版)高等教育出版社作业模拟及答案

期末考试模拟试题一、判断题:〔10⨯1=10分〕1. 质点作圆周运动时,加速度方向一定指向圆心。

〔 〕 2.根据热力学第二定律,不可能把吸收的热量全部用来对外做功 〔 〕 3. 刚体的转动惯量与转轴的位置有关。

〔 〕 4. 刚体所受合外力矩为零,其合外力不一定为零。

〔 〕 5. 静电场中的导体是等势体 。

〔 〕 6. 平衡态下分子的平均动能为kT 23〔 〕 7. 绝热过程中没有热量传递,系统的温度不变。

〔 〕 8. 最概然速率就是分子运动的最大速率。

〔 〕 9. 电场强度为零的点的电势一定为零 。

〔 〕 10.真空中电容器极板上电量不同时,电容值不变。

〔 〕 二、选择题:〔1836=⨯分〕1. 某质点的运动学方程为3536t t x -+=,那么该质点作〔 〕〔A 〕匀加速直线运动,加速度为正值; 〔B 〕匀加速直线运动,加速度为负值; 〔C 〕变加速直线运动,加速度为正值; 〔D 〕变加速直线运动,加速度为负值。

2. 质点作匀速率圆周运动,它的〔 〕〔A 〕切向加速度的大小和方向都在变化; 〔B 〕法向加速度的大小和方向都在变化; 〔C 〕法向加速度的方向变化,大小不变; 〔D 〕切向加速度的方向不变,大小变化。

3. 两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,假设它们的压强和温度相同,那么两气体〔 〕〔A 〕单位体积内的分子数必相同; 〔B 〕单位体积内的质量必相同; 〔C 〕单位体积内分子的平均动能必相同; 〔D 〕单位体积内气体的内能必相同。

4. 摩尔数相同,分子自由度不同的两种理想气体,从同一初态开始等压膨胀到同一末态时,两气体〔 〕〔A 〕从外界吸热相同; 〔B 〕对外界作功相同; 〔C 〕内能增量相同; 〔D 〕上述三量均相同。

5.如下图,在封闭的球面S 内的A 点和B 点分别放置q+和q-电荷,且OA=OB,P点为球面上的一点,那么〔 〕〔A 〕0≠p E ,⎰=⋅Sd 0S E ;〔B 〕0=p E ,⎰≠⋅Sd 0S E ;〔C 〕0≠p E ;⎰≠⋅Sd 0S E ;〔D 〕0=p E ,⎰=⋅Sd 0S E 。

大学物理学第二(马文蔚)练习册答案5第五章 机械振动答辩

大学物理学第二(马文蔚)练习册答案5第五章 机械振动答辩
0.10cos(20t )(SI )

1 T
10(Hz) t 2s 时
4
5-5 v dx 2 sin(20t 4 )(SI )
x 7.07102 m
dt
4
v 4.44m/ s
a dv 40 2 cos(20t )(SI ) a 279m / s2
5-17
x2

Байду номын сангаас
2Ep
m 2
0.5104 m2
x 7.1103 m
(4)x A 2
Ep

1 2
kx2

1 8
kA2
1 4
Ep max

1 4
E
Ek

3 4
E
14
5-19 已知两同方向同频率的简谐运动的运动方程分别
为 x1 0.05cos(10t 0.75 )(SI ),
v0

m1 m1 m2
v
1(m
/
s)
x0 0
k 40(s1)
A
m1 m2
A
x02


v0

2

2.5102 (m)

2
x/m
11
5-15 如图所示,质量为 1.00102 kg 的子弹,以500m/s
的速度射入并嵌在木块中,同时使弹簧压缩从而作简
(4) 2 / 3 x 2.0102 cos(4 t 32 )m
3
2
5-9 有一弹簧,当其下端挂一质量为m的物体的时,其
伸长量为9.8cm,若使物体上下振动,且规定向下为正

大学物理学第五版马文蔚高等教育出版社静电场2

大学物理学第五版马文蔚高等教育出版社静电场2
S S
(5-13) (5-14)
S
规定: 闭合曲面上任一点的外法线为正向!
{
E 线穿出: </2, d E >0 E 线穿入: >/2, d E < 0
通过闭合曲面的电 场线数目与该曲面 内的电荷间的关系
三.高斯定理
q3
+ -
+ -q
2
q1
S
1. 定理的表述 q4 在任意的静电场中,通过任一闭合曲面的 E 通量,等于该曲面内电荷量的代数和除以0 。 1 E E d S qi (5-16) S
1
2
无限长均匀 带电圆柱
E E r O
+ + + S下 + + +
E
r 2 20 R
E
1 r
R
r
E
r 2 20 R
无限长均匀 带电圆柱面
E
E
E=0 O
1 r
无限长均匀带电圆柱面内 ? E =0
R
r
用高斯定理求E的要点:
由电荷分布的对称性→电场分布的对称性! 1.分析电场的对称性。 由此判断出:① 各点 E 的方向 ② 那些点 E 的大小相等。 点电荷,均匀带电球面(体)、球层(套叠); a.球对称:

o
dE
x
(3) 分解变量
(4) 统一变量
dl d Ex dE sin sin 2 40 R dl d E y dE cos cos 2 40 R d l Rd
参与题:一均 匀带电圆弧, 电荷线密度为 ,圆弧圆心 角为0,求Eo=?
0
方向:沿y轴正向。

大学物理学第五版马文蔚高等教育出版社静电场1

大学物理学第五版马文蔚高等教育出版社静电场1

有一定电荷的几 5-2 库仑定律 适用于点电荷 何点(理想模型)。 真空电容率 (真空介电常量)
r•q
F3•
q1 q2 r2
(k =8.988109 N· 2· 29109 N· 2· 2) m C m C
方向:同性相斥,异性相吸。
1 矢量表示: 令: k 40 q1q2
物质:
实物粒子(电子、中子、质子…..)及由实物粒子组成的物体
+ + + + + + + + + + +
- 导体 E=0 1.对处于电场中的电荷有电场力作用; 2.电荷在电场中移动时,电场力要做功; 介质 3.导体(电介质)在电场中,产生静电感应(极化现象)。 - E 0 -
场 静电场的主要表现:
n E Ei
i 1
3.连续分布电荷的场强 电荷的三种分布形式:
无限分割带电体 无限多个 dq
q d q 电荷线密度 线分布 dq dl l 0 l dl q d q lim 面分布 电荷面密度 dq dS S 0 S dS q d q lim 体分布 电荷体密度 d q dV V 0 V dV 任选一电荷元 dq , 其在P点产生的元场强 dq dE e 2 r 40 r Q 1 dq E d E r 2 e (5-6) 40
大 学 物 理
静电场
(第一讲)
作业:P191 习题 5-7 5-9 5-12
第五章 静电场
静止电荷产生的电场
5-1电荷的量子化 电荷守恒定律
电学主要研究电磁场的规律及物质的电学、磁学性质,研究与 电磁现象有关的规律。电学是牛顿唯一没有问津的领域。 对电的初步认识:摩擦生电 丝绸-玻璃(+) 毛皮-橡胶(-) 1. 电荷有正负

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动

v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F

大学物理第一册(马文蔚编)5、6、7篇测验试题(答案1)

大学物理第一册(马文蔚编)5、6、7篇测验试题(答案1)

大学物理第一册(马文蔚编)5、6、7章测验试题(答案1)姓名_____________ 专业_______________ 学号_____________ 说明:试卷共150分,可以选择完成试题,总分按100分计。

一、简答题(每题4分,共32分)1、写出静电场和静磁场的高斯定理,并分别说明其揭示了什么性质。

(4分)答:0ε∑⎰=⋅q s d E sρρ静电场是有源场;0=⋅⎰ss d B ρρ静磁场是无源场;2、写出静电场和静磁场的安培环路定理,并说明其揭示了什么性质?(4分)答:0=⋅⎰Ll d E ρρ静电场是保守场;∑⎰=⋅I l d B L0μρρ静磁场是非保守场;导体电介质电场E : 电场E : 电势U : 电势U : 电荷Q :电荷Q :2)导体电势为等势体,电介质不是;3)导体表面有净电荷,电介质体内和表面都有极化电荷;4、写出电场强度与电势的关系式。

(4分)答:nB AABe dL dV E l d E V ρρρρ⋅-=⋅=⎰;5、电场线为什么不可以相交?(4分)答:因为电场中每一点的电场强度只能有一个确定的方向,电场线若相交则该点有不同的电场方向。

6、电容器的电容C 与那些因素有关?(4分)答:只于电容器本身的材料,尺寸(长度、面积等),电容率有关。

7、在电场中某一点的电场强度定义为0FE q =r r .若该点没有试验电荷,那么该点的电场强度又如何?为什么?(4分)答: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。

8、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?(4分)答:磁力线垂直穿过正四方型线圈的位置。

因为线圈每边受到的安培力为B l Id F d ρρρ⨯=每边受到的磁力大小相等方向相反。

二、选择题(每题3分,共30分)1、一带正电的物体,其上电势的正负由 B 确定。

A 、带电体自身电荷符号B 、坐标零标度C 、空间所有电荷代数和2、静电场中某点电势的数值等于 C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理马文蔚版高等教育出版社作业模拟及答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】期末考试模拟试题一、判断题:(10⨯1=10分)1.质点作圆周运动时,加速度方向一定指向圆心。

()2.根据热力学第二定律,不可能把吸收的热量全部用来对外做功()3.刚体的转动惯量与转轴的位置有关。

()4.刚体所受合外力矩为零,其合外力不一定为零。

()5.静电场中的导体是等势体。

()6.平衡态下分子的平均动能为kT 23() 7.绝热过程中没有热量传递,系统的温度不变。

()8.最概然速率就是分子运动的最大速率。

()9.电场强度为零的点的电势一定为零。

()10.真空中电容器极板上电量不同时,电容值不变。

()二、选择题:(1836=⨯分)1.某质点的运动学方程为3536t t x -+=,则该质点作()(A )匀加速直线运动,加速度为正值;(B )匀加速直线运动,加速度为负值;(C )变加速直线运动,加速度为正值;(D )变加速直线运动,加速度为负值。

2.质点作匀速率圆周运动,它的()(A )切向加速度的大小和方向都在变化;(B )法向加速度的大小和方向都在变化;(C )法向加速度的方向变化,大小不变;(D )切向加速度的方向不变,大小变化。

3.两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,若它们的压强和温度相同,则两气体()(A )单位体积内的分子数必相同;(B )单位体积内的质量必相同;(C )单位体积内分子的平均动能必相同;(D )单位体积内气体的内能必相同。

4.摩尔数相同,分子自由度不同的两种理想气体,从同一初态开始等压膨胀到同一末态时,两气体()(A )从外界吸热相同;(B )对外界作功相同;(C )内能增量相同;(D )上述三量均相同。

5.如图所示,在封闭的球面S 内的A 点和B 点分别放置q +和q -电荷,且OA=OB ,P 点为球面上的一点,则()(A )0≠p E ,⎰=⋅Sd 0S E ; (B )0=p E ,⎰≠⋅Sd 0S E ; (C )0≠p E ;⎰≠⋅Sd 0S E ; (D )0=p E ,⎰=⋅Sd 0S E 。

6.平行板电容器充电后与电源断开,然后将其间充满均匀介质,则电容C 和电压U 的变化情况是()(A )C 减小,U 增大;(B )C 增大,U 减小;(C )C 减小,U 减小;(D )C 增大,U 增大;三、填空题:(32216=⨯分)1.一质点速度矢量为j i v t t 55+=m ·s -1,若0=t 时质点在j r 20=位置,则任意时刻的加速度矢量为,t 时刻的位置矢量为,质点做的是运动2.如图所示,1mol 单原子分子理想气体从初态),(V P A 开始沿图中直线变到末态)2,2(V P B 时,其内能改变量为;从外界吸热为;对外界作功为。

3.气体分子在一个自由度上的平均能量是,分子的平均平动动能为,自由度数为i 的1摩尔的理想气体其内能为4.带电导体球壳(内半径1R ,外半径为2R ),带电量为q ,则21~R R 壳内的场强为,外部距球心r 处的电势为,壳内外表面的电势差为5.如图为气体分子速率分布曲线,其中N 为气体分子总数,以N 和0V 表示a ,则a =。

0~20V 内的分子数为,0~20V 内的)(v f 为 6、在某惯性系中同时发生的两件事相距2m ,另一个惯性系沿此距离方向以c 6.0的速度相对于此惯性系运动,在这个惯性系中会观察到两事件相距四、计算题:(40分)1.质量为m ,以速度0v 运动的物体,所受阻力为kv f ,求其速度降至20v 时所需要的时间(6分)2、长为l 的均匀细棒,一端悬于O 点,另一端自由下垂,如图。

一子弹以速度0v 水平射入杆的下端,并嵌入杆中。

设子弹的质量为m ,杆的质量为M ,求杆和子弹共同获得的角速度。

(6分)理想气体在400K 与300K 的高低温热源间完成一次卡诺循环,在400K 等温线上,气体起始体积为0.0010m 3,终态体积为0.0050m 3。

求循环效率;气体从高温热源吸收的热和向低温热源放出的热的大小;气体对外界所作的功。

(8分)4.一均匀带电导线(带电线密度为λ),弯曲如图形状,圆弧半径为a ,a CD AB ==,求O 点处的电势。

(8分)5.一不稳定粒子静止时存在时间为8102-⨯s ,以后即衰变为其它粒子。

若它以0.5C 的速度运动,则其存在时间将变为多少衰变为其它粒子之前走了多少距离(8103⨯=c 1-⋅s m )(6分)6、质量为2g 的子弹,在枪筒中受推力的表达式为x F 98000400-=(SI 制),(x 为枪筒中子弹距弹出点的距离)若枪筒长度为0.45m ,求子弹离开枪口时的速率。

(6分)期末考试模拟试题答案一、判断题:1.×2.×3.√4.√5.√6.×7.×8.×9.×10.√二、选择题:三、填空题:1.j i 55+,j i )225(2522++t t ,匀加速2.PV 29,PV 6,PV 23 3.kT 21,kT 23,RT i 2 4.0=E ,r qV 04πε=,0 5.034V N ,N 32,034V 6. 2.5m 四、计算题:1.解:dt dv mkv =-kvdv m dt -= 2.解ωω)31()(220ml Ml J J l mv m M +=+= 常用物理常数3、解:312111035.50010.00050.0ln 40031.8ln ⨯=⨯⨯==V V RT Q J 25400300400121=-=-=T T T η﹪ 3311034.11035.525.0⨯=⨯⨯=⋅=Q W ηJ4.解:半圆环:000144ελπελπ==⎰a a dl V 直线:2ln 4)(40002πελπελ=+=⎰a x a dx V 5.解:8282103.2)5.0(1102)(1--⨯=-⨯=-=cc c v ττs 5.35.0=⋅=τc S m6、解245.0021mv Fdx =⎰ 期末考试模拟试题一、判断题:(10分)(每题1分、对的打‘√’、错的打‘×’)1.只考虑物体平动时,可将其当作质点。

()2.作用力与反作用力一定是同种性质的力。

()3.机械能为零的物体速度一定为零。

()4.物体的转动惯量只与物体的质量大小和质量分布有关。

()5.在一惯性系同时发生的两事件,在另一惯性系中也一定同时发生。

()6.系统经历一循环过程回到初态,系统内能不变。

()7.由热力学第二定律知,系统吸收的热量不能全部用来对外作功。

()8.在同一温度下,不同气体分子的平均平动动能不相等。

()9.静电场中电场线不会相交。

()10.静电平衡时,导体表面处的电场强度方向与导体表面垂直。

()二、填空题:(32分)(每空2分)1.已知质点的位置矢量为j i r 223t t +=,则其速度矢量为,加速度矢量为。

2.一卡诺热机效率为40﹪,低温热源温度为300K 。

若保持高温热源温度不变,低温热源温度降低,热机效率为50﹪;若保持低温热源温度不变,高温热源温度升高,热机效率为50﹪。

3.物体从光滑的斜面顶端由静止开始滑到底端的速率为v ,则它经过斜面中点的速率为。

4.某人测得一棒静止时长为l ,质量为m ,于是求得此棒线密度lm =λ。

假定此棒以速率v 在棒长方向上运动,此人再测得棒的长度为,质量为,线密度为。

3.力所做的功仅仅依赖于受力质点的始末位置,与质点经过的无关,这种力称为保守力。

万有引力是,摩擦力是。

6.一定质量的某种理想气体,分子质量为m ,其分子速率遵守麦克斯韦速率分布,在温度为T 的平衡态下,方均根速率为、最概然速率为。

7.一带电量为Q ±的平板电容器,极板面积为S ,间距为d 。

中间为真空时其电容值为,中间充以相对电容率为r ε的电介质后其电容值,极板间电场强度为。

三、选择题:(18分)(每题3分)1.两瓶不同种类的理想气体,它们的分子数密度不同,但分子的平均平动动能相同,则它们的()(A )内能一定相同;(B )分子的平均动能一定相同;(C )压强一定相同;(D )温度一定相同。

2.在高台上分别沿水平方向和竖直方向以同样的速率投出两颗石子,忽略空气阻力,他们落地时速度()(A )大小不同,方向不同;(B )大小相同,方向不同;(C )大小不同,方向相同;(D )大小相同,方向相同。

3.一点电荷在电场中某点所受的电场力为零,则该点()(A )场强一定为零,电势一定为零;(B )场强不一定为零,电势一定为零;(C )场强一定为零,电势不一定为零;(D )场强不一定为零,电势不一定为零。

理想气体从V P -图上初态a 分别经历(1)或(2)过程到达末态b (如图1所示)。

已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是()(A )021>>Q Q (B )021<<Q Q(C )012>>Q Q (D )012<<Q Q在场强为E 的均匀静电场中取一半球面,其5.径为R ,半E 的方向和半球面的轴平行(如图2所示)。

求通过这个半球面的电场强度通量()(A )E R 2π(B )E R 22π 图1 图2(C )E R 22π(D )E R 222π 6.下列说法正确的是()(A )质点作圆周运动时的加速度一定指向圆心;(B )匀速圆周运动的加速度为一恒矢量;(C )只有法向加速度的运动一定是圆周运动;(D )只有切向加速度的运动一定是直线运动。

四、计算题:(40分)1.(6分)电动机带动一个转动惯量为J=502.m kg 的系统作定轴转动.在内由静止开始最后达到120r/min 的转速.假定在这一过程中转速是均匀增加的,求电动机对转动系统施加的力矩.2.(8分)在真空中,同心球壳内壳带电量为Q +,半径为1R ,外壳带电量为Q -,半径为2R 。

求1R r <,21R r R <<,2R r >区域的电场强度。

3.(8分)一质量为0.5 kg 的小球,系在长1.5m 的细绳上,细绳另一端系在天花板上,把小球移至细绳与竖直线成300的位置后由静止释放。

求(1)在绳索从300角转到00角的过程中,重力和张力所做的功。

(2)物体在最低位置时的动能和速度。

4.(8分)1mol 理想气体在400K 与300K 的高低温热源间完成一次卡诺循环,在400K 等温线上,气体起始体积为0.0010m 3,终态体积为0.0050m 3。

此循环过程中气体对外界作的功多少,循环效率及从高温热源吸热和向低温热源放热的大小?5.(10分)一圆盘的半径为1=R m ,质量10=M kg ,以20=ωs -1的加速度绕通过圆盘中心且垂直盘面的轴转动。

相关文档
最新文档