算法设计与分析实验1
算法设计与分析的实验报告
实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
二、实验内容1、①设a[0:n-1]是已排好序的数组。
请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。
当搜索元素在数组中时,i和j相同,均为x在数组中的位置。
②写出三分搜索法的程序。
三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。
如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。
2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。
如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。
上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。
五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。
(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。
六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。
七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
《算法设计与分析》实验报告实验一...
《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
算法设计与分析实验报告
实验一排序算法设计一、实验内容冒泡排序二、实验问题分析该问题主要涉及到了指针和循环和相互比较的方法,是综合知识的应用。
三、数学模型根据题目要求,依次对每个数据进行比较,直至得出最后结果。
如果a>b则交换位置,如果a<b则不交换。
四、程序流程图五、源代码#include <stdio.h>void sort(int a[]){int temp;for(int i=0;i<9;i++){for(int j=0;j<10-i-1;j++){if(a[j]>a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}printf("排序后的数据\n"); for(i=0;i<10;i++){if(i==5){printf("\n");}printf("%d ",a[i]);}printf("\n");}void main(){int a[10];for(int i=0;i<10;i++){scanf("%d",&a[i]);}printf("排序前的数据\n"); for(i=0;i<10;i++){if(i==5){printf("\n");}printf("%d ",a[i]);}printf("\n");sort(a);}六、测试结果实验二递归算法设计一、实验内容1.判断S字符是否为“回文”的递归函数,并编写程序测试。
二、实验问题分析递归是一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法。
递归算法设计,就是把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题,在逐步求解小问题后,再返回(回溯)得到大问题的解。
算法设计与分析实验报告
算法设计与分析实验报告姓名:班级:计算机科学与技术102班学号:1090教师:设计时间:2012.04.23编程工具:C-Free 5.0【实验一】:使用递归方法输出杨辉三角杨辉三角.cpp//使用递归方法输出杨辉三角,每个数字占用4个空格位#include <stdlib.h>#include <stdio.h>int calcit(int x, int y){if (x==y||y==0)return 1;elsereturn calcit(x-1,y-1)+calcit(x-1,y);}int main(){int i, j,k,n;printf("请输入行数(最好<=13):");scanf("%d",&n);for (i = 0; i<n; i++){for(k=(n-i)*2;k>0;k--)printf(" ");for (j=0;j<=i;j++)printf("%4d",calcit(i, j));printf("\n");}return 0;}【实验二】:快速排序(一)快速排序.cpp#include<stdio.h>#include<stdlib.h>#define SIZE 100void quick_sort(int data[],int x,int y);int pation(int data[],int x,int y);int main(){int i,n,data[SIZE];printf("请输入要排列的数目(<=100):");scanf("%d",&n);printf("请输入要排列的数列:\n");for(i=0;i<n;++i)scanf("%d",&data[i]);quick_sort(data,0,n-1);printf("排列后的数列为:\n");for(i=0;i<n;++i)printf( "%d ",data[i]);printf("\n");return 0;}void quick_sort(int data[],int x,int y){if(x>=y) return;int q=pation(data,x,y);quick_sort(data,x,q-1);quick_sort(data,q+1,y);}int pation(int data[],int x,int y){int n=data[x],i=x+1,j=y,temp;while(1){while(data[i]<n) ++i;while(data[j]>n) --j;if(i>=j) break;temp=data[i]; data[i]=data[j]; data[j]=temp;}data[x]=data[j];data[j]=n;return j;}(二)插入排序.cpp#include<stdio.h>#include<conio.h>#define X 100#define Y 100int main(){int a[X],r[Y];int *p;int i,j,n;printf("请输入要排列的数目(<=100):");scanf("%d",&n);printf("请输入要排列的数列:\n");for(i=0;i<n;i++){p=&a[i];scanf("%d",p);r[i+1]=a[i];}r[0]=1;for(i=2;i<=n;i++){r[0]=r[i];j=i-1;while(r[j]>r[0]){r[j+1]=r[j];j--;}r[j+1]=r[0];}printf("排列后的顺序是:\n");for(i=1;i<=n;i++){p=&r[i];printf("%d ",*p);}printf("\n");return 0;}【实验三】:趣味矩阵(一)次上三角的自动打印次上三角的自动打印.cpp#include "stdio.h"#include "stdlib.h"#define MAX 100void InterestMatrix(int n){int a[MAX][MAX];int k=1,m=0; // 计数器int i,j;//矩阵初始化for(i=0;i<n;i++){for(j=0;j<=i;j++)a[i][j]=k++;}//打印矩阵for(i=0;i<n;i++){m=i;for(j=0;j<n-i;j++)printf("%d ",a[m++][j]);printf("\n");}}int main(){int n;printf("输入矩阵的阶数n:");scanf("%d",&n);printf("\n");InterestMatrix(n);printf("\n");return 0;}(二)特殊趣味矩阵的打印趣味矩阵.cpp//使左对角线和右对角线上的元素为0,它们上方的元素为1,左边的元素为2,下方的元素为3,右边的元素为4#include<stdio.h>int main(){int i,j,a[100][100],n;printf("请输入矩阵的阶数:");scanf("%d",&n);for(i=1;i<=n;i++)for(j=1;j<=n;j++){if(i==j||i+j==n+1)a[i][j]=0;if(i<j&&i+j<n+1)a[i][j]=1;if(i>j&&i+j<n+1)a[i][j]=2;if(i>j&&i+j>n+1)a[i][j]=3;if(i<j&&i+j>n+1)a[i][j]=4;}for(i=1;i<=n;i++){printf("\n");for(j=1;j<=n;j++)printf("%d ",a[i][j]);}printf("\n");return 0;}。
算法设计与分析实验报告
算法设计与分析实验报告算法设计与分析实验报告引言:算法设计与分析是计算机科学中的重要课程,它旨在培养学生解决实际问题的能力。
本次实验旨在通过设计和分析不同类型的算法,加深对算法的理解,并探索其在实际应用中的效果。
一、实验背景算法是解决问题的步骤和方法的描述,是计算机程序的核心。
在本次实验中,我们将重点研究几种经典的算法,包括贪心算法、动态规划算法和分治算法。
通过对这些算法的设计和分析,我们可以更好地理解它们的原理和应用场景。
二、贪心算法贪心算法是一种基于局部最优选择的算法,它每一步都选择当前状态下的最优解,最终得到全局最优解。
在实验中,我们以背包问题为例,通过贪心算法求解背包能够装下的最大价值物品。
我们首先将物品按照单位重量的价值从大到小排序,然后依次将能够装入背包的物品放入,直到背包无法再装下物品为止。
三、动态规划算法动态规划算法是一种通过将问题分解为子问题,并记录子问题的解来求解整体问题的算法。
在实验中,我们以斐波那契数列为例,通过动态规划算法计算斐波那契数列的第n项。
我们定义一个数组来保存已经计算过的斐波那契数列的值,然后通过递推公式将前两项的值相加得到后一项的值,最终得到第n项的值。
四、分治算法分治算法是一种将问题分解为更小的子问题,并通过递归求解子问题的算法。
在实验中,我们以归并排序为例,通过分治算法对一个无序数组进行排序。
我们首先将数组分成两个子数组,然后对子数组进行递归排序,最后将两个有序的子数组合并成一个有序的数组。
五、实验结果与分析通过对以上三种算法的设计和分析,我们得到了以下实验结果。
在贪心算法中,我们发现该算法能够在有限的时间内得到一个近似最优解,但并不能保证一定得到全局最优解。
在动态规划算法中,我们发现该算法能够通过记忆化搜索的方式得到准确的结果,但在问题规模较大时,其时间复杂度较高。
在分治算法中,我们发现该算法能够将问题分解为更小的子问题,并通过递归求解子问题,最终得到整体问题的解。
算法设计与分析实验报告
算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
算法设计与分析实验报告
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
算法设计与分析实验报告
算法设计与分析实验报告教师:学号:姓名:实验一:串匹配问题实验目的:(1) 深刻理解并掌握蛮力法的设计思想;(2) 提高应用蛮力法设计算法的技能;(3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。
三、实验要求:( 1) 实现BF 算法;(2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法;(3 ) 对上述3 个算法进行时间复杂性分析, 并设计实验程序验证分析结果。
#include "stdio.h"#include "conio.h"#include <iostream>//BF算法int BF(char s[],char t[]){ int i; int a; int b; int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****BF*****算法\n");for(i=0;i<m;i++){ b=0; a=i; while(s[a]==t[b]&&b!=n){a++; b++; }if(b==n){ printf("查找成功!!\n\n"); return 0;}}printf("找不到%s\n\n",t); return 0; }//前缀函数值,用于KMP算法int GETNEXT(char t[],int b){ int NEXT[10]; NEXT[0]=-1;int j,k; j=0; k=-1; while(j<strlen(t)){if ((k==-1)||(t[j]==t[k])){j++;k++;NEXT[j]=k; }else k=NEXT[k];}b=NEXT[b];return b;}//KMP算法int KMP(char s[],char t[]){int a=0; int b=0;int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****KMP算法*****\n");while(a<=m-n){while(s[a]==t[b]&&b!=n){a++;b++; }if(b==n){printf("查找成功!!\n\n");return 0;}b=GETNEXT(t,b);a=a-b;if(b==-1) b++;}printf("找不到%s\n\n",t);return 0; } //滑动距离函数,用于BM算法int DIST(char t[],char c){ int i=0,x=1;int n; n=strlen(t);while(x&&i!=n-1){if(t[i]==c)x=0;else i++;}if(i!=n-1)n=n-1-i;return n; } //BM算法结果分析与体会:glibc里的strstr函数用的是brute-force(naive)算法,它与其它算法的区别是strstr不对pattern(needle)进行预处理,所以用起来很方便。
算法设计与分析实验报告
}
}
//回溯法求取最优解
void Traceback(int X[],int *W,int V[N][C],int n,int c)
{
int i,cu=c;
for(i=n;i>0;i--)
{
if(V[i][cu]==V[i-1][cu])
X[i]=0;
for(int i=1;i<=n;i++) //依次输入物品价值
cin>>v[i];
for(int i=1;i<=n;i++) //初始化物品放入量
X[i]=0;
float vs[N];
for(int i=1;i<=n;i++)
vs[i]=v[i]/s[i];
sort(s,v,vs,n); //按物品价值体积比从大到小排序
float s[N],v[N],X[N],totalv=0;
cout<<"请输入物品个数和背包容积:";
cin>>n>>c;
float cu=c;
cout<<"请依次输入物品体积:";
for(int i=1;i<=n;i++) //依次输入物品体积
cin>>s[i];
cout<<"请依次输入物品价值:";
cout<<v[i]<<" ";
cout<<endl;
cout<<"排序后物品价值体积比:";
算法设计算法实验报告(3篇)
第1篇一、实验目的本次实验旨在通过实际操作,加深对算法设计方法、基本思想、基本步骤和基本方法的理解与掌握。
通过具体问题的解决,提高利用课堂所学知识解决实际问题的能力,并培养综合应用所学知识解决复杂问题的能力。
二、实验内容1. 实验一:排序算法分析- 实验内容:分析比较冒泡排序、选择排序、插入排序、快速排序、归并排序等基本排序算法的效率。
- 实验步骤:1. 编写各排序算法的C++实现。
2. 使用随机生成的不同规模的数据集进行测试。
3. 记录并比较各算法的运行时间。
4. 分析不同排序算法的时间复杂度和空间复杂度。
2. 实验二:背包问题- 实验内容:使用贪心算法、回溯法、分支限界法解决0-1背包问题。
- 实验步骤:1. 编写贪心算法、回溯法和分支限界法的C++实现。
2. 使用标准测试数据集进行测试。
3. 对比分析三种算法的执行时间和求解质量。
3. 实验三:矩阵链乘问题- 实验内容:使用动态规划算法解决矩阵链乘问题。
- 实验步骤:1. 编写动态规划算法的C++实现。
2. 使用不同规模的矩阵链乘实例进行测试。
3. 分析算法的时间复杂度和空间复杂度。
4. 实验四:旅行商问题- 实验内容:使用遗传算法解决旅行商问题。
- 实验步骤:1. 设计遗传算法的参数,如种群大小、交叉率、变异率等。
2. 编写遗传算法的C++实现。
3. 使用标准测试数据集进行测试。
4. 分析算法的收敛速度和求解质量。
三、实验结果与分析1. 排序算法分析- 通过实验,我们验证了快速排序在平均情况下具有最佳的性能,其时间复杂度为O(nlogn),优于其他排序算法。
- 冒泡排序、选择排序和插入排序在数据规模较大时效率较低,不适合实际应用。
2. 背包问题- 贪心算法虽然简单,但在某些情况下无法得到最优解。
- 回溯法能够找到最优解,但计算量较大,时间复杂度较高。
- 分支限界法结合了贪心算法和回溯法的特点,能够在保证解质量的同时,降低计算量。
3. 矩阵链乘问题- 动态规划算法能够有效解决矩阵链乘问题,时间复杂度为O(n^3),空间复杂度为O(n^2)。
《算法设计与分析》实验报告模板 (1)
《算法设计与分析》实验报告
学号:姓名:
实验一分治法求解众数问题
一、实验目的
1.掌握分治法的设计思想并能熟练应用;
2.理解分治与递归的关系。
二、实验题目
在一个序列中出现次数最多的元素称为众数,根据分治法的思想设计算法寻找众数。
三、实验程序
四、程序运行结果
实验二动态规划法求解单源最短路径问题
一、实验目的
1.深刻掌握动态规划法的设计思想;
2.熟练应用以上算法思想求解相关问题。
二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。
采用动态规划法求解多段图从源点到终点的最小代价路径。
三、实验程序
四、程序运行结果
实验三贪心法求解单源点最短路径问题
一、实验目的
1.掌握贪心法的设计思想;
2.分析比较同一个问题采用不同算法设计思想求解的结果。
二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。
采用贪心法求解多段图从源点到终点的最小代价路径。
三、实验程序
四、程序运行结果
实验四回溯法求解0/1背包问题
一、实验目的
1.掌握回溯法的设计思想;
2.掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;
二、实验题目
给定n种物品和一个容量为C的背包,选择若干种物品(物品不可分割),使得装入背包中物品的总价值最大。
采用回溯法求解该问题。
三、实验程序
四、程序运行结果。
算法分析实验一报告
《算法设计与分析》实验报告目录一、实验内容描述和功能分析.二、算法过程设计.三、程序调试及结果(附截图).四、源代码(附源代码).一、实验内容描述和功能分析.1.彼岸内容描述:突破蝙蝠的包围,yifenfei来到一处悬崖面前,悬崖彼岸就是前进的方向,好在现在的yifenfei已经学过御剑术,可御剑轻松飞过悬崖。
现在的问题是:悬崖中间飞着很多红,黄,蓝三种颜色的珠子,假设我们把悬崖看成一条长度为n的线段,线段上的每一单位长度空间都可能飞过红,黄,蓝三种珠子,而yifenfei 必定会在该空间上碰到一种颜色的珠子。
如果在连续3段单位空间碰到的珠子颜色都不一样,则yifenfei就会坠落。
比如经过长度为3的悬崖,碰到的珠子先后为“红黄蓝”,或者“蓝红黄”等类似情况就会坠落,而如果是“红黄红”或者“红黄黄”等情况则可以安全到达。
现在请问:yifenfei安然抵达彼岸的方法有多少种?输入:输入数据首先给出一个整数C,表示测试组数。
然后是C组数据,每组包含一个正整数n (n<40)。
输出:对应每组输入数据,请输出一个整数,表示yifenfei安然抵达彼岸的方法数。
每组输出占一行。
例如:输入:2 输出:92 2132.统计问题内容描述:在一无限大的二维平面中,我们做如下假设:1、每次只能移动一格;2、不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);3、走过的格子立即塌陷无法再走第二次;求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
输入:首先给出一个正整数C,表示有C组测试数据接下来的C行,每行包含一个整数n (n<=20),表示要走n步。
输出:请编程输出走n步的不同方案总数;每组的输出占一行。
例如:输入:2 输出:31 723.Message Decowing内容描述:The cows are thrilled because they've just learned about encrypting messages. Theythink they will be able to use secret messages to plot meetings with cows on other farms.Cows are not known for their intelligence. Their encryption method is nothing like DES or BlowFish or any of those really good secret coding methods. No, they are using a simple substitution cipher.The cows have a decryption key and a secret message. Help them decode it. The key looks like this:yrwhsoujgcxqbativndfezmlpkWhich means that an 'a' in the secret message really means 'y'; a 'b' in the secret message really means 'r'; a 'c' decrypts to 'w'; and so on. Blanks are not encrypted; they are simply kept in place. Input text is in upper or lower case, both decrypt using the same decryption key, keeping the appropriate case, of course.输入:* Line 1: 26 lower case characters representing the decryption key* Line 2: As many as 80 characters that are the message to be decoded输出:* Line 1: A single line that is the decoded message. It should have the same length as the second line of input.例如:输入:eydbkmiqugjxlvtzpnwohracsfKifq oua zarxa suar bti yaagrj fa xtfgrj输出:Jump the fence when you seeing me coming二、算法过程设计.第一题是一个典型的递归问题,通过对开始的几项附初始值,通过循环利用通项公式依次递归调用公式便可以得到第n项的值。
《算法设计与分析》课程实验报告
《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。
2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。
给出一个算法,判断A中是否存在主元素。
二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。
但某次运行可能找不到解。
(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。
同时体会确定性算法与随机化算法的差异及各自的优缺点。
(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。
此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。
三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。
要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。
b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。
(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。
b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。
c.实现蒙特卡罗算法,并输出其运行次数及时间。
d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。
(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。
算法分析与设计实验报告
算法分析与设计实验报告实验一分治策略排序一、实验目的1)以排序问题为例,掌握分治法的基本设计策略;2)熟练掌握合并排序算法的实现;3)熟练掌握快速排序算法的实现;4) 理解常见的算法经验分析方法。
二、算法思路1. 合并排序算法思想:分而治之(divide - conquer);每个递归过程涉及三个步骤第一, 分解: 把待排序的 n 个元素的序列分解成两个子序列, 每个子序列包括 n/2 个元素.第二, 治理: 对每个子序列分别调用归并排序MergeSort, 进行递归操作第三, 合并: 合并两个排好序的子序列,生成排序结果.最坏时间复杂度最好时间复杂度空间复杂度2.快速排序算法思想:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。
一躺快速排序的算法是:1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;5)、重复第3、4步,直到I=J;三、实验内容:1. 准备实验数据要求:编写一个函数data-generate,生成2000个在区间[1,10000]上的随机整数,并将这些数输出到外部文件data.txt中。
这些数作为本算法实验的输入数据。
2. 实现合并排序算法要求:实现mergesort算法。
输入:待排数据文件data.txt;输出:有序数据文件resultsMS.txt(注:建议将此排好序的数据作为实验二的算法输入);程序运行时间TimeMS。
《算法设计与分析》课程实验报告 (算法问题求解基础1)
}
int s2[10] = {0,9,189,2889,38889,488889,5888889,68888889,788888889};
int a;
scanf("%d",&a);
int count;
count = 0;
while(a > 0){
题目二:最大间隙
源码:
#include<iostream>
#include<cstdio>
using namespace std;
double a[10000] = {0};
int main(){
int n;
cin>>n;
for(int i = 0 ; i < n ; i++){
cin>>a[i];
样例输出:
3.2
二、实验目的
(1)理解算法的概念
(2)理解函数渐近态的概念和表示方法
(3)初步掌握算法时间复杂度的计算方法
三、实验要求
(1)对于每个题目提交实验代码。
(2)根据程序设计测试数据,并记录测试结果,要求边界情况必须测试
(3)使用我们学过的分析方法分析你的算法的时间效率,如果可能,请进行算法的优化,尽量减小算法的时间效率或空间效率。
《算法设计与分析》课程实验报告
实验序号:1 实验项目名称:算法问题求解基础
一、实验题目
题目一:统计数字问题
题目描述
一本书的页码从自然数1开始顺序编码直到自然数n。输的页码按照通常的习惯编排,每个页码都不含有多余的前导数字0.例如,第6页用数字6表示,而不是06或者006等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2...8,9。
算法设计与分析实验报告三篇
算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }} 五.程序调试中的问题调试过程,页码出现报错。
算法设计与分析实验报告
实验课程名称:算法设计与分析这里的数据包括1到100的所有数字,55在这个序列中。
2.当没找到所要寻找的数字时,输出该数据并不存在于数据库中:0并不存在于这个序列中。
一、时间复杂性分析:1.最好情况下:这里的最好情况,即为第一次查找就找到了要找的数据,故时间复杂性为O (1)。
2.最坏情况下:这里的最坏情况意味着要将所有数据都找一遍最后才能找到要查找的数据,随着数据库的增大,查找次数会随之增长,故其时间复杂度为O (n )。
3.平均情况下:这种情况考虑了数据时等概率的分布于数据库中。
ASL=-101-121111=2=(1*2+2*2+...+*2)log (+1)-1nkj k i i i j p c j k n nn==≈∑∑折半查找的时间复杂性为O (2log n )。
二、空间复杂度分析:这里查找的过程中并不需要额外的空间,只需要存放数据的空间,故空间复杂度为O (n ),n 为数组的大小。
三、算法功能:其功能主要是用来查找数据,若对它进行一下拓展,可以由自主确定数据库,并可对他进行操作;这里的数据也可以不只是包括整数。
实验二结果:1.当数组的容量不大于0时,显示错误:2.当输入数据错误时,显示错误:3.当输入正确时的显示结果:一、时间复杂性分析:1.最好情况下:T (n )≤2 T (n /2)+n ≤2(2T (n /4)+n /2)+n =4T (n /4)+2n ≤4(2T (n /8)+n /4)+2n =8T (n /8)+3n … … …≤nT (1)+n log 2n =O (n log 2n ) 因此,时间复杂度为O (n log 2n )。
2.最坏情况下:待排序记录序列正序或逆序,每次划分只得到一个比上一次划分少一个记录的子序列(另一个子序列为空)。
此时,必须经过n -1次递归调用才能把所有记录定位,而且第i 趟划分需要经过n -i 次关键码的比较才能找到第i 个记录的基准位置,因此,总的比较次数为: 因此,时间复杂度为O (n 2)。
算法设计与分析实验报告
算法设计与分析实验报告1. 引言本实验旨在设计和分析一个算法,解决特定的问题。
通过对算法的设计、实现和性能分析,可以对算法的优劣进行评估和比较。
本报告将按照以下步骤进行展开:1.问题描述2.算法设计3.算法实现4.性能分析5.结果讨论和总结2. 问题描述在本实验中,我们面临的问题是如何在一个给定的无序数组中寻找一个特定元素的位置。
具体而言,给定一个包含n个元素的数组A和一个目标元素target,我们的目标是找到target在数组A中的位置,如果target不存在于数组中,则返回-1。
3. 算法设计为了解决上述问题,我们设计了一个简单的线性搜索算法。
该算法的思想是从数组的第一个元素开始,逐个比较数组中的元素与目标元素的值,直到找到匹配的元素或搜索到最后一个元素。
算法的伪代码如下:function linear_search(A, target):for i from 0 to len(A)-1:if A[i] == target:return ireturn -14. 算法实现我们使用Python编程语言实现了上述线性搜索算法。
以下是算法的实现代码:def linear_search(A, target):for i in range(len(A)):if A[i] == target:return ireturn-15. 性能分析为了评估我们的算法的性能,我们进行了一系列实验。
我们使用不同大小的数组和不同目标元素进行测试,并记录了每次搜索的时间。
实验结果显示,线性搜索算法的时间复杂度为O(n),其中n是数组的大小。
这是因为在最坏的情况下,我们需要遍历整个数组才能找到目标元素。
6. 结果讨论和总结通过对算法的设计、实现和性能分析,我们可以得出以下结论:1.线性搜索算法是一种简单但有效的算法,适用于小规模的数据集。
2.线性搜索算法的时间复杂度为O(n),在处理大规模数据时可能效率较低。
3.在实际应用中,我们可以根据具体的问题和数据特征选择合适的搜索算法,以提高搜索效率。
算法设计与分析实验报告
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
算法设计与分析 实验报告
算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。
本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。
二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。
给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。
三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。
1. 暴力法暴力法是一种朴素的解决方法。
它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。
然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。
2. 动态规划法动态规划法是一种高效的解决方法。
它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。
对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。
通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。
最后,我们返回dp数组中的最大值即为所求的最大子序列和。
该算法的时间复杂度为O(n),效率较高。
四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。
1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。
为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。
2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。
同时,我们还对两种算法的运行时间进行了比较。
结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。
五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。
我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验内容
一、实验内容
1)狼找兔子问题:一座山周围有n个洞,顺时针的编号为0,1,2,3,4,...,n-1,。
一只狼从0号洞开始,顺时针方向计数,每当经第m个洞时,就进洞找兔子。
例如n=5,m=3,狼经过的洞依次为0, 3, 1, 4, 2, 0。
输入m,n。
试问兔子有没有幸存的机会?如果有应该藏在哪儿?
问题分析:设置两个数组,一个数组用于循环,演示狼每次经过的洞,如果每个洞都被经过,则兔子没有幸存的机会。
如果最后经过的洞的数目小于总的数目,则比较两个数组,数组中不同的值代表被狼经过的洞,相同的值代表兔子可以藏身的洞。
本题使用C++编写。
实验代码:
运行结果:
2)有52张牌,使它们全部正面朝上。
第一轮是从第2张开始,凡是2的倍数
位置上的牌翻成正面朝下,第二轮从第3张牌开始,凡是3的倍数的牌,正面朝上的翻成正面朝下,正面朝下的牌翻成正面朝上。
第三轮从第4张牌开始,凡是4的倍数位置上的牌按上面相同的规则反转,以此类推,直到翻过的牌超过104张为止。
统计最后有几张牌正面朝上,以及它们的位置号。
问题分析:设置一个数组,数组中每一个数的初始值都为1,当某张牌被翻转的时候,用0表示。
每翻转一次,用一个变量count累计加1,然后检查变量的值,当count超过104的时候,跳出循环体。
本题使用Java编写。
实验代码:
运行结果:
3)A,B,C,D,E5人为某次竞赛的前五名,他们在名次公布前猜名次。
A说:B得第三名,C得第五名。
B说:D得第二名,E得第四名。
C说:B得第一名,E得第四名。
D说:C得第一名,B得第二名。
E说:D得第二名,A得第三名。
结果每个人都猜对了一般,实际名次是什么呢?
问题分析:本题使用多重嵌套循环,ABCDE每个人可能获得的名次分别是1,2,3,4,5,分别使ABCDE遍历每一种可能,当每个人的两个预言只有一个为真时,循环结束。
本题使用C++编写。
实验代码:
运行结果:。