等离子弧焊接
等离子弧焊接
等离子弧焊接1. 简介等离子弧焊接是一种常用的焊接方法,利用等离子弧产生高温,将被焊接的材料熔化并连接在一起。
它具有焊接速度快、焊缝质量高、适用范围广等优点,在各个工业领域得到广泛应用。
2. 原理等离子弧焊接是利用电弧放电产生的高温等离子体来加热和熔化被焊接材料的方法。
通过电极和被焊件之间产生的电弧,使其产生的高温等离子体使被焊接材料熔化并连接在一起。
等离子弧焊接的原理包括以下几个方面:•电弧产生在等离子弧焊接过程中,通常使用直流电供电,通过正极、负极两个电极产生电弧放电。
正极电极通常为钨极,负极电极可以是钨、钼等高熔点金属。
•等离子体产生电弧放电产生的高温会使空气中的原子和分子离子化形成等离子体。
等离子体具有高温、高热量、高电导等特性。
•材料熔化和连接等离子体的高温可使被焊接材料迅速熔化。
通过控制电弧形成的热量和等离子体的速度,可使熔融材料与被焊件接触并融合在一起。
3. 设备和材料•等离子弧焊接设备–电源–控制系统–焊枪–气体供应系统•焊接材料–被焊件–焊条(焊丝)4. 焊接过程等离子弧焊接主要包括以下几个步骤:1.准备焊接材料–清洁被焊件表面,确保无杂质和油污。
–准备好所需的焊条或焊丝。
2.设置焊接参数–根据被焊件的材料和厚度,设置合适的电流和电压。
–设置气体流量和喷嘴的形状。
3.开始焊接–确保焊接区域没有杂散光线和易燃物。
–启动电源,使电极与被焊件接触,产生电弧。
4.控制焊接速度和角度–控制焊接速度,保证焊缝的均匀性。
–调整焊接角度,以获得所需的焊缝形状。
5.完成焊接–在焊接完成后,关闭电源。
–对焊缝进行清理和检查。
5. 应用领域等离子弧焊接在各个领域都有广泛应用,包括但不限于以下几个方面:•金属制造等离子弧焊接可用于焊接各种金属材料,如钢铁、铝合金、不锈钢等。
在汽车制造、造船、航空航天等领域具有重要地位。
•管道焊接等离子弧焊接可用于焊接各种管道,如石油管道、天然气管道、水管等。
它具有速度快、焊缝质量高等优点。
材料的等离子弧焊接
材料的等离子弧焊接引言等离子弧焊接是一种常用的金属焊接方法,它采用高温等离子弧作为热源,在材料表面产生高温,使材料熔化并形成焊缝。
材料的选择对等离子弧焊接的效果具有重要影响。
本文将详细介绍材料的等离子弧焊接过程以及材料选择的考虑因素。
材料的等离子弧焊接过程材料的等离子弧焊接过程通常包括以下几个步骤:1.准备工作:在进行等离子弧焊接前,需要对材料进行准备处理。
这包括清洁焊接表面,去除杂质和氧化物等。
2.设定焊接参数:根据材料的类型和厚度,需要设定适当的焊接参数。
这包括电弧电流、电弧电压、等离子气体流量等。
3.点火:在设定好焊接参数后,点火引燃等离子弧。
等离子弧将产生高温,使材料熔化。
4.焊接:将焊条或焊丝送入焊接区域,通过熔化的材料形成焊缝。
焊接过程中需要保持合适的焊接速度和焊接角度,以确保焊缝质量。
5.冷却:等离子弧焊接后,焊接部位需要进行冷却。
这可以通过在焊接过程中施加冷却剂或者自然冷却来实现。
材料选择的考虑因素在进行材料的等离子弧焊接时,需要考虑以下因素:1.材料类型:不同类型的材料对等离子弧的响应不同。
常见的等离子弧焊接材料包括钢、铝、铜等。
根据材料的特性和应用要求,选择适合的等离子弧焊接材料。
2.材料厚度:材料的厚度会影响焊接参数的设定。
较薄的材料需要较低的焊接电流和焊接速度,而较厚的材料就需要较高的焊接电流和焊接速度。
3.材料表面处理:材料的焊接表面需要进行适当的处理,以去除氧化层、油脂和杂质等。
清洁的焊接表面有利于等离子弧焊接的成功进行。
4.等离子气体选择:等离子气体在等离子弧焊接过程中起着冷却和保护焊缝的作用。
常用的等离子气体包括氩气、氩氩混合气体等。
根据材料和焊接要求选择适合的等离子气体。
结论材料的等离子弧焊接是一种常用的金属焊接方法,通过高温等离子弧使材料熔化并形成焊缝。
在进行等离子弧焊接时,需要考虑材料类型、材料厚度、材料表面处理和等离子气体选择等因素。
通过合理的材料选择和适当的焊接参数设定,可以实现高质量的等离子弧焊接。
浅谈等离子弧焊接技术
浅谈等离子弧焊接技术等离子弧焊接技术是一种高效、高质量的金属焊接技术,它利用高温等离子弧将两个金属材料焊接在一起。
随着工业智能化发展,等离子弧焊接技术在各类制造业领域中逐渐应用,同时也受到越来越多的关注。
本文将浅谈等离子弧焊接技术的应用、特点、原理及注意事项。
一、等离子弧焊接技术的应用等离子弧焊入主要应用于高温环境下的金属材料,包括不锈钢、钼合金、铜合金、镍铬合金等。
等离子弧焊接技术的应用领域非常广泛,如汽车制造、航空航天、电子、石化等领域。
以汽车制造为例,车身焊接工艺的效率、质量和安全性都影响着整个车辆制造过程,而等离子弧焊接技术可以提供高效、稳定和精细的焊接工艺,因此被广泛应用于汽车生产车身焊接领域,提高了生产效率和质量。
二、等离子弧焊接技术的特点等离子弧焊接技术是一种非常特殊的焊接技术,它具有以下几个特点。
1. 清洁度高。
等离子弧焊接技术不需要使用膨胀剂和保护剂,焊接后的物件表面干净无污染。
2. 精度高。
等离子弧焊接技术具有非常高的精度,可以精确地控制等离子弧的大小及位置,从而实现焊接过程中的准确度要求。
3. 焊接效率高。
等离子弧焊接技术可以快速、高效的完成各种金属材料的焊接工作,因此适用于大规模的生产制造中。
4. 熔深大。
等离子弧焊接技术直接将电弧引入焊接部位,可以实现更深的熔深,从而可以焊接更厚的金属材料。
三、等离子弧焊接技术的原理等离子弧焊接技术是将金属加热至高温,从而溶解焊件并使其联结在一起的金属焊接技术。
等离子弧按其形成过程分为不稳定等离子弧和稳定等离子弧。
电弧通过高电压放电将焊接部位加热至高温度。
相应的金属材料会被气化并在形成等离子体的过程中,和大气中的气体相互反应,发生离子交换。
随着等离子体随电流运动,电弧持续存在,热能顺传至焊接部位,最终达到熔化和焊接的效果。
四、等离子弧焊接技术的注意事项在实际应用中,等离子弧焊接技术的操作也需要注意以下几个方面。
1.焊接材料的选取。
应该选择适合等离子弧焊接的材料,如不锈钢、铜合金、铝合金等。
(完整版)等离子焊接理论、操作与故障处理
一、等离子弧焊接方法及工艺特点1.等离子焊接原理等离子态是除固态、液态、气态之外的第四种物质存在形态。
等离子焊接是从钨级氩弧焊的基础上发展起来的一种高能焊接方法。
钨级氩弧焊是自由电弧,而等离子电弧是压缩电弧。
等离子弧是离子气被电离产生高温离子化气体,并经过水冷喷嘴,受到压缩,从而导致电弧的截面积变小,电流密度增大,电弧温度增高。
等离子电弧能量密度可达105-106W/cm2,比自由电弧(约105W/cm2以下)高,其温度可达18000-24000K,也高于自由电弧(5000-8000K)很多。
因此,等离子电弧挺度比自由电弧好,指向性好,喷射有力,熔透能力强,可比自由电弧一次焊透更厚的金属。
因此,等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。
等离子焊接示意图如下图:等离子焊接原理示意图2.等离子电弧的种类等离子电弧主要分为三种类型:◆非转移型等离子电弧主要用于非金属材料的焊接。
◆转移型等离子电弧主要用于金属材料的焊接。
◆联合型等离子电弧主要用于微束等离子的焊接。
3.等离子基本焊接方法按焊缝成型原理,等离子焊接有两种基本的焊接方法:熔透型和小孔型等离子焊接。
◆熔透型等离子焊接在焊接过程中离子气较小,弧柱的压缩程度较弱,只熔透工件,但不产生小孔效应的等离子焊接方法。
其焊缝成型原理与氩弧焊类似,主要用于薄板焊接及厚板多层焊。
◆小孔型等离子焊接利用小孔效应实现等离子弧焊接的方法称为小孔型等离子焊接。
由于等离子具有能量集中﹑电弧力强的特点,在适当的参数条件下,等离子弧可以直接穿透被焊工件,形成一个贯穿工件厚度方向的小孔,小孔周围的液体金属在电弧力﹑液态金属表面张力以及重力下保持平衡,随着等离子弧在焊接方向移动,熔化金属沿着等离子弧周围熔池壁向熔池后方流动,并逐渐凝固形成焊逢,小孔也跟着等离子弧向前移动,如下图所示。
小孔效应示意图小孔效应的优点在于可以单道焊接厚板,一次焊透双面成型。
等离子弧焊接使用要点 (一)
等离子弧焊接使用要点(一)一、等离子弧焊(割)炬喷嘴孔径不宜过大等离子弧是一种压缩电弧,其压缩作用来自于喷嘴的机械作用、热收缩和磁收缩等。
通常焊(割)炬的喷嘴孔径应根据电流和离子气流量来确定。
在一定条件下,喷嘴的孔径越大,对等离子弧的压缩作用越小。
如果喷嘴孔径过大,就会丧失压缩作用,等离子弧也就建立不起来。
通常喷嘴的孔道比l/d应大于3,如图所示。
等离子弧喷嘴的孔道比1—钨棒2—喷嘴3—等离子弧及扩散角二、等离子弧焊时不应存在双弧正常的转移型等离子弧应该稳定“燃烧”在钨极和工件之间,当另有电弧“燃烧”于钨极—喷嘴—工件之间时,即形成双弧,如图所示。
此时主弧电流将降低,正常的焊接或切割过程被破坏,严重时将导致喷嘴烧毁或离子弧过程中断。
等离子弧焊喷嘴内的“双弧”三、等离子弧焊接和切割电源不能通用等离子弧焊接和切割电源一般都采用陡降外特性直流电源。
但切割用电源输出的空载电压一般大于150V,压缩空气等离子弧切割电源空载电压可高达600V。
等离子弧焊接电源输出的空载电压一般在80V左右,两者不能通用(下图)。
等离子弧焊接与切割的电源外特性a)焊接电源外特性b)切割电源外特性四、不导电的工件不能建立转移电弧产生于钨极和工件之间的等离子弧称为转移电弧,转移电弧是由非转移电弧(产生于钨极和喷嘴间的电弧)过渡转移产生的。
当工件不导电(或不通电)时,转移电弧不能产生。
因此非金属加工只能利用非转移电弧形成的等离子弧,如图所示。
转移电弧与非转移电弧1—转移电弧电源2—非转移电弧电源3—金属4—非金属5—非转移电弧五、微束等离子弧焊不宜采用单电源供电大电流等离子弧都采用转移电弧,在转移电弧产生后非转移电弧随即切断,因此转移电弧和非转移电弧可合用一个电源。
微束等离子弧焊是采用联合型弧,由于焊接过程中需要同时保持非转移电弧和转移电弧,故要采用两个独立电源,如图所示。
等离子弧焊的供电形式a)大电流等离子弧焊b)微束等离子弧焊6—转移电弧1—焊接电源2—维弧电源R—限流电阻S—转换开关六、大电流工作不宜采用小锥角电极为了便于引弧和增加电弧的稳定性,电极端部可磨成20°~60°的夹角。
等离子弧焊接的名词解释
等离子弧焊接的名词解释等离子弧焊接是一种常见的金属材料连接技术,它利用弧焊的原理和等离子体的特性来实现焊接。
1. 弧焊基本原理弧焊是一种利用焊接电弧热量将金属材料熔化并通过填充材料形成焊缝的方法。
在等离子弧焊接中,焊工通过两电极间的电弧放电,使气体或气体混合物在高温电弧热作用下形成等离子体,然后利用等离子体的高温和大能量来熔化金属材料并完成焊接过程。
2. 等离子体的特性等离子体是带电的气体,它的特点是高温、高能量、导电性强以及能在电磁场中受力等。
这些特性使得等离子体在焊接过程中发挥重要作用。
等离子弧焊接中,通过控制等离子体的形成和行为,可以实现高效率、高质量的焊接。
3. 等离子弧焊接的设备等离子弧焊接需要特殊的设备来产生和控制焊接过程中的等离子体。
主要设备包括焊接电源、焊接电极、等离子弧焊枪和保护气体供给系统等。
焊接电源负责提供适当的电流和电压来维持电弧的稳定,并为电弧供能。
焊接电极是产生电弧的工具,常见的有钨极、钼极等。
等离子弧焊枪通过控制电弧的形成和维持,将电弧聚焦在焊接区域。
保护气体供给系统则提供保护气体,从而保护电弧、熔化金属和熔化池免受空气中的氧气和其他杂质的污染。
4. 等离子弧焊接的应用等离子弧焊接广泛应用于各个领域,特别是在航空航天、汽车制造、石油化工、核工程等重要领域中,具有重要的地位。
其应用范围包括焊接厚板、薄板、管道、容器等各种结构件,能够满足不同材料(如碳钢、不锈钢、铝合金等)的焊接需求。
5. 等离子弧焊接的优点等离子弧焊接具有以下优点:(1)焊接速度快,高效率;(2)焊接质量高,焊缝质量好;(3)可焊接不同材料的金属;(4)操作简单、易学易用。
总结等离子弧焊接是一种常见的金属材料连接技术,通过利用等离子体的特性和弧焊的原理来实现焊接。
它具有广泛的应用领域和重要的地位,能够满足不同材料的焊接需求。
通过控制等离子体的形成和行为,等离子弧焊接能够实现高效率、高质量的焊接。
等离子弧焊接的特点
等离子弧焊接的特点
等离子弧焊接是一种常用的金属焊接方法,具有许多特点。
首先,等离子弧焊接可以适用于各种金属材料的焊接,包括钢、不锈钢、铝等。
这意味着无论是焊接薄板材还是厚板材,等离子弧焊接都可以胜任,具有广泛的应用范围。
其次,等离子弧焊接具有高能量密度和热浸入深度的特点。
等离子弧发射出的高温等离子体能够迅速加热工件表面,使金属迅速熔化并形成焊缝。
由于等离子弧的高能量密度,焊接过程中的热浸入深度较大,可以获得较深且较窄的焊缝,焊接强度高。
另外,等离子弧焊接具有稳定的弧焰和良好的电弧调节性能。
等离子弧具有高频和恒流等特点,能够在较宽的电弧电流范围下工作。
这种稳定的弧焰可以保证焊接过程中的电弧稳定,消除电弧飞溅和焊接质量不稳定的问题。
此外,等离子弧焊接还具有较少的气体污染和较小的变形。
等离子弧焊接使用惰性气体作为保护气体,如氩气,不会与金属发生任何反应,因此对金属的污染较少。
同时,等离子弧焊接的焊接速度快,热输入量较少,可以减小焊接时的变形。
另外,等离子弧焊接还具有操作简便和焊接质量可靠的特点。
相对于其他金属焊接方法,等离子弧焊接不需要庞大的设备和复杂的操作过程,操作简单方便。
而且,等离子弧焊接焊接质量可靠,焊接接头强度高,焊缝质量好,能够满足各种工程项目的需求。
综上所述,等离子弧焊接具有适用广泛、高能量密度、热浸入深度大、稳定的弧焰、较少的气体污染、较小的变形、操作简便和焊接质量可靠等特点。
这些特点使得等离子弧焊接成为了许多金属焊接工程的首选方法。
等离子弧焊的基本方法
等离子弧焊的基本方法等离子弧焊是一种常用的焊接方法,广泛应用于金属制品的制造和维修领域。
它以其高效、高质量的焊接结果而受到广泛赞誉。
本文将介绍等离子弧焊的基本方法,包括设备和操作步骤。
一、设备等离子弧焊需要以下设备:1. 焊接机:等离子弧焊常用的焊接机有直流等离子弧焊机和交流等离子弧焊机。
直流等离子弧焊机适用于焊接不锈钢、铝合金等材料,而交流等离子弧焊机则适用于焊接碳钢等材料。
2. 焊枪:焊枪是进行焊接操作的工具,通过控制电流和气体流量来实现焊接过程中的熔化和填充。
3. 气体供应系统:等离子弧焊需要使用惰性气体,常见的有氩气和氩气混合气体,用于保护焊接区域,防止氧气和水蒸气的污染。
4. 辅助设备:包括电源线、气管、冷却系统等。
二、操作步骤1. 准备工作:将焊接机和气体供应系统连接好,并确保电源和气源的正常供应。
检查焊枪和电缆是否完好,以及气体管路是否畅通。
2. 清洁工作:将待焊接的金属表面进行清洁,去除表面的油污、氧化物等杂质,以确保焊接接头的质量。
3. 调整焊接参数:根据焊接材料的种类和厚度,调整焊接机的电流和气体流量。
一般来说,电流越大,焊接速度越快,但过大的电流可能导致熔洞过深;气体流量的调整应根据焊接材料和焊接位置的不同进行合理设置,以保证焊接质量。
4. 进行焊接:将焊枪对准焊接接头,触发开关开始焊接。
在焊接过程中,焊枪应保持与焊接接头的距离适当,通常为2-5毫米。
焊接速度应均匀,保持一定的稳定性,以免焊接接头出现焊缝不均匀的情况。
5. 焊后处理:焊接完成后,及时关闭焊机和气源,并进行焊后处理。
包括清理焊渣、修整焊缝等工作,以保证焊接接头的质量。
三、注意事项1. 安全第一:在进行等离子弧焊时,应注意个人防护,佩戴焊接手套、护目镜等防护装备,以避免受伤。
2. 保持通风:等离子弧焊过程中会产生大量的烟雾和有害气体,应保持通风良好的工作环境,以确保操作人员的健康。
3. 选择合适的材料:不同的材料适合不同的焊接方法,选择合适的材料可以提高焊接质量。
等离子弧焊
等离子弧焊等离子弧焊成品等离子弧焊是利用等离子弧作为热源的焊接方法。
气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。
它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。
形成等离子弧的气体和它周围的保护气体一般用氩。
根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的。
目录基本信息工作方式过程特点应用等离子弧焊接和切割各种焊接方法及设备等离子弧焊设备国外焊接技术最新进展等离子弧焊的工艺参数等离子弧焊直接金属成形技术的工艺研究等离子焊优点等离子弧的特性合金材料的等离子弧焊•超薄壁管子的微束等离子弧焊安全防护技术基本信息缩写abbr. :PAW.[军] Plasma-Arc Welding, 等离子弧焊——简明英汉词典工作方式等离子弧有两种工作方式。
一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料;另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。
形成焊缝的方式有熔透式和穿孔式两种。
前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。
此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。
等离子弧焊接属于高质量焊接方法。
焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。
特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。
过程特点操作方式等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。
但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。
通过改变孔的直径和等离子气流速度,可以实现三种操作方式:1、微束等离子:0.1~15A在很低的焊接电流下,材苁褂梦⑹?壤胱踊<词乖诨〕け浠?怀??0mm时,柱状弧仍能保持稳定。
等离子弧焊接的基本原理
二、等离子弧旳形成 等离子弧“压缩效应”原理
热压缩
二、等离子弧旳形成 等离子弧“压缩效应”原理
磁压缩
二、等离子弧旳形成
三、等离子弧旳特点 1、能量密度大、温度梯度大,热影响区小。
能量高度集中: 105~106W/cm2 弧柱中心温度: 18000~24000℃
三、等离子弧旳特点 2、电弧挺度好。
三、等离子弧旳特点 3、电弧稳定,气流喷速高。
焰流速度: 300m/s
三、等离子弧旳特点
4、能够焊接更细、更薄加工件。
微束等离子弧焊( 30A下列): 可焊接细丝和箔材
熔透型等离子弧焊: 厚度不大于2~ 3mm旳薄板
四、等离子弧旳类型
非转移型
转移型
联合型
End Thanks
钨极氩弧焊
等离子弧焊
二、等离子弧旳形成
电弧在电极与焊件 之间产生,经过水冷 喷嘴内腔受到强烈地 压缩。
使弧柱截面缩小,
电流密度增大,能量 密度增大,电弧温度 急剧上升,电弧介质 旳电离程度剧增以致 在电弧中心部分接近 完全电离,最终形成 明亮旳、细柱状旳等 离子弧。
二、等离子弧旳形成 等离子弧“压缩效应”原理
等离子弧焊接旳基本原理
一、什么是等离子弧 ?
等离子弧是自由电弧压缩而成旳。
焊接电弧就是指在加 有一定电压旳电极或 电极与焊件间旳气体 介质中产生旳强烈而 连续旳放电现象(俗 称电弧燃烧)。
一、什么是等离子弧 ?
电弧燃烧旳必要条件是气体电离及阴极电子发射。
、什么是等离子弧 ?
等离子弧焊接和切割
等离子弧焊接和切割等离子弧切割是一种常用的金属和非金属材料切割工艺方法。
它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。
等离子弧焊接和切割:1.1 等离子弧的产生:(1)等离子弧的概念:自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。
等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。
自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。
(2)等离子弧的产生在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。
①机械压缩效应(作用)——电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。
②热压缩效应——当通入一定压力和流量的氩气或氮气时,冷气流均匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。
③电磁收缩效应——定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。
电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧。
当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为“刚性弧”,主要用于切割金属。
反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为“柔性弧”,主要用于焊接。
1.2 等离子弧焊接1.2.1 基本知识用等离子弧作为热源进行焊接的方法称为等离子孤焊接。
等离子弧焊的基本方法
等离子弧焊的基本方法等离子弧焊是一种常见的金属焊接方法,它利用高温等离子弧将金属材料加热并连接在一起。
本文将介绍等离子弧焊的基本方法,包括设备准备、焊接准备、焊接操作和焊后处理。
一、设备准备进行等离子弧焊之前,需要准备以下设备:1. 焊接机:等离子弧焊需要特殊的焊接机,常见的有直流等离子弧焊机和交流等离子弧焊机。
2. 电源:等离子弧焊需要稳定的电源供应,通常采用直流电源或交流电源。
3. 焊枪:焊枪是进行等离子弧焊的工具,它通过电弧产生高温等离子弧。
4. 气体供应系统:等离子弧焊需要使用惰性气体(如氩气)作为保护气体,防止焊接区域被氧化。
二、焊接准备在进行等离子弧焊之前,需要进行以下焊接准备工作:1. 清洁金属表面:将待焊金属表面清洁干净,以去除油污、氧化物等杂质,以保证焊接质量。
2. 选择合适的焊接参数:根据待焊金属的种类、厚度和焊接要求,选择合适的焊接电流、电压和气体流量等参数。
3. 调整焊枪角度和距离:根据焊接位置和焊接要求,调整焊枪的角度和距离,使焊接电弧能够充分覆盖焊接区域。
三、焊接操作进行等离子弧焊时,需要进行以下操作:1. 开启电源和气体:先开启焊接机的电源,然后开启气体供应系统,确保稳定的电源和气体供应。
2. 接触电弧:将焊枪靠近待焊金属,使电极与金属表面轻轻接触,然后迅速抬起焊枪,产生电弧。
3. 移动焊枪:在产生电弧后,持续移动焊枪,使电弧在焊接区域形成等离子弧,加热金属并使其熔化。
4. 控制焊接速度:根据金属的种类和厚度,控制焊接速度,以保证焊缝的质量和均匀性。
5. 观察焊接质量:在焊接过程中,需要不断观察焊接质量,确保焊缝的形成和焊接区域的均匀加热。
四、焊后处理焊接完成后,需要进行以下焊后处理工作:1. 清理焊缝:将焊接过程中产生的熔渣和氧化物清理干净,使焊缝表面光滑。
2. 检查焊接质量:对焊接质量进行检查,确保焊缝的质量和强度达到要求。
3. 去除保护气体:将焊接区域的保护气体排空,以免影响周围环境。
等离子弧焊类型、原理、优缺点、适用范围及等离子焊接设备操作规程
等离子弧焊类型、原理、优缺点、适用范围及等离子焊接设备操作规程1、等离子弧产生及类型:⑴、等离子弧产生:①、等离子弧焊是利用高温的等离子弧来焊接用气焊和普通电弧焊所难以焊接的难熔金属的一种熔焊方法。
②、离子弧焊利用气体在电弧中电离后,再经过热收缩效应、机械收缩效应、磁收缩效应而产生的一种超高温热源进行焊接,温度可达20000℃左右。
③、等离子弧的发生装置如图11-1所示。
在钨极(-极)和焊件(+极)之间加上一个较高的电压,经过高频振荡器的激发,使气体电离形成电弧。
此电弧在通过具有特殊孔型的喷嘴时,经过机械压缩、热收缩和磁场的收缩效应,弧柱被压缩到很细的范围内。
这时的电弧能量高度集中,其能量密度可达10°~10°W/cm²,温度也达到极高程度,其弧柱中心温度可达16000~33000℃;弧柱内的气体得到了高度的电离,因此,等离子弧不仅被广泛用于焊接、喷涂、堆焊,而且可用于金属和非金属切割。
⑵、等离子弧类型及电源连接方式:①、非转移型弧。
钨极接电源负极,喷嘴接电源正极,等离子弧体产生于钨极和喷嘴内表面之间(见图11-2a),工件本身不通电、而是被间接加热熔化,其热量的有效利用率不高,故不宜用于较厚材料的焊接和切割。
②、转移型弧。
钨极接电源负极,焊件接电源正极,首先在钨极和喷嘴之间引燃小电弧后,随即接通钨极与焊件之间的电路,再切断喷嘴与钨极之间的电路,同时钨极与喷嘴间的电弧熄灭,电弧转移到钨极与焊件间直接燃烧,这类电弧称为转移型弧(见图11-2b)。
这种等离子弧可以直接加热工件,提高了热量有效利用率,故可用于中等厚度以上工件的焊接与切割。
③、联合型弧。
转移型弧和非转移型弧同时存在的等离子弧称为联合型弧(见图11-2c)。
联合型弧的两个电弧分别由两个电源供电主电源加在钨极和焊件间产生等离子弧,是主要焊接热源。
另一个电源加在钨极和喷嘴间产生小电弧,称为维持电弧。
联合弧主要用于微弧等离子焊接和粉末材料的喷焊。
等离子弧焊接
等离子弧焊接
等离子弧焊接是一种高能量密度焊接技术,它是利用等离子体弧来加
热和熔化金属材料,实现材料的连接。
等离子体是一种高温、高能量
密度的气态物质,由电离气体中自由电子和正离子组成。
在等离子弧
焊接过程中,电极产生的电弧在工件表面形成一个等离子体区域,该
区域中的温度可以达到几千摄氏度,并且具有足够的能量来熔化金属
材料。
等离子弧焊接具有以下优点:
1. 焊缝质量高:等离子弧焊接可以实现较小的热影响区域,从而减少
了变形和应力集中,并且可以得到较高的焊缝质量。
2. 适用于多种金属:等离子弧焊接适用于多种金属材料的连接,包括钢、铝、铜、镁和钛等。
3. 焊接速度快:由于等离子体具有高能量密度,因此可以实现较快的
焊接速度。
4. 易于自动化:由于等离子弧焊接可以实现较高的焊接速度和稳定性,因此易于自动化。
等离子弧焊接的缺点包括:
1. 设备成本高:等离子弧焊接设备成本较高,需要专门的设备和技术。
2. 操作难度大:由于等离子弧焊接需要精确控制电弧和等离子体的位
置和形状,因此操作难度较大。
3. 对环境要求高:等离子弧焊接过程中会产生大量的气体、光线和热量,对环境要求较高。
总之,等离子弧焊接是一种高能量密度、高质量、适用于多种金属材
料的连接技术。
虽然它具有一些缺点,但在某些情况下仍然是最优选择。
等离子弧焊接
1、等离子弧焊焊接方法的基本概念
2、基本原理和分类 3、等离子弧焊特性 4、等离子弧焊特点和应用范围 5、焊接方法设备与装置组成和性能指标
6、焊接工艺参数
7、典型零件的应用实例
一、等离子弧焊焊接方法基本概念
一、等离子弧的形成
等离子弧焊用的热源是将自由钨极氩弧压缩强化之后获得点 力度更高的等离子体,成为等离子弧,又称压缩电弧。等离子 弧与钨极氩弧焊的自由电弧在物理上没有本质的区别,仅是弧 柱中电离程度上的不同。
二)、等离子弧焊工艺 (1)接头形式 通常等离子弧焊的接头形式为I型对接接头、开单面V型和 双面V型坡口的对接接头以及开单面U型坡口的对接接头。 (2)焊接参数的选择 1)喷嘴孔径 在焊接过程中,当焊件厚度增大时,焊接电流也应增大, 但不能超过喷嘴的最大许用电流。 2)焊接电流 根据焊件的材质和厚度首先确定焊接电流,但如果电流过 小,可能会造成无法焊透焊件,焊接速度慢;如果电流过大 ,可能会造成焊穿,甚至可能会引起双弧现象。
(a)自由电弧
(b)等离子弧
图3 : 等离子弧和自由电弧的能量对比
26
VPPA焊接还常用于穿孔立焊工艺,这将更有利于消除气孔等 焊接缺陷,可以成功实现4-12mm厚度铝合金的单面焊双面成型,
并将该焊接方法用于火箭筒体、铝合金贮箱、舰艇和宇宙飞船
铝合金壳体的焊接中,均获得符合标准的无缺陷焊缝,我国自
(三)、双弧及其防止措施 一)双弧 正常条件下,转移型电弧在钨极与工件之间产生,在某 些异常情况下,会产生一个与正常电弧并联的燃烧在钨极– 喷嘴以及喷嘴-工件之间的串弧,这种现象叫双弧。 二)双弧产生机理 冷气膜击穿 三)双弧产生的原因及防止措施 1 在电流一定的条件下,喷嘴压缩孔径太小或压缩孔道的 长度过大,内缩长度过大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基本要求 1、掌握等离子弧的产生原理及特点 2、了解等离子弧发生器的结构 3、掌握等离子弧焊接的几种主要的工艺形式及特点 三、重点 1、等离子弧的焊接工艺参数的选择; 等离子弧的焊接工艺参数的选择;
§6-1
等离子弧特性及其发生器
一、等离子弧的形成 等离子弧是一种被压缩的钨极氩弧, 等离子弧是一种被压缩的钨极氩弧,具有很高的能量密 温度及电弧力。等离子弧是通过三种压缩作用获得的: 度、温度及电弧力。等离子弧是通过三种压缩作用获得的: 1) 机械压缩 水冷铜喷嘴孔径限制弧柱截面积的自由 扩大,这种拘束作用就是机械压缩; 扩大,这种拘束作用就是机械压缩; 2) 热压缩 喷嘴中的冷却水使喷嘴内壁附近形成一层 冷气膜,进一步减小了弧柱的有效导电面积, 冷气膜,进一步减小了弧柱的有效导电面积,从而进一步提高 了电弧弧柱的能量密度及温度, 了电弧弧柱的能量密度及温度,这种依靠水冷使弧柱温度及能 量密度进一步提高的作用就是热压缩; 量密度进一步提高的作用就是热压缩; 由于以上两种压缩效应, 3) 电磁压缩 由于以上两种压缩效应,使得电弧电流密 度增大,电弧电流自身磁场产生的电磁收缩力增大, 度增大,电弧电流自身磁场产生的电磁收缩力增大,使电弧受 到进一步的压缩,这就是电磁压缩。 到进一步的压缩,这就是电磁压缩。
等离子弧焊的缺点是: 等离子弧焊的缺点是: 可焊厚度有限,一般在25mm以下; 25mm以下 1) 可焊厚度有限,一般在25mm以下; 焊枪及控制线路较复杂,喷嘴的使用寿命很低; 2) 焊枪及控制线路较复杂,喷嘴的使用寿命很低; 焊接参数较多,对焊接操作人员的技术水平要求较高。 3) 焊接参数较多,对焊接操作人员的技术水平要求较高。 (二)应用 可用钨极氩弧焊焊接的金属,比如不锈钢、铝及铝合金、 可用钨极氩弧焊焊接的金属,比如不锈钢、铝及铝合金、 钛及钛合金、 蒙耐尔合金等, 钛及钛合金、镍、铜、蒙耐尔合金等,均可用等离子弧焊 焊接。这种焊接方法可用于航天、航空、核能、电子、 焊接。这种焊接方法可用于航天、航空、核能、电子、造 船及其它工业部门中。 船及其它工业部门中。
2 -
3 -
+ 1 5 4 + +
+
非转移转移联合Fra bibliotek三、等离子弧特性 (一)电弧静特性曲线与TIG电弧明显不同: 电弧静特性曲线与TIG电弧明显不同: TIG电弧明显不同 (1)E大,因此上移。平直段缩小、上升段斜率增大; 因此上移。平直段缩小、上升段斜率增大; (2)联合电弧的下降段不明显;因此,小电流电弧非常稳定。 联合电弧的下降段不明显;因此,小电流电弧非常稳定。 (二)电弧温度高24000K-50000K,功率密度大,能量密度105电弧温度高24000K-50000K,功率密度大,能量密度10 24000K TIG电弧分别为10000电弧分别为10000 小于10 106W/cm2 。而TIG电弧分别为10000-24000K, 小于104W/cm2。 (三)刚直性大,电弧集中系数大。 刚直性大,电弧集中系数大。 (四)弧柱热量的对工件的加热作用大
焊接方向 2 3
穿孔型
4 1 5
表6-1
穿孔型等离子弧焊接所适用的厚度
材料
不锈钢
钛及钛 合金
镍及镍 合金
低合金 钢
低碳钢
焊接厚度限 值/mm
8
12
6
7
8
(二) 熔入型等离子弧焊接 采用较小的等离子气流量,等离子流力小,电弧穿透能力低。 采用较小的等离子气流量,等离子流力小,电弧穿透能力低。 特点 • 只能熔化工件,形不成小孔, TIG焊相似 焊相似。 只能熔化工件,形不成小孔,与TIG焊相似。 • 适用于薄板、多层焊的盖面焊及角焊缝的焊接。 适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (三) 微束等离子弧焊接 一种小电流(通常小于30 30A 熔入型焊接工艺。 一种小电流(通常小于30A)熔入型焊接工艺。 设备特点: 设备特点: • 小孔径压缩喷嘴( mm) 小孔径压缩喷嘴(0.6 mm ∼ 1.2 mm) • 联合型电弧。非转移弧起着引弧和维弧作用, 联合型电弧。非转移弧起着引弧和维弧作用,使转移弧在 电流小至0 时仍非常稳定。 电流小至0.5A时仍非常稳定。 工艺特点: 工艺特点: 可焊更薄的金属,最小可焊厚度为0 01mm mm; 1) 可焊更薄的金属,最小可焊厚度为0.01mm; 弧长在很大的范围内变化时,也不会断弧, 2) 弧长在很大的范围内变化时, 也不会断弧,并且电弧保持 柱状; 柱状; 焊接速度快、焊缝窄、热影响区小、焊接变形小。 3) 焊接速度快、焊缝窄、热影响区小、焊接变形小。
最重要的喷嘴形状参数为压缩孔径及压缩孔道长度。 最重要的喷嘴形状参数为压缩孔径及压缩孔道长度。 1) 喷嘴孔径dn
dn决定了等离子弧的直径及能量密度。直径越小,对电弧的 决定了等离子弧的直径及能量密度。直径越小,
压缩作用越大,但太小时,等离子弧的稳定性下降, 压缩作用越大,但太小时,等离子弧的稳定性下降,甚至导 致双弧现象,烧坏喷嘴。 致双弧现象,烧坏喷嘴。通常应根据焊接电流大小及等离子 气种类及流量来选择。 气种类及流量来选择。 2) 喷嘴孔道长度l0 在一定的压缩孔径下, 越长, 在一定的压缩孔径下,l0越长,对等离子弧的压缩作用越强 太大时,等离子弧不稳定。 ,但l0太大时,等离子弧不稳定。通常要求孔道比l0 /dn在一 定的范围之内。转移弧一般为1.0 1.2。混合电弧为2 1.0定的范围之内。转移弧一般为1.0-1.2。混合电弧为2-6 3)锥角 3)锥角α
二、等离子弧的分类 (一)非转移型电弧 非转移型电弧燃烧在钨极与喷嘴之间, 非转移型电弧燃烧在钨极与喷嘴之间,焊接时电源正极接水 冷铜喷嘴,负极接钨极,工件不接到焊接回路上; 冷铜喷嘴,负极接钨极,工件不接到焊接回路上;依靠高速喷 出的等离子气将电弧带出, 出的等离子气将电弧带出,这种电弧适用于焊接或切割较薄的 金属及非金属。 金属及非金属。 (二)转移型电弧 转移型电弧直接燃烧在钨极与工件之间,焊接时首先引燃钨 转移型电弧直接燃烧在钨极与工件之间, 极与喷嘴间的非转移弧,然后将电弧转移到钨极与工件之间; 极与喷嘴间的非转移弧,然后将电弧转移到钨极与工件之间; 在工作状态下,喷嘴不接到焊接回路中。 在工作状态下,喷嘴不接到焊接回路中。这种电弧用于焊接较 厚的金属。 厚的金属。 (三)联合型电弧 转移弧及非转移弧同时存在的电弧为联合型电弧。 转移弧及非转移弧同时存在的电弧为联合型电弧。混合型电 弧在很小的电流下就能保持稳定, 弧在很小的电流下就能保持稳定,因此特别适合于薄板及超薄 板的焊接。 板的焊接。
二)双弧产生机理 冷气膜击穿理论
三)双弧产生的原因及防止措施 在电流一定的条件下, 1 在电流一定的条件下,喷嘴压缩孔径太小或压缩孔道的长 度过大, 度过大,内缩长度过大 2 等离子气体的流量过小 3 钨极轴线与喷嘴轴线之间的偏差过大 4 金属飞溅物堵塞喷嘴 5 电源外特性不正确 6 喷嘴到工件的距离不正确
四、等离子弧生器 一)、分类:等离子弧焊枪、割枪、喷枪。 分类:等离子弧焊枪、割枪、喷枪。 二)、组成 主要由电极、电极夹头、压缩喷嘴、中间绝缘体、上枪体、下 主要由电极、电极夹头、压缩喷嘴、中间绝缘体、上枪体、 枪体及冷却套等组成。最关键的部件为喷嘴及电极。 枪体及冷却套等组成。最关键的部件为喷嘴及电极。 1、 喷嘴 分类 •按喷嘴孔道的数量,可分为单孔型和多孔型两种。 按喷嘴孔道的数量, 按喷嘴孔道的数量 可分为单孔型和多孔型两种。 多孔型喷嘴除了中心主孔外,主孔左右还有多个小孔。从这 多孔型喷嘴除了中心主孔外,主孔左右还有多个小孔。 两个小孔中喷出的等离子气对等离子弧有一附加压缩作用, 两个小孔中喷出的等离子气对等离子弧有一附加压缩作用,使等 离子弧的截面变为椭圆形。当椭圆的长轴平行于焊接方向时, 离子弧的截面变为椭圆形。当椭圆的长轴平行于焊接方向时,可 显著提高焊接速度,减小焊接热影响区的宽度。 显著提高焊接速度,减小焊接热影响区的宽度。
3)内缩长度与同心度 与TIG焊不同,等离子焊时,钨极一般内缩到压缩喷嘴之内,从 TIG焊不同,等离子焊时,钨极一般内缩到压缩喷嘴之内, 焊不同 喷嘴外表面至钨极尖端的距离被称为内缩长度l 喷嘴外表面至钨极尖端的距离被称为内缩长度lg。为了保证电弧 稳定,不产生双弧,钨极应与喷嘴保持同心, 稳定,不产生双弧,钨极应与喷嘴保持同心,而且钨极的内缩长 要合适( 0.2mm)。 度lg要合适(lg=l0±0.2mm)。 3、送气方式: 送气方式: 切向:压缩程度高,中心压力低、周边压力高, 切向:压缩程度高,中心压力低、周边压力高,电弧稳定在 中心。 中心。 径向:压缩程度低。 径向:压缩程度低。
转移弧
PA
电弧
联合型等离子弧 (非转移弧电流) 非转移弧电流)
三)、等离子弧焊的特点及应用 (一)特点 由于等离子电弧具有较高的能量密度、温度及刚直性, 由于等离子电弧具有较高的能量密度、温度及刚直性, 因此与一般电弧焊相比,等离子电弧具有下列优点: 因此与一般电弧焊相比,等离子电弧具有下列优点: 熔透能力强,在不开坡口、 1) 熔透能力强,在不开坡口、不加填充焊丝的情况下可一次 焊透8 10mm厚的不锈钢板; mm厚的不锈钢板 焊透8∼10mm厚的不锈钢板; 2) 焊缝质量对弧长的变化不敏感,这是由于电弧的形态接近 焊缝质量对弧长的变化不敏感, 圆柱形,且挺直度好,弧长变化对加热斑点面积的影响很小, 圆柱形,且挺直度好,弧长变化对加热斑点面积的影响很小, 易获得均匀的焊缝形状; 易获得均匀的焊缝形状; 钨极缩在水冷铜喷嘴内部,不会与工件接触, 3) 钨极缩在水冷铜喷嘴内部,不会与工件接触,因此可避免 焊缝金属产生夹钨现象; 焊缝金属产生夹钨现象; 等离子电弧的电离度较高,电流较小时仍很稳定, 4) 等离子电弧的电离度较高,电流较小时仍很稳定,可焊接 微型精密零件; 微型精密零件;
五、双弧及其防止措施 一)双弧 正常条件下,转移型电弧在钨极与工件之间产生, 正常条件下,转移型电弧在钨极与工件之间产生,在某些 异常情况下,会产生一个与正常电弧并联的燃烧在钨极–喷 异常情况下,会产生一个与正常电弧并联的燃烧在钨极 喷 嘴以及喷嘴-工件之间的串弧,这种现象叫双弧。 嘴以及喷嘴-工件之间的串弧,这种现象叫双弧。