江苏省苏锡常镇四市2016届高三数学3月教学情况调研试题(一)
2016-2017学年度苏锡常镇四市高三教学情况调研(二)
2016-2017学年度苏锡常镇四市高三教学情况调研(二) 数学 Ⅰ 试 题 2017.5注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用毫米黑色字迹的签字笔填写在答题卡的指定位置.3.答题时,必须用毫米黑色字迹的签字笔填写在答题卡的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合,,则 ▲ . 2.已知i 为虚数单位,复数,,且,则 ▲ . 3.下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数,则的值为 ▲ .4.已知直线为双曲线的一条渐近线,则该双曲线的离心率的值为 ▲ .5.据记载,在公元前3世纪,阿基米德已经得出了前n 个自然数平方和的一般公式.右图是一个求前n 个自然数平方和的算法流程图,若输入的值为1,则输出的值为 ▲ . 6.已知是集合所表示的区域,是集合0.50.5{}13A x x =-<<{}2B x x =<A B = 13i z y =+()R y ∈22i z =-121i z z =+y =x x 20x =22221(0,0)x y a b a b-=>>x S 1Ω{}22(,)1x y x y +…2Ω所表示的区域,向区域内随机的投一个点,则该点落在区域内的概率为 ▲ .7.已知等比数列的前n 项和为,公比,,则 ▲ . 8.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为,则该直四棱柱的侧面积为 ▲ .9.已知是第二象限角,且,则 ▲ .10.已知直线:,圆:,当直线被圆所截得的弦长最短时,实数 ▲ .11.在△中,角对边分别是,若满足,则角的大小为 ▲ .12.在△中,,,,是△ABC 所在平面内一点,若,则△PB C 面积的最小值为 ▲ . 13.已知函数 若函数有三个零点,则实数b 的取值范围为 ▲ .14.已知均为正数,且,则的最小值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知向量,.(1)当时,求的值; (2)若,且,求的值.{}(,)x y y x (1)Ω2Ω{}n a n S 3q =34533S S +=3a=αsin α=tan()2αβ+=-tan β=l 210mx y m +--=C 22240x y x y +--=l C m =ABC ,,A B C ,,a b c 2cos =2b A c B ABC AB AC ⊥1AB t=AC t =P 4||||AB ACAP AB AC =+24,0,()3,0,x x x f x x x⎧-⎪=⎨<⎪⎩…()()3g x f x x b =-+,a b 20ab a b --=22214a b a b-+-m ,1)x =-n 2(sin ,cos )x x =π3x =⋅m n π0,4x ⎡⎤∈⎢⎥⎣⎦⋅m n 12=-cos 2x16.(本小题满分14分)如图,在四面体ABCD 中,平面ABC ⊥平面ACD , E ,F ,G 分别为AB ,AD ,AC 的中点,,.(1)求证:AB ⊥平面EDC ;(2)若P 为FG 上任一点,证明EP ∥平面BCD .17.(本小题满分14分)某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少? 18.(本小题满分16分)已知函数,a ,b 为实数,, e 为自然对数的底数,….(1)当,时,设函数的最小值为,求的最大值; (2)若关于x 的方程在区间上有两个不同实数解,求的取值范围.19.(本小题满分16分)已知椭圆的左焦点为,左准线方程为.(1)求椭圆的标准方程;(2)已知直线交椭圆于,两点. ①若直线经过椭圆的左焦点,交轴于点,且满足,AC BC =90ACD ∠=︒w x 341w x =-+2x ()L x ()L x 3()ln f x a x bx =-0b ≠e 2.71828≈0a <1b =-()f x ()g a ()g a ()=0f x (1e],ab2222:1(0)x y C a b a b+=>>(1,0)F -2x =-C l C A B l C F y P PA AF λ=.求证:为定值; ②若A ,B 两点满足(O 为 坐标原点),求△AOB 面积的取值范围.20.(本小题满分16分)已知数列满足,其中,,为非零常数.(1)若,求证:为等比数列,并求数列的通项公式; (2)若数列是公差不等于零的等差数列. ①求实数的值;②数列的前n 项和构成数列,从中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.2016-2017学年度苏锡常镇四市高三教学情况调研(二)数学Ⅱ(附加)试题 2017.5注意事项:1.本试卷只有解答题,供理工方向考生使用.本试卷第21题有4个小题供选做,每位考生在4个选做题中选答2题,如多答,则按选做题中的前2题计分.第22,23题为必答题.每小题10分,共40分.考试用时30分钟.2.答题前,请您务必将自己的姓名、考试号用毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用毫米黑色字迹的签字笔填写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.21.【选做题】本题包括,,,四小题,每小题10分. 请选定其中两题......,并在相...应的..答题区域....内作答...,若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A .(选修4-1:几何证明选讲)如图,直线切圆于点,直线交圆于两点,于点, 且,求证:.PB BF μ=λμ+OA OB ⊥{}n a 21141,2n n n n a a a a a λμ+++==+*N n ∈λμ3,8λμ=={}1n a +{}n a {}n a ,λμ{}n a n S {}n S {}n S 1S 0.50.5A B C D DE O D EO O ,A B DC OB ⊥C 2D E BE =23OC BC =B .(选修4—2:矩阵与变换)已知矩阵的一个特征值及对应的特征向量. 求矩阵的逆矩阵.C .(选修4—4:坐标系与参数方程)在平面直角坐标系中,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度,建立极坐标系.已知曲线的参数方程为为参数),曲线的极坐标方程为().若曲线与曲线有且仅有一个公共点,求实数的值.D.(选修4—5:不等式选讲)已知为正实数,求证:.【必做题】第22,23题,每小题10分,共20分. 请把答案写在答题卡的指定区域内,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第局得分()的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束. (1)求在一局游戏中得3分的概率;(2)求游戏结束时局数的分布列和数学期望.23.(本小题满分10分)M 13a b ⎡⎤=⎢⎥⎣⎦11λ=-e 11⎡⎤=⎢⎥-⎣⎦M xO y 1C []2cos (0,2π,32sin x y αααα⎧=⎪∈⎨=+⎪⎩,2C πsin()3a ρθ+=R a ∈1C 2C a ,,abc 222b c a a b c a b c++++…n n *N n ∈X ()E X已知,其中. (1)试求,,的值;(2)试猜测关于n 的表达式,并证明你的结论.2016-2017学年度苏锡常镇四市高三教学情况调研(二)数学参考答案2017.5一、填空题. 1. 2.1 3.19.7 45.14 6.7.8. 9.10.-111.12.13. 14.7二、解答题:本大题共6小题,共计90分.15.解:(1)当时,,, ……………………………4分所以. (6)分 (2), ………………………8分 若,则,即,因为,所以,所以……………10分则 ……………12分. ……………………………14分 16.(1)因为平面ABC ⊥平面ACD ,,即CD ⊥AC , 平面ABC 平面ACD =AC ,CD 平面ACD ,所以CD ⊥平面ABC ,………………………………………………………………3分又AB 平面ABC ,所以CD ⊥AB , (4)分01()(1)(1)()(1)()n n k k n n nn n n n n n f x C x C x C x k C x n =--++--++-- *,R N N x n k k n ∈∈∈,,…1()f x 2()f x 3()f x ()n f x {}12x x -<<34317π6321(,6)(,0]4-∞-- π3x =m 1)=-n 1)4=⋅m n 311442=-=⋅m n 2sin cos x x x -=11π12cos 2sin(2)2262x x x =--=--⋅m n 12=-π1sin(2)1262x =--πsin(2)6x -=π[0,]4x ∈πππ2663x --剟πcos(2)6x -=ππππ1cos 2cos[(2)]cos(2)sin(2)66662x x x x =-+=---⨯12==90ACD ∠=︒ ⊂⊂因为,E 为AB 的中点,所以CE ⊥AB , …………………………………6分又,CD 平面EDC ,CE 平面EDC ,所以AB ⊥平面EDC . …………………………………………………………………7分 (2)连EF ,EG ,因为E ,F 分别为AB ,AD 的中点, 所以EF ∥BD ,又平面BCD ,平面BCD ,所以EF ∥平面BCD , ………………………………………………………………10分 同理可证EG ∥平面BCD ,且EF EG =E ,EF 平面BCD ,EG 平面BCD ,所以平面EFG ∥平面BCD , ………………………………………………………12分又P 为FG 上任一点,所以EP 平面EFG ,所以EP ∥平面BCD .……………14分17.解:(1)().………………4分 (2)法一: .……………………………………8分 当且仅当时,即时取等号.……………………………10分 故.………………………………………………………………12分答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.…14分法二:,由得,.……………………………7分 故当时,,在上单调递增;当时,,在上单调递减;…………………10分 故.………………………………………………………………12分 答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.…14分 18.解:(1)当时,函数,则, ………………………………………………………2分所以, ……………………………4分令,则,令,得, 且当时,有最大值1, 所以的最大值为1(表格略),(分段写单调性即可),此时.………6分(2)由题意得,方程在区间上有两个不同实数解,AC BC =CE CD C = ⊂⊂BD ⊂EF ⊄ ⊂⊂⊂348()164264311L x x x x x x ⎛⎫=---=-- ⎪++⎝⎭05x 剟()4848()643673111L x x x x x ⎛⎫=--=-++ ⎪++⎝⎭6743-…()48311x x =++3x =()max 43L x =()()24831L x x '=-+()0L x '=3x =()0,3x ∈()0L x '>()L x ()0,3()3,10x ∈()0L x '<()L x ()3,5()max 43L x =1b =-3()ln f x a x x =+323()3a a x f x x x x+'=+=()ln()3333a a a ag a f a ===--()ln t x x x x =-+()ln t x x '=-()0t x '=1x =1x =()t x ()g a 3a =-3ln 0a x bx -=(1e],所以在区间上有两个不同的实数解,即函数图像与函数图像有两个不同的交点,…………………9分因为,令,得,所以当时,,……………………………………………14分当时,,所以满足的关系式为 ,即的取值范围为.…………16分 19.解:(1)由题设知,,即,……………………1分 代入椭圆得到,则,,…………………2分 ∴. ……………………………………………………………………3分(2)①由题设知直线的斜率存在,设直线的方程为,则.设,直线代入椭圆得,整理得,,∴. ……………5分 由,知,, ……………………………7分 ∴(定值).………9分 ②当直线分别与坐标轴重合时,易知△AOB 的面积,……………10分 当直线的斜率均存在且不为零时,设,设,将代入椭圆得到,∴,同理, …………………12分 △AOB 的面积 ………………………………13分3ln a x b x=(1e],1ay b =3()ln x m x x =22(3ln 1)()(ln )x x m x x -'=()0m x '=x x ∈()(3e,)m x ∈+∞e]x ∈3()(3e,e ]m x ∈,a b 33e e a b <…ab33e e ](,=e 22222==+a c b c 222=a b (1,C 2211122+=b b21=b 22=a 22:12x C y +=l l (1)y k x =+(0,)P k 1122(,),(,)A x y B x y l 2222(1)2x k x ++=2222(12)4220k x k x k +++-=22121222422,1212k k x x x x k k --+==++λ= PA AF μ= PB BF 1212,11x x x x λμ--==++222212122212122244424121244221111212k k x x x x k k k k x x x x k k λμ--+++-+++=-=-=-=---+++-++++,OA OB S =,OA OB 1:,:OA y kx OB y x k==-1122(,),(,)A x y B x y y kx =C 22222x k x +=222112222,2121k x y k k ==++222222222,2k x y k ==+2OA OBS ⋅=令,, 令,则. ……………15分 综上所述,. ………………………………………………………16分20.解:(1)当时,, ∴.……………………………………………………………………2分又,不然,这与矛盾,…………………………………3分 ∴为2为首项,3为公比的等比数列,∴,∴. …………………………………………………4分 (2)①设, 由得,∴, …………………………5分 ∴ 对任意恒成立. ………………………………………………………………7分∴即∴.…………9分综上,. ……………………………………………………10分②由①知.设存在这样满足条件的四元子列,观察到2017为奇数,这四项或者三个奇数一个偶数、或者一个奇数三个偶数.若三个奇数一个偶数,设是满足条件的四项,则,∴,这与1007为奇数矛盾,不合题意舍去. ……11分若一个奇数三个偶数,设是满足条件的四项,则,∴. ……………………………12分 由504为偶数知,中一个偶数两个奇数或者三个偶数. 1)若中一个偶数两个奇数,不妨设则,这与251为奇数矛盾. ………………………13分 2)若均为偶数,不妨设,则,继续奇偶分析知中两奇数一个偶数,[)211,t k =+∈+∞S =1(0,1)ut =∈23S ⎡==⎢⎣⎭23S ⎡∈⎢⎣⎦3,8λμ==21384(32)(2)3222n n n n n n n n a a a a a a a a +++++===+++113(1)n n a a ++=+10n a +≠110a +=112a +={}1n a +1123n n a -+=⋅1231n n a -=⋅-1(1)1n a a n d dn d =+-=-+2142n n n n a a a a λμ+++=+21(2)4n n n n a a a a λμ++=++2(3)(1)(1)(1)4dn d dn dn d dn d λμ-++=-++-++222222(4)3(2(1))(1)(1)4d n d d n d d n d dn d d λλμλμ⋅+--+=+-++-+-+*∈N n 22224(2(1))3(1)(1)4d d d d d d d d d λλμλμ⎧=⎪-=-+⎨⎪-+=-+-+⎩,,,122λ=⎧⎪=+⎨⎪=⎩u d d ,,,1,4,2λ===u d 14,21n a n λμ===-,2(121)2n n n S n +-== 1121212,,,x y z S S S S ++2221(21)(21)42017x y z +++++=2222()1007x x y y z ++++= 21222,,,x y z S S S S 222214442017x y z +++=222504x y z ++=,,x y z ,,x y z 111221,21,x x y y z z ==+=+,222111112()251x y y z z ++++=,,x y z 1112,2,2x x y y z z ===222111126x y z ++=111,,x y z不妨设,,,则. …14分 因为均为偶数,所以为奇数,不妨设,当时,,,检验得,,, 当时,,,检验得,,, 当时,,,检验得,,, 即或者或者满足条件,综上所述,,,为全部满足条件的四元子列.…………………………………………………………………………………………16分(第Ⅱ卷 理科附加卷)21.【选做题】本题包括,,,四小题,每小题10分. A .(选修4-1 几何证明选讲).解:连结OD ,设圆的半径为R ,,则,. …………2分在Rt △ODE 中,∵,∴,即, ① 又∵直线DE 切圆O 于点D ,则,即,② ………6分 ∴,代入①,,, ……………………………8分 ∴, ∴. ……………………………………………………………………10分 B .(选修4—2:矩阵与变换)解:由题知,……………………4分 ∴,.…………………………………………………………6分122x x =1221y y =+1221z z =+2222222231x y y z z ++++=2222(1),(1)y y z z ++2x 220y z 剟21x =22222230y y z z +++=22214y y +…20y =25z =21x =23x =22222222y y z z +++=22210y y +…21y =24z =23x =25x =2222226y y z z +++=2222y y +…20y =22z =25x =14844,,,S S S S 1122436,,,S S S S 142040,,,S S S S {}14844,,,S S S S {}1122436,,,S S S S {}142040,,,S S S S A B C D BE x =OD R =22DE BE x ==DC OB ⊥2OD OC OE =2()R OC R x =+ 2DE BE OE =24()x x R x =+ 23R x =22()3R R OC R =+ 35ROC =BC OB OC =-35R R =-25R=23OC BC =111111113131131a a a b b b ---=-⎧⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⋅==-⋅=⇒⎨⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----=⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎩,,2,2a b ==1232M ⎡⎤=⎢⎥⎣⎦, …………………………………………………8分 ∴. ………………………………………………………………10分 C .(选修4—4:坐标系与参数方程)解:,∴曲线的普通方程为. ……………………………………4分,∴曲线, ……………………………………6分 曲线圆心到直线的距离为, ………………………8分∴,∴或.………………………………10分(少一解,扣一分) D.(选修4—5:不等式选讲) 解法一:基本不等式∵,,,∴, ………………………………………6分 ∴, ………………………………………………………10分解法二:柯西不等式,∴, …………………………………………………………10分【必做题】第22,23题,每小题10分,计20分.22.解:(1)设在一局游戏中得3分为事件,则.… …………………………………………………………2分 答:在一局游戏中得3分的概率为.………………………………………………3分 (2)的所有可能取值为.在一局游戏中得2分的概率为,…………………………………5分 ; 12det()1223432M ==⨯-⨯=-111223144M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦2222((3)4cos 4sin 4x y αα+-=+=C 22(1)(3)4x y ++-=1sin()sin cos 32a a πρθρθθ+=⇒+=D 20y a +-=C D 2d =32-=a 1=a 5a =22b a b a +...22c b c b + (2)2a c a c +…222b c aa b c a b c +++++222a b c ++ (222)b c a a b c a b c++++ (222)2()()()b c a a b c b c a a b c++++++ (222)b c a a b c a b c++++…A 111221352()5C C C P A C ==25X 1,2,3,41221222135310C C C C C +=2122351(1)5C C P X C ===; ; .所以………………………………………………………………………………………………8分∴.…………………………………10分23.解:(1);………………………………………1分; ………………………………………2分. ………………………………………3分 (2)猜测:. …………………………………………………………………4分而,, 所以. …………………………………………………………………5分 用数学归纳法证明结论成立.①当时,,所以结论成立.②假设当时,结论成立,即. 当时,()由归纳假设知()式等于. 所以当时,结论也成立.综合①②,成立. ………………………………………………………10分436(2)51025P X ==⨯=43228(3)(1)5105125P X ==⨯-⨯=43342(4)(1)5105125P X ==⨯-⨯=162842337()1234525125125125E X =⨯+⨯+⨯+⨯=01111()(1)11f x C x C x x x =--=-+=0212222222()(1)(2)f x C x C x C x =--+-2222(21)(44)2x x x x x =--++-+=0313233333333()(1)(2)(3)f x C x C x C x C x =--+---33333(1)3(2)(3)6x x x x =--+---=()!n f x n =!!!()!(1)!()!k n n n kC k k n k k n k ==---11(1)!!(1)!()!(1)!()!k n n n nC nk n k k n k ---==----11k k n n kC nC --=1n =1()1f x =n k =01()(1)(1)()!k k k k k k k kk f x C x C x C x k k =--++--= 1n k =+01111111111()(1)(1)(1)k k k k k k k k k f x C x C x C x k +++++++++=--++--- 0111111111(1)(1)(1)()()(1)(1)k k k k k k k k k k k k C x C x x C x k x k C x k ++++++++=---++---+--- 011111211111111[(1)(1)()][(1)2(2)(1)()](1)(1)kk kk kk k k k k k k k k k k k k k k x C x C x C x k C x C x kC x k C x k +++++++++++=--++--+---+--+--- 010*******[()(1)(1)()()](1)[(1)(2)(1)()](1)(1)(1)k k k k k k k k k k k k k k k k k k kk k k x C x C C x C C x k k x C x C x k C x k x k -+-+++=-+-++-+-++---+--+----- 010*******[(1)(1)()][(1)(1)()](1)[(1)(2)(1)()](1)(1)(1)(1)(1)k k k k k k k k k k k k k k k k k k k k k k k k k kk x C x C x C x k x C x C x k k x C x C x k x C x k k x k --+-++=--++----++--++---+--+----+--- 010-11111[(1)(1)()][(1)(1)()(1)(1)](1)[(1)(2)(1)()(1)(1)]k k k k k k k k k k k k k k k k k k k k k k k k k k k x C x C x C x k x C x C x k C x k k x C x C x k x k ---=--++----++--+---++---+--+--- !!(1)!(1)!x k x k k k k ⋅-⋅++⋅=+1n k =+()!n f x n =。
江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题(WORD版)
2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅰ试题 2016.5参考公式:圆锥的体积公式:V 圆锥=13Sh ,其中S 是圆锥的底面积,h 是高.圆锥的侧面积公式:S 圆锥=rl p ,其中r 是圆柱底面的半径, l 为母线长.样本数据1x ,2x ,… ,n x 的方差2211()n i i s x x n ==-∑,其中x =11n i i x n =∑.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知全集{}12345U =,,,,,{}12A =,,{}234B =,,,那么()U A B = ð ▲ . 2.已知2(i)2i a -=,其中i 是虚数单位,那么实数a = ▲ .3.从某班抽取5名学生测量身高(单位:cm ),得到的数据为160,162, 159,160,159,则该组数据的方差2s = ▲ .4.同时抛掷三枚质地均匀、大小相同的硬币一次,则至少有两枚硬币正面 向上的概率为 ▲ .5.若双曲线221x my +=过点()22-,,则该双曲线的虚轴长为 ▲ .6.函数()2ln 2()1x x f x x -=-的定义域为 ▲ .7.某算法流程图如右图所示,该程序运行后,若输出的15x =,则实数a 等 于 ▲ . 8.若1tan 2α=,1tan()3αβ-=-,则tan(2)βα-= ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. (第7题)结束开始 n ← 1 x ← a x ← 2x + 1输出x N n ≤3n ← n + 1Y9.若直线340x y m +-=与圆222440x y x y ++-+=始终有公共点,则实数m 的取值范围是▲ .10.设棱长为a 的正方体的体积和表面积分别为1V ,1S ,底面半径和高均为r 的圆锥的体积和侧面积分别为2V ,2S ,若123=V V p ,则12SS 的值为 ▲ . 11.已知函数3()2f x x x =+,若1(1)(log 3)0af f +>(0a >且1a ≠),则实数a 的取值范围是 ▲ . 12.设公差为d (d 为奇数,且1d >)的等差数列{}n a 的前n 项和为n S ,若19m S -=-,0m S =,其中3m >,且*m ∈N ,则n a = ▲ .13.已知函数2()f x x x a =-,若存在[]1,2x ∈,使得()2f x <,则实数a 的取值范围是 ▲ . 14.在平面直角坐标系xOy 中,设点(1 0)A ,,(0 1)B ,,( )C a b ,,( )D c d ,,若不等式2(2)()()CD m OC OD m OC OB OD OA -⋅+⋅⋅⋅≥对任意实数a b c d ,,,都成立,则实数m 的最大值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A B C ,,的对边分别是a b c ,,,已知向量(cos cos )B C =,m ,(4)a b c =-,n ,且∥m n .(1)求cos C 的值;(2)若3c =,△ABC 的面积15=4S ,求a b ,的值.16.(本小题满分14分)在直三棱柱111ABC A B C -中,CA CB =,12AA AB =,D 是AB 的中点.(1)求证:1BC ∥平面1A CD ; (2)若点P 在线段1BB 上,且114BP BB =, (第16题)C 1B 1A 1PDCBA求证:AP 平面A CD.1某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,0x>)时,销售量()q x(单位:百台)与x的关系满足:若x不超过20,则1260 ()1q xx=+;若x大于或等于180,则销售量为零;当20180x≤≤时,()q x a b x=-(a,b为实常数).(1)求函数()q x的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.18.(本小题满分16分)在平面直角坐标系xOy中,已知椭圆C:22221(0)x ya ba b+=>>的左,右焦点分别是1F,2F,右顶点、上顶点分别为A,B,原点O到直线AB的距离等于ab﹒(1)若椭圆C的离心率等于63,求椭圆C的方程;(2)若过点(0,1)的直线l与椭圆有且只有一个公共点P,且P在第二象限,直线2PF交y轴于点Q﹒试判断以PQ为直径的圆与点1F的位置关系,并说明理由﹒已知数列{}n a 的前n 项和为n S ,13a =,且对任意的正整数n ,都有113n n n S S λ++=+,其中常数0λ>.设3nn n a b =()n *∈N ﹒ (1)若3λ=,求数列{}n b 的通项公式; (2)若1≠λ且3λ≠,设233n n n c a λ=+⨯-()n *∈N ,证明数列{}n c 是等比数列; (3)若对任意的正整数n ,都有3n b ≤,求实数λ的取值范围.20.(本小题满分16分)已知函数2()e x f x a x bx =⋅+-(a b ∈R ,,e 2.71828= 是自然对数的底数),其导函数为()y f x '=.(1)设1a =-,若函数()y f x =在R 上是单调减函数,求b 的取值范围; (2)设0b =,若函数()y f x =在R 上有且只有一个零点,求a 的取值范围;(3)设2b =,且0a ≠,点()m n ,(m ,n ∈R )是曲线()y f x =上的一个定点,是否存在实数0x (0x m ≠),使得000()()()2x mf x f x m n +'=-+成立?证明你的结论.2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅱ(附加题)2016.521.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4 —1:几何证明选讲已知△ABC 内接于O ,BE 是O 的直径,AD 是BC 边上的高. 求证:BA AC BE AD ⋅=⋅.B .选修4—2:矩阵与变换已知变换T 把平面上的点(34)-,,(5 0),分别变换成(21)-,,(1 2)-,,试求变换T 对应的矩阵M .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A ,B ,C ,D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22,23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. DEOBCA(第21-A 题)C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 过点(12)M ,,倾斜角为3π﹒以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆:6cos C ρθ=﹒若直线l 与圆C 相交于A B ,两点,求M A M B ⋅的值.D .选修4—5:不等式选讲设x 为实数,求证:()()2242131x x x x ++++≤﹒【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止.(1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X ,求随机变量X 的分布列.23.(本小题满分10分)设实数12n a a a ,,,满足120n a a a +++= ,且12||||||1n a a a +++ ≤(*n ∈N 且2)n ≥,令(*)n n a b n n =∈N .求证:1211||22n b b b n+++-≤(*)n ∈N .2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1.{125},, 2.1- 3.65 4.12 5.4 6.()()0,11,2 7.1 8.17- 9. [010],10.32p11.()()0,13,+∞ 12.312n - 13.(1,5)- 14. 51- 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. 解:(1)∵∥m n ,∴cos (4)cos c B a b C =-, …………2分由正弦定理,得sin cos (4sin sin )cos C B A B C =-,化简,得sin()4sin cos B C A C +=﹒ …………4分 ∵A B C ++=p ,∴sin sin()A B C =+﹒ 又∵()0,A ∈p ,∵sin 0A >,∴1cos 4C =. …………6分 (2)∵()0,C ∈p , 1cos 4C =,∴2115sin 1cos 1164C C =-=-=. ∵115sin 24S ab C ==,∴2ab =﹒① …………9分 ∵3c =,由余弦定理得22132a b ab =+-,∴224a b +=,② …………12分 由①②,得42440a a -+=,从而22a =,2a =±(舍负),所以2b =, ∴2a b ==. …………14分 16.证明:(1)连结1AC ,设交1A C 于点O ,连结OD .∵四边形11AA C C 是矩形,∴O 是1AC 的中点. …………2分 在△1ABC 中, O ,D 分别是1AC ,AB 的中点,∴1OD BC ∥. …………4分 又∵OD ⊂平面1A CD ,1BC ⊄平面1A CD ,∴1BC ∥平面1A CD . …………6分 (2)∵CA CB =,D 是AB 的中点,∴CD AB ⊥﹒又∵在直三棱柱111ABC A B C -中,底面ABC ⊥侧面11AA B B ,交线为AB , CD ⊂平面ABC ,∴CD ⊥平面11AA B B ﹒ …………8分∵AP ⊂平面11A B BA ,∴CD AP ⊥. …………9分 ∵12BB BA =,11BB AA = ,114BP BB =, ∴12=4BP ADBA AA =, ∴Rt △ABP ∽Rt △1A AD , 从而∠1AA D =∠BAP ,所以∠1AA D +∠1A AP =∠BAP +∠1A AP =90︒,∴1AP A D ⊥. …………12分 又∵1CD A D D = ,CD ⊂平面1A CD ,1A D ⊂平面1A CD∴AP ⊥平面1A CD . …………14分17.解:(1)当20180x ≤≤时,由20601800a b a b ⎧-⋅=⎪⎨-⋅=⎪⎩,,得9035a b =⎧⎪⎨=⎪⎩,. …………2分故1260,020,1()9035,20180,0,180x x q x x x x ⎧<⎪+⎪⎪-<⎨⎪>⎪⎪⎩≤=≤ …………4分(2)设总利润()()f x x q x =⋅,由(1)得126000020,1()90003005201800180xx x f x x x x x x ⎧<<⎪+⎪⎪-⋅⎨⎪>⎪⎪⎩,=,≤≤,, …………6分当020x <≤时,126000126000()12600011x f x x x ==-++,()f x 在[020],上单调递增, 所以当20x =时,()f x 有最大值120000. …………8分当20180x <≤时,()90003005f x x x x -⋅=,()90004505f x x '-⋅=,令()0f x '=,得80x =. …………10分当2080x <<时,()0f x '>,()f x 单调递增,当8080x <≤1时,()0f x '<,()f x 单调递减,所以当80x =时,()f x 有最大值240000. …………12分 当180x <时,()0f x =﹒答:当x 等于80元时,总利润取得最大值240000元. …………14分 18.解:由题意,得点(,0)A a ,(0,)B b ,直线AB 的方程为1x ya b+=,即0ax by ab +-=﹒ 由题设,得22ab ab a b=+,化简,得221a b +=﹒① …………2分(1)∵63c e a ==,∴22223a b a -=,即223a b =﹒② 由①②,解得223414a b ⎧=⎪⎪⎨⎪=⎪⎩,﹒ …………5分所以,椭圆C 的方程为224413x y +=﹒ …………6分 (2)点1F 在以PQ 为直径的圆上﹒由题设,直线l 与椭圆相切且l 的斜率存在,设直线l 的方程为:1y kx =+,由222211x y a b y kx ⎧+=⎪⎨⎪=+⎩,得22222222()20b a k x ka x a a b +++-=,(*) …………8分 则22222222=(2)4()()0ka b a k a a b ∆-+-=,化简,得22210b a k --=,所以,22211b k a-== ,∵点P 在第二象限,∴1k =﹒ …………10分 把1k =代入方程(*) ,得22420x a x a ++=,解得2x a =-,从而2y b =,所以22(,)P a b -﹒ …………11分从而直线2PF 的方程为:2222()b y b x a a c-=+--, 令0x =,得22b c y a c =+,所以点22(0,)+b cQ a c﹒ …………12分从而221=(,)F P a c b -+ ,212=(,)+b c FQ c a c, …………13分 从而42112()+b c F P FQ c a c a c⋅=-++22222424442222()()(+)()==0+++c b a b a c c a c b c a b c a c a c a c⎡⎤-++-+-++⎣⎦==, 又∵221a b +=,222=+a b c , ∴110F P FQ ⋅= ﹒ …………15分 所以点1F 在以PQ 为直径的圆上﹒ …………16分 19.解:∵113n n n S S λ++=+,n *∈N , ∴当2n ≥时,-13n n n S S λ=+, 从而123n n n a a λ+=+⋅,2n ≥,n *∈N ﹒又在113n n n S S λ++=+中,令1n =,可得12123a a λ=+⋅,满足上式,所以123n n n a a λ+=+⋅, n *∈N ﹒ …………2分 (1)当3λ=时, 1323n n n a a +=+⋅,n *∈N ,从而112333n n n na a ++=+,即123n n b b +-=, 又11b =,所以数列{}n b 是首项为1,公差为23的等差数列, 所以213n n b +=. …………4分 (2)当0>λ且3λ≠且1≠λ时,1122323333n n n n n n c a a λλλ--=+⨯=+⨯+⨯-- 11111223(33)(3)33n n n n n a a c λλλλλλ-----=+⨯-+=+⨯=⋅--, …………7分 又163(1)3033c -=+=≠--λλλ, 所以{}n c 是首项为3(1)3λλ--,公比为λ的等比数列, 13(1)3n n c λλλ--=⋅-﹒…………8分 (3)在(2)中,若1λ=,则0n c =也适合,所以当3λ≠时,13(1)3n n c λλλ--=⋅-. 从而由(1)和(2)可知11(21)333(1)23333n n n n n a λλλλλλ--⎧+⨯=⎪=⎨-⋅-⨯≠⎪--⎩,,,.…………9分 当3λ=时,213n n b +=,显然不满足条件,故3λ≠. …………10分 当3λ≠时,112()333n n b λλλλ--=⨯---.若3λ>时, 103λλ->-,1n n b b +<,n *∈N ,[1,)n b ∈+∞,不符合,舍去. …………11分 若01λ<<时,103λλ->-,203λ->-,1n n b b +>,n *∈N ,且0n b >.所以只须11133a b ==≤即可,显然成立.故01λ<<符合条件; …………12分 若1λ=时,1n b =,满足条件.故1λ=符合条件; …………13分 若13λ<<时,103λλ-<-,203λ->-,从而1n n b b +<,n *∈N , 因为110b =>.故2[1)3n b λ∈--,, 要使3n b ≤成立,只须233λ--≤即可. 于是713λ<≤. …………15分综上所述,所求实数λ的范围是7(0]3,. …………16分20.解:(1)当1a =-时,2()e x f x x bx =-+-,∴()e 2x f x x b '=-+-,由题意()e 20x f x x b '=-+-≤对x ∈R 恒成立﹒ …………1分 由e 20x x b -+-≤,得e 2x b x +≥-,令()e 2x F x x =+-,则()e 2x F x '=+-,令()0F x '=,得ln 2x =.当ln 2x <时,()0F x '>,()F x 单调递增,当ln 2x >时,()0F x '<,()F x 单调递减, 从而当ln 2x =时,()F x 有最大值2ln22-,所以2ln 22b -≥. …………3分 (2)当0b =时,2()e x f x a x =+,由题意2e 0x a x +=只有一解﹒由2e 0xa x +=,得2e x x a -=,令2()ex x G x =,则(2)()e x x x G x -'=,令()0G x '=,得0x =或2x =. …………5分 当0x ≤时,()0G x '≤,()G x 单调递减,()G x 的取值范围为[)0+∞,, 当02x <<时,()0G x '>,()G x 单调递增,()G x 的取值范围为240e ⎛⎫⎪⎝⎭,,当2x ≥时,()0G x '≤,()G x 单调递减,()G x 的取值范围为240e ⎛⎤⎥⎝⎦,,由题意,得0a -=或24e a ->,从而0a =或24e a <-, 所以当0a =或24e a <-时,函数()y f x =只有一个零点. …………8分(3)2()e 2x f x a x x =+-,()e 22x f x a x '=+-,假设存在,则有00000()()()()()()22x m x mf x f x m n f x m f m ++''=-+=-+, 即000()()()2f x f m x mf x m -+'=-,∵0002()e 2222x mx m x m f a +++'=+⋅-, 00220000000()()(e )()2()(e e )()2x m x m f x f m a e x m x m a x m x m x m x m--+----==++----,∴0020(e e )ex m x m a a x m+-=-﹒……(*)﹒ …………10分 ∵0a ≠,∴0020e e ex m x mx m +-=-,不妨设00t x m =->,则2e e e t t m m m t ++-=﹒两边同除以e m,得2e 1e tt t-=,即2e e 1tt t =-, …………12分令2()e e 1ttg t t =--,则2222()e (e e )e (e 1)22t t t t tt t g t '=-+=--,令2()e 12t t h t =--,则22111()e (e 1)0222t th t '=-=->,∴()h t 在(0)+∞,上单调递增, 又∵(0)0h =,∴()0h t >对(0)t ∈+∞,恒成立, …………14分 即()0g t '>对(0)t ∈+∞,恒成立, ∴()g t 在(0)+∞,上单调递增,又(0)0g =, ∴()0g t >对(0)t ∈+∞,恒成立,即(*)式不成立, …………15分 ∴不存在实数0x (0x m ≠),使得000()()()2x mf x f x m n +'=-+成立. …………16分2013-2014学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题) 参考答案21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲 证明:连结AE .∵BE 是O 的直径,∴90BAE ∠=︒. …………2分∴BAE ADC ∠=∠. …………4分 又∵BEA ACD ∠=∠,∴△BEA ∽△ACD . …………7分 ∴BE ACBA AD=,∴BA AC BE AD ⋅=⋅. …………10分 B .选修4—2:矩阵与变换解:设a b c d ⎡⎤=⎢⎥⎣⎦M ,由题意,得35214012a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, …………3分 ∴342513415 2.a b a c d c -=⎧⎪=-⎪⎨-=-⎪⎪=⎩,,, …………5分解得1,513,202,51120a b c d ⎧=-⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩. …………9分即113520211520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M . …………10分 C .选修4—4:坐标系与参数方程解:直线l 的参数方程为112(322x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩,,为参数), …………2分圆C 的普通方程为22(3)9x y -+=﹒ …………4分 直线l 的参数方程代入圆C 的普通方程,得22(31)10t t +--=, …………6分 设该方程两根为1t ,2t ,则121t t ⋅=-﹒ …………8分 ∴12==1MA MB t t ⋅⋅. …………10分 D .选修4—5:不等式选讲证明:因为 右—左=432222x x x --+ …………2分=3222(1)(1)2(1)(1)x x x x x --=-++ …………4分=22132(1)024x x ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥, …………8分所以,原不等式成立. …………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.解:(1)设事件“恰好摸4次停止”的概率为P ,则2231319()444256P C =⨯⨯⨯=. …………4分 (2)由题意,得=0123,,,X , 044381(=0)()4256P C =⨯=X , 1341327(=1)()()4464P C =⨯⨯=X , 22241327(=2)()()44128P C =⨯⨯=X , 81272713(=3)125664128256P =---=X , …………8分 ∴X 的分布列为…………10分23.证明:(1)当2n =时,12a a =-,∴1122||||||1a a a =+≤,即11||2a ≤,∴21121||111||||224222a ab b a +=+==-⨯≤,即当2n =时,结论成立. …………2分 (2)假设当n k =(*k ∈N 且2)k ≥时,结论成立,即当120k a a a +++= ,且12||||||1k a a a +++ ≤时,有1211||22k b b b k +++- ≤. …………3分则当1n k =+时,由1210k k a a a a +++++= ,且121||||||1k a a a ++++ ≤, ∵11211212|||||||||||1k k k k a a a a a a a a +++=+++++++ ≤≤,∴11||2k a +≤, …………5分又∵1211()0k k k a a a a a -++++++= ,且1211121||||||||||||||1k k k k a a a a a a a a -++++++++++ ≤≤,X 0123P81256 27642712813256由假设可得112111||22k k k a a b b b k k+-+++++-≤, …………7分 ∴1121121|||1k k k k k a ab b b b b b b k k ++-++++=++++++1111112111|()(||1221k k k k k k k a a a a a a b b b k k k k k k+++++-+=+++++-+++ -)|≤-111111111111()||()221221222(1)k a k k k k k k k +=-+-+⨯=-+++-≤-, 即当1n k =+时,结论成立.综上,由(1)和(2)可知,结论成立. …………10分。
2016-2017学年度苏锡常镇四市高三教学情况调研(一)参考答案
……2 分 ……4 分 ……7 分
(法二)因为在△ ABC 中, A B C π ,
则 sin Acos B sin Bcos A sin( A B) sin(C π)=sinC ,
……2 分
由 a b c 得: sin A a sin C , sin B bsin C ,代入上式得: ……4 分
B.(选修 4—2:矩阵与变换)
解:设
M=
a c
b d
,M
1 1
8
1 1
a c
b d
,M
1
2
2
4
a c
2b
2d
,
……3 分
a b 8,
a 6,
ac2db8,2 ,解得
……4分
……6 分 ……7 分
又 f (1) 0 ,当 x (0,1) , f (x) 0 ;当 x (1, ) 时, f (x) 0 . ……9 分
故不等式 (x 1) f (x) …0 恒成立.
……10 分
若 a 2 , f (x) x ln x (1 a)x 1 , x
4. 24 8. 2
二、解答题:本大题共 6 小题,共计 90 分.
15.解:(1)(法一)在△ ABC 中,由余弦定理, a cos B 3 ,则 a a2 c2 b2 3 ,得 a2 c2 b2 6c ;① 2ac bcos A 1,则 b b2 c2 a2 1 ,得 b2 c2 a2 2c ,② 2bc ①+②得: 2c2 8c , c 4 .
江苏省苏锡常镇四市2016届高三3月教学情况调研(一)语文试题解析(解析版)
2016.3 一、语言文字运用(15分)1.在下面句子的空缺处依次填入词语,最恰当的一组是(3分)(1)近来一些消费者向记者感慨:▲ 的进口红酒市场,已经乱到让他们真假难辨。
(2)文学艺术的▲ ,让李清照能更深切细微地感知生活,体验美感。
(3)最近几起民间借贷危机事件的爆发,似乎预示着整个“高利贷”行业的危机将▲ 。
A.鱼龙混杂熏染不期而遇B.鱼目混珠熏陶不期而至C.鱼龙混杂熏陶不期而至D.鱼目混珠熏染不期而遇【答案】B考点:正确使用词语(包括熟语)。
能力层级为表达运用E。
2.下列各句中,没有语病的一项是(3分)A.只要你校同意你参加这次培训,报销交通费,安排食宿,办理相关证明,发放培训资料等事宜我们可以帮助解决。
B.航空发动机是为飞行器提供动力的热力机械,需要在高温、高压、高速旋转的条件下工作,是经典力学在工程应用上逼近极限的一门技术。
C.随着“一带一路”战略构想的提出,契合沿线国家的共同需求,为沿线国家优势互补、开放发展开启了新的机遇之窗。
D.在核试验场等待氢弹试验结果时,物理学家陈能宽脱口背诵起了诸葛亮的《出师表》,于敏也跟着背起来,在场的人无不为之动容。
【答案】D【解析】试题分析:A表意不明,“学校”和“我们”所负责事务不明确;B搭配不当,航空发动机“的制造”是技术;C.成分残缺,去掉“随着”。
考点:辨析并修改病句。
能力层级为表达运用E。
3.“梅兰竹菊”被称为“四君子”,下列诗句与咏赞“四君子”无关..的一项是(3分)A.红衣落尽暗香残,叶上秋光白露寒。
B.疏影横斜水清浅,暗香浮动月黄昏。
C.宁可抱香枝头老,不随黄叶舞秋风。
D.未出土时先有节,便凌云去也无心。
【答案】A【解析】试题分析:A项“红衣落尽暗香残,叶上秋光白露寒”咏赞的是荷花。
考点:识记文学常识。
能力层级为识记A。
4.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)幽默不是嘴巴上的那点本事,而是生活的态度。
▲①幽默不同于讽刺。
(优辅资源)江苏省苏锡常镇四市高三下学期教学情况调研(一)(3月)数学 Word版含答案
2016—2017学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试卷2017.3一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知集合{}{}21,2,3,4,5,6,7,|650,U M x x x x Z ==-+≤∈,则U C M = .2. 若复数z 满足2iz i i++=,其中i 是虚数单位,则z = . 3.函数()()1ln 43f x x =-的定义域为 .4.右图中给出的一种算法,则该算法输出的结果是 . 5.某高级中学共有500名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为 .6.已知正四棱锥的底面边长为23,则该四棱锥的体积为 .7.从集合{}1,2,3,4中任取两个不同的数,则这两个数的和为3的倍数的概率为 .8.在平面直角坐标系xoy 中,已知抛物线28y x =分焦点恰好是双曲线()222103x y a a -=>的右焦点,则双曲线的离心率为 . 9.设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,且254a a +=,则8a 的值为 .10.在平面直角坐标系xoy 中,过点()1,0M 的直线l 与圆225x y +=交于,A B 两点,其中A 点在第一象限内,且2BM MA =u u u u r u u u r,则直线l 的方程为 .11.在ABC ∆中,已知1,2,60,AB AC A ==∠=o若点P 满足AP AB AC λ=+u u u r u u u r u u u r,且1BP CP ⋅=u u u r u u u r,则实数λ的值值为 .12.已知sin 3sin 6παα⎛⎫=+ ⎪⎝⎭,则tan 12πα⎛⎫+= ⎪⎝⎭ .13.若函数()211,12ln ,1xx f x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,则函数()18y f x =-的零点个数为 .14.若正数,x y 满足1522x y -=,则3322x y x y +--的最小值为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若cos 3,cos 1a B b A ==,且6A B π-=.(1)求边c 的长; (2)求角B 的大小.16.(本题满分14分)如图,在斜三棱柱111ABC A B C -中,侧面11AAC C 是菱形,1AC 与1A C 交于点O ,E 是棱AB 上一点,且//OE 平面11BCC B . (1)求证:E 是AB 的中点;(2)若11AC A B ⊥,求证: 1AC CB ⊥.17.(本题满分14分)某单位举办庆典活动,要在广场上树立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:2m ),高为h (单位:m )(S ,h 为常数).彩门的下底BC 固定在广场的底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为.l (1)请将l 表示成关于α的函数()l f α=; (2)问当α为何值时,l 最小,并求出最小值.18.(本题满分16分)在平面直角坐标系xoy 中,已知椭圆()222210x y a b a b +=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求椭圆的标准方程; (2)过点2,2D-作直线PQ 交椭圆于不同的两点P,Q,求证:AP,AQ 的斜率之和为定值.19.(本题满分16分)已知函数()()1ln f x x x ax a =+-+(a 为常数,且为正实数).(1)若()f x 在()0,+∞上单调递增,求a 的取值范围; (2)若不等式()()10x f x -≥恒成立,求a 的取值范围.20.(本题满分16分)已知n 为正整数,数列{}n a 满足()2210,410.n n n a n a na +>+-=设数列{}n b 满足22n n a b t=.(1)求证:数列n n ⎨⎩为等比数列;(2)若数列{}n b 是等差数列,求实数t 的值;(3)若数列{}n b 为等差数列,前n 项和为n S ,对任意的n N *∈,均存在m N *∈,使得24211816n n a S a n b ==成立,求满足条件的所有整数1a 的值.2016—2017学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ试卷2017.321.【选做题】在A,B,C,D 四个小题中只能选座2题,每题10分,共计20分. A.选修4-1:几何证明选讲如图,圆O 的直径AB=6,C 为圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD,AD 分别与直线l ,圆O 交于点D,E.求DAC ∠的大小和线段AE 的长.B.选修4-2:矩阵与变换已知二阶矩阵M 有特征值8λ=及对应的一个特征向量111e ⎡⎤=⎢⎥⎣⎦,并且矩阵M对应的变换将点()1,2-变换为()2,4.- (1) 求矩阵M;(2) 求矩阵M 的另一个特征值.C.选修4-3:坐标系与参数方程已知圆1O 和圆2O 的极坐标方程分别为22,22cos 2.4πρρρθ⎛⎫==-= ⎪⎝⎭(1) 把圆1O 和圆2O 的极坐标方程化为直角坐标方程; (2) 求经过两圆交点的直线的极坐标方程.D. 选修4-4:不等式选讲设,,a b c 为正数 , 且3a b c ++=313131a b c +++的最大值.【必做题】第22题、第23题,每题10分,共计20分. 22.(本题满分10分)如图,已知正四棱锥P ABCD -中,2,PA AB ==点,M N 分别在,PA AD 上,且13PM BN PA BD ==. (1)求异面直线MN 与PC 所成角的大小; (2)求二面角N PC B --的余弦值.23.(本小题满分10分) 设2πθ<,n 是正整数,数列{}n a 的通项公式sintan 2n n n a πθ=,其前n 项和为.n S (1)求证:当n 为偶数时,0n a ,当n 为奇数是,()121tan n n n a θ-=-;(2)求证:对任何正整数n ,()1221sin 211tan 2n n n S θθ-⎡⎤=+-⎣⎦.。
江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题(WORD版)
2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅰ试题 2016.5参考公式:圆锥的体积公式:V 圆锥=13Sh ,其中S 是圆锥的底面积,h 是高.圆锥的侧面积公式:S 圆锥=rl p ,其中r 是圆柱底面的半径, l 为母线长.样本数据1x ,2x ,… ,n x 的方差2211()n i i s x x n ==-∑,其中x =11n i i x n =∑.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知全集{}12345U =,,,,,{}12A =,,{}234B =,,,那么()U A B = ð ▲ . 2.已知2(i)2i a -=,其中i 是虚数单位,那么实数a = ▲ .3.从某班抽取5名学生测量身高(单位:cm ),得到的数据为160,162, 159,160,159,则该组数据的方差2s = ▲ .4.同时抛掷三枚质地均匀、大小相同的硬币一次,则至少有两枚硬币正面 向上的概率为 ▲ .5.若双曲线221x my +=过点()22-,,则该双曲线的虚轴长为 ▲ .6.函数()2ln 2()1x x f x x -=-的定义域为 ▲ .7.某算法流程图如右图所示,该程序运行后,若输出的15x =,则实数a 等 于 ▲ . 8.若1tan 2α=,1tan()3αβ-=-,则tan(2)βα-= ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. (第7题)结束开始 n ← 1 x ← a x ← 2x + 1输出x N n ≤3n ← n + 1Y9.若直线340x y m +-=与圆222440x y x y ++-+=始终有公共点,则实数m 的取值范围是▲ .10.设棱长为a 的正方体的体积和表面积分别为1V ,1S ,底面半径和高均为r 的圆锥的体积和侧面积分别为2V ,2S ,若123=V V p ,则12SS 的值为 ▲ . 11.已知函数3()2f x x x =+,若1(1)(log 3)0af f +>(0a >且1a ≠),则实数a 的取值范围是 ▲ . 12.设公差为d (d 为奇数,且1d >)的等差数列{}n a 的前n 项和为n S ,若19m S -=-,0m S =,其中3m >,且*m ∈N ,则n a = ▲ .13.已知函数2()f x x x a =-,若存在[]1,2x ∈,使得()2f x <,则实数a 的取值范围是 ▲ . 14.在平面直角坐标系xOy 中,设点(1 0)A ,,(0 1)B ,,( )C a b ,,( )D c d ,,若不等式2(2)()()CD m OC OD m OC OB OD OA -⋅+⋅⋅⋅≥对任意实数a b c d ,,,都成立,则实数m 的最大值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A B C ,,的对边分别是a b c ,,,已知向量(cos cos )B C =,m ,(4)a b c =-,n ,且∥m n .(1)求cos C 的值;(2)若3c =,△ABC 的面积15=4S ,求a b ,的值.16.(本小题满分14分)在直三棱柱111ABC A B C -中,CA CB =,12AA AB =,D 是AB 的中点.(1)求证:1BC ∥平面1A CD ; (2)若点P 在线段1BB 上,且114BP BB =, (第16题)C 1B 1A 1PDCBA求证:AP 平面A CD.1某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,0x>)时,销售量()q x(单位:百台)与x的关系满足:若x不超过20,则1260 ()1q xx=+;若x大于或等于180,则销售量为零;当20180x≤≤时,()q x a b x=-(a,b为实常数).(1)求函数()q x的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.18.(本小题满分16分)在平面直角坐标系xOy中,已知椭圆C:22221(0)x ya ba b+=>>的左,右焦点分别是1F,2F,右顶点、上顶点分别为A,B,原点O到直线AB的距离等于ab﹒(1)若椭圆C的离心率等于63,求椭圆C的方程;(2)若过点(0,1)的直线l与椭圆有且只有一个公共点P,且P在第二象限,直线2PF交y轴于点Q﹒试判断以PQ为直径的圆与点1F的位置关系,并说明理由﹒已知数列{}n a 的前n 项和为n S ,13a =,且对任意的正整数n ,都有113n n n S S λ++=+,其中常数0λ>.设3nn n a b =()n *∈N ﹒ (1)若3λ=,求数列{}n b 的通项公式; (2)若1≠λ且3λ≠,设233n n n c a λ=+⨯-()n *∈N ,证明数列{}n c 是等比数列; (3)若对任意的正整数n ,都有3n b ≤,求实数λ的取值范围.20.(本小题满分16分)已知函数2()e x f x a x bx =⋅+-(a b ∈R ,,e 2.71828= 是自然对数的底数),其导函数为()y f x '=.(1)设1a =-,若函数()y f x =在R 上是单调减函数,求b 的取值范围; (2)设0b =,若函数()y f x =在R 上有且只有一个零点,求a 的取值范围;(3)设2b =,且0a ≠,点()m n ,(m ,n ∈R )是曲线()y f x =上的一个定点,是否存在实数0x (0x m ≠),使得000()()()2x mf x f x m n +'=-+成立?证明你的结论.2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅱ(附加题)2016.521.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4 —1:几何证明选讲已知△ABC 内接于O ,BE 是O 的直径,AD 是BC 边上的高. 求证:BA AC BE AD ⋅=⋅.B .选修4—2:矩阵与变换已知变换T 把平面上的点(34)-,,(5 0),分别变换成(21)-,,(1 2)-,,试求变换T 对应的矩阵M .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A ,B ,C ,D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22,23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. DEOBCA(第21-A 题)C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 过点(12)M ,,倾斜角为3π﹒以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆:6cos C ρθ=﹒若直线l 与圆C 相交于A B ,两点,求M A M B ⋅的值.D .选修4—5:不等式选讲设x 为实数,求证:()()2242131x x x x ++++≤﹒【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止.(1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X ,求随机变量X 的分布列.23.(本小题满分10分)设实数12n a a a ,,,满足120n a a a +++= ,且12||||||1n a a a +++ ≤(*n ∈N 且2)n ≥,令(*)n n a b n n =∈N .求证:1211||22n b b b n+++-≤(*)n ∈N .2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1.{125},, 2.1- 3.65 4.12 5.4 6.()()0,11,2 7.1 8.17- 9. [010],10.32p11.()()0,13,+∞ 12.312n - 13.(1,5)- 14. 51- 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. 解:(1)∵∥m n ,∴cos (4)cos c B a b C =-, …………2分由正弦定理,得sin cos (4sin sin )cos C B A B C =-,化简,得sin()4sin cos B C A C +=﹒ …………4分 ∵A B C ++=p ,∴sin sin()A B C =+﹒ 又∵()0,A ∈p ,∵sin 0A >,∴1cos 4C =. …………6分 (2)∵()0,C ∈p , 1cos 4C =,∴2115sin 1cos 1164C C =-=-=. ∵115sin 24S ab C ==,∴2ab =﹒① …………9分 ∵3c =,由余弦定理得22132a b ab =+-,∴224a b +=,② …………12分 由①②,得42440a a -+=,从而22a =,2a =±(舍负),所以2b =, ∴2a b ==. …………14分 16.证明:(1)连结1AC ,设交1A C 于点O ,连结OD .∵四边形11AA C C 是矩形,∴O 是1AC 的中点. …………2分 在△1ABC 中, O ,D 分别是1AC ,AB 的中点,∴1OD BC ∥. …………4分 又∵OD ⊂平面1A CD ,1BC ⊄平面1A CD ,∴1BC ∥平面1A CD . …………6分 (2)∵CA CB =,D 是AB 的中点,∴CD AB ⊥﹒又∵在直三棱柱111ABC A B C -中,底面ABC ⊥侧面11AA B B ,交线为AB , CD ⊂平面ABC ,∴CD ⊥平面11AA B B ﹒ …………8分∵AP ⊂平面11A B BA ,∴CD AP ⊥. …………9分 ∵12BB BA =,11BB AA = ,114BP BB =, ∴12=4BP ADBA AA =, ∴Rt △ABP ∽Rt △1A AD , 从而∠1AA D =∠BAP ,所以∠1AA D +∠1A AP =∠BAP +∠1A AP =90︒,∴1AP A D ⊥. …………12分 又∵1CD A D D = ,CD ⊂平面1A CD ,1A D ⊂平面1A CD∴AP ⊥平面1A CD . …………14分17.解:(1)当20180x ≤≤时,由20601800a b a b ⎧-⋅=⎪⎨-⋅=⎪⎩,,得9035a b =⎧⎪⎨=⎪⎩,. …………2分故1260,020,1()9035,20180,0,180x x q x x x x ⎧<⎪+⎪⎪-<⎨⎪>⎪⎪⎩≤=≤ …………4分(2)设总利润()()f x x q x =⋅,由(1)得126000020,1()90003005201800180xx x f x x x x x x ⎧<<⎪+⎪⎪-⋅⎨⎪>⎪⎪⎩,=,≤≤,, …………6分当020x <≤时,126000126000()12600011x f x x x ==-++,()f x 在[020],上单调递增, 所以当20x =时,()f x 有最大值120000. …………8分当20180x <≤时,()90003005f x x x x -⋅=,()90004505f x x '-⋅=,令()0f x '=,得80x =. …………10分当2080x <<时,()0f x '>,()f x 单调递增,当8080x <≤1时,()0f x '<,()f x 单调递减,所以当80x =时,()f x 有最大值240000. …………12分 当180x <时,()0f x =﹒答:当x 等于80元时,总利润取得最大值240000元. …………14分 18.解:由题意,得点(,0)A a ,(0,)B b ,直线AB 的方程为1x ya b+=,即0ax by ab +-=﹒ 由题设,得22ab ab a b=+,化简,得221a b +=﹒① …………2分(1)∵63c e a ==,∴22223a b a -=,即223a b =﹒② 由①②,解得223414a b ⎧=⎪⎪⎨⎪=⎪⎩,﹒ …………5分所以,椭圆C 的方程为224413x y +=﹒ …………6分 (2)点1F 在以PQ 为直径的圆上﹒由题设,直线l 与椭圆相切且l 的斜率存在,设直线l 的方程为:1y kx =+,由222211x y a b y kx ⎧+=⎪⎨⎪=+⎩,得22222222()20b a k x ka x a a b +++-=,(*) …………8分 则22222222=(2)4()()0ka b a k a a b ∆-+-=,化简,得22210b a k --=,所以,22211b k a-== ,∵点P 在第二象限,∴1k =﹒ …………10分 把1k =代入方程(*) ,得22420x a x a ++=,解得2x a =-,从而2y b =,所以22(,)P a b -﹒ …………11分从而直线2PF 的方程为:2222()b y b x a a c-=+--, 令0x =,得22b c y a c =+,所以点22(0,)+b cQ a c﹒ …………12分从而221=(,)F P a c b -+ ,212=(,)+b c FQ c a c, …………13分 从而42112()+b c F P FQ c a c a c⋅=-++22222424442222()()(+)()==0+++c b a b a c c a c b c a b c a c a c a c⎡⎤-++-+-++⎣⎦==, 又∵221a b +=,222=+a b c , ∴110F P FQ ⋅= ﹒ …………15分 所以点1F 在以PQ 为直径的圆上﹒ …………16分 19.解:∵113n n n S S λ++=+,n *∈N , ∴当2n ≥时,-13n n n S S λ=+, 从而123n n n a a λ+=+⋅,2n ≥,n *∈N ﹒又在113n n n S S λ++=+中,令1n =,可得12123a a λ=+⋅,满足上式,所以123n n n a a λ+=+⋅, n *∈N ﹒ …………2分 (1)当3λ=时, 1323n n n a a +=+⋅,n *∈N ,从而112333n n n na a ++=+,即123n n b b +-=, 又11b =,所以数列{}n b 是首项为1,公差为23的等差数列, 所以213n n b +=. …………4分 (2)当0>λ且3λ≠且1≠λ时,1122323333n n n n n n c a a λλλ--=+⨯=+⨯+⨯-- 11111223(33)(3)33n n n n n a a c λλλλλλ-----=+⨯-+=+⨯=⋅--, …………7分 又163(1)3033c -=+=≠--λλλ, 所以{}n c 是首项为3(1)3λλ--,公比为λ的等比数列, 13(1)3n n c λλλ--=⋅-﹒…………8分 (3)在(2)中,若1λ=,则0n c =也适合,所以当3λ≠时,13(1)3n n c λλλ--=⋅-. 从而由(1)和(2)可知11(21)333(1)23333n n n n n a λλλλλλ--⎧+⨯=⎪=⎨-⋅-⨯≠⎪--⎩,,,.…………9分 当3λ=时,213n n b +=,显然不满足条件,故3λ≠. …………10分 当3λ≠时,112()333n n b λλλλ--=⨯---.若3λ>时, 103λλ->-,1n n b b +<,n *∈N ,[1,)n b ∈+∞,不符合,舍去. …………11分 若01λ<<时,103λλ->-,203λ->-,1n n b b +>,n *∈N ,且0n b >.所以只须11133a b ==≤即可,显然成立.故01λ<<符合条件; …………12分 若1λ=时,1n b =,满足条件.故1λ=符合条件; …………13分 若13λ<<时,103λλ-<-,203λ->-,从而1n n b b +<,n *∈N , 因为110b =>.故2[1)3n b λ∈--,, 要使3n b ≤成立,只须233λ--≤即可. 于是713λ<≤. …………15分综上所述,所求实数λ的范围是7(0]3,. …………16分20.解:(1)当1a =-时,2()e x f x x bx =-+-,∴()e 2x f x x b '=-+-,由题意()e 20x f x x b '=-+-≤对x ∈R 恒成立﹒ …………1分 由e 20x x b -+-≤,得e 2x b x +≥-,令()e 2x F x x =+-,则()e 2x F x '=+-,令()0F x '=,得ln 2x =.当ln 2x <时,()0F x '>,()F x 单调递增,当ln 2x >时,()0F x '<,()F x 单调递减, 从而当ln 2x =时,()F x 有最大值2ln22-,所以2ln 22b -≥. …………3分 (2)当0b =时,2()e x f x a x =+,由题意2e 0x a x +=只有一解﹒由2e 0xa x +=,得2e x x a -=,令2()ex x G x =,则(2)()e x x x G x -'=,令()0G x '=,得0x =或2x =. …………5分 当0x ≤时,()0G x '≤,()G x 单调递减,()G x 的取值范围为[)0+∞,, 当02x <<时,()0G x '>,()G x 单调递增,()G x 的取值范围为240e ⎛⎫⎪⎝⎭,,当2x ≥时,()0G x '≤,()G x 单调递减,()G x 的取值范围为240e ⎛⎤⎥⎝⎦,,由题意,得0a -=或24e a ->,从而0a =或24e a <-, 所以当0a =或24e a <-时,函数()y f x =只有一个零点. …………8分(3)2()e 2x f x a x x =+-,()e 22x f x a x '=+-,假设存在,则有00000()()()()()()22x m x mf x f x m n f x m f m ++''=-+=-+, 即000()()()2f x f m x mf x m -+'=-,∵0002()e 2222x mx m x m f a +++'=+⋅-, 00220000000()()(e )()2()(e e )()2x m x m f x f m a e x m x m a x m x m x m x m--+----==++----,∴0020(e e )ex m x m a a x m+-=-﹒……(*)﹒ …………10分 ∵0a ≠,∴0020e e ex m x mx m +-=-,不妨设00t x m =->,则2e e e t t m m m t ++-=﹒两边同除以e m,得2e 1e tt t-=,即2e e 1tt t =-, …………12分令2()e e 1ttg t t =--,则2222()e (e e )e (e 1)22t t t t tt t g t '=-+=--,令2()e 12t t h t =--,则22111()e (e 1)0222t th t '=-=->,∴()h t 在(0)+∞,上单调递增, 又∵(0)0h =,∴()0h t >对(0)t ∈+∞,恒成立, …………14分 即()0g t '>对(0)t ∈+∞,恒成立, ∴()g t 在(0)+∞,上单调递增,又(0)0g =, ∴()0g t >对(0)t ∈+∞,恒成立,即(*)式不成立, …………15分 ∴不存在实数0x (0x m ≠),使得000()()()2x mf x f x m n +'=-+成立. …………16分2013-2014学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题) 参考答案21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲 证明:连结AE .∵BE 是O 的直径,∴90BAE ∠=︒. …………2分∴BAE ADC ∠=∠. …………4分 又∵BEA ACD ∠=∠,∴△BEA ∽△ACD . …………7分 ∴BE ACBA AD=,∴BA AC BE AD ⋅=⋅. …………10分 B .选修4—2:矩阵与变换解:设a b c d ⎡⎤=⎢⎥⎣⎦M ,由题意,得35214012a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, …………3分 ∴342513415 2.a b a c d c -=⎧⎪=-⎪⎨-=-⎪⎪=⎩,,, …………5分解得1,513,202,51120a b c d ⎧=-⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩. …………9分即113520211520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M . …………10分 C .选修4—4:坐标系与参数方程解:直线l 的参数方程为112(322x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩,,为参数), …………2分圆C 的普通方程为22(3)9x y -+=﹒ …………4分 直线l 的参数方程代入圆C 的普通方程,得22(31)10t t +--=, …………6分 设该方程两根为1t ,2t ,则121t t ⋅=-﹒ …………8分 ∴12==1MA MB t t ⋅⋅. …………10分 D .选修4—5:不等式选讲证明:因为 右—左=432222x x x --+ …………2分=3222(1)(1)2(1)(1)x x x x x --=-++ …………4分=22132(1)024x x ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥, …………8分所以,原不等式成立. …………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.解:(1)设事件“恰好摸4次停止”的概率为P ,则2231319()444256P C =⨯⨯⨯=. …………4分 (2)由题意,得=0123,,,X , 044381(=0)()4256P C =⨯=X , 1341327(=1)()()4464P C =⨯⨯=X , 22241327(=2)()()44128P C =⨯⨯=X , 81272713(=3)125664128256P =---=X , …………8分 ∴X 的分布列为…………10分23.证明:(1)当2n =时,12a a =-,∴1122||||||1a a a =+≤,即11||2a ≤,∴21121||111||||224222a ab b a +=+==-⨯≤,即当2n =时,结论成立. …………2分 (2)假设当n k =(*k ∈N 且2)k ≥时,结论成立,即当120k a a a +++= ,且12||||||1k a a a +++ ≤时,有1211||22k b b b k +++- ≤. …………3分则当1n k =+时,由1210k k a a a a +++++= ,且121||||||1k a a a ++++ ≤, ∵11211212|||||||||||1k k k k a a a a a a a a +++=+++++++ ≤≤,∴11||2k a +≤, …………5分又∵1211()0k k k a a a a a -++++++= ,且1211121||||||||||||||1k k k k a a a a a a a a -++++++++++ ≤≤,X 0123P81256 27642712813256由假设可得112111||22k k k a a b b b k k+-+++++-≤, …………7分 ∴1121121|||1k k k k k a ab b b b b b b k k ++-++++=++++++1111112111|()(||1221k k k k k k k a a a a a a b b b k k k k k k+++++-+=+++++-+++ -)|≤-111111111111()||()221221222(1)k a k k k k k k k +=-+-+⨯=-+++-≤-, 即当1n k =+时,结论成立.综上,由(1)和(2)可知,结论成立. …………10分。
高三数学-苏锡常镇四市2016届高三3月教学情况调研(一)数学试题
2015~2016学年度苏锡常镇四市高三教学情况调研(一)第Ⅰ卷一、填空题(本大题共14个小题,每小题5分,共70分) 1、 已知集合{|3,},{|1,x R}A x x x R B x x =<∈=>∈,则A B =2、已知i 为虚数单位,复数z 满足43zi i+=,则复数z 的模为 3、一个容量为n 的样本,分成若干组,已知欧足的频数和频率 分布为40,0.125则n 的值为4、在平面直角坐标系xOy 中,方程22142x y m m-=-+表示双曲线, 则实数m 的取值范围为5、为强化安全意识,某校拟在周一到周五的五天中随机选择2天 进行紧急疏散演练,则选择2天恰好为连续2天的概率为6、执行如图所示的程序框图,输出的x 的值为7、如图,正方体1111ABCD A B C D -的棱长为1,P 是棱1BB 的中点,则四棱柱11P AA C C -的体积为8、设数列{}n a 是首项为1,公差不为零的等差数列,n S 为其 前n 项和,若123,,S S S 成等比数列,则数列{}n a 的公差为9、在平面直角坐标系xOy 中,设M 是函数()24(0)x f x x x+=>的图象上任意一点,过M 点向直线y x =和y 轴作垂线,垂足分别是,A B ,则MA MB ⋅=11、在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆22:650C x y x +-+=相较于不同的两点,A B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为12、已知函数()224,04log (2)2,46x x x f x x x ⎧-+≤<=⎨-+≤≤⎩,若存在12,x x R ∈,当12046x x ≤<≤≤时,()()12f x f x =,则()12x f x 的取值范围是13、已知函数()()12,(1)x f x a g x bf x -=+=-,其中,a b R ∈,若关于x 的不等式()()f x g x ≥的解的最小值为2,则a 的取值范围是14、若实数,x y 满足22224444x xy y x y -++=,则当2x y +取得最大值时,xy的值为二、解答题(本大题共6小题,满分90分,解答应写出文字说明、证明过程或演算步骤) 15、(本小题满分14分) 已知函数()sin(2)3sin(2)36f x x x ππ=+-- (1)求函数()f x 的最小正周期和单调递增区间; (2)当[,]63x ππ∈-时,试求()f x 的最值,并写出取得最值时自变量x 的值。
江苏省苏、锡、常、镇2016届高三数学教学情况调查(一)英语试题(含答案)
2015-2016学年度苏锡常镇四市高三教学情况调研(一)英语2016年3月第一卷(选择题,共85分)第一部分:听力(共两节,满分20分)做题时,先将答案标在试卷上。
听力录音部分结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What are the speakers going to do?A. Pay for the taxi.B. Drink water.C. Sing songs.2. What is the man looking for now?A. His own iPad.B. His wife’s mobil e phone.C. His mobile phone.3. When does the first flight arrive in Beijing?A. 5:38 am.B. 7:58 am.C. 8:00 am.4. What is the woman probably?A. A teacher.B. A job adviser.C. An officer.5. What is Mike doing now?A. He is meeting friends.B. He is coming here.C. Not clear.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题, 每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第六段对话,回答第6和第7两个小题。
2016年苏锡常镇四市高三数学情况调研(二)数学II(附加题)试题
2015-2016学年度苏锡常镇四市高三教学情况调研(二)数学Ⅱ(附加题)命题单位:常州市教育科学研究院 2016.521.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.A .选修4 —1:几何证明选讲已知△ABC 内接于O ,BE 是O 的直径,AD 是BC 边上的高.求证:BA AC BE AD ⋅=⋅.B .选修4—2:矩阵与变换已知变换T 把平面上的点(34)-,,(5 0),分别变换成(21)-,,(1 2)-,,试求变换T 对应的矩阵M .(第21-A 题)C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 过点(12)M ,,倾斜角为3π﹒以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆:6cos C ρθ=﹒若直线l 与圆C 相交于A B ,两点,求MA MB ⋅的值.D .选修4—5:不等式选讲设x 为实数,求证:()()2242131x x x x ++++≤﹒【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止.(1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X ,求随机变量X 的分布列.23.(本小题满分10分)设实数12n a a a ,,,满足120n a a a +++=,且12||||||1n a a a +++≤(*n ∈N 且2)n ≥,令(*)n n a b n n =∈N .求证:1211||22n b b b n +++-≤(*)n ∈N .。
江苏省苏锡常镇高三3月教学情况调研(一)数学(文)试题(解析版)
苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题一、填空题:本大题共14个小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.........1. 已知集合,,则集合__________.2. 已知复数满足(为虚数单位),则__________.3. 双曲线的渐近线方程为__________.4. 某中学共有人,其中高二年级的人数为.现用分层抽样的方法在全校抽取人,其中高二年级被抽取的人数为,则__________.5. 将一颗质地均匀的正四面体骰子(每个面上分别写有数字,,,)先后抛掷次,观察其朝下一面的数字,则两次数字之和等于的概率为__________.6. 如图是一个算法的流程图,则输出的值是__________.7. 若正四棱锥的底面边长为,侧面积为,则它的体积为__________.8. 设是等差数列的前项和,若,,则__________.9. 已知,,且,则的最小值是__________.10. 设三角形的内角,,的对边分别为,,,已知,则__________.11. 已知函数(是自然对数的底).若函数的最小值是,则实数的取值范围为__________.12. 在中,点是边的中点,已知,,,则__________.13. 已知直线:与轴交于点,点在直线上,圆:上有且仅有一个点满足,则点的横坐标的取值集合为__________.14. 若二次函数在区间上有两个不同的零点,则的取值范围为_____.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答应写出文字说明、证明过程或演算步骤.15. 已知向量,.(1)若角的终边过点,求的值;(2)若,求锐角的大小.16. 如图,正三棱柱的高为,其底面边长为.已知点,分别是棱,的中点,点是棱上靠近的三等分点.求证:(1)平面;(2)平面.17. 已知椭圆:经过点,,点是椭圆的下顶点.(1)求椭圆的标准方程;(2)过点且互相垂直的两直线,与直线分别相交于,两点,已知,求直线的斜率.18. 如图,某景区内有一半圆形花圃,其直径为,是圆心,且.在上有一座观赏亭,其中.计划在上再建一座观赏亭,记.(1)当时,求的大小;(2)当越大,游客在观赏亭处的观赏效果越佳,求游客在观赏亭处的观赏效果最佳时,角的正弦值.19. 已知函数,.(1)若,,且恒成立,求实数的取值范围;(2)若,且函数在区间上是单调递减函数.①求实数的值;②当时,求函数的值域.20. 已知是数列的前项和,,且.(1)求数列的通项公式;(2)对于正整数,,,已知,,成等差数列,求正整数,的值;(3)设数列前项和是,且满足:对任意的正整数,都有等式成立.求满足等式的所有正整数.苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题一、填空题:本大题共14个小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.........1. 已知集合,,则集合__________.【答案】【解析】2. 已知复数满足(为虚数单位),则__________.【答案】5【解析】因为,所以,即,.3. 双曲线的渐近线方程为__________.【答案】【解析】双曲线的渐近线方程为,即.4. 某中学共有人,其中高二年级的人数为.现用分层抽样的方法在全校抽取人,其中高二年级被抽取的人数为,则__________.【答案】63【解析】5. 将一颗质地均匀的正四面体骰子(每个面上分别写有数字,,,)先后抛掷次,观察其朝下一面的数字,则两次数字之和等于的概率为__________.【答案】【解析】两次数字之和等于有三种基本事件,所以概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6. 如图是一个算法的流程图,则输出的值是__________.【答案】25【解析】执行循环得:结束循环,输出25.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7. 若正四棱锥的底面边长为,侧面积为,则它的体积为__________.【答案】【解析】设侧面斜高为,则,因此高为8. 设是等差数列的前项和,若,,则__________.【答案】8【解析】因为,,所以,因此9. 已知,,且,则的最小值是__________.【答案】【解析】因为,当且仅当时取等号.因此的最小值是点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10. 设三角形的内角,,的对边分别为,,,已知,则__________.【答案】【解析】因为,所以11. 已知函数(是自然对数的底).若函数的最小值是,则实数的取值范围为__________.【答案】【解析】当时,(当且仅当时取等号),当时,,因此12. 在中,点是边的中点,已知,,,则__________.【答案】6【解析】,所以点睛:根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.13. 已知直线:与轴交于点,点在直线上,圆:上有且仅有一个点满足,则点的横坐标的取值集合为__________.【答案】【解析】以AP为直径的圆与圆C相切,设,所以以AP为直径的圆圆心为,半径为,因此外切时:,内切时:,即点的横坐标的取值集合为点睛:研究直线与圆位置关系时,要注意隐圆,即利用直接法或转移法求轨迹方程,最后根据直线与圆或圆与圆位置关系求解参数取值范围.14. 若二次函数在区间上有两个不同的零点,则的取值范围为_____.【答案】【解析】设,则点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答应写出文字说明、证明过程或演算步骤.15. 已知向量,.(1)若角的终边过点,求的值;(2)若,求锐角的大小.【答案】(1);(2)【解析】试题分析:(1)先根据三角函数定义得,,再根据向量数量积得结果,(2)由向量平行得,再利用两角和正弦公式以及同角三角函数关系得,即得锐角的大小试题解析:(1)由题意,,所以.(2)因为,所以,即,所以,则,对锐角有,所以,所以锐角.16. 如图,正三棱柱的高为,其底面边长为.已知点,分别是棱,的中点,点是棱上靠近的三等分点.求证:(1)平面;(2)平面.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据平行四边形性质得,再根据线面平行判定定理得结论,(2)根据平几知识得,再根据线面垂直性质定理得,最后根据线面垂直判定定理得结论.试题解析:(1)连结,正三棱柱中,且,则四边形是平行四边形,因为点、分别是棱,的中点,所以且,又正三棱柱中且,所以且,所以四边形是平行四边形,所以,又平面,平面,所以平面;(2)正三棱柱中,平面,平面,所以,正中,是的中点,所以,又、平面,,所以平面,又平面,所以,由题意,,,,,所以,又,所以与相似,则,所以,则,又,,平面,所以平面.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17. 已知椭圆:经过点,,点是椭圆的下顶点.(1)求椭圆的标准方程;(2)过点且互相垂直的两直线,与直线分别相交于,两点,已知,求直线的斜率. 【答案】(1);(2)【解析】试题分析:(1)将两点坐标代入椭圆方程,解方程组得a,b,(2)设直线斜率,根据方程组解得E,F,再根据解得斜率.试题解析:(1)由题意得,解得,所以椭圆的标准方程为;(2)由题意知,直线,的斜率存在且不为零,设直线:,与直线联立方程有,得,设直线:,同理,因为,所以,①,无实数解;②,,,解得,综上可得,直线的斜率为.18. 如图,某景区内有一半圆形花圃,其直径为,是圆心,且.在上有一座观赏亭,其中.计划在上再建一座观赏亭,记.(1)当时,求的大小;(2)当越大,游客在观赏亭处的观赏效果越佳,求游客在观赏亭处的观赏效果最佳时,角的正弦值.【答案】(1);(2)【解析】试题分析:(1)先根据直角三角形解得,再根据正弦定理列关于三角方程,根据同角三角函数关系得,即得的大小;(2)根据正弦定理列关于的函数关系,利用导数求最值,即得结果.试题解析:(1)设,由题,中,, ,所以,在中,,,由正弦定理得,即,所以 ,则 ,所以,因为为锐角,所以,所以,得;(2)设,在中,,,由正弦定理得,即,所以,从而,其中,,所以,记,,;令,,存在唯一使得,当时,单调增,当时,单调减,所以当时,最大,即最大,又为锐角,从而最大,此时.答:观赏效果达到最佳时,的正弦值为.19. 已知函数,.(1)若,,且恒成立,求实数的取值范围;(2)若,且函数在区间上是单调递减函数.①求实数的值;②当时,求函数的值域.【答案】(1);(2)【解析】试题分析:(1)先利用参变分离将不等式化为函数最值:的最大值,再利用导数求函数最值,即得实数的取值范围;(2)①将单调性条件转化为对恒成立,再根据二次函数恒成立条件得不等式,解不等式可得实数的值;②先利用导数研究函数单调性,确定函数值域,再结合图像确定,根据图像确定值域.试题解析:(1)函数的定义域为.当,,,∵恒成立,∴恒成立,即.令,则,令,得,∴在上单调递增,令,得,∴在上单调递减,∴当时,,∴.(2)①当时,,.由题意,对恒成立,∴,∴,即实数的值为.②函数的定义域为.当,,时,.,令,得.∴当时,,当时,,当时,.对于,当时,,当时,,当时,.∴当时,,当时,,当时,.故函数的值域为.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.20. 已知是数列的前项和,,且.(1)求数列的通项公式;(2)对于正整数,,,已知,,成等差数列,求正整数,的值;(3)设数列前项和是,且满足:对任意的正整数,都有等式成立.求满足等式的所有正整数.【答案】(1);(2)和【解析】试题分析:(1)先根据和项与通项关系得项之间递推关系,再根据等比数列定义判断,最后根据等比数列通项公式求结果,(2)根据等差数列化简得,再根据正整数限制条件以及指数性质确定不定方程正整数解,(3)先根据定义求数列通项公式,再根据等差数列求和公式求,根据数列相邻项关系确定递减,最后根据单调性求正整数解.试题解析:(1)由得,两式作差得,即.,,所以,,则,所以数列是首项为公比为的等比数列,所以;(2)由题意,即,所以,其中,,所以,,,所以,,;(3)由得,,,,所以,即,所以,又因为,得,所以,从而,,当时;当时;当时;下面证明:对任意正整数都有,,当时,,即,所以当时,递减,所以对任意正整数都有;综上可得,满足等式的正整数的值为和.。
江苏省苏州市2016届高三调研测试数学试题Word版含解析
苏州市2016届高三调研测试数学Ⅰ试题 2016.1参考公式:样本数据x 1,x 2,…,x n 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1. 设全集U ={x | x ≥2,x ∈N },集合A ={x | x 2≥5,x ∈N },则U A ð= ▲ . 【答案】{2}.【命题立意】本题旨在考查集合补集的运算.考查概念的理解和运算能力,难度较小.【解析】∵U ={x | x ≥2,x ∈N },A ={x | x 2≥5,x ∈N }∴{}{}22U A x x x N =≤<∈=ð. 2. 复数i(0)12ia z a =<+,其中i 为虚数单位,||za 的值为 ▲ . 【答案】-5.【命题立意】本题旨在考查复数的运算,复数模的几何意义.考查概念的理解和运算能力,难度较小.【解析】()()()i 1-2i i 2i 12i 12i 1-2i 5a a a a z +===++,||z ==,故5a =-. 【方法技巧】本题主要考查复数代数形式的基本运算以及复数模的考查,进行复数的除法的运算需要分子、分母同时乘以分母的共轭复数,同时将i 2改为-1.在复数的除法运算中,共轭复数是一个重要的概念,通过它能将分母中的虚数单位i 化去,因),())((22R b a b a bi a bi a ∈+=-+,所以复数bi a z +=的共轭复数为bi a z -=,这与实数中的互为有理化因数类似,所以在复数的四则运算中,可类比二次根式的运算,从而更好地掌握共轭复数.3. 双曲线22145x y -=的离心率为 ▲ .【答案】32.【命题立意】本题旨在考查双曲线的离心率.考查概念的理解和计算,难度中等.【解析】双曲线22145x y -=,224,5a b == ,由222c a b =+ 得2459c =+= ,22293,42c e e a ===.4. 若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为 ▲ . 【答案】2.【命题立意】本题旨在考查统计数据的平均数与方差.考查概念的理解和运算能力,难度较小.【解析】9+8+x+10+11=10×5,解得x=12,这对应的方差为s 2=15(12+22+22+02+12)=2. 5. 已知向量a =(1,2),b =(x ,-2),且a ⊥(a -b ),则实数x = ▲ . 【答案】9.【命题立意】本题旨在考查平面向量的坐标运算与数量积.考查运算和推理能力,难度中等. 【解析】()1,4a b x -=- ,∵()a ab ⊥-∴()0a a b ⋅-= ,即()11240x -⨯+⨯= ,解得9x =.6. 阅读算法流程图,运行相应的程序,输出的结果为 ▲ . 【答案】53. 【命题立意】本题旨在考查算法的流程图中的直到型循环结构及其应用.考查运算和推理能力,难度较小.【解析】由算法的流程图,开始时x=1,y=1,此时z=2,满足z<6;接下来有x=1,y=2,z=3,此时满足z<6;接下来有x=2,y=3,z=5,此时满足z<6;接下来有x=3,y=5,z=8此时满足z>6;结束循环,输出53y x =.(第6题图)7. 函数22,0,()1,0x x f x x x ⎧⎪=⎨-+>⎪⎩≤的值域为 ▲ .【答案】(,1]-∞.【命题立意】本题旨在考查分段函数,函数的图象与性质,函数的值域.考查数形结合的数学思想,难度较小.【解析】当0x ≤时,()2x f x =,∵()f x 在0x ≤单调增,∴()01f x <≤;当0x >时,()21f x x =-+,∵()f x 在0x ≤单调减,()1f x ≤,综上所述()f x 的值域为(,1]-∞.8. 连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),则事件“两次向上的数字之和等于7”发生的概率为 ▲ . 【答案】16. 【命题立意】本题旨在考查古典概型及其应用.考查运算和推理能力,难度较小. 【解析】设连续2次抛掷一枚骰子两次向上的数字用(x,y )表示,两次向上的数字共有36种,两次向上的数字之和等于7的情况有6种:(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),根据古典概型的概率公式可得所求的概率为61366P ==. 9. 将半径为5的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为123,,r r r ,则123r r r ++= ▲ . 【答案】5.【命题立意】本题旨在考查圆锥的几何性质与展开图.考查计算和推理能力,难度中等. 【解析】半径为5的圆分割成面积之比为1:2:3的三个扇形,三个扇形的圆心角分别为2,,33πππ ,由弧长公式l r α=,所对的弧长分别为510,,533πππ,三个扇形作为三个圆锥的底面半径的和为151055233ππππ⎛⎫++=⎪⎝⎭. 10. 已知θ是第三象限角,且2sin 2cos 5θθ-=-,则sin cos θθ+= ▲ . 【答案】3125-. 【命题立意】本题旨在考查同角三角函数的基本关系.考查概念的理解和运算能力,难度较小.【解析】由同角三角函数的基本关系得()()222sin 2cos 15sin cos 12θθθθ⎧-=-⎪⎨⎪+=⎩,解得7cos 25θ=-,3cos 5θ=,∵θ是第三象限角∴3cos 5θ=(舍),∴7cos 2524sin 25θθ⎧=-⎪⎪⎨⎪=-⎪⎩,31sin cos 25θθ+=-. 11. 已知{}n a 是等差数列,a 5=15,a 10=-10,记数列{}n a 的第n 项到第n +5项的和为T n ,则n T 取得最小值时的n 的值为 ▲ . 【答案】5或6.【命题立意】本题旨在考查等差数列的通项公式与求和公式.考查数列的单调性,难度较小. 【解析】由题意可知11415910a d a d +=⎧⎨+=-⎩ ,解得135,5a d ==-,由等差数列的前n 项和公式得()()563405155165302n n n a a T n n n ++==-+-=- ,16530n T n =- ,12345135105754515T T T T T =>=>=>=>=,6789154575105T T T T =<=<=<=<所以当n=5或n=6时,n T 取得最小值.12. 若直线1:l y x a =+和直线2:l y x b =+将圆22(1)(2)8x y -+-=分成长度相等的四段弧,则22a b += ▲ . 【答案】18.【命题立意】本题旨在考查直线与圆的方程的应用,考查转化与化归,分析解决问题的能力.难度较大.【解析】设直线1:l y x a =+与圆相交于A,B 点,直线2:l y x b =+与圆相交于C,D 点.由题意可知AD BC ⊥ ,圆心到直线1:l y x a =+的距离为2,2d == ,解得1a =或1a =-;圆心到直线2:l y x b =+的距离为2,2d == ,解得1b =或1b =-,∵a b ≠∴11a b ⎧=⎪⎨=-⎪⎩或11b a ⎧=⎪⎨=-⎪⎩,2218a b +=.13. 已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则0200(1)sin 2x x x += ▲ . 【答案】12. 【命题立意】本题旨在考查三角函数的图象与性质,函数与方程,函数的零点及其应用.考查函数与方程思想,数形结合的数学思想,难度中等.【解析】设函数()sin f x x =的图象关于y 轴对称,直线y kx =过原点,所以函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,即函数()sin f x x = 与直线()0y kx k =>在[)0,+∞上有三个公共点,此三个交点中的横坐标最大值为0x且在3,2ππ⎛⎫⎪⎝⎭内相切,其切点为()00,A x y ,03,2x ππ⎛⎫∈ ⎪⎝⎭ .由于()/3cos ,,2f x x x ππ⎛⎫=-∈ ⎪⎝⎭ ,所以000sin cos x x x =, 002200000020sin (1)sin 2sin 12sin cos cos cos x x x x x x x x x =+⎛⎫+⋅ ⎪⎝⎭2200112cos 2sin 2x x ==+. 【方法技巧】1.对于易画出图象的函数,判断零点的个数或零点所在的区间时,可转化为判断函数图象与x 轴的交点问题.2.对于函数)()()(x g x h x f -=的零点问题,可采用数形结合的方法,将函数)(x f 的零点问题转化为函数)(x h ,)(x g 的图象的交点问题,作出两个函数的图象,从而判断零点所在的大致区间或零点个数. 14. 已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 ▲ .【答案】4. 【命题立意】本题旨在考查基本不等式及换元法.考查推理论证的能力与计算能力.难度较大.【解析】由14ab =得14a b = ,2221211424122711411451451a b b b b b b b b b b b +---+--=+==+---+--+-令71b t -=则22714949111418451427183427b t b b t t t t-+=+=-≥+-+--+-+-当且仅当2t =即214等号成立. 二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)在ABC ∆中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos cos 2cos a B+b AC c=.(1)求角C 的大小;(2)若ABC ∆的面积为,6a b +=,求边c 的长. 【答案】(1)3π;(2) 【命题立意】本题旨在考查余弦定理,“边、角”互化思想.考查运算推理能力,难度较小.【解析】(1)由余弦定理知22222222cos cos 222a c b b c a c a B+b A a b c ac bc c+-+-=⋅+⋅==3分c o s c o s 1a B +b A c ∴=,1cos 2C ∴=, …………………………………5分又()0,C ∈π,3C π=. ………………………7分(2)1sin 2ABCS ab C ==8ab ∴=, ………………………10分 又6a b +=,()22222cos 312c a b ab C a b ab ∴=+-=+-=, …………………13分c ∴=…………………………………14分 16. (本小题满分14分)如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中, E ,F 分别是AB ,BC 的中点,A 1C 1 与B 1D 1交于点O .(1)求证:A 1,C 1,F ,E 四点共面;(2)若底面ABCD 是菱形,且OD ⊥A 1E ,求证:OD ⊥平面A 1C 1FE .【答案】(1)略;(2)略.【命题立意】本题旨在考查空间直线平行.线与平面垂直的判定,考查空间想象.推理论证能力.难度中等.【解析】(1)连接AC ,因为E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线, 所以EF ∥AC . ………………………2分由直棱柱知AA 1=CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC ∥A 1C 1. ………………5分所以EF ∥A 1C 1,故A 1,C 1,F ,E 四点共面.……………7分 (2)连接BD ,因为直棱柱中1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D ,所以1DD ⊥11A C . ………………………9分 因为底面A 1B 1C 1D 1是菱形,所以11A C 11B D ⊥. 又1DD 111=B D D ,所以11AC ⊥平面11BB D D . ………………………11分因为OD ⊂平面11BB D D ,所以OD ⊥11A C . 又OD ⊥A 1E ,11AC 11A E A =,11AC ⊂平面A 1C 1FE ,1A E ⊂平面A 1C 1FE ,所以OD ⊥平面A 1C 1FE . ………………………14分 17. (本小题满分14分)图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C 为半圆弧ACB 的中点,渠宽AB 为2米.(1)当渠中水深CD 为0.4米时,求水面的宽度;(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?(第16题图)1EAB【答案】(1)1.6米;(2. 【命题立意】本题旨在考查圆的方程,切线方程,利用导数求函数的最值,考查数学模型的实际应用,分析与解析问题的能力.难度中等.【解析】(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立如图所示的直角坐标系xOy ,因为AB =2米,所以半圆的半径为1米,则半圆的方程为221(11,0)x y x y +=-≤≤≤. ………………………3分 因为水深CD =0.4米,所以OD =0.6米,在Rt △ODM中,0.8DM ==(米). ……………………5分 所以MN =2DM =1.6米,故沟中水面宽为1.6米. ……………………6分 (2)为使挖掉的土最少,等腰梯形的两腰必须与半圆相切,设切点为(c o s ,s i n )(0)2P θθθπ-<<是圆弧BC 上的一点,过P 作半圆的切线得如图所示的直角梯形OCFE ,得切线EF 的方程为cos sin 1x y θθ+=. ……………………8分 令y =0,得1(,0)c o s E θ,令y =-1,得1s i n (,1)c o s F θθ+-.设直角梯形OCFE 的面积为S ,则11s i n 2s i()()1c o s c o s c o S C F O E O C θθθθθ++=+⋅=+⨯= (02θπ-<<). ……………………10分22cos cos (2sin )(sin )12sin cos cos S θθθθθθθ-+-+'==,令0S '=,解得6θπ=-, 当26θππ-<<-时,0S '<,函数单调递减;当06θπ-<<时,0S '>,函数单调递增. ………………………12分所以6θπ=-时,面积S .此时1sin()6cos()6CF π+-==π-14分 18. (本小题满分16分)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆于另一点M .(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB PM ⋅的取值范围.【答案】(1)7;(2)①略②()9,+∞. 【命题立意】本题旨在考查直线与椭圆的位置关系,直线方程,平面向量的位置关系与线性运算,考查分析与解决问题的能力和运算能力等.难度中等.【解析】解:(1)由题意(0,1),(0,1)B C -,焦点F ,当直线PM 过椭圆的右焦点F 时,则直线PM11y +=-,即1y x -,联立,221,41,3x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩解得1,7x y ⎧=⎪⎪⎨⎪=⎪⎩或0,1x y =⎧⎨=-⎩(舍),即1)7M .……………2分 连BF ,则直线BF11y=,即0x +=, 而2BF a ==,1|72d +===. ……………………4分故11222MBFSBF d =⋅⋅=⋅=. ……………………5分(2)解法一:①设(,2)P m -,且0m ≠,则直线PM 的斜率为1(2)10k m m---==--,则直线PM 的方程为11y x m=--, 联立2211,1,4y x mx y ⎧=--⎪⎪⎨⎪+=⎪⎩化简得2248(1)0x x m m ++=,解得22284(,)44m m M m m --++, (8)分所以22212412148844m m m k m m m m ---+===--+,21(2)30k m m --==--, 所以1231344k k m m ⋅=-⋅=-为定值. …………………10分② 由①知,(,3)PB m =-,2322222841212(,2)(,)4444m m m m m PM m m m m m ---+=--+=++++,所以324222212121536(,3)(,)444m m m m m PB PM m m m m ++++⋅=-⋅-=+++, ……………13分 令244m t +=>,故22(4)15(4)367887t t t t PB PM t t t t-+-++-⋅===-+,因为87y t t=-+在(4,)t ∈+∞上单调递增,所以8874794PB PM t t ⋅=-+>-+=,即PB PM ⋅的取值范围为(9,)+∞……16分解法二:①设点()000(,)0M x y x ≠,则直线PM 的方程为0011y y x x +=-,令2y =-,得00(,2)1xP y --+. ……………7分所以0101y k x -=,()020*******y k x x y +--==-+, 所以()()()()2200001222000031313113441y y y y k k x x x y --+-=⋅===--(定值). ………………10分 ②由①知,00(,3)1x PB y =+,0000(,2)1xPM x y y =+++, 所以()()()()20000000200023212311x y x x PB PM x y y y y y +⎛⎫⋅=+++=++ ⎪+++⎝⎭ =()()()()()()200000200412723211y y y y y y y -+-+++=++. ………………13分令()010,2t y =+∈,则()()8187t t PB PM t tt-+⋅==-++,因为87y t t=-++在(0,2)t ∈上单调递减,所以8872792PB PM t t ⋅=-++>-++=,即PB PM ⋅的取值范围为(9,)+∞.…16分【方法技巧】 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题. 19. (本小题满分16分) 已知数列{}n a 满足:112a =,113n n n a a p nq -+-=⋅-,*n ∈N ,,p q ∈R . (1)若0q =,且数列{}n a 为等比数列,求p 的值; (2)若1p =,且4a 为数列{}n a 的最小项,求q 的取值范围. 【答案】(1)0p =或1p =;(2)2734q ≤≤.【命题立意】本题旨在考查数列的递推关系式,累加法,等比数列的定义,数列求和,数列的增减性.考查函数与方程思想,以及转化和化归能力,难度中等. 【解析】(1)0q =,113n n n a a p -+-=⋅,∴2112a a p p =+=+,321342a a p p =+=+, 由数列{}n a 为等比数列,得21114222p p ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,解得0p =或1p =.……………3分当0p =时,1n n a a +=,∴12n a = 符合题意; ……………………4分当1p =时,113n n n a a -+-=, ∴()()()121321n n n a a a a a a a a -=+-+-++-=()12111131133322132n n n ----++++=+=⋅-,∴13n na a +=符合题意. ………………………6分 (2)法一:若1p =,113n n n a a nq -+-=-,∴()()()121321n n n a a a a a a a a -=+-+-++-=()()211331212n n q -++++-+++-⎡⎤⎣⎦=()11312n n n q -⎡⎤--⎣⎦. …………8分 ∵数列{}n a 的最小项为4a ,∴对*n ∀∈N ,有()()141131271222n n n q a q -⎡⎤--=-⎣⎦≥恒成立,即()1232712n n n q ----≥对*n ∀∈N 恒成立. …………………10分当1n =时,有2612q --≥,∴136q ≥; 当2n =时,有2410q --≥,∴125q ≥;当3n =时,有186q --≥,∴3q ≥;当4n =时,有00≥,∴q ∈R ; …………………12分当5n ≥时,2120n n -->,所以有1232712n q n n ----≤恒成立,令()123275,12n n c n n n n --=∈--N *≥,则()()()2112222123540169n n n n n n c c n n -+--+-=>--, 即数列{}n c 为递增数列,∴5274q c =≤. …………………15分 综上所述,2734q ≤≤. ……………………16分 法二:因为1p =,113n n n a a nq -+-=-,又4a 为数列{}n a 的最小项,所以43540,0,a a a a -⎧⎨-⎩≤≥即930,2740,q q -⎧⎨-⎩≤≥所以2734q ≤≤. ……………………………………………………8分 此时2110a a q -=-<,32320a a q -=-<,所以1234a a a a >>≥. ………………………………………………………10分当4n ≥时,令1n n n b a a +=-,141127232304n n n b b q --+-=⋅-⋅->≥,所以1n n b b +>,所以4560b b b <<<≤,即4567a a a a <<<≤. ………………………………………………………14分综上所述,当2734q ≤≤时,4a 为数列{}n a 的最小项,即所求q 的取值范围为27[3,]4. ………………………………………………………16分20.(本小题满分16分)已知函数()e (21)xf x x ax a =--+(a ∈R ),e 为自然对数的底数.(1) 当a =1时,求函数()f x 的单调区间;(2) ①若存在实数x ,满足()0f x <,求实数a 的取值范围;②若有且只有唯一整数0x ,满足0()0f x <,求实数a 的取值范围.【答案】(1)()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增.;(2)①()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭U ;②32e e e 35[,1)3,22⎛⎤ ⎥⎝⎦.【命题立意】本题旨在考查导数及其应用,导数的运算与导数的几何意义,函数的单调性,考查分类讨论思维,分离参数构造函数求取值范围.难度中等.【解析】(1)当a =1时,()()e 211x f x x x =--+,()()e '211x f x x =+-,……1分由于'(0)0f =,当(0,)x ∈+∞时,e 1,211x x >+>,∴'()0f x >, 当(,0)x ∈-∞时,0<e 1,211x x <+<,∴'()0f x <,所以()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增. ………………4分 (2)①由()0f x <得()()e211xx a x -<-.当1x =时,不等式显然不成立; 当1x >时,()e 211x x a x ->-;当1x <时,()e 211x x a x -<-. ………………6分记()g x =()e 211x x x --,()()()()()()222e e e '()232112111x x x g x x xx x x x x =-+---=--,∴ ()g x 在区间()0-∞,和3,2⎛⎫+∞ ⎪⎝⎭上为增函数,()0,1和31,2⎛⎫⎪⎝⎭上为减函数.∴ 当1x >时,32e 342a g ⎛⎫>= ⎪⎝⎭,当1x <时,()01a g <=. …………………8分综上所述,所有a 的取值范围为()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭U . …………………9分②由①知1a <时,0(,1)x ∈-∞,由0()0f x <,得0()g x a >,又()g x 在区间()0-∞,上单调递增,在()0,1上单调递减,且()01g a =>, ∴()1g a -≤,即e 32a ≥,∴e312a <≤. …………………12分 当324e a >时,0(1,)x ∈+∞,由0()0f x <,得0()g x a <,又()g x 在区间312⎛⎫ ⎪⎝⎭,上单调递减,在3,2⎛⎫+∞ ⎪⎝⎭上单调递增,且32e 342g a ⎛⎫=< ⎪⎝⎭,∴()()23g a g a<⎧⎪⎨⎪⎩≥,解得32e 532a <e ≤. ……………………15分综上所述,所有a 的取值范围为32e e e 35[,1)3,22⎛⎤ ⎥⎝⎦. …………………16分数学II (附加题)21.【选做题】A .[选修4—1:几何证明选讲](本小题满分10分)如图,四边形ABDC 内接于圆.BD =CD ,过C 点的圆的切线与AB 的延长线交于E 点。
(解析版)江苏省苏锡常镇四市2016届高三教学情况调研(二)英语试题解析(解析版)Word版含解析
第一卷(选择题共85分)第一部分:听力(共两节,满分20分) 略第二部分: 英语知识运用(共两节, 满分35分)第一节:单项选择(共15小题;每小题1分, 满分15分)请认真阅读下面各题, 从题中所给的A、B、C、D四个选项中, 选出最佳选项, 并在答题纸上将该项涂黑。
21. In public places, improved child-care facilities will benefit ________ genders, not just women.A. bothB. allC. eitherD. other【答案】A【解析】试题分析:句意:在公共场所,改善托儿设施将受益于两性,而不仅仅是妇女。
A.both两个;B. all所有,指三者以上;C. either二选一;D. other其他的,gender是性别,结合句意可知是男女,故选A。
考点:考查代词的用法。
22. Competition for entry to these programs is keen, and applicants need above-average grades togain ________.A. ambitionB. preferenceC. admissionD. competence【答案】C【解析】试题分析:句意:参与这个项目的竞争非常激烈,申请人需要高于平均水平的成绩,才能获得许可。
A. ambition雄心,野心;B. preference偏好;C. admission许可;D. competence能力,胜任。
根据题意可知,选C。
考点:考查名词的用法。
23. The manager has not made up his mind yet ________ who will be in charge of the project.A. as toB. next toC. owing toD. according to【答案】A【解析】试题分析:句意:经理就关于谁将负责这一项目一事还没有下定决心。
江苏省苏锡常镇四市2016届高三3月教学情况调研(一)语文试卷
2015~2016学年度苏锡常镇四市高三教学情况调研(一)语文Ⅰ2016.3一、语言文字运用(15分)1. 在下面句子的空缺处依次填入词语,最恰当的一组是(3分)(1)近来一些消费者向记者感慨:▲ 的进口红酒市场,已经乱到让他们真假难辨。
(2)文学艺术的▲,让李清照能更深切细微地感知生活,体验美感。
(3)最近几起民间借贷危机事件的爆发,似乎预示着整个“高利贷”行业的危机将▲ 。
A. 鱼龙混杂熏染不期而遇B. 鱼目混珠熏陶不期而至C. 鱼龙混杂熏陶不期而至D. 鱼目混珠熏染不期而遇2.下列各句中,没有语病的一项是(3分)A.只要你校同意你参加这次培训,报销交通费,安排食宿,办理相关证明,发放培训资料等事宜我们可以帮助解决。
B.航空发动机是为飞行器提供动力的热力机械,需要在高温、高压、高速旋转的条件下工作,是经典力学在工程应用上逼近极限的一门技术。
C. 随着“一带一路”战略构想的提出,契合沿线国家的共同需求,为沿线国家优势互补、开放发展开启了新的机遇之窗。
D.在核试验场等待氢弹试验结果时,物理学家陈能宽脱口背诵起了诸葛亮的《出师表》,于敏也跟着背起来,在场的人无不为之动容。
3.“梅兰竹菊”被称为“四君子”,下列诗句与咏赞“四君子”无关..的一项是(3分)A.红衣落尽暗香残,叶上秋光白露寒。
B.疏影横斜水清浅,暗香浮动月黄昏。
C.宁可抱香枝头老,不随黄叶舞秋风。
D.未出土时先有节,便凌云去也无心。
4.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)幽默不是嘴巴上的那点本事,而是生活的态度。
▲①幽默不同于讽刺。
②幽默不是这样,至少是平等的。
③以幽默的态度对待生活、世界、人类,这种生活态度是最高的人生智能。
④幽默最根本的一点,是源于对人生的荒诞性采取乐观的态度。
⑤讽刺的人有一种优越感,把别人看得低,把自己看得高。
⑥如果它在讽刺一种现象,这种现象必然也包括他自己。
A.④①⑤②⑥③B.①④⑤⑥②③C.③①⑤②⑥④D.⑤①②⑥④③5.对右边这幅漫画的寓意,理解最贴切的一项是(3分)A.无论何时,都要关爱弱小的生命。
2016-2017学年度苏锡常镇四市高三教学情况调研(一)(含答案)
2016—2017学年度苏锡常镇四市高三教学情况调研(一)数 学 Ⅰ 试 题 2017.3一、填空题1、已知集合{}1,2,3,4,5,6,7U =,{}2650,Z M x x x x =-+∈≤,U C M = .2、若复数z 满足2iz i i++=(i 为虚数单位),则z = . 3、函数1()ln(43)f x x =-的定义域为 .4、下图是给出的一种算法,则该算法输出的结果是 .(第4题图)5、某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的 样本,其中高一年级抽20人,高三年级抽10人.则该校高二年级学生人数为 .6、已知正四棱锥的底面边长是2,则该正四棱锥的体积为 . 7、从集合{}1,2,3,4中任取两个不同的数,则这两个数的和为3的倍数的概率为 .8、在平面直角坐标系xOy 中,已知抛物线28y x =的焦点恰好是双曲线22213x y a -=的右 焦点,则双曲线的离心率为 .9、设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,且254a a +=,则8a 的 值为 .10、在平面直角坐标系xOy 中,过点(1,0)M 的直线l 与圆225x y +=交于,A B 两点,其中A 点在第一象限,且2BM MA =,则直线l 的方程为 .11、在△ABC 中,已知1,2,60AB AC A ==∠=,若点P 满足AP AB AC λ=+,且1BP CP ⋅=,则实数λ的值为 .12、已知sin 3sin()6παα=+,则tan()12πα+= .13、若函数211,12()ln ,1xx f x x x x ⎧-<⎪⎪=⎨⎪⎪⎩≥,则函数1()8y f x =-的零点的个数为 .14、若正数,x y 满足1522x y -=,则3322x y x y +--的最小值为 .二、解答题15、在△ABC 中,,,a b c 分别为角,,A B C 的对边.若cos 3,cos 1a B b A ==,且6A B π-=.(1)求边c 的长;(2)求角B 的大小.16、如图,在斜三棱柱111ABC A B C -中,侧面11AAC C 是菱形,1AC 与1AC 交于点O ,E 是棱AB 上一点,且OE ∥平面11BCC B . (1)求证:E 是AB 中点;(2)若11AC A B ⊥,求证:1AC BC ⊥.17、某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:2m ),高为h (单位:m )(,S h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢 支架的长度和记为l .(1)请将l 表示成关于α的函数()l f α=; (2)问当α为何值l 最小,并求最小值.18、在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点D 作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜率之和为定值.19、已知函数()(1)ln f x x x ax a =+-+(a 为正实数,且为常数). (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若不等式(1)()0x f x -≥恒成立,求实数a 的取值范围.20、已知n 为正整数,数列{}n a 满足0n a >,2214(1)0n n n a na ++-=,设数列{}n b 满足 2nn n a b t=.(1)求证:数列为等比数列; (2)若数列{}n b 是等差数列,求实数t 的值;(3)若数列{}n b 是等差数列,前n 项和为n S ,对任意的N n *∈,均存在N m *∈,使得24211816n m a S a n b -=成立,求满足条件的所有整数1a 的值.2016-2017学年度苏锡常镇四市高三教学情况调研(一)数学参考答案2017.3一、填空题.1.{}6,7 23.()3,1 1.4⎛⎫+∞ ⎪⎝⎭4.245.3006.437.138.29.2 10.1y x =- 11.1或14-12.4 13.414.1二、解答题:本大题共6小题,共计90分. 15.解:(1)(法一)在△ABC 中,由余弦定理,cos 3a B =,则22232a c b a ac +-=,得2226a c b c +-=;① ……2分cos 1b A =,则22212b c a b bc+-=,得2222b c a c +-=,② ……4分①+②得:228c c =,4c =. ……7分 (法二)因为在△ABC 中,πA B C ++=,则sin cos sin cos sin()sin(π)=sin A B B A A B C C +=+=-, ……2分 由sin sin sin a b c A B C ==得:sin sin a C A c =,sin sin b CB c=,代入上式得: ……4分 cos cos 314c a B b A =+=+=. ……7分(2)由正弦定理得cos sin cos tan 3cos sin cos tan a B A B Ab A B A B===, ……10分又2tan tan 2tan tan()1tan tan 13tan A B B A B A B B --===++,……12分解得tan B =π)(0,B ∈,π6B =. ……14分16.(1)连接1BC ,因为OE ∥平面11BCC B ,OE ⊂平面1ABC ,平面11BCC B I 平面11ABC BC =,所以OE ∥1BC . ……4分因为侧面11AA C C 是菱形,11AC AC O = ,所以O 是1AC 中点, ……5分 所以11AE AOEB OC ==,E 是AB 中点. ……7分 (2)因为侧面11AA C C 是菱形,所以1AC 1AC ⊥, ……9分又11AC A B ⊥,111AC A B A = ,11,AC A B ⊂面1A BC ,所以1AC ⊥面1A BC ,…12分 因为BC ⊂平面1A BC ,所以1AC BC ⊥. ……14分17.解:(1)过D 作DH BC ⊥于点H ,则DC B α∠=(π02α<<), DH h =, 设AD x =, 则sin h DC α=,tan h CH α=,2tan h BC x α=+, ……3分 因为S=12()2tan h x x h α++⋅,则 tan S hx h α=-; ……5分则21()2()sin tan S l f DC AD h h ααα==+=+- (π02α<<); ……7分 (2)2222cos 112cos ()()sin sin sin f h h αααααα---'=⋅-=⋅, ……8分 令212cos ()0-'=⋅=f h αα,得π=α. ……9分所以, min π()3Sl f h ==+. ……12分答:(1)l 表示成关于α的函数为21()()sin tan S l f h h ααα==+- (π02α<<); CBDA(第17题图)H……11分1(第16题图)(2)当π3α=时,lSh+. ……14分18.解:(1)由题1c =,c e a ==所以a =1b =. ……2分 所以椭圆C 的方程为22 1.2x y +=……4分(2)当直线PQ 的斜率不存在时,不合题意; ……5分当直线PQ 的斜率存在时,设直线PQ的方程为(y k x ,……6分 代入2222x y +=,得2222(12))4820k x k k x k k +-++++=, ……8分 设11(,)P x y ,22(,)Q x y ,则:4(81)0k ∆=-+>,18k <-,1,2x =, ……9分所以12x x +=212248212k k x x k ++⋅=+,……11分又AP AQ k k +==422k k ==-所以直线AP ,AQ 的斜率之和为定值1. ……16分19.解:(1)()(1)ln f x x x ax a =+-+,1()ln +x f x x a x+'=-. ……1分 因()f x 在(0,)+∞上单调递增,则()0f x '≥,1ln +1a x x+…恒成立. 令1()ln +1g x x=+,则21()x g x -'=, ……2分 因此,min ()(1)2g x g ==,即02a <….……6分……4分(2)当02a <…时,由(1)知,当(0,)x ∈+∞时,()f x 单调递增. ……7分又(1)0f =,当(0,1)x ∈,()0f x <;当(1,)x ∈+∞时,()0f x >. ……9分 故不等式(1)()0x f x -…恒成立. ……10分 若2a >,ln (1)1()x x a x f x x+-+'=,设()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则2e 1a x -=>. …12分 当2(1,e )a x -∈时,()0p x '<,()p x 单调递减,则()(1)20p x p a <=-<,则()()0p x f x x'=<,所以当2(1,e )a x -∈时,()f x 单调递减, ……14分 则当2(1,e )a x -∈时,()(1)0f x f <=,此时(1)()0x f x -<<,矛盾. ……15分 因此,02a <….……16分20.解:(1)由题意得2214(1)n n n a na ++=,因为数列{}n a 各项均正,得22141n n a a n n +=+2=, ……2分2=,所以是以1a 为首项公比为2的等比数列.……4分(2)由(1112n a -=⋅,12n n a a -=22114n n n n na a nb t t -==, ……5分 如果数列{}n b 是等差数列,则2132b b b =+,……6分得:2212023111123244423a a a t t t--⋅⋅=+,即2316148t t t =+,则216480t t -+=, 解得 14t =,212t =. ……7分当14t =时,214n a nb =,2221111(1)444n n a n a n a b b ++-=-=,数列{}n b 是等差数列,符合题意;……8分当2t =12时,2143n na nb =⋅,2222111241244242211434343162a a ab b a +=+==⋅⋅⋅,2132133428231b a a ==⋅⋅,2432b b b +≠,数列{}n b 不是等差数列,2t =12不符合题意;……9分 综上,如果数列{}n b 是等差数列,4t =.……10分(3)由(2)得214n a nb =,对任意的n ∈N *,均存在m ∈N *,使24211816n m a S a n b -=,则4242111(1)816424a n n a m a n +⋅-=,所以214na m =. ……12分当12a k =,k ∈N *,此时2244k nm k n ==,对任意的n ∈N *,符合题意; ……14分当121a k =-,k ∈N *,当1n =时,22441144k k m k k -+==++. 不合题意. …15分综上,当12,a k k =∈N *,对任意的n ∈N *,均存在m ∈N *,使24211816n m a S a n b -=.……16分(第Ⅱ卷 理科附加卷)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分.A .(选修4-1 几何证明选讲). 解:连结OC ,由于l 是圆的切线,故OC l ⊥,因为AD l ⊥,所以AD ∥OC , ……2分 因为AB 是圆O 的直径,6AB =,3BC =, 所以60∠=∠=︒ABC BCO ,则DAC ∠=906030ACO ∠=︒-︒=︒. ……4分23cos30AC =⋅︒=sin 30DC AC =︒=,9cos302DA AC =︒=. ……7分 由切割线定理知,2DC DA DE =⋅, ……9分所以32DE =,则3AE =. ……10分 B .(选修4—2:矩阵与变换)解:设M =a b c d ⎡⎤⎢⎥⎣⎦,M 11811a b c d +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,M 122242a b c d ---+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦, ……3分 ABC D O(第21—A 题图)E882224a b c d a b c d +=⎧⎪+=⎪⎨-+=-⎪⎪-+=⎩,,,,解得6244a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,,,,即M =6244⎡⎤⎢⎥⎣⎦. ……5分(2)则令特征多项式62()(6)(4)8044f λλλλλ--==---=--, ……8分解得1282λλ==,.矩阵M 的另一个特征值为2. ……10分C .(选修4—4:坐标系与参数方程)解:(1)圆1O 的直角坐标方程为224x y +=,①……3分由2πcos()24ρθ--=,得22(cos sin )2-+=ρρθθ,……4分222()2x y x y +-+=,故圆2O 的直角坐标方程为222220x y x y +---=,② ……6分 (2)②-①得经过两圆交点的直线为10x y +-=, ……8分该直线的极坐标方程为cos sin 10ρθρθ+-=. ……10分D .(选修4—5:不等式选讲)解:因为:2(111)(313131)a b c +++++++…, ……7分由于3a b c ++=6,当且仅当1a b c ===时6. ……10分【必做题】第22,23题,每小题10分,计20分.22.解:(1)设AC ,BD 交于点O ,在正四棱锥P ABCD -中,OP ⊥平面ABCD . 又2PA AB ==,所以OP =以O 为坐标原点,DA ,AB方向分别是x 轴、y 轴正方向,建立空间直角坐标系O xyz -,如图: ……1分 则(1,1,0)A -,(1,1,0)B ,(1,1,0)C -,(1,1,0)D --,P故211(,,3333OM OA AM OA AP =+=+=- ,111(,,0)333ON OB == , ……3分所以2(0,,33MN =-,(1,1,PC =- ,cos ,2MN PC MN PC MN PC⋅<>==所以MN 与PC 所成角的大小为π6. ……5分(2)(1,1,PC =- ,(2,0,0)CB = ,42(,,0)33NC =- . 设(,,)x y z =m 是平面PCB 的一个法向量,则0PC ⋅= m ,0CB ⋅=m ,可得0,0,x y x ⎧-+-=⎨=⎩ 令0x =,y =1z =,即=m , ……7分设111(,,)x y z =n 是平面PCN 的一个法向量,则0PC ⋅= n ,0CN ⋅=n ,可得111110,20,x y x y ⎧-+-=⎨-+=⎩ 令12x =,14y =,1z ==n , …9分cos ,33⋅<>===m nm n m n ,则二面角N PC B --的余弦值为33……10分23.证明:(1)因为πsintan 2nn n a θ=. 当n 为偶数时,设2n k =,2222πsintan sin πtan 02kk n k k a a k θθ===⋅=,0n a =.…1分 当n 为奇数时,设21n k =-,21(21)ππsintan sin(π)tan 22n n n k k a a k θθ--===-⋅. 当2k m =时,21ππsin(2π)tan sin()tan tan 22n n n n k a a m θθθ-==-⋅=-⋅=-,此时1212n m -=- ,121221tan (1)tan (1)tan n n m nn n k a a θθθ---==-=-=-.……2分 当21k m =-时,213π3πsin(2π)tan sin()tan tan 22n n n n k a a m θθθ-==-⋅=-⋅=,C y z此时1222n m -=-, 122221tan (1)tan (1)tan n n m nn n k a a θθθ---===-=-. 综上,当n 为偶数时,0n a =;当n 为奇数时,12(1)tan n n n a θ-=-. ……3分(2)当1n =时,由(1)得:212tan S a a θ=+=,121sin21(1)tan 2n n θθ+⎡⎤+-⎣⎦=()2211sin 21tan sin cos tan 2cos θθθθθθ+=⋅⋅=. 故1n =时,命题成立……5分假设n k =时命题成立,即1221sin21(1)tan 2k kk S θθ+⎡⎤=⋅+-⎣⎦. 当1n k =+时,由(1)得:2(1)22122221k k k k k k S S a a S a ++++=++=+=12211sin21(1)tan (1)tan 2k k k k θθθ++⎡⎤⋅+-+-⎣⎦ ……6分=122112sin 21(1)tan (1)tan 2sin 2k k k k θθθθ++⎡⎤⋅+-+-⋅⎢⎥⎣⎦ =2222112sin 21(1)tan ()2tan sin 2tan k k θθθθθ++⎡⎤⋅+-⋅-+⎢⎥⎣⎦ 2222221cos 1sin 21(1)tan ()2sin sin k k θθθθθ++⎡⎤=⋅+-⋅-+⎢⎥⎣⎦ =()2221sin21(1)tan 2k k θθ++⋅+-⋅ 即当1n k =+时命题成立. ……9分 综上所述,对正整数n 命题成立. ……10分。
苏州高三数学参考答案
苏州市2016届高三调研测试数学Ⅰ试题 2016.1参考答案与评分标准一、填空题1.{2} 2.-53.32 4.2 5.9 6.537. (,1]-∞ 8.16 9.5 10.3125- 11.5或6 12.18 13.12 14.4二、解答题15.解:(1)由余弦定理知22222222cos cos 222a c b b c a c a B +b A a b c ac bc c+-+-=⋅+⋅==,…3分cos cos 1a B+b A c ∴=,1cos 2C ∴=, …………………………………5分又()0,C ∈π,3C π=. ………………………7分(2)1sin 2ABC S ab C ==8ab ∴=, ………………………10分又6a b +=,()22222cos 312c a b ab C a b ab ∴=+-=+-=, …………………13分c ∴=…………………………………14分 16.解:(1)连接AC ,因为E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线, 所以EF ∥AC . ………………………2分由直棱柱知AA 1=CC 1,所以四边形AA 1C 1C 为平行四边形,所以AC ∥A 1C 1. ………………5分所以EF ∥A 1C 1,故A 1,C 1,F ,E 四点共面.……………7分 (2)连接BD ,因为直棱柱中1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D ,所以1DD ⊥11AC . ………………………9分 因为底面A 1B 1C 1D 1是菱形,所以11AC 11B D ⊥. 又1DD 111=B D D ,所以11AC ⊥平面11BB D D . ………………………11分因为OD ⊂平面11BB D D ,所以OD ⊥11AC . 又OD ⊥A 1E ,11AC 11A E A =,11AC ⊂平面A 1C 1FE ,1A E ⊂平面A 1C 1FE ,所以OD ⊥平面A 1C 1FE . ………………………14分 17.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立如图所示的直角坐标系xOy ,(第16题图)1EAB因为AB =2米,所以半圆的半径为1米,则半圆的方程为221(11,0)x y x y +=-≤≤≤. ………………………3分 因为水深CD =0.4米,所以OD =0.6米,在Rt △ODM中,0.8DM =(米). ………………………5分 所以MN =2DM =1.6米,故沟中水面宽为1.6米. ………………………6分 (2)为使挖掉的土最少,等腰梯形的两腰必须与半圆相切,设切点为(cos ,sin )(0)2P θθθπ-<<是圆弧BC 上的一点,过P 作半圆的切线得如图所示的直角梯形OCFE ,得切线EF 的方程为cos sin 1x y θθ+=. ……………………8分令y =0,得1(,0)cos E θ,令y =-1,得1sin (,1)cos F θθ+-.设直角梯形OCFE的面积为S ,则11sin 2sin ()()1cos cos cos S CF OE OC θθθθθ++=+⋅=+⨯=(02θπ-<<). ……………………10分 22cos cos (2sin )(sin )12sin cos cos S θθθθθθθ-+-+'==,令0S '=,解得6θπ=-, 当26θππ-<<-时,0S '<,函数单调递减;当06θπ-<<时,0S '>,函数单调递增. ………………………12分所以6θπ=-时,面积S此时1sin()6cos()6CF π+-==π-……………14分 18.解:(1)由题意(0,1),(0,1)B C -,焦点F ,当直线PM 过椭圆的右焦点F 时,则直线PM11y +=-,即1y =-,联立,221,41,x y y ⎧+=⎪⎪⎨⎪=-⎪⎩解得1,7x y ⎧=⎪⎪⎨⎪=⎪⎩或0,1x y =⎧⎨=-⎩(舍),即1)7M . ………………2分 连BF ,则直线BF11y+=,即0x +=, 而2BF a ==,172d -===. ………………………4分故11222MBFSBF d =⋅⋅=⋅= ………………………5分 (2)解法一:①设(,2)P m -,且0m ≠,则直线PM 的斜率为1(2)10k m m---==--,则直线PM 的方程为11y x m=--,联立2211,1,4y x mx y ⎧=--⎪⎪⎨⎪+=⎪⎩化简得2248(1)0x x m m ++=,解得22284(,)44m m M m m --++, ………8分 所以22212412148844m m m k m m m m ---+===--+,21(2)30k m m --==--, 所以1231344k k m m ⋅=-⋅=-为定值. …………………10分② 由①知,(,3)PB m =-,2322222841212(,2)(,)4444m m m m m PM m m m m m ---+=--+=++++, 所以324222212121536(,3)(,)444m m m m m PB PM m m m m ++++⋅=-⋅-=+++, …………………13分令244m t +=>,故22(4)15(4)367887t t t t PB PM t t t t-+-++-⋅===-+, 因为87y t t=-+在(4,)t ∈+∞上单调递增,所以8874794PB PM t t ⋅=-+>-+=,即PB PM ⋅的取值范围为(9,)+∞.………16分解法二:①设点()000(,)0M x y x ≠,则直线PM 的方程为0011y y x x +=-,令2y =-,得00(,2)1xP y --+. …………………7分所以0101y k x -=,()020*******y k x x y +--==-+,所以()()()()2200001222000031313113441y y y y k k x x x y --+-=⋅===--(定值). …………………10分 ②由①知,00(,3)1x PB y =+,0000(,2)1xPM x y y =+++, 所以()()()()20000000200023212311x y x x PB PM x y y y y y +⎛⎫⋅=+++=++ ⎪+++⎝⎭ =()()()()()()200000200412723211y y y y y y y -+-+++=++. …………………13分令()010,2t y =+∈,则()()8187t t PB PM t tt-+⋅==-++,因为87y t t=-++在(0,2)t ∈上单调递减, 所以8872792PB PM t t ⋅=-++>-++=,即PB PM ⋅的取值范围为(9,)+∞. ……16分19.解:(1)0q =,113n n n a a p -+-=⋅,∴2112a a p p =+=+,321342a a p p =+=+, 由数列{}n a 为等比数列,得21114222p p ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,解得0p =或1p =. ………………3分当0p =时,1n n a a +=,∴12n a = 符合题意; ………………………4分当1p =时,113n n n a a -+-=, ∴()()()121321n n n a a a a a a a a -=+-+-++-=()12111131133322132n n n ----++++=+=⋅-,∴13n na a +=符合题意. ………………………6分 (2)法一:若1p =,113n n n a a nq -+-=-,∴()()()121321n n n a a a a a a a a -=+-+-++-=()()211331212n n q -++++-+++-⎡⎤⎣⎦=()11312n n n q -⎡⎤--⎣⎦. ………………8分 ∵数列{}n a 的最小项为4a ,∴对*n ∀∈N ,有()()141131271222n n n q a q -⎡⎤--=-⎣⎦≥恒成立, 即()1232712n n n q ----≥对*n ∀∈N 恒成立. ………………………10分当1n =时,有2612q --≥,∴136q ≥; 当2n =时,有2410q --≥,∴125q ≥;当3n =时,有186q --≥,∴3q ≥;当4n =时,有00≥,∴q ∈R ; ………………………12分 当5n ≥时,2120n n -->,所以有1232712n q n n ----≤恒成立,令()123275,12n n c n n n n --=∈--N*≥,则()()()2112222123540169n n n n n n c c n n -+--+-=>--, 即数列{}n c 为递增数列,∴5274q c =≤. ………………………15分 综上所述,2734q ≤≤. ………………………16分 法二:因为1p =,113n n n a a nq -+-=-,又4a 为数列{}n a 的最小项,所以43540,0,a a a a -⎧⎨-⎩≤≥即930,2740,q q -⎧⎨-⎩≤≥所以2734q ≤≤. …………………………………………………………8分 此时2110a a q -=-<,32320a a q -=-<,所以1234a a a a >>≥. …………………………………………………………10分当4n ≥时,令1n n n b a a +=-,141127232304n n n b b q --+-=⋅-⋅->≥,所以1n n b b +>,所以4560b b b <<<≤,即4567a a a a <<<≤. …………………………………………………………14分综上所述,当2734q ≤≤时,4a 为数列{}n a 的最小项,即所求q 的取值范围为27[3,]4. …………………………………………………………16分20.解:(1)当a =1时,()()e 211x f x x x =--+,()()e '211x f x x =+-, ……………1分由于'(0)0f =,当(0,)x ∈+∞时,e 1,211x x >+>,∴'()0f x >, 当(,0)x ∈-∞时,0<e 1,211x x <+<,∴'()0f x <,所以()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增. …………………4分 (2)①由()0f x <得()()e211xx a x -<-.当1x =时,不等式显然不成立; 当1x >时,()e 211x x a x ->-;当1x <时,()e 211x x a x -<-. …………………6分记()g x =()e 211x x x --,()()()()()()222e e e '()232112111x x x g x x xx x x x x =-+---=--,∴ ()g x 在区间()0-∞,和3,2⎛⎫+∞ ⎪⎝⎭上为增函数,()0,1和31,2⎛⎫⎪⎝⎭上为减函数.∴ 当1x >时,32e 342a g ⎛⎫>= ⎪⎝⎭,当1x <时,()01a g <=. ……………………8分综上所述,所有a 的取值范围为()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭. ………………………9分②由①知1a <时,0(,1)x ∈-∞,由0()0f x <,得0()g x a >,又()g x 在区间()0-∞,上单调递增,在()0,1上单调递减,且()01g a =>, ∴()1g a -≤,即e 32a ≥,∴e312a <≤. ………………………12分 当324e a >时,0(1,)x ∈+∞,由0()0f x <,得0()g x a <,又()g x 在区间312⎛⎫⎪⎝⎭,上单调递减,在3,2⎛⎫+∞ ⎪⎝⎭上单调递增,且32e 342g a ⎛⎫=< ⎪⎝⎭,∴()()23g a g a<⎧⎪⎨⎪⎩≥,解得32e 532a <e ≤. ………………………15分综上所述,所有a 的取值范围为32e e e 35[,1)3,22⎛⎤ ⎥⎝⎦. ………………………16分苏州市2016届高三调研测试数学Ⅱ试题 2016.1参考答案与评分标准一、选做题21.A .(1)证明:因为BD =CD ,所以∠BCD =∠CBD .因为CE 是圆的切线,所以∠ECD =∠CBD . …………………………………2分 所以∠ECD =∠BCD ,所以∠BCE =2∠ECD .因为∠EAC =∠BCE ,所以∠EAC =2∠ECD . …………………………………5分 (2)解:因为BD ⊥AB ,所以AC ⊥CD ,AC =AB . …………………………………6分 因为BC =BE ,所以∠BEC =∠BCE =∠EAC ,所以AC =EC . ………………………7分 由切割线定理得EC 2=AE ⋅BE ,即AB 2=AE ⋅( AE -AB ),B .解:设a b c d ⎡⎤=⎢⎥⎣⎦M ,则1133113a b c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,故3,3a b c d =⎧⎨=⎩++. …………………3分 19215a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故29,215a b c d -=⎧⎨-=⎩++. …………………………………6分 联立以上两方程组解得1,4,3,6a b c d =-==-=,故M =1436-⎡⎤⎢⎥-⎣⎦. …………………10分 C .解:由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得曲线C 1的普通方程y =33x (x ≥0); …………………3分 由ρ=2,得ρ2=4,得曲线C 2的直角坐标方程是x 2+y 2=4. …………………………6分联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1与C 2的交点坐标为()3,1. …………………………10分D .(1)证明:由a >0,有f (x )=⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪x +1a -(x -a )=1a+a ≥2,所以f (x )≥2. …………………………4分(2)解:f (3)=⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212. …………………………6分当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3. …………………………8分综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212. …………………………10分22.解:(1)记“该网民购买i 种商品”为事件,2,3i A i =,则:33211()4324P A =⨯⨯=,232132132111()(1)(1)(1)43243243224P A =⨯⨯-+⨯-⨯+-⨯⨯=, ………………………3分 所以该网民至少购买2种商品的概率为 3211117()()42424P A P A +=+=. 答:该网民至少购买2种商品的概率为1724. …………………………5分(2)随机变量的可能取值为0,1,2,3,3211(0)(1)(1)(1)43224P ==-⨯-⨯-=,又211(2)()24P P A ===, 31(3)()4P P A ===, 所以11111(1)1242444P ==---=.所以随机变量的概率分布为:…………………………8分故数学期望1111123012324424412E =⨯+⨯+⨯+⨯=. …………………………10分23.解:(1)当k =4时,第4层标注数字依次为1234,,,x x x x ,第3层标注数字依次为12,x x +2334,x x x x ++,第2层标注数字依次为1232342,2x x x x x x ++++,所以0x =123433x x x x +++. …………………………2分因为0x 为2的倍数,所以1234x x x x +++是2的倍数,则1234,,,x x x x 四个都取0或两个取0两个取1或四个都取1,所以共有1+24C +1=8种标注方法. …………………………4分(2)当k =11时,第11层标注数字依次为1211,,,x x x ,第10层标注数字依次为12,x x +231011,,x x x x ++,第9层标注数字依次为123234910112,2,,2x x x x x x x x x ++++++,以此类推,可得0x =1291102103101011x C x C x C x x +++++. …………………………6分因为28374651010101010101045,120,210,252C C C C C C C =======均为3的倍数,所以只要191102101011x C x C x x +++是3的倍数,即只要121011x x x x +++是3的倍数. ………………8分所以121011,,,x x x x 四个都取0或三个取1一个取0,而其余七个349,,,x x x 可以取0或1,这样共有(1+34C )72⨯=640种标注方法. …………………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015—2016学年度苏锡常镇四市高三教学情况调研(一) 数学I 2016.3
一、填空题;本大题共14小矗,每小题5分,共计70分.请把答案填写在答题卡相应的位 置上.
1.已知集合A={x|x<3.x ∈R},B={x|x>l ,x ∈R ),则A B = . 2.已知i 为虚数单位,复数z 满足
43z
i i
+=,则复数z 的模为 . 3.一个容量为n 的样本,分成若干组,已知某组的频致 和频率分别为40,0.125.则n 的值为 .
4.在平面直角坐标系xOy 中,已知方程22
42x y m m
--+=1 表示双曲线,则实数m 的取值范围为 .
5.为强化安全意识,某校拟在周一至周五的五天中随机 选择2天进行紧急疏散演练,则选择的2天恰好为连 续2天的概率是 .
6.执行如图所示的程序框图,输出的x 值为 .
7.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,P 是棱BB 1的 中点,则四棱锥P - AA 1C 1C 的体积为 .
8.设数列{an}是首项为l ,公差不为零的等差数列,S n 为 其前n 项和,若S 1,S 2,S 3成等比数列,则数列{a n }的公差 为 。
9.在平面直角坐标系xOy 中,设M 是函数f(x)= 24
x x + (x>0)的图象上任意一点,过M
点向直线y=x 和y 轴作垂线,垂足分别是A ,B ,则MA MB ⋅=
.
10,若一个钝角三角形的三内角成等差数列,且最大边与最小边之比为m ,则实数m 的 取值范围是 .
11.在平面直角坐标系xOy 中,已知过原点O 的动直线,与圆C :x 2+y 2
-6x+5=0相交 于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线,的距离为
12.已知函数f(x)= 224,04
,log (2),46
x x x x x ⎧-+≤<⎨-≤≤⎩若存在x 1,x 2∈R ,当0≤x 1<4≤x 2≤6时,
f(x 1)=f(x 2).则x 1f(x 2)的取值范围是 。
13.已知函数f(x)=2x-1
+a,g(x)= bf(1-x).其中a ,b ∈R ,若关于x 的不等式 f(x)≥g(x)的解的最小值为2,则a 的取值范围是 .
14.若实数x ,y 满足x 2
-4xy+4y 2
+4x 2y 2
=4,则当x+2y 取得最大值时,
x
y
的值为 . 二、解答题,本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出 文字说明、证明过程或演算步骤.
15.(本小题满分14分)
已知函数f(x)= sin(2x 十
3π一6
π
). (l)求函数f(x)的最小正周期和单调递增区间: (2)当x ∈[一
6π,3
π
]时,试求f(x)的最值,并写出取得最值时自变量x 的值.
16.(本小题满分14分)
如图,已知四棱锥P-ABCD 的底面ABCD 是平行四边形,PA ⊥平面ABCD ,M 是AD 的中点,N 是PC 的中点.
(1)求证:MN ∥平面PAB;
(2)若平面PMC ⊥平面PAD .求证:CM ⊥AD.
17.(本小题满分14分)
如图是某设计师设计的Y 型饰品的平面图,其中支架OA ,OB ,OC 两两
成120°,
OC=l ,AB=OB+OC ,且OA> OB .现设计师在支架OB
上装点普通珠宝,普通珠宝的价值为M ,且M 与OB 长成
正比,比例系数为k (k 为正常数):在△AOC 区域(阴影区域) 内镶嵌名贵珠宝,名贵珠宝的价值为N,且N 与△AOC 的
面积成正比,比例系数为.设OA =x ,OB=y. (1)求y 关于工的函数解析式,并写出x 的取值范围; (2)求N-M 的最大值及相应的x 的值.
18.(本小题满分16分)
在平面直角坐标系xOy 中,已知椭圆C: 22
22x y a b
+=1(a>b>0)过点(1, 32).离心率为12.
(1)求椭圆C 的方程;
(2)设直线,与椭圆C 交于A ,B 两点.
①若直线,过椭圆C 的右焦点,记△ABP 三条边所在直线的斜率的乘积为t . 求t 的最大值;
OA 2+ OB 2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由. 19.(本小题满分16分)
设函数f(x)=x -2e x
- k(x-2lnx)(k 为实常数.e=2.71828…是自然对数的底数). (1)当k=l 时,求函数f(x)的最小值:
(2)若函数f(x)在区间(0,4)内存在三个极值点,求k 的取值范围.
20.(本小题满分16分)
已知首项为1的正项数列{an}满足2
2
115
,*.2
n n n n a a a a n N +++<
∈ (1)若a 2=
3
2
,a 3=x ,a 4=4.求x 的取值范围; (2)设数列{a n }是公比为q 的等比数列,S n 为数列{a n }前n 项的和, 若
11
22
n n n S S S +<<, n ∈N*,求q 的取值范围: (3)若a 1,a 2,…,a k (k ≥3)成等差数列,且a 1+a 2+…+a k =120.求正整数k 的最小 值,以及k 取最小值时相应数列a 1,a 2,…,a k 的公差.
2015—2016学年度苏锡常镇四市高三教学情况调研(一)
数学II (附加题) 2016.3
21.【选做题】在A ,B ,C ,D 四小题中只能选做两题,每小题10分,共计20分.请在 答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4-1:几何证明选讲
如图,直线AB 与⊙O 相切于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为
C ,且AD=3DC ,O 的直径.
B .选修4-2:矩阵与变换
设M=1012 ⎡⎤⎢⎥ ⎣⎦.N=102⎡⎤
⎢⎥⎢⎥0 1⎣⎦
,试求曲线y-=sinx 在矩阵MN 变换下得到的曲线方程.
C .选修4-4:坐标系与参数方程
在平面直角坐标系xOy
中,直线,的参数方程为1322
x t y ⎧=+⎪⎪
⎨⎪=⎪⎩ (t 为参数),以原点O 为
极点,x 轴的正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2以sin θ.设P 为
直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的直角坐标.
D .选修4-5:不等式选讲
己知函数
xf(x)+g(x)>a 成立,求 实数a 的取值范围.
【必做题】第22题.第23题.每题10分,共计20分.请在答题卡指定区域内作答,解 答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)
如图,在长方体ABCD-A 1B 1C 1D 1中,AA l =AB=2AD=2,E 为AB 的中点,F 为D 1E 上的一点,D 1F=2FE.
(l)证明:平面DFC ⊥平面D 1EC;
(2)求二面角A-DF-C 的大小.
23.(本小题满分10分)
在杨辉三角形中,从第3行开始,除l 以外, 其它每一个数值是它上面的二个数值之和,这 三角形数阵开头几行如右图所示.
(l)在杨辉三角形中是否存在某一行,且该行 中三个相邻的数之比为3:4:57若存在, 试求出是第几行;若不存在,请说明理由: (2)已知n .r 为正整数.且n ≥r+3.
求证:任何四个相邻的组合数r
n C ,1
r n C +,
2r n C +,3r n C +不能构成等差数列.
11
12。