线性代数第五章答案
(完整版)线性代数第五章特征值、特征向量试题及答案

第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
线性代数第五章 课后习题及解答

第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT-因此,A 的属于1λ的所有特征向量为:TTk k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任意常数)。
线性代数第五章答案

0 0 1
解
| AE|
0 0
1 1
0 0
( 1)2( 1)2
1 0 0
故 A 的特征值为121 341 对于特征值121 由
A E 1100
0 1 1 0
0 1 1 0
1100 ~ 1000
0 1 0 0
0 1 0 0
1000
得方程(AE)x0 的基础解系 p1(1 0 0 1)T p2(0 1 1 0)T 向量 p1 和 p2 是对应于特征值 121 的线性无关特征值向量
k1a1k2a2 knranrl1b1l2b2 lnrbnr0
记
k1a1k2a2 knranr(l1b1l2b2 lnrbnr)
则 k1 k2 knr 不全为 0 否则 l1 l2 lnt 不全为 0 而
l1b1l2b2 lnrbnr0 与 b1 b2 bnt 线性无关相矛盾
因此 0 是 A 的也是 B 的关于0 的特征向量 所以 A 与 B 有公共的特征值 有公
a2,
a3)
1
0 1
1
1 1
0
1
0111
解 根据施密特正交化方法
b1
a1
0111
b2
a2
[b1,a2] [b1,b1]
b1
1 3
2311
b3
a3
[b1,a3] [b1,b1]
b1
[b2,a3] [b2,b2]
b2
1 5
4331
2 下列矩阵是不是正交阵:
1
(1)
1 2 1 3
对于特征值39 由
A
9E
8 2 3
2 8
3
333
线性代数第五章(答案)

线性代数第五章(答案)第五章相似矩阵及二次型一、是非题(正确打√,错误打×)1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ )2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ )3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ )4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ )5.若A 是正交阵, Ax y =,则x y =. ( √ )6.若112=n n n n x x A ,则2是n n A ?的一个特征值. ( × )7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × )8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × )9. 矩阵A 有零特征值的充要条件是0=A . ( √ )10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ )11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ )13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ )15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ )16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ )17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ )18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ )19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵。
线性代数第五章练习及解答

对应于同一特征值的不同特征向量的非零线性组合是 A 的特征向量。 证明由本节第 3 题可知属于不同特征值的特征向量的和不是特征向量,而属于同一特征值的不同特征 向量满足
Aξ1 = λξ1 , Aξ2 = λξ2 , 于是 A(k1 ξ1 + k2 ξ2 ) = k1 Aξ1 + k2 Aξ2 = λ(k1 ξ1 + k2 ξ2 ) 由定义命题得证 11.λ ̸= 0 是矩阵 A 的特征值,求 A−1 , A⋆ 的特征值。
证明:因为 A + E = A + AAT = A(A + E )T ,那么 |A + E |(1 − |A|) = 0,于是 |A + E | = 0, 即 λ = −1 是 A 的一个特征值
5. 设 A1 , A2 , A3 是 3 个非零的 n 阶矩阵 n ≥ 3 , 满足 A2 i = Ai (i = 1, 2, 3), 且 Ai Aj = O (i ̸= j ; j = 1, 2, 3)
1
若 Ai 有非零和 1 的特征值 λ,由于 λ2 − λ = 0, 故有且仅有 0 和 1 为特征值
(2) 若 Aj ξ = ξ, 那么 Ai (Aj ξ ) = Ai ξi , 即 Ai ξ = 0ξ (3) 反证,若三个向量线性相关不妨设 α3 = k1 α1 + k2 α2
那么 A3 α3 = k1 A3 α1 + k2 A3 α2 , 由 (2) 知 A3 αj = 0(j = 1, 2) 那么 α3 = 0 与特征向量的定义矛盾 2 0 0 2 0 0 与 B = 6. 已知矩阵 A = 0 0 y 0 0 1 0 0 −1 0 1 x P −1 AP = B
线代习题答案第五章

习题51.写出下列二次型f 的矩阵A 和矩阵表示式,并求二次型的秩。
(1)2212313121323(,,)35224f x x x x x x x x x x x =+−+−(2)2221231231323(,,)26f x x x x x x x x x x =+−++(3)2221234123121323(,,,)2f x x x x x x x x x x x x x =−++−+(4)123121323(,,)43f x x x x x x x x x =−+1.解:(1)f 的矩阵表示为311102125−⎛⎞⎜⎟−−⎜⎟⎜⎟−⎝⎠=A 其矩阵表示式为()112312323311(,,)102125x f x x x x x x x x −⎛⎞⎛⎞⎜⎟⎜⎟=−−⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠由于()3R =A ,故()3R f =。
(2)f 的矩阵表示为10310221312⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠A =其矩阵表示式为()1123123231031(,,)0221312x f x x x x x x x x ⎛⎞⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟−⎝⎠由于()3R =A ,故()3R f =。
(3)f 的矩阵表示为1110221110211102000⎛⎞−⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎝⎠A =其矩阵表示式为()1212341234341110221110(,,,)211102000x x f x x x x x x x x x x ⎛⎞−⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎜⎟⎜⎟⎝⎠由于()3R =A ,故()3R f =。
(4)f 的矩阵表示为3022120231022⎛⎞−⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎜⎟⎝⎠A =其矩阵表示式为()11231232330221(,,)20231022x f x x x x x x x x ⎛⎞−⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟−⎜⎟⎝⎠由于()3R =A ,故()3R f =。
线性代数第五章答案解析

第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T=E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量.对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A 的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T)32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T)31 ,32 ,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T)2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x . 因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T .令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ, 从而A =P ΛP -1, A k =P Λk P -1. 因此ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161 ⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫ ⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p .当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3=(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x yy y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为a 11=1, 2111a a a -=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性: (1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A . 因为0211<-=a , 0116112>=--, 038||<-=A ,所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4.解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A . 因为 0111>=a , 043111>=--, 06902031211>=--, 024>=A ,所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U T U , 即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使P T AP =diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ, 即A =P ΛP T ,其中λ1, λ2, ⋅ ⋅ ⋅, λn 均为正数. 令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1, A =P Λ1Λ1T P T .再令U =Λ1T P T , 则U 可逆, 且A =U T U .。
线性代数第五章习题答案

则 H 是正交阵. 综上得证 H 是对称的正交阵.
4 . 设 A 与 B 都是正交阵, 证明 AB 也是正交阵.
证明: 因为 A, B 是正交阵, 故 A−1 = AT , B −1 = B T .
(AB ) (AB ) = B T AT AB = B −1 A−1 AB = E .
T
故 AB 也是正交阵.
9 . 设 A 为正交阵, 且 |A| = −1, 证明 λ = −1 是 A 的特征值.
证明: 即需证明 λ = −1 满足特征方程 |A − λE | = 0, 即 |A + E | = 0. 因为
|A + E | = A + AT A = E + AT |A| = − AT + E = − (A + E )T = − |A + E | , (|A| = −1) (A 为正交阵)
(A2 − 3A + 2E )p = (λ2 − 3λ + 2)p.
又由 A2 − 3A + 2E = O , 代入上式得
(λ2 − 3λ + 2)p = 0.
而特征向量 p = 0, 所以
λ 2 − 3λ + 2 = 0 .
解得 λ = 1 或 2. 得证 A 的特征值只能取 1 或 2. 一个有缺陷的证明: 由 A2 − 3A + 2E = O , 得 (A − 2E )(A − E ) = O . 两边取行列式得
的全部特征值向量.
−1 0 1 1 0 0
0 1 −1
−1 1 0 0 0 2 0
0 , −1
得基础解系 p3 = 1 , 故 k3 p3 (k3 = 0) 是对应于 λ3 = 9 的全部特征值向量. 2 (3) 由 −λ |A − λE | = 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a解 根据施密特正交化方法⎪⎪⎪⎭⎫⎝⎛-==110111a b⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交阵证明 因为 H T (E 2xx T )T E2(xx T )T E 2(xx T )TE 2(x T )T x T E 2xx T所以H 是对称矩阵因为H T H HH (E 2xx T )(E 2xx T )E 2xx T 2xx T (2xx T )(2xx T ) E 4xx T 4x (x T x )x T E 4xx T 4xx T E所以H 是正交矩阵4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A B 是n 阶正交阵, 故A 1A T B1B T(AB )T (AB )B T A T AB B 1A 1AB E故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A故A 的特征值为1(三重). 对于特征值1 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A得方程(A E )x 0的基础解系p 1(1 1 1)T 向量p 1就是对应于特征值1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A故A 的特征值为10 2139.对于特征值10, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A得方程A x 0的基础解系p 1(1 1 1)T 向量p 1是对应于特征值10的特征值向量.对于特征值21, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A得方程(A E )x 0的基础解系p 2(1 1 0)T 向量p 2就是对应于特征值21的特征值向量 对于特征值39, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A得方程(A 9E )x 0的基础解系p 3(1/2 1/2 1)T 向量p 3就是对应于特征值39的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(001010010100||+-=----=-λλλλλλλE A故A 的特征值为121 341.对于特征值121, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A得方程(A E )x 0的基础解系p 1(1 0 0 1)T p 2(0 11 0)T 向量p 1和p 2是对应于特征值121的线性无关特征值向量. 对于特征值341, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A得方程(A E )x 0的基础解系p 3(1 0 0 1)T p 4(0 1 1 0)T 向量p 3和p 4是对应于特征值341的线性无关特征值向量.6 设A 为n 阶矩阵 证明A T 与A 的特征值相同 证明 因为|A TE ||(A E )T ||A E |T |A E |所以A T 与A 的特征多项式相同 从而A T 与A 的特征值相同 7 设n 阶矩阵A 、B 满足R (A )R (B )n 证明A 与B 有公共的特征值 有公共的特征向量证明 设R (A )r R (B )t 则r t n若a 1 a 2 a n r 是齐次方程组A x 0的基础解系 显然它们是A 的对应于特征值0的线性无关的特征向量类似地 设b 1 b 2 b n t 是齐次方程组B x 0的基础解系 则它们是B的对应于特征值0的线性无关的特征向量由于(n r )(n t )n(nr t )n 故a 1 a 2 a nrb 1 b 2b n t 必线性相关 于是有不全为0的数k 1 k 2 k n rl 1 l 2l nt使k 1a 1k 2a 2 k n r a nr l 1b 1l 2b 2l n r b nr记 k 1a 1k 2a 2k n r a n r(l 1b 1l 2b 2 l n r b n r ) 则k 1 k 2 k n r 不全为0 否则l 1 l 2l n t 不全为0 而l 1b 1l 2b 2l n r b nr与b 1 b 2 b n t 线性无关相矛盾因此 0是A 的也是B 的关于0的特征向量 所以A 与B 有公共的特征值 有公共的特征向量8 设A 23A 2E O 证明A 的特征值只能取1或2证明 设是A 的任意一个特征值 x 是A 的对应于的特征向量 则(A 23A2E )x2x 3x 2x (232)x 0因为x0所以2320即是方程2320的根也就是说1或29设A为正交阵且|A|1证明1是A的特征值证明因为A为正交矩阵所以A的特征值为1或1(需要说明)因为|A|等于所有特征值之积又|A|1所以必有奇数个特征值为1即1是A的特征值10设0是m阶矩阵A m n B n m的特征值证明也是n阶矩阵BA的特征值证明设x是AB的对应于0的特征向量则有(AB)x x于是B(AB)x B(x)或BA(B x)(B x)从而是BA的特征值且B x是BA的对应于的特征向量11已知3阶矩阵A的特征值为1 2 3求|A35A27A|解令()3527则(1)3(2)2(3)3是(A)的特征值故|A35A27A||(A)|(1)×(2)×(3)3231812已知3阶矩阵A的特征值为1 23求|A*3A2E|解因为|A|12(3)60所以A可逆故A*|A|A16A1A*3A2E6A13A2E令()6132则(1)1(2)5(3)5是(A)的特征值故|A*3A2E||6A13A2E||(A)|(1)×(2)×(3)15(5)2513设A、B都是n阶矩阵且A可逆证明AB与BA相似证明取P A则P 1ABP A 1ABA BA即AB 与BA 相似 14设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化求x解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为l 1=6, l 2=l 3=1.因为A 可相似对角化, 所以对于l 2=l 3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设l 是特征向量p 所对应的特征值, 则(A -lE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得l =-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A得A 的特征值为1231由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A E )2 所以齐次线性方程组(A E )x 0的基础解系只有一个解向量 因此A不能相似对角化16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A由λλλλ-------=-20212022E A (1)(4)(2)得矩阵A 的特征值为122134.对于12, 解方程(A 2E )x 0 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x得特征向量(1 2 2)T 单位化得T )32 ,32 ,31(1=p对于21, 解方程(A E )x 0即0120202021321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x得特征向量(2 1 2)T 单位化得T)32 ,31 ,32(2-=p对于34, 解方程(A 4E )x 0即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x得特征向量(2 2 1)T单位化得T)31 ,32 ,32(3-=p于是有正交阵P (p 1 p 2 p 3) 使P 1AP diag(2 1 4)(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A由λλλλ-------=-542452222E A (1)2(10),得矩阵A 的特征值为121310.对于121, 解方程(A E )x 0 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x得线性无关特征向量(2 1 0)T 和(2 0 1)T 将它们正交化、单位化得T0) 1, ,2(511-=pT5) ,4 ,2(5312=p对于310, 解方程(A 10E )x 0 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x 得特征向量(1 2 2)T单位化得T)2 ,2 ,1(313--=p于是有正交阵P (p 1 p 2 p 3) 使P 1AP diag(1 1 10) 17设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似求x y 并求一个正交阵P 使P 1AP解 已知相似矩阵有相同的特征值 显然54y 是的特征值故它们也是A 的特征值 因为4是A 的特征值 所以)4(9524242425|4|=-=---+---=+x x E A解之得x 4已知相似矩阵的行列式相同 因为100124242421||-=-------=Ayy2045||-=-=Λ所以20y100 y5对于5 解方程(A5E )x 0 得两个线性无关的特征向量(1 0 1)T (12 0)T 将它们正交化、单位化得T)1 ,0 ,1(211-=pT)1 ,4 ,1(2312-=p 对于4 解方程(A4E )x 0 得特征向量(2 1 2)T单位化得T)2 ,1 ,2(313=p于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P 使P 1AP18. 设3阶方阵A 的特征值为1222 31; 对应的特征向量依次为p 1(0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A .解 令P (p 1 p 2 p 3) 则P 1AP diag(2 2 1)A P P1因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=24435433219 设3阶对称阵A 的特征值为112130 对应1、2的特征向量依次为p 1(1 2 2)T p 2(2 1 2)T 求A解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A 则A p 12p 1 A p 22p 2 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x ①⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x②再由特征值的性质 有x 1x 4x 61230 ③由①②③解得 612131x x --= 6221x x = 634132x x -=642131x x -= 654132x x +=令x 60得311-=x x 20 323=x 314=x 325=x因此⎪⎪⎭⎫ ⎝⎛-=022********A 20. 设3阶对称矩阵A 的特征值162333 与特征值16对应的特征向量为p 1(1 1 1)T 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A因为16对应的特征向量为p 1(1 1 1)T 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ①233是A 的二重特征值, 根据实对称矩阵的性质定理知R (A3E )1 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A因为R (A3E )1 所以x 2x 43x 5且x 3x 5x 63 解之得x 2x 3x 51 x 1x 4x 64因此⎪⎪⎭⎫⎝⎛=411141114A .21 设a (a 1 a 2 a n )Ta 10 A aa T(1)证明0是A 的n1重特征值证明 设是A 的任意一个特征值 x 是A 的对应于的特征向量 则有A x x2x A 2x aa T aa T x a T a A xa T ax 于是可得2a T a 从而0或a T a设12n 是A 的所有特征值 因为A aa T 的主对角线性上的元素为a 12 a 22a n 2 所以a 12a 22 a n 2a T a12n这说明在12n 中有且只有一个等于a T a 而其余n 1个全为0 即0是A 的n 1重特征值(2)求A 的非零特征值及n 个线性无关的特征向量解 设1a T a2n因为A a aa T a (a T a )a 1a 所以p 1a 是对应于1a T a 的特征向量对于2n0 解方程A x 0 即aa T x 0因为a 0 所以a T x 0 即a 1x 1a 2x 2 a n x n 0 其线性无关解为p 2(a 2 a 1 0 0)T p 3(a 3 0 a 10)Tp n (a n 0 0a 1)T因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p22设⎪⎪⎭⎫⎝⎛-=340430241A 求A 100解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A得A 的特征值为112535对于11 解方程(A E )x 0 得特征向量p 1(1 0 0)T 对于15 解方程(A 5E )x 0 得特征向量p 2(2 1 2)T 对于15 解方程(A5E )x 0 得特征向量p 3(1 2 1)T令P (p 1 p 2 p 3) 则 P 1AP diag(1 5 5)A P P 1A 100P 100P1因为100diag(1 5100 5100)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A⎪⎪⎭⎫⎝⎛-=100100100500050150123 在某国 每年有比例为p 的农村居民移居城镇 有比例为q 的城镇居民移居农村 假设该国总人口数不变 且上述人口迁移的规律也不变 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n y n 1)(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A解 由题意知 x n 1x n qy n px n (1p )x n qy n y n1y n px n qy n px n (1q )y n可用矩阵表示为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111因此⎪⎭⎫⎝⎛--=q p q p A 11(2)设目前农村人口与城镇人口相等 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x 求⎪⎭⎫ ⎝⎛n n y x解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ得A 的特征值为11 2r 其中r 1p q对于11 解方程(A E )x 0 得特征向量p 1(q p )T对于1r 解方程(A rE )x 0 得特征向量p 2(1 1)T令⎪⎭⎫⎝⎛-==11) ,(21p q P p p 则 P 1AP diag(1 r )A P P1A n P nP 1于是11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(2124. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求(A )A 105A 9解 由)5)(1(3223||--=----=-λλλλλE A得A 的特征值为1125对于11 解方程(A E )x 0 得单位特征向量T )1 ,1(21 对于15 解方程(A5E )x 0得单位特征向量T)1 ,1(21-于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P 使得P 1AP diag(1 5)从而A P P 1A k P kP1因此(A )P ()P 1P (1059)P 1P [diag(1 510)5diag(1 59)]P 1P diag(4 0)P1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求(A )A 106A 95A 8解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P使得P 1AP diag(1 1 5) A P P1 于是(A )P ()P1P (106958)P1P [8(E )(5E )]P 1P diag(1 1 58)diag(2 0 4)diag(6 4 0)P 1P diag(12 0 0)P 1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033*********223123161 ⎪⎪⎭⎫⎝⎛----=4222112112. 25. 用矩阵记号表示下列二次型:(1) f x 24xy 4y 22xz z 24yz解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f x 2y 27z 22xy 4xz 4yz解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f x 12x 22x 32x 422x 1x 24x 1x 32x 1x 46x 2x 34x 2x 4解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26 写出下列二次型的矩阵 (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A(2)xx x ⎪⎪⎭⎫⎝⎛=987654321)(T f解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A27. 求一个正交变换将下列二次型化成标准形:(1) f 2x 123x 223x 334x 2x 3解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A 由)1)(5)(2(320230002λλλλλλλ---=---=-E A得A 的特征值为122531.当12时, 解方程(A 2E )x 0 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A得特征向量(1 0 0)T 取p 1(1 0 0)T 当25时, 解方程(A 5E )x 0 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A得特征向量(0 1 1)T 取T )21 ,21,0(2=p .当31时, 解方程(A E )x 0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A得特征向量(0 1 1)T取T)21 ,21 ,0(3-=p 于是有正交矩阵T (p 1 p 2 p 3)和正交变换x T y 使f 2y 125y 22y 32.(2) f x 12x 22x 32x 422x 1x 22x 1x 42x 2x 32x 3x 4解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为1123341.当11时, 可得单位特征向量T)21 ,21 ,21 ,21(1--=p当23时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p当341时, 可得线性无关的单位特征向量T)0 ,21 ,0 ,21(3=pT)21 ,0 ,21 ,0(4=p于是有正交矩阵T ( p 1 p 2 p 3 p 4)和正交变换x T y使fy 123y 22y 32y 42.28 求一个正交变换把二次曲面的方程3x 25y 25z 24xy4xz 10yz 1化成标准方程解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A由)11)(2(552552223||---=-------=-λλλλλλλE A 得A 的特征值为122113对于12 解方程(A2E )x 0 得特征向量(4 1 1)T 单位化得)231 ,231 ,234(1-=p对于211 解方程(A 11E )x 0得特征向量(1 22)T 单位化得)32 ,32 ,31(2-=p对于30 解方程A x 0 得特征向量(0 1 1)T 单位化得)21 ,21 ,0(3=p于是有正交矩阵P (p 1 p 2 p 3) 使P 1AP diag(2 11 0) 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234使原二次方程变为标准方程2u 211v 2129. 明: 二次型f x T A x 在||x ||1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT1diag(12n )成立 其中12n 为A 的特征值, 不妨设1最大作正交变换y T x 即x T T y 注意到T1T T 有f x T A x y T TAT T y y T y1y 122y22n yn2因为y T x 正交变换 所以当||x ||1时 有||y ||||x ||1 即y 12y 22y n 21因此f1y 122y 22n y n21 又当y 11 y 2y 3y n 0时f 1所以f max130 用配方法化下列二次形成规范形 并写出所用变换的矩阵 (1) f (x 1 x 2 x 3)x 123x 225x 322x 1x 24x 1x 3解 f (x 1 x 2 x 3)x 123x 225x 322x 1x 24x 1x 3 (x 1x 22x 3)24x 2x 32x 22x 32(x 1x 22x 3)22x 22(2x 2x 3)2令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x yy y x二次型化为规范形f y 12y 22y 32所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C(2) f (x 1 x 2 x 3)x 122x 322x 1x 32x 2x 3 解 f (x 1 x 2 x 3)x 122x 322x 1x 32x 2x 3 (x 1x 3)2x 322x 2x 3(x 1x 3)2x 22(x 2x 3)2令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x二次型化为规范形f y 12y 22y 32所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C(3) f (x 1 x 2 x 3)2x 12x 224x 322x 1x 22x 2x 3解 f (x 1 x 2 x 3)2x 12x 224x 322x 1x 22x 2x 33223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x二次型化为规范形f y 12y 22y 32所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C31 设f x 12x 225x 322ax 1x 22x 1x 34x 2x 3为正定二次型 求a解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A 其主子式为a 111 2111a a a -= )45(5212111+-=--a a a a因为f 为正主二次型 所以必有1a 20且a (5a 4)0 解之得054<<-a32. 判别下列二次型的正定性: (1) f2x 126x 224x 322x 1x 22x 1x 3解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A 因为0211<-=a , 0116112>=--, 038||<-=A ,所以f 为负定.(2) f x 123x 229x 3219x 422x 1x 24x 1x 32x 1x 46x 2x 412x 3x 4解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A 因为0111>=a , 043111>=--, 06902031211>=--, 024>=A所以f 为正定.33 证明对称阵A 为正定的充分必要条件是 存在可逆矩阵U 使A U T U 即A 与单位阵E 合同证明 因为对称阵A 为正定的 所以存在正交矩阵P 使P T AP diag(12n ) 即A P P T其中12n 均为正数令), , ,diag(211n λλλ⋅⋅⋅=Λ 则11A P11T P T再令U1T P T则U 可逆 且A U T U。