一对一 用字母表示数和代数式的值
初二数学:上册第三章用字母表示数3.3代数式的值与代数式求值有关的创新题例析
与代数式求值有关的创新题例析代数式求值是一个从数到式,再从式到数的再认识过程,学好这一部分有助于加深对代数式的理解,有利于符号化思想的形成.在近年来中考中出现了一些与之相关的中考题,这类试题题材新颖,形式灵活,可考查学生多角度思考问题的能力和创新意识,现将这类问题加以总结,供参考.一、程序运算型例1、(2006聊城)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是时,输出的数是( ) A.861 B.865 C.867D.869解析:观察输入数与输出数之间的关系,可以发现:211211=+,222521=+,2331031=+,…故本题实际上是求代数式21x x +的值,当输入数据是8时,输出的数是2888165=+,选B. 评注:解决这类问题的一般思路是对各个数据进行适当的“加”、“减”、“乘”、“除”,等形式的拆分,探究其中的规律.二、规律探索型①3-x-1x (x>0)的值随着I 的增大越来越小; ②3-x-1x (x>0)的值有可能等于2; ③3-x-1x (x>O)的值随着x 的增大越来越接近于2. 则推测正确的有( )A.0个B.1个 C .2个 D. 3个解析:从代数式的值的变化可以看出,3-x-1x(x>0)的值随着I 的增大越来越小,且越来越接近于2,选C.评注:本例通过对代数式求值,研究代数式的性质,四、新符号型例4、(2006年内江市)对于正数x ,规定f (x )= x 1x +,例如f (3)=33134=+,f (13)=1131413=+,计算f (12006)+ f (12005)+ f (12004)+ …f(13)+ f (12)+ f (1)+ f (1)+ f (2)+ f (3)+ … + f(2004)+ f (2005)+ f (2006)= .解析:由符号f(x)的定义f (x )= x 1x+可得: 32)2(=f ,31)21(=f ,1)21()2(=+f f ; 43)3(=f ,41)31(=f 所以1)31()3(=+f f , …… ……从而发现f (x )+ f(x1)=1. 所以f (12006)+ f (12005)+ f (12004)+ …f(13)+ f (12)+ f (1)+ f (1)+ f (2)+ f (3)+ … + f(2004)+ f (2005)+ f (2006)=[f (12006)+ f (2006)]+[ f (12005)+ f (2005)]+[ f (12004)+ f (2004)] + …[f(1)+ f (1)]=2006.评注:解决符号信息迁移题的关键是要准确理解新符号的数学意义,主要考查符号语言、文字语言、图形图象语言间的转译能力及推理运算能力.本题关键是发现f(x)+f(1x)=1. 五、应用型例5、(2006台州)日常生活中,“老人”是一个模糊概念.有人想用“老人系数”来表示一个人的老年岁的人的“老人系数”为 .解析:从表格可以看出x=70在60和80之间,所以212060702060=-=-x . 评注:在日常生产生活中,我们会碰到各种各样的公式,我们应当根据具体的情境选择合适的公式进行计算.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,假命题是( )A .-的立方根是-2B .0的平方根是0C .无理数是无限小数D .相等的角是对顶角 【答案】D【解析】根据立方根的定义、平方根的定义、无理数的定义及对顶角的性质对各选项分析判断后即可解答.【详解】选项A , -的立方根是-2,正确;选项B , 0的平方根是0,正确;选项C , 无理数是无限小数,正确;选项D , 相等的角是对顶角,错误.故选D.【点睛】本题考查了立方根的定义、平方根的定义、无理数的定义及对顶角的性质,熟练运用相关知识是解决问题的关键.2.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A .351824750x y x y +=⎧⎨+=⎩B .352418750x y x y +=⎧⎨+=⎩C .352418750x y x y +=⎧⎨-=⎩D .351824750x y x y -=⎧⎨-=⎩【答案】B 【解析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【详解】解:设买了x 张甲种票,y 张乙种票,根据题意可得:352418750x y x y +=⎧⎨+=⎩, 故选择:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等式是解题关键.3.点P 的坐标为236()a a -+,,且到两坐标轴的距离相等,则点P 的坐标为( )A .(33), B .(33),- C . (66),- D .(33), 或(66),-【答案】D 【解析】根据点P 到两坐标轴的距离相等可得其点的横坐标与纵坐标的绝对值相等,据此进一步求解即可.【详解】∵点P 到两坐标轴的距离相等, ∴236a a -=+,即:236a a -=+或()236a a -=-+,∴1a =-或4a =-,∴P 点坐标为:(33), 或(66),-故选:D.【点睛】本题主要考查了坐标系中点的坐标的应用,熟练掌握相关概念是解题关键.4.要测量河岸相对两点A 、B 的距离,已知AB 垂直于河岸BF ,先在BF 上取两点C 、D ,使CD=CB ,再过点D 作BF 的垂线段DE ,使点A 、C 、E 在一条直线上,如图,测出BD=10,ED=5,则AB 的长是( )A .2.5B .10C .5D .以上都不对【答案】C 【解析】∵AB ⊥BD ,ED ⊥AB ,∴∠ABC=∠EDC=90∘,在△ABC 和△EDC 中,90{ABC EDC BC DCACB ECD︒∠=∠==∠=∠, ∴△ABC ≌△EDC(ASA),∴AB=ED=5.故选C.5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB的内存,照片文件夹内有32张大小都是112KB的旅行照片,音乐文件夹内有若干首大小都是152KB的音乐.若该U盘内存恰好用完,则此时文件夹内有音乐()首.A.28 B.30 C.32 D.34【答案】B【解析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.如图,利用直尺圆规作∠AOB的角平分线OP.则图中△OCP≌△ODP的理由是A.边边边B.边角边C.角角边D.斜边直角边【答案】A【解析】根据角平分线的作图方法解答.【详解】解:根据角平分线的作法可知,OC=OD,CP=DP,又∵OP是公共边,∴△OCP≌△ODP的根据是“SSS”.故选:A.【点睛】本题考查全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.,则四边形ABFD的周长为7.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEF()A .8B .10C .12D .16【答案】B 【解析】根据平移的基本性质,得出四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.根据题意,将周长为8个单位的△ABC 沿边BC 向右平移1个单位得到△DEF ,∴AD=1,BF=BC+CF=BC+1,DF=AC ;又∵AB+BC+AC=8,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C .“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.8.在绘制频数分布直方图时,一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( )组;A .10B .9C .8D .不能确定【答案】A【解析】最大值减去最小值,再除以组距即可求解.【详解】()14350109.3-÷=故可以分成10组故答案为:A .【点睛】本题考查了频数分布直方图的问题,掌握求组数的方法是解题的关键.9.如图,下列条件:①13∠=∠,②24180∠+∠=︒,③45∠=∠,④23∠∠=,能判断直线12l l //的有( )A .4个B .3个C .2个D .1个【答案】B 【解析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;逐一判定即可.【详解】①13∠=∠,∠1和∠3是内错角,故可判定直线12l l //;②24180∠+∠=︒,∠2和∠4是同旁内角,故可判定直线12l l //;③45∠=∠,∠4和∠5是同位角,故可判定直线12l l //;④23∠∠=,∠2和∠3既不是同位角也不是内错角,故不能判定直线12l l //;故选:B.【点睛】此题主要考查平行线的判定,熟练掌握,即可解题.10.若m n <,则下列结论不一定成立的是( )A .11m n -<-B .22m n <C .33m n ->-D .22m n < 【答案】D【解析】本题主要考查不等式的基本性质.基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.【详解】A :不等式两边同时减去1,不等式成立,即m-1<n-1B :不等式两边同时乘2,不等式成立,即2m<2nC :不等式两边同时乘以13-,不等号方向改变,即33m n ->- D :当m<n ,且m n >时,22m n >,故22m n <不成立故正确答案为D【点睛】此题主要考查不等式的基本性质,基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.二、填空题题11.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOE=120°,其中正确结论有_____;(填序号).【答案】①②③⑤【解析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA (ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,即∠AOE=180°-60°=120°可知⑤正确.【详解】∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE②正确,∵△CQB≌△CPA,∴AP=BQ③正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴∠AOE=180°-60°=120°∴⑤正确.故正确的有:①②③⑤.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.12.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人;最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为:28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键. 13.已知方程2x 2n-1-3y 3m-1+1=0是二元一次方程,则m+n= ______ 【答案】53 【解析】根据二元一次方程的定义,x 、y 的次数都是1.【详解】解:∵方程2x 2n-1-3y 3m-1=0是关于x 、y 的二元一次方程,211311n m -=⎧⎨-=⎩解得231m n ⎧=⎪⎨⎪=⎩.∴m+n=53故答案为53. 【点睛】本题考查了二元一次方程的定义,解答此题,关键是利用指数为1建立方程组.14.如图,在△ABC 中,∠B = 60°,∠C = 40°,AE 平分∠BAC ,AD ⊥BC ,垂足为点D ,那么∠DAE =______度.【答案】10【解析】本题考查的是三角形内角和定理和角平分的定义,根据三角形内角和是180°,角平分线平分角的度数解答即可【详解】因为,在△ABC 中,∠B = 60°,∠C = 40°,所以∠BAC=180°-60°-40°=80°,因为AE 平分∠BAC,所以∠BAE=∠CAE=40°,又因为在△ACD 中,AD⊥BC,∠C=40°,所以∠CAD=50°,所以∠DAE=∠CAD -∠CAE=50°-40°=10°【点睛】本题的关键是掌握三角形内角和是180度15.三个连续的正整数的和大于333,则满足条件的最小的三个正整数是_______.【答案】111,112,113【解析】设出三个连续的正整数中间一个为x ,表示另外两个,列出不等式求解即可.【详解】解:设这个三连整数是1x -,x ,1x +,则11333x x x -+++>,解得111x >.112x ∴=,故最小的三个正整数是111,112,113.故答案为:111,112,113【点睛】本题考查的是不等式的简单应用,根据题意列出正确的不等式是解题关键.16.若5a =,29b =,且ab <0,则-a b 等于_____________.【答案】8±【解析】根据题意首先得出5a =±,3b =±,然后利用有理数乘法法则结合题意可知a 、b 两数异号,据此进一步分类讨论即可. 【详解】∵5a =,29b =,∴5a =±,3b =±,∵ab <0,∴a 、b 两数异号,∴当5a =,3b =-时,8a b -=,当5a =-,3b =时,8a b -=-,综上所述,a b -的值为8±,故答案为:8±.【点睛】本题主要考查了有理数的乘法法则的运用以及代数式的求值,熟练掌握相关概念是解题关键.17.已知关于x 的不等式组1x x m ><-⎧⎨⎩的整数解共有3个,则m 的取值范围是_____. 【答案】1<m ≤2【解析】首先确定不等式组的整数解,即可确定m 的范围.【详解】解:关于x 的不等式组1x x m ><-⎧⎨⎩的解集是:﹣1<x <m , 则2个整数解是:0,1,1.故m 的范围是:1<m≤2.【点睛】本题考查了不等式组的整数解,正确理解m 与1和2的大小关系是关键.三、解答题18.关于x 的方程5264x k k x -=+-的解是负数,求字母k 的值.【答案】 1.k -<【解析】解一元一次方程可得+1.x k =,再根据解是负数,即可求字母k 的值.【详解】由5264x k k x -=+-,得66x k =+6,解得+1.x k =∵方程的解是负数,∴+10.k <∴ 1.k -<【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.19.在△ABC 中,点D 在边BA 或BA 的延长线上,过点D 作DE ∥BC ,交∠ABC 的角平分线于点E . (1)如图1,当点D 在边BA 上时,点E 恰好在边AC 上,求证:∠ADE=2∠DEB ;(2)如图2,当点D 在BA 的延长线上时,请直接写出∠ADE 与∠DEB 之间的数量关系,并说明理由.【答案】(1)详见解析;(2)∠ADE+2∠DEB=180°.【解析】(1)由角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)由角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【详解】证明:(1)∵BE 平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE 平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.20.(1)计算:32564|12|-+-.(2)解不等式2223x x x +--<,并把解集在数轴上表示出来.(3)解方程组:521123x y y x +⎧⎪-⎨-⎪⎩==. 【答案】(12(2)x <2,(3)12x y ==⎧⎨-⎩【解析】(1)根据实数的运算法则计算即可;(2)去分母、去括号、移项、合并同类项、系数化为1即可得答案;再按照不等式解集的表示方法在数轴上表示即可;(3)先把②两边同时乘以6可得6x-2y=10③,再利用加减消元法解方程即可求出x 的值,代入①求出y 值即可得答案.【详解】(1)原式22(2)去分母,得6x-3(x+2)<2(2-x ),去括号,得6x-3x-6<4-2x,移项,合并得5x<10,系数化为1,得x<2,不等式的解集在数轴上表示如下:(3)521123x yyx+⎧⎪⎨--⎪⎩=①=②②×6得:6x-2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=-2,则方程组的解为12 xy==⎧⎨-⎩.【点睛】本题考查了实数的运算、解一元一次不等式及解二元一次方程组,熟练掌握实数的运算法则及一元一次不等式、二元一次方程组的解法是解题关键.21.分解因式(1)-3m3+12m(2)2x2y-8xy+8y(3)a4+3a2-4【答案】(1) -3m(m+2)(m-2),(2)2y(x-2)2,(3)(a2+4) (a+1) (a-1)【解析】(1)提取-3m后,再根据平方差公式因式分解;(2)先提取2y,再根据完全平方公式因式分解;(3)先利用十字相乘法因式分解,再用公式法因式分解.【详解】(1)-3m3+12m=-3m(m2-4)=-3m(m+2)(m-2)(2)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2(3)a4+3a2-4=(a2-1) (a2+4)= (a2+4) (a+1) (a-1)【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.22.已知点M(3a﹣2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.【答案】(1)点M的坐标是(﹣20,0);(2)点M的坐标为(﹣5,5);(3)点M的坐标为(10,10)或(﹣5,5)【解析】(1)根据x轴上点的纵坐标为0列式计算即可得解;(2)根据平行于x轴的点的纵坐标相同列出方程求出a的值,然后即可得解.(3)根据象限平分线上点到x轴、y轴的距离相等列式计算即可得解.【详解】(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)【点睛】本题考查了坐标与图形性质,主要利用了x轴上的点的坐标特征,二四象限平分线上点的坐标特征,第二象限内点的坐标特征,平行于y轴的直线的上点的坐标特征,需熟记.23.如图,EF∥AD,∠1=∠2,∠BAC="70"o,求∠AGD.解:∵EF∥AD,∴∠2=∠3()又∵∠1=∠2,∴∠1=∠3,∴AB∥DG ()∴∠BAC+ ="180"o()∵∠BAC=70 o,∴∠AGD= .【答案】、两直线平行,同位角相等内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110︒【解析】试题分析:由EF与AD平行,利用两直线平行,同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与DG平行,利用两直线平行同旁内角互补得到两个角互补,即可求出所求角的度数.试题解析:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°.考点:平行线的判定与性质.24.已知任意一个三角形的三个内角的和是180°,如图1,在ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O.(1)若∠A=70°,求∠BOC的度数;(2)若∠A=α,求∠BOC的度数;(3)如图2,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=13∠ABC,∠OCB=13∠ACB,∠A=α,求∠BOC的度数.【答案】(1)125°;(2)90°+12α;(3)120°+13α【解析】(1)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;(2)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;(3)根据三角形的内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,根据三角形内角和定理求出即可.【详解】(1)∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=55°,∴∠BOC=180°-(∠OBC+∠OCB)=125°;(2)∵∠A=α,∴∠ABC+∠ACB=180°-∠A=180°-α,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-α)=90°-12α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-12α)=90°+12α;(3)∵∠A=α,∴∠ABC+∠ACB=180°-∠A=180°-α,∵∠OBC=13∠ABC,∠OCB=13∠ACB,∴∠OBC+∠OCB=13(∠ABC+∠ACB)=13(180°-α)=60°-13α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-(60°-13α)=120°+13α.【点睛】考查了三角形的内角和定理和角平分线的定义,能求出∠OBC+∠OCB是解此题的关键,求解过程类似.25.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.【答案】(2)∠EGF=90°;(3)详见解析.【解析】(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=2∠BEG,∠EFD=2∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;(3)如图3,过点G1作G1H∥AB由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,得到∠3=∠G2FD,由于FG2平分∠EFD求得∠4=∠G2FD,由于∠1=∠2,于是得到∠G2=∠2+∠4,由于∠EG1F=∠BEG1+∠G1FD,得到∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,然后根据平行线的性质即可得到结论.【详解】证明:(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.【点睛】本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.将点A(2,-2)向上平移4个单位得到点B,再将点B向左平移4个单位得到点C,则下列说法正确的有()①点C的坐标为(-2,2)②点C在第二、四象限的角平分线上;③点C的横坐标与纵坐标互为相反数;④点C到x轴与y轴的距离相等.A.1个B.2个C.3个D.4个【答案】D【解析】首先根据平移方法可得C(2-4,-2+4),进而得到C点坐标,再根据C点坐标分析四个说法即可.【详解】解:将点A(2,-2)向上平移4个单位得到点B(2,-2+4)即(2,2),再将点B向左平移4个单位得到点C(2-4,2),即(-2,2),①点C的坐标为(-2,2)说法正确;②点C在第二、四象限的角平分线上,说法正确;③点C的横坐标与纵坐标互为相反数,说法正确;④点C到x轴与y轴的距离相等,说法正确.故选:D.【点睛】此题主要考查了平移变换与坐标变化;关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.2.下列调查中,比较适合用全面调查(普查)方式的是()A.了解某班同学立定跳远的情况B.了解某种品牌奶粉中含三聚氰胺的百分比C.了解一批炮弹的杀伤半径D.了解全国青少年喜欢的电视节目【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据定义判断即可得到答案.【详解】A、了解某班同学立定跳远的情况,适合全面调查;B 、了解某种品牌奶粉中含三聚氰胺的百分比,具有破坏性,适合抽样调查;C 、了解一批炮弹的杀伤半径,具有破坏性,适合抽样调查;D 、了解全国青少年喜欢的电视节目,任务量过大,适合抽样调查;故选择:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为( )A .20°B .125°C .20°或125°D .35°或110°【答案】C【解析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【详解】设∠β为x ,则∠α为3x ﹣40°,若两角互补,则x+3x ﹣40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x ﹣40°,解得x=20°,∠α=20°.故选C .【点睛】本题考查平行线的性质,关键在于根据两角的两边分别平行打开此题的突破口.4.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C .BD CD =D .AB AC =【答案】D 【解析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中D 、AB=AC 与∠ADB=∠ADC 、AD=AD 组成了SSA 是不能由此判定三角形全等的.【详解】A 、∵∠BAD=∠CAD ,∴BAD CAD AD AD ADB ADC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABD ≌△ACD (ASA );故此选项正确;B 、∵∠B=∠C ,∴ B C ADB ADC AD AD ===∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD ≌△ACD (AAS );故此选项正确;C 、∵BD=CD ,∴BD CD ADB ADC AD AD ⎧⎪∠∠⎨⎪⎩===, ∴△ABD ≌△ACD (SAS );故此选项正确;D 、AB=AC 与∠ADB=∠ADC 、AD=AD 组成了SSA 不能由此判定三角形全等,故此选项错误. 故选D .【点睛】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,但SSA 无法证明三角形全等.5.方程组538y x x y =-⎧⎨-=⎩用代入法消y 后所得到的方程,不正确...的是( ) A .358x x --=B .385x x -=-C .()358x x --=D .358x x -+=【答案】A【解析】把方程组中第一个方程代入第二个方程消去y 即可得到结果. 【详解】解:y x 53x y 8=-⎧⎨-=⎩①② 把①代入②得:()3x x 58--=,去括号得:3x x 58-+=;或移项得:385x x -=-;∴A 错误.故选:A.【点睛】熟练掌握代入消元法解方程组是解题的关键.6.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =1,故A 点坐标为(1,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >1.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.7.如图,已知,//AB CD ,12∠=∠,EP FP ⊥,则以下结论错误的是( )A .13∠=∠B .2490∠+∠=C .1390∠+∠=D .34∠=∠【答案】A【解析】过点P作PH∥AB,再根据平行线的性质及直角三角形的性质对各选项进行逐一判断即可.【详解】过点P作PH∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠EPH,∠3=∠HPF,∵EP⊥FP,∴∠2+∠4=90°,∠HPF+∠EPH=90°,∴∠3=∠4,故D正确;∵EP⊥FP,∴∠2+∠4=90°,故B正确;∵∠1=∠2,∠3=∠4,∠2+∠4=90∘,∴∠1+∠3=90°,故C正确;故选A.【点睛】本题考查平行线的性质和平行线的判定,在本题中解题关键是构造EP平行AB,形成了截线EP和截线PF,从而得以用平行线的性质解决问题.8.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒【答案】B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.9.关于x 的不等式组1x a x ⎧⎨⎩>>的解集为x >1,则a 的取值范围是( ) A .a≥1B .a >1C .a≤1D .a <1 【答案】C【解析】分析:根据不等式组解集的确定法则:大大取大即可得出答案.详解:∵不等式组的解集为x >1,根据大大取大可得:a≤1,故选C .点睛:本题主要考查的是求不等式组的解集,属于基础题型.理解不等式组的解集与不等式的解之间的关系是解决这个问题的关键.10.若4s t +=,则228s t t -+的值是( )A .8B .12C .16D .32【答案】C【解析】根据平方差公式可得228s t t -+=(s+t )(s-t )+8t ,把s+t=4代入可得原式=4(s-t )+8t=4(s+t ),再代入即可求解.【详解】∵s+t=4,∴228s t t -+=(s+t)(s−t)+8t=4(s−t)+8t=4(s+t)=16,故选:C.【点睛】此题考查完全平方公式,解题关键在于掌握平方差公式.二、填空题题11.定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a+b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式﹣3⊕x <13的解集为____. 【答案】x >﹣1.【解析】根据a ⊕b =a (a+b )+1,可得:﹣3⊕x =﹣3(﹣3+x )+1,再根据﹣3⊕x <13,求出不等式的解集即可.【详解】解:∵a ⊕b =a (a+b )+1,∴﹣3⊕x =﹣3(﹣3+x )+1,∵﹣3⊕x <13,∴﹣3(﹣3+x )+1<13,∴10﹣3x <13,解得x >﹣1.故答案为:x >﹣1.【点睛】此题主要考查了实数的运算以及一元一次不等式的解法,根据题意把新定义的运算转换成实数运算是解题的关键.12.的倒数是 . 平方等于9的数是__ __【答案】-3;±3 【解析】解:-13的倒数是-3,平方等于9的数是±3. 13.已知23x y =⎧⎨=-⎩是二元一次方程4x+ay=5的一组解,则a 的值为____. 【答案】1 【解析】把x 与y 的值代入方程计算即可求出a 的值.【详解】∵23x y =⎧⎨=-⎩是二元一次方程4x+ay=5的一组解, ∴8-3a=5,∴a=1.故答案是:1.【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.命题“如果0a b >>a b >_____________命题(填“真”或“假”).【答案】真【解析】根据二次根式的性质进行判断即可.【详解】命题“如果a >b >0a b >故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是了解二次根式的性质,难度不大.15.3﹣2的绝对值是_____. 【答案】2﹣3【解析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0计算即可.【详解】解:32-=2﹣3.故答案为:2﹣3.【点睛】本题考查了绝对值运算,熟练掌握运算法则是解题关键.16.与-3最接近的整数是________;【答案】-2【解析】根据被开方数的取值范围求出二次根式的取值范围即可判断.【详解】∵2.25<3<4∴ 2.2534<<∴1.532<<∴ 1.532->->-所以与-3最接近的整数是-2.故答案为:-2.【点睛】此题考查的实数的比较大小,利用比较大小的方法找到与无理数最接近的整数是解决此题的关键. 17.已知DEC ∆是由CAB ∆平移得到,若2AE cm =,20ECA ∠=︒,AC 平分ECB ∠,则BD =_________,B ∠=_________.【答案】4cm 140︒【解析】根据平移的性质可得BC =CD =AE ,再根据线段的和差关系即可求解;先根据角平分线的定义可求∠ECB ,根据平角的定义可求∠ECD ,再根据平移的性质可得∠B .。
沪科版-七年级上数学-期末复习-整式
一对一七年级数学教师辅导(fǔdǎo)讲义课题期末复习(2)—整式授课时间:备课时间:教学目标期末复习查漏补缺。
教学内容知识点透析【知识点复习】一、代数式1、用字母表示数;2、字母a它表示一个数,可能是正数,可能是0,也可能是负数;3、代数式=整式+分式4、整式=单项式+多项式(1)、单项式:数与字母的乘积或单个字母和数字。
单项式次数:所有字母指数之和;单项式系数:单项式中的数字因数。
(2)、多项式:几个单项式的和。
多项式次数:等于次数最高项的次数;常数项、几次几项式、升幂降幂排序。
二、整式加减1、同类项:字母相同、相同字母的指数也相同的项。
2、整式加减运算(关键步骤:合并同类项)三、找规律1、等差类型:相邻两项之差相等;例如1,2,3,4,······2、等比类型:相邻两项之商相等 ab n, ab n-c ;例如3,6,12,24,48······(3×20,3×21,3×22,3×23······)3、幂类型: n2型、n2-a型;例如 1,4,9,16······(12,22,32,42······)4、和类型:例如1,3,6,10······(1,1+2,1+2+3,1+2+3+4,······)。
【基本题型练习解析及标准步骤】【易错题练习分析】一、基础练习:1、化简下列各式:⑴⑵⑶⑷2、化简求值:(1)、(2),其中二、专题讲座:(一)去括号例1、-[-4+(ab -2a )]-2ab【解答过程】:【小结】:对于带中括号的多项式,一般按以下步骤进行化简:①先去小括号,②在中括号内化简;③去掉中括号;④再次化简。
七年级数学上册 第三章 用字母表示数 3.3 代数式的值 求代数式的值时有什么注意事项?素材 苏科
七年级数学上册第三章用字母表示数 3.3 代数式的值求代数式的值时有什么注意事项?素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章用字母表示数3.3 代数式的值求代数式的值时有什么注意事项?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章用字母表示数 3.3 代数式的值求代数式的值时有什么注意事项?素材(新版)苏科版的全部内容。
求代数式的值时有什么注意事项?难易度:★★★★关键词:求代数式的值答案:(1)代数式中的运算符号和具体数字都不能改变.(2)字母在代数式中所处的位置必须搞清楚。
(3)如果字母取值是分数时,作乘方运算必须加上小括号,字母给出的值是负数也必须加上括号。
【举一反三】以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The above is the whole content of this article, Gorky said:"the book is theladder of human progress." I hope you can make progress with the help of this ladder. Material life is extremelyrich, science and technology are developingrapidly, allof which gradually change the way ofpeople's study and leisure. Manypeopleare no longer eager topursue a document, but as long as youstill have such a small persistence,you will continueto grow and progress.When the complex worldleads us to chase out, reading an article or doing a problem makes us calm downand return to ourselve s. With learning, we can activate our imagination and thinking,establish our belief, keep our pure spiritual world and resist the attack ofthe external world.。
七年级初一数学上册第三章用字母表示数3.3代数式的值巧求计算机里的代数式的值
巧求计算机里的代数式的值随着社会的发展,电脑已进入了寻常百姓家,为既能培养学生学习电脑的兴趣,又能培养学生的应用意识,各地中考试题出现了以计算机为背景的许多题目,解决这类题目的关键在于搞清计算机程序与数学之间的联系,本文以“求代数式的值”为例加以说明,供同学们参考.例1. 下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .析解:根据运算程序,若输入x 最后输出的代数式是:-x+3,然后当x=2时,计算的结果为1 例2. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为 .析解:由112 2 25,3 310,不难发现规律:n 21n n ,所以当输入的数是8时,输出的数是865. 例3. 按下列程序计算,把答案写在表格内:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.析解:本题是一道以计算机程序为背景的探究题,背景新颖独特,只要按照程序的流程就能写出符合要求的代数式,然后再进行计算、填表,最后再利用整式的除法法则进行验证,答案为:代数式为:2()n n n n +÷-输入x(1)⨯- 3+ 输出化简结果为:1例4. 根据如图的程序,计算当输入3x =时,输出的结果y = .析解:将这个流程图转化为数学表达式,可能同学们就会感觉比较亲切了,即:)1(5)1(5{>+-≤+=x x x x y ,由于x=3,所以,y=-x+5= -3+5=2例5. 定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是_________.析解:根据运算程序提供的信息,可以发现循环的规律,最后计算出结果为:826134411 第一次F ② 第二次F ① 第三次F ② …七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.将某图形的各顶点的横坐标保持不变,纵坐标减去3,可将该图形()A.横向向右平移3个单位B.横向向左平移3个单位C.纵向向上平移3个单位D.纵向向下平移3个单位【答案】D【解析】根据向下平移,纵坐标减,横坐标不变解答.【详解】解:∵某图形的各顶点的横坐标保持不变,纵坐标减去3,∴将该图形向下平移了3个单位.故选:D.【点睛】本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2.二元一次方程2x+3y=10的正整数解有()A.0个B.1个C.3个D.无数多个【答案】B【解析】将x看做已知数求出y,即可确定出方程的正整数解.【详解】2x+3y=10,解得:y=,当x=2时,y=2,则方程的正整数解有1个.故选B【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.3.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=-⎩C .90152x y x y +=⎧⎨=-⎩D .290215x x y =⎧⎨=-⎩【答案】B【解析】∵AB ⊥BC , ∴∠ABD+∠DBC=90°,又∵∠ABD 的度数比∠DBC 的度数的两倍少15度, ∴当设∠ABD 和∠DBC 度数分别为x y 、时,由题意可得:180215x y x y +=⎧⎨=-⎩ . 故选B.4.下列调查中,最适合采用全面调查方式的是( )A .了解某市居民日平均用水量B .了解某学校七年级一班学生数学成绩C .了解全国中小学生课外阅读时间D .了解某工厂一批节能灯使用寿命 【答案】B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】A .了解某市居民日平均用水量适合抽样调查; B .了解某学校七年级一班学生数学成绩适合全面调查; C .了解全国中小学生课外阅读时间适合抽样调查; D .了解某工厂一批节能灯使用寿命适合抽样调查. 故选B . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查(全面调查)还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[1-12x -]=5,则x 的取值范围是( )A .-7<x ≤-5B .-7≤x <-5C .-9≤x <-7D .-9<x ≤-7【答案】D【解析】根据新定义得出不等式组,求出不等式组的解集即可. 【详解】∵[1-12x -]=5, ∴5≤1-12x -<6, 解得:-9<x≤-7, 故选D . 【点睛】本题考查了解一元一次不等式组,根据新定义得出关于x 的不等式组是解此题的关键.6.把边长相等的正五边形ABCDE 和正方形ABFG 按照如图所示的方式叠合在一起,则∠EAG 的度数是( )A .18°B .20°C .28°D .30°【答案】A【解析】∠EAG=180°-360°÷5-90°=18°. 故选A.7.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB =10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米【答案】D【解析】∵5<AB<25,∴A 、B 间的距离不可能是5,故选D. 8.化简2211444a aa a a --÷-+-,其结果是( )A .22a a -+B .22a a +-C .22a a +-D .22a a 【答案】C【解析】原式=()()()2221·12a a a a a +----=22a a +-, 故选C.9.已知2()11m n +=,2mn =;则22m n +的值为( ) A .15 B .11 C .7 D .3【答案】C【解析】原式利用完全平方公式化简即可求出值. 【详解】解:222(147m )21m n n mn =+-=-=+, 故选:C. 【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键. 10.如图,能够判定AD ∥BC 的是( )A .∠1=∠3B .∠B =∠DC .∠2=∠4D .∠B+∠BCD =180【答案】C【解析】根据内错角相等,两直线平行,即可得到正确结论. 【详解】解:根据∠2=∠4,可得AD ∥BC ; 根据∠B =∠D ,不能得到AD ∥BC ;根据∠1=∠3,可得AB ∥CD ,不能得到AD ∥BC ;根据∠B+∠BCD =180°,能得到AB ∥CD ,不能得到AD ∥BC ; 故选:C . 【点睛】本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行. 二、填空题题11.如图所示,转盘被等分成4个扇形,并在上面依次写上数字1,2,3,5,若自由转动转盘,当它停止转动时,指针指向奇数区的概率是___________。
字母表示数 代数式求值
3.1字母表示数提出问题:问题1:1.举几个满足加法交换律的例子。
这样的例子有多少个? 能否用规律性的式子表示?2.引出式子:a+b=b+a (a 、b 表示有理数) 3.说明:字母可以表示任意的数。
问题2:1.如图:三角形的底边长为7,高为4,面积是多少? 2.如果设三角形的底边长是a ,高是h ,那么三角形的面积S =?3.你还记得哪些面积公式?4.说明:字母可以表示特定意义的公式。
问题3:1.有“亚洲第一”之称的长沙摩天轮于2004年9月30日建成,当年10月1日对外开放,是目前亚洲第一、世界第二的摩天轮。
长沙摩天轮最令人称奇之处在于它立在巨型屋顶上。
据专家介绍,将摩天轮建在屋顶上不仅在国内,就是在世界上也是独一无二的。
如果长沙摩天轮垂直于地面时,最高点离地面120米,最低点离地面21米,那么这个巨型摩天轮的半径是多少?2.设摩天轮的半径为r ,那么21+2r =120,r =49.5(米)3.说明:字母可以表示符合条件的某一个数。
问题4:1.观察下列各组数的特点,用式子表示第n 个数是什么?(1)1,2,3,4,(2)2,4,6,82.说明:字母可以表示具有某些规律的数。
引出课题1.总结:字母可以表示任意的数,可以表示特定意义的公式,可以表示具有某些规律的数,可以表示符合条件的某一个数。
总之,字母可以简明地将数量关系表示出来。
2.这就是我们今天要学习的:字母表示数。
例题1:(1)1千克桔子的价格为a 元,小明买了10千克桔子,用字母a 表示小明买的桔子的总价。
(2)小杰每分钟跑步100米,那么小杰 t 分钟跑了多少米?(3)1本书的厚度为0.8厘米,n 本这样的书叠放在一起有多少厘米? (4)某机器每小时可加工n 个零件,那么122小时可加工多少个零件? (5)小丽买了m 支钢笔,每支a 元,共用了多少钱?注:数字和字母、字母和字母相乘时,应该省略乘号,并把数字写在字母的前面。
带分数作系数时必须化成假分数。
专题01字母表示数、代数式及代数式的值(3个知识点5种题型2个易错点)(原卷版)
专题01字母表示数、代数式及代数式的值(3个知识点5种题型2个易错点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1:字母表示数知识点2:代数式知识点3:代数式的值【方法二】实例探索法题型1:列代数式题型2:代数式的意义题型3:求代数式的值题型4:用字母表示变化规律题型5:求代数式的值的实际应用【方法三】差异对比法易错点1:书写格式不规范易错点2:用分数、负数代替字母时没有加括号导致出错【方法四】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1:字母表示数字母表示数要注意的几点:数字与字母及字母与字母的乘号要省略;除法运算要用分数线来表示;数学应写在字母的前面,当字母前的数字是1的时候应省略不写(当字母前的数字是带分数时,一定要带分数化成假分数;主体为和的形式,后面有单位需加括号;注意:字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以知识点2:代数式代数式:用运算符合和括号把数或表示数的字母连接而成的式子叫做代数式.注意:单独一个数或一个字母也是代数式.用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值.若结果中有多个字母,习惯上按26个字母的先后顺序.【例2】(2022秋•闵行区期中)下列各式中,是代数式的有( )①3xy2;②2πr;③S=πr2;④b;⑤5+1>2;⑥.A.3个B.4个C.5个D.6个【变式】(2022秋•静安区校级期中)在﹣3x=2,0,5y﹣1,,x≥y,,a2006中,是代数式的有( )个.A.4B.5C.6D.7知识点3:代数式的值1.代数式的值:用数字代替代数式里的字母,按照代数式中的运算关系计算得出的记过叫做代数式的值.2.求代数式的值第一步:用数值代替代数式里的字母.第二步:按照代数式指明的运算,计算出结果.【例3】(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于 .【变式】(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是 .【方法二】实例探索法题型1:列代数式1.(2022秋•奉贤区期中)如果一个两位数的个位、十位上的数字分别是a、b,那么这个数可用代数式表示为( )A .baB .10b +aC .10a +bD .10(a +b )2.(2022秋•静安区校级期中)用代数式表示:x 的与8的和是 .3.(2021秋•宝山区校级月考)设甲数为x ,乙数为y ,用代数式表示:(1)乙数的平方与甲数的312的和;(2)甲数的平方减去乙数的倒数的差.题型2:代数式的意义4.(2021秋•浦东新区期中)代数式(a b)2c的意义是( )A .a 与b 的平方和除c 的商B .a 与b 的平方和除以c 的商C .a 与b 的和的平方除c 的商D .a 与b 的和的平方除以c 的商5.(2020秋•浦东新区月考)下列不能表示“2a ”的意义的是( )A .2的a 倍B .a 的2倍C .2个a 相加D .2个a 相乘6.(2022秋•静安区月考)某商店促销的方法是将原价x 元的衣服以(0.8x ﹣10)元出售,意思是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元7.说出下列各小题中两个代数式的意义,并说明两个代数式的意义有何不同?(1)23x -与()23x -;(2)15m 与15m +;(3)7a b -与7ab -;(4)1a b +与11a b+.题型3:求代数式的值8.(2021春•虹口区校级期末)若4x ﹣3y =0,则4x 5y4x 5y 的值为( )A .1B .―1C .1D .―113.(2021秋•青浦区月考)阅读流程图,并完成问题:(1)如果输入数x =1512,则y = ;(2)如果输出数y =34,则x = .题型4:用字母表示变化规律14.(2022秋•奉贤区期中)如图,用正方形方框在日历中任意框出4个数,设其中最小的数为x ,那么这4个数之和为 .16.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母图中箭头所指方向(即A →B →C →D →C →B 3,…,当字母C 第()21n -次出现时(n 为正整数)题型5:求代数式的值的实际应用18.(2022秋·上海静安·七年级新中初级中学校考期末)边长分别为a和2a的两个正方形按如图的样式摆放,求图中阴影部分的面积.19.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a =5,b =2时,求图中的阴影部分面积.20.(2022秋·上海·七年级专题练习)课本告诉我们,同一个代数式可以表示不同的实际意义,这体现了不同背景实际问题中的相同数量关系常常可以用同一个代数式来表示.下列情境中的字母a 、b 表示的是两个不超过100的正整数,且a b >,请解决以下问题:(1)两根同样长的铁丝,分别围成一个长为cm a 、宽为cm b 的长方形和一个正方形,长方形的长比正方形的边长大多少?(2)下列情境:①a 、b 两数的平均数为A ;②甲、乙两人分别有a 元和b 元,要使两人的钱数一样,则甲需要给乙B 元;③小亮在超市买了牛奶和可乐共a 瓶,其中牛奶比可乐少b 瓶,则他买了C 瓶牛奶;④小红和爷爷从相距m a 的两地相向而行,1min 后相遇,相遇时小红比爷爷多行了m b ,则爷爷的平均速度是m/min D .上述情境中的A 、B 、C 、D 也可以用(1)的结果中的代数式表示的是______.(填写所有正确选项前的序号)21.(2022秋·上海宝山·七年级校考期中)模型制作比赛中,一位同学制作了火箭,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a ,b 的代数式表示该截面的面积S ;(1)如图,当12b a<<时,用a、b的代数式表示AFC△的面积_________(2)当18AFC ABCDS S=V四边形时,a b:的值为___________.(1)在图2的“等和格”方格图中,可得a=.(用含(2)在图3的“等和格”方格图中,可得a=,b=(3)在图4的“等和格”方格图中,可得b=.【方法三】差异对比法易错点1:书写格式不规范26.填空题(1)某种足球a元,则涨价20%后是__________元;(2)m箱橘子重x kg,每箱重_________kg;(3)购买单价为a元的笔记本8本,共需人民币_______元;(4)小明的体重是a kg,小红比小明重b kg,则小红的体重是________kg;(5)张师傅第一天生产a个零件,第二天比第一天减少5%,第二天生产零件_______个.易错点2:用分数、负数代替字母时没有加括号导致出错【方法四】成功评定法一、单选题二、填空题三、解答题19.(2023·上海·七年级假期作业)已知:753y ax bx cx dx e =++++,其中a b c d e ,,,,为常数,当2x =时,23y =;当2x =-时,35y =-.求e 的值.20.(2022秋·上海·七年级上海市西延安中学校考期中)全球疫情爆发时,口罩极度匮乏,中国许多企业都积极地生产口罩以应对疫情,某工厂决定引进若干条某种口罩生产线,经调查发现:1条口罩生产线每天最大产能是78000个,每增加1条生产线,每条生产线的每天最大产能将减少2000个.设该工厂共引进⑴第4个图形中小正方形的个数是______;⑵第n个图形中小正方形的个数是多少?24.(2021秋·上海·七年级期中)已知(2x-1)6=ax6+bx5+cx4+dx3+ex2+fx+g(a,b,c,d,e,f,g 均为常数),试求:(1)a+b+c+d+e+f+g的值;(2)a-b+c-d+e-f+g的值;(3)a+c+e+g的值;25.(2021秋·上海·七年级期中)如图,正方形ABCD与正方形BEFG,点E在边AB上,点G在边BC上.已知AB=a,BE=b (b<a) .(1)用a、b的代数式表示右图中阴影部分面积之和S(2)当a=5cm,b=2cm时,求S的值26.(2021秋·上海·七年级期中)在长方形ABCD中,AB=a,BC=2a,点P在边BA上,点Q在边CD上,且BP=m,CQ=n,其中,m<a,n<a,m≠n,在长方形ABCD中,分别以BP、CQ为边作正方形BPP1P2,正方形CQQ1Q2(点P2、Q2在边BC上).(1)画出图形.(2)当m<n时,求三角形PQ1C的面积.27.下列各图形中的“ ”的个数和“V ”的个数是按照一定规律摆放的:(1)观察图形,填写下表:(2)当n=_____时,“V ”的个数是“ ”的个数的 2 倍。
4.1-2用字母表示数及代数式答案
龙文教育学科教师辅导讲义课 题4.1-2用字母表示数及代数式教学目标1、明确用字母表示数的意义及会用字母表示数;2.会列代数式表示简单的数量关系,会正确书写代数式,会求代数式的值.3.在数学活动中,体会抽象概括的数学思想方法和“特殊 一般”相互转化的辨证关系.重点、难点理解字母所代表数的范围。
考点及考试要求教学内容知识梳理1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc 。
2. 代数式书写规范:(1)数与字母相乘,或字母与字母相乘中通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .出现除式时,用分数表示;(7)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2,非正数是:-a 2.典型例题例1 某市出租车收费标准为:起步价5元,3千米后每千米价1.2元,则乘坐出租车走x(x ﹥3)千米应付______________元.分析:因为x ﹥3,所以应付费用分为两部分,一部分为起步价5元,另一部分为走(x-3)千米应付的1.2(x-3)元. 解:[])3(2.15-+x注意:和、差形式的代数式要在单位前把代数式括起来. 例2 下列代数式中,书写正确的是( )A. ab ·2B. a ÷4C. -4×a ×bD.xy213 E.mn35 F. -3×6分析:A :数字应写在字母前面 B :应写成分数形式,不用“÷”号 C :数与字母相乘,字母与字母相乘时,“×”号省略 D :带分数要写成假分数 E 、F 书写正确. 解:E 、F.例3 下列各题中,错误的是( ) A. 代数式.,22的平方和的意义是y x y x +B. 代数式5(x+y)的意义是5与(x+y)的积C. x 的5倍与y 的和的一半,用代数式表示为25y x +D. 比x 的2倍多3的数,用代数式表示为2x+3 分析:选项C 中运算顺序表达错误,应写成)5(21y x +友情提示:数学语言有文字语言、符号语言、图形语言.进行数学思维时,同学们要学会恰当使用各种语言推理分析,各种语言的互译是一种数学基本功. 例4 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.分析:当x=1时,13++qxpx ==++1q p 2005,p+q=2004,当x=-1时,13++qx px =-=+-1q p -(p+q )+1=-2004+1=-2003.解:当x=1时,13++qxpx ==++1q p 2005∴ p+q=2004∴当x=-1时,13++qxpx =-1+-q p=-(p+q )+1=-2004+1 =-2003.提示:“整体”思想在数学解题中经常用到,请同学们在解题时恰当使用.例5 下图是一个数值转换机的示意图,请你用x 、y 表示输出结果,并求输入x 的值为3,y 的值为-2时的输出结果. 解:输出结果用x 、y 表示为:223yx +当x=3,y=-2时,223yx +=2)2(323-+⨯=-1.提示:把图形语言翻译为符号语言的关键是识图, 弄清图中运算顺序.例6 某餐饮公司为大庆路沿街20户居民提供早餐方便,决定在路旁建立一个快餐店P ,点P 选在何处,才能使这20户居民到P 点的距离总和最小?输入x 输入y×2( )3+÷2输出结果分析:面对复杂的问题,应先把问题“退”到比较简单的情形:如图1,如果沿街有2户居民,很明显点P 设在p 1、、、p 2之间的任何地方都行.如图2,如果沿街有3户居民, 点P 应设在中间那户居民、p 2门前.------以此类推,沿街有4户居民,点P 应设在第2、3户居民之间的任何位置,沿街有5户居民,点P 应设在的第3户门前,------沿街有n 户居民:当n 为偶数时,点P 应设在第2n 、12+n 户居民之间的任何位置;当n 为奇数时,点P 应设在第21+n 户门前.解:根据以上分析,当n=20时,点P 应设在第10、11户居民之间的任何位置. 思维驿站: 请同学们认真体会“特殊⇔一般”的辨证关系,掌握化归的思想方法,学会把复杂的问题化为简单的情形来解决.二、点将练兵训练一一、 选择题 1、 在式子x+2,3a2b,m,S=,2Rπc b a yx 2,3>+-中代数式有()A 、6个B 、5个C 、4个D 、3个. p 1. p .p 2图1.p 1、 .p 2(p ) .p 3图22、 下列式子中符合书写要求的是()A 、42ba B 、abc 312 C 、cb a ÷⨯ D 、ayz33、 一件衣服降价10%后卖a 元,则原则是()A 、10xB 、x 910 C 、x 101 D 、x10094、 用代数式表示“a ,b 两数的和与c 的积是”()A 、a 十bcB 、ab 十cC 、(a 十b )cD 、a (b 十c ) 5、甲数为a ,乙数为b ,甲数的32 与乙数的倒数差是()A 、ba 132- B 、b a -23C 、ba 132+D 、b a +236、大连向北京打长途电话,通话费3分钟以内3.6元,每超过1分钟加收1元钱,某人打电话x 分钟(x>3的整数),则应付话费()元A 、3.6xB 、3.6+xC 、0.6+xD 、x 一3.6 7、代数式ba12-的正确解释是()A 、 a 与b 的倒数的差的平方B 、 a 与b 的差的平方的倒数C 、 a 的平方与b 的差的倒数D 、 a 的平方与b 的倒数的差8、长方形的长是宽的1.6倍,则宽为12厘米时,其周长L 的值是() A 、62.4厘米 B 、31.2厘米 C 、27.2厘米 D 19.8厘米 二、 填空题1、a 、b 两数的平方和,其代数式表示为2、比a 、b 两数的差的3倍大c 的数是3、一种商品是m 元,则涨价15%以后的售价是4、当x=1,y=2时,代数式y x 214 的值是5、当n 为自然数,则任何一个偶数可表示为6、某人存入银行a 元,设年利率为x ,若扣除税b 元,则一年后取回本息共 元。
代数式及代数式的值
字母表示数与代数式的值◆【学习目标∙知识要点】1、代数式----用运算符号把数与表示数的字母连接而成的式子;注意:单独一个数或字母也是代数式2、代数式的书写规则:①“⨯”的省略;②、系数只写成假分数;③、除法写成分数的形式; ④、括号与单位;3、能根据问题情景列代数式,进行规律探索,用公式表示规律;4、代数式的值----用具体数值代替代数式中的字母,按照代数式指明的运算顺序计算出结果,就叫做代数式的值;(代数式的值与字母的取值有关)求代数式的值常用方法:整体思想;字母设元(换元思想);设k 值法;特例法;◆【典型例题∙方法导航】【考点1】---代数式的概念与列代数式【例1】下列各式,哪些是代数式?①、1-ab ( )②、yx -1( )③、23x =( )④、a a ->+3( )⑤、π( ) 【例2】下列代数式中,符合书写规则的有 (填序号) ①、ab 431 ②、20﹪x ③、b a x ÷- ④、3-m ℃ ⑤、21⋅m ⑥、322b a - 【例3】列代数式:设甲数为x ,乙数为y ,用代数式表示下列各题 ①、甲数的31与乙数的一半的差 ;②、甲数与乙数的平方的和 ; ③、甲、乙两数的平方差 ; ④、甲数与乙数的和的倒数 ; ⑤、甲乙两数的平方和 ;◆点拨:列代数式时要抓住题目中表示数量关系的关键词语;【例4】用代数式表示下列图形中阴影部分的面积1、一项工程,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙合作此项工程所需时间为( )A 、b a 11+小时B 、ab 1小时C 、b a ab +小时D 、ba +1小时 2、一个两位数,个位数字是a ,十位数字是b ,则这个两位数是 ;3、设n 为整数,则能被5整除的数可表示为 ;被3整除余2的数可以表示为 ;4、如图:从边长为a 的正方形内去掉一个边长为b 的小正方形,然后将剩余的部分剪拼成一个长方形,上述操作能验证的等式是( )A 、))((22b a b a b a -+=-B 、2222)(b ab a b a +-=-aC 、2222)(b ab a b a ++=+D 、)(2b a a ab a +=+【考点2】----规律探索【例5】观察下面各式的规律:2222)121(2)21(1+⨯=+⨯+;2222)132(3)32(2+⨯=+⨯+; 2222)143(4)43(3+⨯=+⨯+则第2005个式子为 ;第n 个式子为 ;【例6】观察下列图形:若第个图形中的阴影部分的面积是1,第个图形中阴影部分的面积为43,第3个图形中阴影部分的面积为169,第4个图形中阴影部分的面积为6427,, 则第n 个图形中阴影部分的面积为 (用字母n 的代数式表示)【例7】将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完A .6B .5C .3D .2◆目标训练2:1、观察下列各式:1553=⨯,而14152-=;3575=⨯,而16352-=; 1431311=⨯,而1121432-=; 请你把猜想到的规律用只含一个字母的式子表示出来为 ; 2、符号“f ”表示一种运算,它对一些数的运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭ .图6-1 图6-2【考点3】---代数式求值【例8】(整体思想)1、已知0122=-+x x ,则代数式_;__________3422=++x x2、已知012=-+a a ,试求:3223++a a 的值;【例9】(分类思想)如果3121231t t t t t t ++=,那么123123t t t t t t 的值为( ) A 、1- B 、1 C 、1± D 、不确定【例10】(设k 值法求比值)若32x y t t ==,且t z x 223=+,求tz y x 5234--的值;◆目标训练3:1、当1=x 时,代数式13++qx px 的值为2003,则1-=x 时,13++qx px 的值为( ) A 、1999- B 、2003- C 、2002- D 、2001-2、当22=-b a ab 时,代数式abb a b a ab )2(223-+-的值________; 3、已知8919+=+=+c b a ,求222()()()a b c b c a -+-+-的值【能力提升∙思维拓展】【例11】3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数应是多少?如果是4个球队参加比赛呢?5个球队呢?写出m 个球队进行单循环比赛时总的比赛场数的公式,并计算当8个球队参加比赛时,一共赛了多少场?【例12】如图所示:按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、2、…所对应的点重合。
代数式
代 数 式一, 用字母表示数用字母表示数是从算术走向代数的一个重大发展,是数学史的一大飞跃,在数学发展史上有里程碑式的意义,用字母表示数,有极大的优越性,给我们研究问题带来极大方便,用字母表示数体现了从特殊到一般从具体到抽象的发展过程。
表示数的字母,其本质是变量,有三种含义:① 代表算式中的位置,表示运算规律。
如2×3,2×(-5),2×0.7……可以用字母a 表示后一个因数的位置2×a,即2a.表示的运算规律是一个数的2倍。
② 代表一个数的范围例如1a中的a,代表不为0的数,a>0,代表所有正数。
③ 在实际问题中代表具体的含义。
如:s=vt 中,s,v,t 分别代表路程,速度和时间。
所以说字母可以代表一个数,可以代表有限个数,还可以代表无限个数。
用字母表示数的核心是一一对应,遇到表示数的字母,关键是弄清字母表示什么。
二, 代数式什么是代数式?把算式中的位置(一个或多个)用字母来表示,这样得到的就是代数式。
例如: □和○分别表示两个位置,用字母a 和b 代替它们,变成a+b ,a+b 表达了一个运算规律:两数相加,这就是代数式。
代数式的运算,表示的是位置与位置+ 3 2 -3 + 6 + -2 -4之间的运算,运算的规律与算式的规律相同,先运算方向(符号)再运算绝对值,数字对数字,字母对字母。
代数式的值给代表位置的字母赋上具体的值后,得到一个算式,算出算式的结果,这个结果就是代数式的值。
求代数式的值实际就是一个从代数式到具体算式的过程,与从算式到代数式的过程是互逆的,如果代数式代表一个算式,代数式的值就是一个,如果代数式代表多个算式,代数式的值可能就有多个值。
代数式与算式的关系是位置与赋值的关系。
整式与分式整式与分式的区别不在于有无分母,而在于分母中有无表示变量的字母。
在AB中,A,B分别代表两个代数式,B式中如有表示变量的字母,则为分式,无表示变量的字母,则为整式.单项式位置与位置相乘,用字母表达出来就是单项式,单独一个数字或字母也是单项式。
初一数学代数式、用字母表示数
1、用字母表示加法交换律,错误的是( )A .a +b =b +aB .m +n =n +mC .p ·q =q ·pD .x +y =y +x2、如果m 表示奇数,n 表示偶数,则m +n 表示( )A .奇数B .偶数C .合数D .质数3、如图1两同心圆,大圆半径为R ,小圆半径为r ,则阴影部分的面积为( )A .πR 2B .πr 2C .π(R 2+r 2)D .π(R 2-r 2)4、数轴上点A 位于原点的右侧,所对应的实数为a (a <3),则位于原点左侧,与A 点距离为3的点B 所对应的实数为( )A .3-aB .a -3C .a +3D .-35、下列数值一定为正数的是( )A .|a |+|b |B .a 2+b 2C .|a |-|b |D .|a |+21 6、比较a +b 与a -b 的大小,叙述正确的是( )A .a +b ≥a -bB .a +b >a -bC .由a 的大小确定D .由b 的大小确定代数式一、专题精讲例1、在下列各式:①﹣3;②ab =ba ;③x ;④2m ﹣1>0;⑤1x ;⑥8(x 2+y 2)中,代数式的个数是( ) A .1个B .2个C .3个D .4个例2、小明比小亮大3岁,小亮今年a 岁,小明今年__________岁。
例3、某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a 元,那么这种蔬菜今天的价格为每千 克 元,当a =1.2时,今天蔬菜的价格为 元。
例4、已知22a ab +=-10,22b ab +=16,则224a ab b ++=_______,22a b -=______。
例5、填空(1)零乘任何数得零,用字母表示为 。
(2)某汽车公司对所有车辆进行消毒处理,今将m 千克水中,加入n 千克消毒制剂,则消毒液的重量为__________。
(3)大量事实证明,治理垃圾污染刻不容缓。
据统计,全球每分钟约有850万吨污水排入江河湖水,则t 分钟排污量为 万吨。
浙教版七上数学《第4章代数式》微课教学知识点(文末下载)
浙教版七上数学《第4章代数式》微课教学知识点(文末下载)第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减知识点总结第四章代数式1.代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2.代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如五分之十二应写作二又五分之二;④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米3.代数式的系数:代数式中的数字中的数字因数叫做代数式的系数。
如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。
a3b 的系数是14.代数式的项:代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5.单项式:由数与字母的乘积组成的式子叫做单项式。
6.系数:单项式前面的数字因数叫做这个单项式的系数。
7.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.1.1 用字母表示数课件 2024-2025学年人教版数学七年级上册
可以表示什么意义?
乙植树m天比甲植树n天多植树的棵树
巩固练习
3.仿照例子,写出下列代数式的含义:
例如:x+y表示x与y的和.
①2(x+y)表示 x与y的和的2倍 ;
2x+y表示 x的2倍与y的和 .
②x²+y²表示 x与y的平方和 ;
(x+y)2表示 x与y的和的平方 .
是5×60=300;t s能识别的范围
是 5×t=5t
.
问题2:该机器人识别n m2范围内的苹果需要的时间是 5
s;
导入新课
对于问题3:
机器人多采摘的苹果个数
=机器人采摘的苹果个数-工人采摘的苹果个数
=一个机械手的采摘效率×工作时间× 机械手的个数-工人的
采摘效率×工作时间
=
1
8
×3600 × m -
100
是 m/s.
(5)长方形的周长是15cm ,一边长为acm,这个长方形的另一
15 − 2
边长是
2
cm.
(6)某校七年级有m名学生,其中女生人数是全年级学生人数
的51%,则女生人数是 51%m .
巩固练习
2.(1) 苹果每千克a元,香蕉每千克b元,2(a+b)
可以表示什么意义?
买2千克苹果和2千克香蕉所花的钱数
省略不写.
代数式的书写规范
③带分数与字母相乘,必须化为假分数。
3.除号:
除法运算要写成分数的形式.
探究新知
用字母表示数,同一个代数式可以表示不同实
际问题中的数量关系.
如上例中的0.9p既可以表
初二数学:上册第三章用字母表示数3.3代数式的值妙用整体思想求代数式的值
妙用整体思想求代数式的值有的代数式求值往往不直接给出字母的取值,而是通过告诉一个代数式的值,且已知代数式中的字母又无法具体求出来,这时,我们应想到采用整体思想解决问题,用整体思想求值时,关键是如何确定整体。
下面举例说明如何用整体思想求代数式的值。
一、直接代入例1、如果5a b +=,那么(a+b )2-4(a+b )= .解析:本题是直接代入求值的一个基本题型,a 、b 的值虽然都不知道,但我们发现已知式与要求式之间都有(a b +),只要把式中的a b +的值代入到要求的式子中,即可得出结果5.(a+b )2-4(a+b )=52-4×5=5。
二、转化已知式后再代入例2、已知a 2-a-4=0,求a 2-2(a 2-a+3)-21(a 2-a-4)-a 的值. 解析:仔细观察已知式所求式,它们当中都含有a 2-a ,可以将a 2-a-4=0转化为a 2-a=4,再把a 2-a 的值直接代入所求式即可。
a 2-2(a 2-a+3)-21(a 2-a-4)-a=a 2-a-2(a 2-a+3)-21(a 2-a-4)=(a 2-a)-2(a 2-a)-6-21(a 2-a)+2=-23(a 2-a)-4.所以当a 2-a=4时,原式=-23×4-4=-10. 三、转化所求式后再代入例3、若236x x -=,则262x x -= .解析:这两个乍看起来好象没有什么关系的式子,其实却存在着非常紧密的内在联系,所求式是已知式的相反数的2倍.我们可作简单的变形:由236x x -=,可得236x x -=-,两边再乘以2,即得262x x -=-12.例4、2237x x ++的值为8,则2469x x +-= .解析:将要求式进行转化,“凑”出与已知式相同的式子再代入求值,即由2469x x +-得22(37)23x x ++-=2×8-23=-7。
本题也可将已知式进行转化,由2237x x ++的值为8,得2231x x +=,两边再乘以2,得246x x +=2,于是2469x x +-=-7。
七年级:代数式及代数式的值
七年级:快扫复习.初中知识点
七年级:代数式及代数式的值
1.用字母表示数的概念
用字母表示数就是将表示基本数量关系的文字语言转换为数学语言.
2.用字母表示数的注意事项
(1)数和表示数的字母相乘时,或字母和字母相乘时,乘号可以省略不写,或用“·”来
代替。
(2)数和字母相乘或数与括号相乘,在省略乘号时,要把数字写在字母(或括号)的前而。
(3)如果字母前的数字是带分数,一般要写成假分数。
(4)遇到除号时,要写成分数形式。
(5)在表示实际问题时,如果有单位,相加、相减的式子要加括号。
3.代数式
由数、表示数的字母和运算符号组成的数学表达式称为代数式。
(1)代数式中的运算符号指的是加、减、乘、除、乘方、开方等运算符号,不包含等号
和不等号。
(2)用代数式表示简单数量关系时,一般按照“先读先写”的原则进行列式,要分清代
数式中数量关系的运算层次和顺序,必要时要能够正确地添加括号。
4.代数式的值
用数值代替代数式里的字母,计算后所得的结果叫作代数式的值。
求代数式的值的步骤如下:
(1)当:指出代数式中的字母所取的值。
(2)抄:抄写原代数式。
(3)代:把字母的值代入代数式中.在代入时要注意:①如果代数式中省略乘号,代入
后必须添上乘号;②如果字母给出的值是负数或者分数,并作乘方或乘法运算时,代入时都必须添上括号;③当题目按照常规方法不能解的时候,要充分利用“整体思想”,将某一个代数式作为一个整体,用整体代入法求解。
(4)算:计算时要注意运算顺序,同时考虑运用运算律简化运算。
2024年秋季新人教版七年级上册数学教学课件 3.1 第1课时 字母表示数
这个长方体水池的容积是 a ·a ·h cm3,即 a2h cm3. 故池内水的体积为 1 a2h cm3.
1 103600 1 3600 4500 3600
8
m
m
用字母表示 数量关系
合作探究
用含有字母的式子表示数量和数量关系的问题. (1) 一条河的水流速度是 2.5 km/h. 船在静水中的速度是 v km/h,用式子表示船在这条河中顺水行驶的速度;
分析:行船问题 顺水时 船的速度=船在静水中的速度+水流速度 逆水时 船的速度=船在静水中的速度-水流速度
n 用字母表
5
示数
书写规范
②除法运算写成分数形式,即除号改为分数线.
(3) 若该机器人搭载了 10 个机械手,它与采摘工人同 时工作 1 h,假设工人 m s 可以采摘一个苹果,则机 器人可比工人多采摘多少个苹果?
分析:机器人多采摘苹果个数
= 机器人采摘的苹果个数 一 工人采摘的苹果个数
= 机器人的采摘效率×工作时间 一 工人采摘效率×工作时间
3
练一练
1. (1) 某产品前年的产量是 n 件,去年的产量是前年 产量的 m 倍,用代数式表示去年的产量;
解:去年的产量是 mn 件.
书写规范
⑤字母与字母相乘时,按字母表顺序排列.
(2)
若每斤苹果3 1
3
元,则买
m
斤苹果需
元.
书写规范
⑥带分数与字母相乘时,把带分数化成假分数.
(3) 用式子表示数 n 的相反数.
用字母表示数列代数式代数式的值练习
2.1 用字母表示数填空:1.香蕉每千克售价3元,m千克售价__________元;2.温度由5 ℃上升t℃后是__________℃;3.每台电脑售价x元,降价10%后每台售价为__________元;4.某人完成一项工程需要a天,此人的工作效率为__________.5.若长方形的长为5 cm,宽为3 cm,则周长为________ cm,面积为________ cm2;若长方形的长为a cm,宽为3 cm,则周长为__________cm,面积为__________cm2;若长方形的长为a cm,宽为b cm,则周长为________cm,面积为________cm2.6.甲、乙两地相距s千米,某人从甲地到乙地步行要t时,现要求他提前15分到,此人步行的速度为__________千米/时;7.一圆半径为a cm,将圆半径增加5 cm后,圆的周长是__________cm,圆的面积是__________cm2.8.已知a≠0,S1=2a,S2=2S1,S3=2S2,…,S2 013=2S2 012,则S2 013=__________.(用含a的式子表示)9.将一些小圆点按如图所示的规律摆放,第1个图形中有6个小圆点,第2个图形中有10个小圆点,第3个图形中有16个小圆点,第4个图形中有24个小圆点,……,依此规律,第6个图形中有__________个小圆点,第n个图形中有__________个小圆点.2.2 列代数式一、填空题1.小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了_______分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a厘米,两个月不理发,她的头发长为_______厘米.3.代数式(x+y)(x-y)的意义是___________.4.n箱苹果重p千克,每箱重________千克.5.甲同学身高a厘米,乙同学比甲同学高6厘米,则乙同学身高为______厘米.6.全校学生总数是x,其中女生占40%,则女生人数是________.7.一个两位数,个位数是x,十位数是y,这个两位数为________,如果个位数字与十位数字对调,所得的两位数是_________.8.在边长为a的正方形内,挖出一个底为b,高为12a的正三角形,•则剩下的面积为________.9.如果陈秀娟同学用v千米/时的速度走完路程为9千米的路,那么需_______•小时. 10.我们知道:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.根据前面各式规律,可以猜测:1+3+5+7+9+…+(2n-1)=________.(其中n为自然数).二、判断题1.3x+4-5是代数式. ()2.1+2-3+4是代数式. ()3.m是代数式,999不是代数式. ()4.x>y是代数式. ()5.1+1=2不是代数式. ()三、选择题1.下列不是代数式的是( ) A.(x +y )(x -y )B.c =0C.m +nD.999n +99m2.代数式a 2+b 2的意义是( ) A.a 与b 的和的平方 B.a +b 的平方 C.a 与b 的平方和D.以上都不对3.如果a 是整数,则下面永远有意义的是( )A. B. C. a D.4.一个两位数,个位是a ,十位比个位大1,这个两位数是( ) A.a (a +1) B.(a +1)a C.10(a +1)a D.10(a +1)+a5.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的价格开展促销活动,这时该商品一件的售价为 ( )A.a 元B.0.8a 元C.1.04a 元D.0.92a 元四、解答题1.小明今年x 岁,爸爸y 岁,3年后小明和爸爸的年龄之和是多少?2.小丁和小亮一起去吃冰糕,小丁花了m 元,小亮花了n 元,已知每个冰糕0.5元,小丁和小亮各吃了几个?a 1221a 2111a三、能力提升:1.用代数式表示.(1)“x的5倍与y的和的一半”可以表示为_____.(2)南平乡有水稻田m亩,计划每亩施肥a千克;有玉米田n亩,计划每亩施肥b千克,共施肥_____千克.(3)有三个连续的整数,最小数是m,则其他两个数分别是_____和_____.(4)全班总人数为y,其中男生占56%,那么女生人数是_____.2.用语言描述下列代数式的意义.(1)(a+b)2可以解释为_____.(2)3x+3可以解释为_____.3.某电影院有20排座位,已知第一排有18个座位,后面一排比前一排多2个座位,请写出计算第n排的座位数,并求出第19排的座位数.2.3 代数式的值1. 某班的男生人数比女生人数的12多16人,若男生人数是a,则女生人数为()A. 12a+16 B.12a-16 C. 2(a+16) D. 2(a-16)2. 火车从甲地开往乙地,每小时行v千米,则t小时可到达,若每小时行x千米, 则可提前()小时到达。
小学五年级数学解方程知识点
小学五年级数学解方程知识点1、知识点:1、用字母表示数(1)用字母表示数量关系(2)用字母表示计算公式(3)用字母表示运算定律和计算法则(4)求代数式的值:把给定字母的数值代入式子,求出式子的值。
2、注意:(1)数字和字母、字母和字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面。
(2)当1与任何字母相乘时,1省略不写。
(3)在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。
(4)字母可以表示任意数,所以在一些式子中,对字母的表示要进行说明。
如:图片(a≠0)3、简易方程:(1)方程:含有未知数的等式叫作方程。
方程都是等式,等式不一定是方程,只有当等式中含有未知数时,才是方程。
(2)方程的解:使方程左右两边相等的未知数的值叫作方程的解。
(3)解方程:求方程的解的过程叫作解方程。
(4)方程的解是一个值,一般来说,没有解方程这个计算过程,方程的解是难以求出的,解方程是求方程的解的过程,是一个演算过程。
专项练习一、基础类方程。
x-7.7=2.85 5x-3x=68 4x+10=18321=45+6x x-0.6x=8 x+8.6=9.452-2x=15 13÷x =1.3 x+8.3=19.7 15x =30 3x+9=36 7(x-2)=73x+9=12 18(x-2)=27 12x=320+4x 5.37+x=7.47 15÷3x=5 30÷x=75 1.8+2x=6 420-3x=180 3(x+5)=18 0.5x+9=40 6x+3x=36 1.5x+6=3x5×3-x=8 40-8x=5 x÷5=21 48-20+5x=31 x+2x+8=80 200-x÷5=30 70÷x=4 45.6- 3x =0.6 9.8-2x=3.8 5(x+5)=100 x+3x=70 2.5(x+3)=50 二、提高类方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适好教育学科教师辅导讲义 教师: 学生: 日期:
课 题 用字母表示数、代数式、代数式的值
教学目标 (一)知识目标: 进一步体验字母表示数的意义,了解代数式的概念,理解代数式的值的概念 (二 )能力目标:
会利用字母表示数表示简单的数量关系和数学规律 ,会用代数式表示简单的数量关系,
会求代数式的值,会用代数式解决简单实际的问题。
重点、难点
用字母表示数学规律、列代数式、求代数式的值
一、知识点
1、用字母表示数
用字母表示数具有简单性,任意性,抽象性,规范性的特点。
① 数字和字母、字母和字母相乘时,乘号记作“∙”,或者省略不写。
数字写在字母前面,系数“1”不写。
② 任意字母表示
③ “除”用分数表示
④ 字母取值要有意义
2、用字母表示数字规律
3、用字母表示图形规律 抓住随着“编号”或“序号”增加时,图形或数列在数量上的变化(验算)
4、代数式 ①单独一个数或字母也称做代数式
②数字和字母、字母和字母相乘时,乘号记作“∙”,或者省略不写。
数字写在字母前面
③“除”用分数表示
④代数式运算结果和或差的式子,若需注明单位,代数式需加括号
⑤代数式中不能含“=”“>”“<”“≥”“≤”“≠”
5、代数式的值 ①代入:把字母换成相应的数值
②计算:按照运算顺序
③直接代入、间接代入、整体代入
1~5 7~9
10、11
13~21
22~27
1、如果a 表示一个奇数,那么与它相邻的两个奇数是
2、某商品的利润为a 元,利润率为10%,此商品进价为
3、甲乙两地相距x 千米,某人原计划t 小时到达,后因故提前1小时到达,则他每小时应比原计划多走 千米
4、b a ,两数的平方和可表示为( )
A 、2)(b a +
B 、2b a +
C 、b a +2
D 、22b a +
5、一个两位数,十位数字是a ,个位数是b ,则这个两位数是( )
A 、ab
B 、b a +
C 、b a +10
D 、a b +10
6、体育委员带了500元钱买体育用品,已知一个足球a 元,一个篮球b 元,一个排球c 元。
请说出下列每个式子的意义:
(1)a+b ; (2)500-3b ; (3)2(a+b+c)
7、按规律排列的一列数:2,4,6,8,10,12,......它的每一项可用式子2n (n 为正整数)来表示。
按规律排列的另一列数:1,-2,3,-4,5,-6,7,-8,......
1) 它的每一项你认为可用怎样的式子表示?
2) 它的第100个数字是多少?
3) 2012是不是这列数中的数?
8、观察下列算式:
11615453198342143231222-=-=-⨯-=-=-⨯-=-=-⨯
......
9、某校为适应电化教学的需要新建了阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则m n a 和,,之间的关系
10、如图,用棋子摆出一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需要用棋子
A 、4n 枚
B 、(4n-4)枚
C 、(4n+4)枚
D 、3n 枚
11、如图,按一定规律用木棒搭图形:
(1)按图形规律填表:
图形标号
① ② ③ ...... ⑩
木棒根数
(2)搭第(n)个图形需要 根木棒。
(1)在横线上写出第四个式子。
(2)把这个规律用含字母的式子表示出来
(3)你认为(2)中所写的式子一定成立吗?说明理由 ......
12、如图,是一块长方形铁皮,长为a ,宽为b ,在铁皮的四个角各剪去一个边长为c 的正方形(2c<b<a),然后做成一个长方体的盒子,请你用,c b a ,,表示这个长方体铁盒的体积。
13、下列各数哪些是代数式,哪些不是代数式?
(1)22b ab a +-;(2)()b a s +=2
1;(3)032≥+b a ;(4)y x 1+-;(5)0;(6)0322=-+x x ;(7)y
14、下列各式,符合代数式书写格式的是( )
A 、()52
2⨯+b a B 、y x 2322 C 、()22÷-y x D 、273xy 15、下列说法正确的是( )
A 、n (n+1)一定表示相邻的两个整数的积
B 、代数式10
2-k 中k 可以取任何数 C 、当z 为整数时,奇数可以表示为2z+1
D 、设某班有x 名学生,则x 为任意整数
16、正方体的棱长为a ,当棱长增加x 时,体积增加了( )
A 、33x a -
B 、3x
C 、()33a x a -+
D 、()3
3x x a -+ 17、某商品的价格为x 圆,那么代数式(1-20%)x 可以解释为
18、某超市四月份盈利a 万元,计划五、六月份每月的增长率为x ,那么该超市第二季度共盈利( )
A 、)1(x a +万元
B 、2)1(x a + 万元
C 、2)1()1(x a x a +++ 万元
D 、2)1()1(x a x a a ++++万元
19、用代数式表示
(1)a 的平方与b 的2倍的差;
(2)m 与n 的和的平方与m 与n 的积的和;
(3)x 的2倍的三分之一与y 的一半的差;
(4)比a 除以b 的商的2倍小4的数;
20、如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,
若圆形的半径为r ,长方形的长为a ,宽为b ,则空地面积用代数式表示
为
21、长方形的面积是a 2cm ,它的宽是b cm ,那么它的长是 cm ,周长是 cm
22、已知代数式832++-b a 的值是8,则代数式269+-a b 的值是
a
b c c。