进制数与十六进制数的转换方法完整版

合集下载

二进制,八进制,十进制,十六进制之间的相互转换和相关概念

二进制,八进制,十进制,十六进制之间的相互转换和相关概念

二进制,八进制,十进制,十六进制之间的相互转换和相关概念二进制:计算机只认识0或1,也就是高电平和低电平.所以所有的数据格式最终会转化为2进制形式,计算机硬件才能识别。

二进制逢二进一,八进制逢八进一,十进制逢十进一,十六进制逢十六进一。

下边是各进制之间的转换公式.二进制转十进制0110 0100(2) 换算成十进制第0位0 * 2^0 = 0第1位0 * 2^1 = 0第2位 1 * 2^2 = 4第3位0 * 2^3 = 0第4位0 * 2^4 = 0第5位 1 * 2^5 = 32第6位 1 * 2^6 = 64第7位0 * 2^7 = 0 +---------------------------100二进制转八进制可采用8421法1010011(2)首先每三位分割即: 001,010,011不足三位采用0补位.然后采用8421法: 001=1010=2011=3所以转换成8进制是123二进制转十六进制1101011010100(2)首先每四位分割即: 0001,1010,1101,0100不足四位采用0补位.然后采用8421法: 0001:11010:A1101:D0100:4所以转换成十六进制是1AD4十六进制当数字超过9后将采用A代替10,B代替11,C代替12,D代替13,E代替14,F代替15;下边是十进制的各种转换:十进制转二进制6(10)10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

商余数6/2 3 03/2 1 11/2 0 1最后把余数从下向上排列写出110即是转换后的二进制.十进制转换八进制10进制数转换成八进制数,这是一个连续除8的过程:把要转换的数,除以8,得到商和余数,将商继续除以8,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

120(10)商余数120/8 15 015/8 1 71/8 0 1最后把余数从下向上排列写出170即是转换后的八进制.十进制转换十六进制10进制数转换成十六进制数,这是一个连续除16的过程:把要转换的数,除以16,得到商和余数,将商继续除以16,直到商为0。

二进制八进制十进制十六进制之间的进制转换

二进制八进制十进制十六进制之间的进制转换

二进制八进制十进制十六进制之间的进制转换详情可参考百度百科:进制转换这个词条【主要搞懂1和2两条,其他的进制之间的转化就迎刃而解,很好懂了】1. 十进制-> 二进制:将这个十进制数连续除以2的过程,第一步除以2,得到商和余数,将商再继续除以2,得到又一个商和余数,直到商为0。

最后将所有余数倒序排列,得到的数就是转换成二进制的结果。

2. 二进制-> 十进制:二进制数第1位的权值是2的0次方,第2位的权值是2的1次方,第3位的权值是2的2次方。

(例如1258这个十进制数,实际上代表的是:1x1000+2x100+5x10+8x1=1258)那么1011这个二进制数,实际上代表的是:1x8+0x4+1x2+1x1=11(十进制数11)。

(这里的8就是2的3次方,4就是2的2次方,2就是2的1次方,1就是2的0次方)3. 十进制-> 八进制:十进制数转换成八进制的方法,和转换为二进制的方法类似,唯一变化:除数由2变成8。

4. 八进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成8,第1位表示8的0次方,第二位表示8的一次方,第三位表示8的2次方,第四位表示8的3次方。

例如1314这个八进制数,十进制数就是1x512+3x64+1x8+4x1=716(十进制)5. 十进制-> 十六进制10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。

十六进制是0123456789ABCDEF这十六个字符表示。

那么单独一个A就是10,单独一个B就是11,CDEF,就分表表示12,13,14,15。

而10这个十六进制数,实际就是十进制中的16。

6. 十六进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成16,第1位表示16的0次方,第二位表示16的一次方,第三位表示16的2次方,第四位表示16的3次方。

7. 二进制<--->八进制,之间的相互转换,更简单一些,因为8本身是2的三次方。

十进制与十六进制的互相转换

十进制与十六进制的互相转换

十进制与十六进制的互相转换在计算机科学和信息技术领域,我们经常需要进行数字的进制转换,其中最常见的是十进制和十六进制之间的互相转换。

十进制是我们最为熟悉和常用的进制,而十六进制则在计算机领域中有着广泛的应用。

一、十进制转十六进制要将一个十进制数转换为十六进制,可以使用除以16取余数的方法进行计算。

具体步骤如下:1. 将给定的十进制数除以16,得到的商和余数分别表示为Q1和R1;2. 如果Q1大于16,则继续除以16,得到的商和余数分别表示为Q2和R2,以此类推,直到商小于16;3. 对于每个余数R,如果其数值大于9,则用字母A~F来表示。

其中,A代表10,B代表11,依次类推。

举例来说,我们将十进制数231转换为十六进制数:231 ÷ 16 = 14余7,表示为F7。

因此,十进制数231转换为十六进制数为F7。

二、十六进制转十进制要将一个十六进制数转换为十进制,可以使用乘以16的幂次方的方法进行计算。

具体步骤如下:1. 将给定的十六进制数的每个位上的数字分别乘以16的相应幂次方(从右往左依次是0、1、2...),并求和;2. 如果该位上的数字为字母A~F,则将其用相应的数值替代。

举例来说,我们将十六进制数F7转换为十进制数:F7中,F代表15,7代表7。

因此,F7转换为十进制数为15×16^1 + 7×16^0 = 247。

三、应用实例十六进制数在计算机科学领域中有着广泛的应用。

例如,计算机内存中的地址通常以十六进制表示。

当我们需要查找某个变量在内存中的存储位置时,就需要进行进制转换。

另外,十六进制数还常用于表示颜色。

在网页设计中,我们使用RGB(红绿蓝)模型来定义颜色,每个颜色通道的取值范围为0~255。

为了方便表示,将0~255的十进制数转换为0~FF的十六进制数更加直观。

例如,纯红色的十进制表示为RGB(255, 0, 0),对应的十六进制表示为#FF0000。

十进制转换为十六进制方法

十进制转换为十六进制方法

十进制转换为十六进制方法十进制和十六进制是计算机科学中常用的数制,其中十六进制是一种基数为16的进位制数,使用了数字0-9与字母A-F来代表16个数位。

在计算机编程中,经常需要将十进制转换为十六进制,下面介绍几种方法。

方法一:除以16取余法
这种方法是最常用的方法之一。

将十进制数不断除以16,每次取余数,直到商为0为止。

然后将余数按照相反顺序排列,即可得到十六进制数。

例如将十进制数57转换为十六进制,则按照以下方法计算:
57÷16=3 (9)
3÷16=0 (3)
因此57的十六进制为39。

方法二:商数依次减去16法
这种方法也比较常用,适合较小的十进制数。

将十进制数不断减去16的倍数,每次计算商数和余数,直到商数为0为止。

然后将余数按照相反顺序排列,即可得到十六进制数。

例如将十进制数21转换为十六进制,则按照以下方法计算:
21-16=5商1
5-16=-11商0
因此21的十六进制为15。

方法三:查表法
如果对于十六进制各位对应的十进制数比较熟悉,可以通过查表直接将十进制数转换为十六进制。

以下是常用的十六进制对应表:0123456789A B C D E F
012345678910111213 1415
例如将十进制数255转换为十六进制,则可以直接查表得到其十六进制为FF。

总的来说,将十进制数转换为十六进制需要掌握一些基础算法和数字对应关系。

掌握了这些知识后,计算起来就会更加容易和简便。

二进制十进制和十六进制及其相互转换的公式

二进制十进制和十六进制及其相互转换的公式

二进制十进制和十六进制及其相互转换的公式二进制、十进制和十六进制是计算机科学中常用的数制。

在计算机中,数据以二进制的形式表示,但是对于人类来说,二进制形式并不直观,因此使用十进制和十六进制进行数据展示和计算更为常见。

本文将介绍二进制、十进制和十六进制之间的转换公式。

一、二进制转十进制二进制是由0和1两个数字组成的数制。

每一位二进制位所代表的数值是2的n次方,其中n为该二进制位的位置,从右向左逐渐增加。

例如,二进制数1101,可以表示为:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=8+4+0+1=13所以二进制数1101等于十进制数13二、十进制转二进制十进制数是由0-9这十个数字组成的数制。

将十进制数转换成二进制数的方法是不断地对十进制数进行除以2的整除运算,直到商为0,然后将每次的余数倒序排列。

例如,将十进制数53转换成二进制数:53÷2=26余126÷2=13余013÷2=6余16÷2=3余03÷2=1余11÷2=0余1三、十六进制和二进制、十进制的转换十六进制数是由0-9这十个数字和A-F这六个字母组成的数制,其中A代表10,B代表11,依此类推,F代表15、十六进制数可以很方便地将二进制数字转换成较短的字符表示,同时也更加直观。

1.二进制转十六进制:将二进制数每四位一组,从右向左进行分组,并将每个分组转换成对应的十六进制字符。

0110(6)1101(D)0101(5)1011(B)转换结果为6D5B。

2.十六进制转二进制:将十六进制数中的每个字符逐个转换成对应的四位二进制数。

例如,将十六进制数3A转换成二进制数:3->0011A->10103.十六进制转十进制:将十六进制数中的每个字符逐个转换成对应的十进制数,然后将这些十进制数相加即可得到结果。

例如,将十六进制数1F转换成十进制数:1*16^1+F*16^0=16+15=31所以十六进制数1F等于十进制数314.十进制转十六进制:将十进制数不断地进行除以16的整除运算,直到商为0,然后将每次的余数倒序排列,并将每个余数转换成对应的十六进制字符。

十进制数与十六进制数的转换

十进制数与十六进制数的转换

十进制数与十六进制数的转换在计算机科学和数学领域,我们经常需要进行数字的进制转换。

其中,最常见的是十进制数与十六进制数之间的转换。

本文将介绍如何准确、简便地进行这种转换。

一、十进制转十六进制1. 整数部分转换:十进制数的整数部分转换为十六进制时,采用除以16的方法。

将十进制数不断除以16,直到商为0为止,将每次的余数按照从后向前的顺序排列,就得到了十六进制的表示。

例如,将十进制数255转换为十六进制:(1)255 ÷ 16 = 15 余 15,余数为F,代表十六进制中的15;(2)15 ÷ 16 = 0 余 15,余数依然为F。

因此,255的十六进制表示为FF。

2. 小数部分转换:十进制数的小数部分转换为十六进制时,采用乘以16的方法。

将十进制数的小数部分与16相乘,取整数部分作为十六进制数的一位,再将小数部分与16再相乘,继续取整数部分作为十六进制数的下一位,直到小数部分为0或达到所需精度。

例如,将0.625转换为十六进制:(1)0.625 × 16 = 10,十六进制中的10表示为A,因此0.625的十六进制表示为0.6A。

二、十六进制转十进制1. 整数部分转换:十六进制数的整数部分转换为十进制时,采用乘以相应权重的方法。

将十六进制数的每一位分别与16的相应次方相乘,再将每一位的结果相加,即可得到十进制数的表示。

例如,将十六进制数A7转换为十进制:A7 = 10 × 16^1 + 7 × 16^0 = 160 + 7 = 167。

2. 小数部分转换:十六进制数的小数部分转换为十进制时,采用乘以相应的负幂次的方法。

将十六进制数的每一位分别与16的相应负幂次相乘,再将每一位的结果相加,即可得到十进制数的表示。

例如,将十六进制数0.6A转换为十进制:0.6A = 6 × 16^(-1) + 10 × 16^(-2) = 0.375 + 0.0390625 = 0.4140625。

进制如何转换为16进制

进制如何转换为16进制

60928先转换为二进制在转换为十六 进制的过程
60928转换为二进制→1110 1110 0000 0000
如上,将每4位分成一组的2进制数并转换为相应的16进 制数:
1110→e
1110→e
0000→0
0000→o
所以1110 1110 0000 0000 每4位 ee00 加上前缀0x 0xee00
练习
将下列十进制数转换为十六进制数:
42 18 65535
………(0x2a) ………(0x12) ……(0xffff)
就以60928转化为0xee00为例为 大家讲一下
十进制如何转化为十六进制
十六进制整数介绍
以0X或0x为前缀,其后由0~9 的数字和A~F(或a~f)的字母组成, 无前缀0X或0x的十六进制整数是不 合法的十六进制整数
十进制转十六进制思路
直接用十进制数除以16求商取余,若余数 是0~9的数字则直接保留,若余数是10~15的 数字则依次对应转化为字母A~F(或a~f)。 之后再用上面的商除以16求商取余,以此类 推,直至最后的商变成小于16的数字,最后 再将余数由下至上排列并加上前缀0X(0x) 即可。
现将十进制转换为二进制,再将二进制
每4位分为一组,最后再将分好组的每4位二
进制数转化为十六进制数,并在前面补上0x
(0X)即可。
Hale Waihona Puke 2进制——16进制转换表0--0000 1--0001 2--0010 3--0011 4--0100 5--0101 6--0110 7--0111
8--1000 9--1001 A--1010 B--1011 C--1100 D--1101 E--1110 F--1111

二进制八进制十进制十六进制之间的转换方法

二进制八进制十进制十六进制之间的转换方法

二进制八进制十进制十六进制之间的转换方法二进制、八进制、十进制和十六进制是计算机中常用的数制表示方法。

在进行转换时,可以利用其数制规则和特点来进行相互转换。

以下将详细介绍二进制、八进制、十进制和十六进制之间的转换方法。

1.二进制转八进制:二进制数是由0和1组成的数,八进制数是由0-7组成的数。

每3位二进制数可以转换为1位的八进制数,所以将二进制数从右到左以3位一组进行分组,并用八进制数表示每组即可。

2.二进制转十进制:二进制数转换为十进制数的方法是将二进制数分别乘以2的n次方,并将结果相加,其中n从0开始递增,对应于从右到左的二进制位数。

3.二进制转十六进制:二进制数转换为十六进制数的方法是将二进制数分组为4位一组,然后将每组转换为十六进制数。

4.八进制转二进制:八进制数转换为二进制数的方法是将八进制数的每位转换为对应的3位二进制数。

例如:将八进制数326转换为二进制数,可以将其每位转换为对应的3位二进制数,得到结果:011010110。

5.八进制转十进制:八进制数转换为十进制数的方法是将八进制数分别乘以8的n次方,并将结果相加,其中n从0开始递增,对应于从右到左的八进制位数。

例如:将八进制数326转换为十进制数,可以分别计算3*8^2+2*8^1+6*8^0,得到结果:2066.八进制转十六进制:将八进制数转换为十六进制数,首先将八进制数转换为二进制数,然后将二进制数转换为十六进制数。

例如:将八进制数326转换为十六进制数,可以先将其转换为二进制数011010110,然后将二进制数转换为十六进制数,得到结果:D67.十进制转二进制:将十进制数转换为二进制数的方法是将十进制数不断除以2,然后将余数逆序排列,最后将得到的余数连接在一起。

8.十进制转八进制:将十进制数转换为八进制数的方法是将十进制数不断除以8,然后将余数逆序排列,最后将得到的余数连接在一起。

例如:将十进制数214转换为八进制数,可以依次计算214/8=26余6,26/8=3余2,3/8=0余3、最后将得到的余数逆序排列,得到结果:3269.十进制转十六进制:将十进制数转换为十六进制数的方法是将十进制数不断除以16,然后将余数逆序排列,对于10~15的余数,分别用A~F表示,最后将得到的余数连接在一起。

十进制数与十六进制数的转换方法

十进制数与十六进制数的转换方法

十进制数与十六进制数的转换方法
1.十进制数转换为十六进制数:
十进制数是我们日常使用的数制系统,由0~9这10个数字组成。


十六进制数是一种16进制的数制系统,由0~9和A~F这16个字符组成。

转换步骤如下:
(1)将十进制数除以16,得到商和余数;
(2)余数即是十六进制数的最低位数;
(3)将商再除以16,得到新的商和余数,余数即是十六进制数的第
二位数;
(4)依次类推,直到商为0为止;
(5)最终的十六进制数就是将所有的余数倒序排列而成。

例如,将十进制数100转换为十六进制数:
(1)100÷16=6,余数为4,此时十六进制数的最低位数为4;
(2)6÷16=0,余数为6,此时十六进制数的第二位数为6;
(3)最终的十六进制数为64
2.十六进制数转换为十进制数:
转换步骤如下:
(1)按权展开法,将每一位的十六进制数乘以相应的权值,再求和;
(2)权值由低到高依次为16^0,16^1,16^2,...;
(3)将每一位的十六进制数转换为对应的十进制数;
(4)将所有十进制数相加,得到最终的结果。

例如,将十六进制数A5转换为十进制数:
(1)A的十进制数值为10,所以A5的第一位数为10×16^1=160;
(2)5的十进制数值为5,所以A5的第二位数为5×16^0=5;
(3)最终的十进制数为160+5=165
以上就是十进制数与十六进制数之间的转换方法。

根据上述方法,我们可以将一个数从十进制转换为十六进制,或者将一个数从十六进制转换为十进制。

这些转换方法在计算机科学、数学等领域中经常被使用。

10进制和16进制的转换公式

10进制和16进制的转换公式

10进制和16进制的转换公式一、十进制转十六进制。

1. 整数部分。

- 方法:除16取余法。

将十进制数除以16,取余数,然后将商继续除以16,直到商为0。

最后将所有的余数从右到左排列,得到十六进制数。

- 例如:将十进制数250转换为十六进制。

- 250÷16 = 15·s·s10(余数10在十六进制中用A表示)- 15÷16 = 0·s·s15(余数15在十六进制中用F表示)- 所以,250_(10) = FA_(16)2. 小数部分。

- 方法:乘16取整法。

将十进制小数乘以16,取整数部分,然后将小数部分继续乘以16,直到小数部分为0或者达到要求的精度。

最后将所有的整数部分从上到下排列,得到十六进制小数部分。

- 例如:将十进制小数0.625转换为十六进制。

- 0.625×16 = 10.0,取整数10(十六进制中为A)- 所以,0.625_(10) = 0.A_(16)二、十六进制转十进制。

1. 整数部分。

- 方法:位权展开法。

对于十六进制整数a_na_n - 1·s a_1a_0(a_i为十六进制的数码),其十进制值为a_n×16^n+a_n - 1×16^n - 1+·s+a_1×16^1+a_0×16^0。

- 例如:将十六进制数3A_(16)转换为十进制。

- 3A_(16)=3×16^1+10×16^0=48 + 10=58_(10)(其中A = 10)2. 小数部分。

- 方法:位权展开法。

对于十六进制小数0.b_1b_2·s b_m(b_i为十六进制的数码),其十进制值为b_1×16^- 1+b_2×16^-2+·s+b_m×16^-m。

- 例如:将十六进制小数0.2_(16)转换为十进制。

(完整版)二进制、八进制、十进制、十六进制之间转换详解

(完整版)二进制、八进制、十进制、十六进制之间转换详解

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

十进制转换十六进制计算方法

十进制转换十六进制计算方法

十进制转换十六进制计算方法一、什么是十进制和十六进制?在我们平常使用的十进制系统中,数字由0到9这十个基本数字组成。

每个位置上的数字表示该位置上数字的权值,从右往左依次为1、10、100、1000,以此类推。

例如,数字1234中的4表示4个1,3表示3个10,2表示2个100,1表示1个1000,所以1234的十进制表示为1*1000 + 2*100 + 3*10 + 4*1。

而在十六进制系统中,数字由0到9和字母A到F这十六个基本数字组成。

每个位置上的数字表示该位置上数字的权值,从右往左依次为1、16、256、4096,以此类推。

例如,数字ABCD中的D表示13个1,C表示12个16,B表示11个256,A表示10个4096,所以ABCD的十六进制表示为10*4096 + 11*256 + 12*16 + 13*1。

二、从十进制到十六进制的转换方法要将一个十进制数转换为十六进制数,我们可以使用除以16取余数的方法逐步获取每一位的数字。

具体步骤如下:1. 将给定的十进制数除以16,得到商和余数。

2. 将余数记录下来,作为新的数字的一位。

3. 将商作为新的十进制数,再次除以16,得到新的商和余数。

4. 重复上述步骤,直到商为0为止。

5. 将所有的余数按照从右往左的顺序排列,即得到转换后的十六进制数。

举例说明:将十进制数173转换为十六进制数。

将173除以16,商为10,余数为13。

所以最右边的数字为D。

然后,将商10再次除以16,商为0,余数为10。

所以倒数第二位的数字为A。

将余数D和A按照从右往左的顺序排列,得到十六进制数为AD。

三、从十六进制到十进制的转换方法要将一个十六进制数转换为十进制数,我们可以将每一位的数字与相应的权值相乘,然后求和得到结果。

具体步骤如下:1. 将给定的十六进制数从右往左依次取出每一位的数字。

2. 将每一位的数字与相应的权值进行相乘。

3. 将所有的乘积进行累加,即得到转换后的十进制数。

十六进制及进制间的转换

十六进制及进制间的转换

十六进制及进制间的转换举例说明16进制的20表示成10进制就是:2×161+0×160=3210进制的32表示成16进制就是:20十进制数可以转换成十六进制数的方法是:十进制数的整数部分“除以16取余”,十进制数的小数部分“乘16取整”,进行转换。

比如说十进制的0.1转换成八进制为0.0631463146314631。

就是0.1乘以8=0.8,不足1不取整,0.8乘以8=6.4,取整数6,0.4乘以8=3.2,取整数3,依次下算。

编程中,我们常用的还是10进制.毕竟C/C++是高级语言。

比如:int a = 100,b = 99;不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。

但二进制数太长了。

比如int 类型占用4个字节,32位。

比如100,用int类型的二进制数表达将是:面对这么长的数进行思考或操作,没有人会喜欢。

因此,C,C++ 没有提供在代码直接写二进制数的方法。

用16进制或8进制可以解决这个问题。

因为,进制越大,数的表达长度也就越短。

不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?2、8、16,分别是2的1次方、3次方、4次方。

这一点使得三种进制之间可以非常直接地互相转换。

8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。

在下面的关于进制转换的课程中,你可以发现这一点。

3转换二进制转换十进制二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:101100100,转换为10进制为:356用横式计算0×20+0×21+1×22+0×23+0×24+1×25+1×26+0×27+1×28 =3560乘以多少都是0,所以我们也可以直接跳过值为0的位:1×22+1×25+1×26+1×28=3564+32+64+256 =356八进制转换十进制八进制就是逢8进1。

很完整的281016进制转换方法

很完整的281016进制转换方法

很完整的2、8、10、16进制转换方法最近在研究C语言,因为要用到各进制间转换,所以收集了一些资料…这是一节“前不着村后不着店”的课。

不同进制之间的转换纯粹是数学上的计算。

不过,你不必担心会有么复杂,无非是乘或除的计算。

生活中其实很多地方的计数方法都多少有点不同进制的影子。

比如我们最常用的10进制,其实起源于人有10个指头。

如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。

至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。

生活中还有:七进制,比如星期。

十六进制,比如小时或“一打”,六十进制,比如分钟或角度……我们找到问号字符(?)的ASCII值是63,那么我们可以把它转换为八进值:77,然后用‘\77′来表示'?'。

由于是八进制,所以本应写成‘\077′,但因为C,C++规定不允许使用斜杠加10进制数来表示字符,所以这里的0可以不写。

事实上我们很少在实际编程中非要用转义符加八进制数来表示一个字符,所以,6.2.4小节的内容,大家仅仅了解就行。

6.2.5 十六进制数转换成十进制数2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?用竖式计算:2AF5换算成10进制:第0位: 5 * 16^0 = 5第1位: F * 16^1 = 240第2位: A * 16^2 = 2560第3位: 2 * 16^3 = 8192 +————————————-10997直接计算就是:5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

十进制与十六进制转换方法

十进制与十六进制转换方法

十进制与十六进制转换方法
十进制(Decimal)和十六进制(Hexadecimal)之间的转换是计算机科学中常见的操作。

下面是两者之间的转换方法:
1. 从十进制转换到十六进制:
首先,确定十进制数的范围。

确保这个数是一个整数,如果不是,你需要将它转换为整数(例如,通过除以10的适当次幂)。

使用除法来找到最大的十六进制位数。

例如,如果你正在转换一个十进制数,你可以用它除以16,并记录余数和商。

余数将是最低位的十六进制数字,而商可以再次除以16。

重复这个过程,每次都取余数和商,直到商为0。

所有这些余数连接在一起形成转换后的十六进制数。

2. 从十六进制转换到十进制:
读取十六进制数的每一位。

使用乘法来转换每一位。

例如,十六进制中的“A”或“10”代表10进制的10,而“B”或“11”代表10进制的11。

将每一位的十进制值乘以相应的基数(对于十六进制,基数是16)并加在一起。

此外,也有在线工具和应用程序可以帮助进行这两种转换,如果觉得手动转换比较困难的话。

不同进制之间转换的通用方法

不同进制之间转换的通用方法

不同进制之间转换的通用方法进制是数学和计算机科学中的一个重要概念,我们在日常生活中也经常用到不同进制的计数方法,比如十进制、二进制、八进制、十六进制等。

不同进制的转换虽然听起来比较高大上,但实际上只需要掌握一些简单的规律就可以轻松搞定。

下面我们来介绍一下不同进制之间的通用转换方法。

1. 十进制转换成二进制、八进制、十六进制:先将十进制数不断除以2、8或16直到除数为0,然后将余数逆序排列起来即可得到对应进制下的数。

举个例子,我们来把十进制的25转换成二进制、八进制和十六进制。

首先,我们依次用2、8和16去除25,得到:- 二进制:25 / 2 = 12 余 1,12 / 2 = 6 余 0,6 / 2 = 3 余 0,3 / 2 = 1 余 1,1 / 2 = 0 余 1,所以25的二进制数为11001。

- 八进制:25 / 8 = 3 余 1,3 / 8 = 0 余 3,所以25的八进制数为 31。

- 十六进制:25 / 16 = 1 余 9,1 / 16 = 0 余 1,所以25的十六进制数为 19。

2. 二进制、八进制、十六进制转换成十进制:按照对应进制的规则,将每位数字乘以对应的权值,然后将结果相加即可得到十进制数。

以二进制转换为十进制为例,举个例子,我们来把二进制数11001转换成十进制。

按照二进制的规则,从右往左依次乘以2的0次方、1次方、2次方、3次方、4次方,得到:- 1 × 1 + 0 × 2 + 0 × 4 + 1 × 8 + 1 × 16 = 25所以11001的十进制数为25。

3. 八进制转换成二进制:将每一位八进制数转换为对应的三位二进制数即可得到二进制数。

举个例子,我们来把八进制数31转换成二进制。

按照对应的规则,将3转换为011,1转换为001,得到:- 31的二进制数为011001。

4. 十六进制转换成二进制:将每一位十六进制数转换为对应的四位二进制数即可得到二进制数。

二进制八进制十进制十六进制之间转换详解

二进制八进制十进制十六进制之间转换详解

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

10进制转16进制计算公式

10进制转16进制计算公式

10进制转16进制计算公式一、整数部分的10进制转16进制。

1. 方法一:除16取余法(竖式计算)- 步骤:- 将十进制数除以16,得到商和余数。

- 商继续除以16,直到商为0。

- 将每次得到的余数从右到左排列(余数如果大于9,则用对应的字母表示,10 - A、11 - B、12 - C、13 - D、14 - E、15 - F),得到的就是十六进制数。

- 例如:将十进制数255转换为十六进制。

- 255÷16 = 15·s·s15(这里15在十六进制中用F表示)- 15÷16=0·s·s15(也是F)- 所以255转换为十六进制就是FF。

2. 方法二:分解法(适用于一些特殊数)- 步骤:- 将十进制数分解成16的幂次方之和。

- 根据16的幂次方对应的系数转换为十六进制。

- 例如:将十进制数272转换为十六进制。

- 因为272 = 16×17,17 = 1×16^1+1×16^0- 所以十六进制表示为110。

二、小数部分的10进制转16进制。

1. 方法:乘16取整法。

- 步骤:- 将十进制小数乘以16,取整数部分作为十六进制小数的第一位数字。

- 然后将小数部分再乘以16,取整数部分作为十六进制小数的下一位数字。

- 重复这个过程,直到小数部分为0或者达到要求的精度为止。

- 例如:将十进制小数0.6875转换为十六进制。

- 0.6875×16 = 11(11在十六进制中用B表示)- 所以0.6875转换为十六进制就是0.B。

2. 混合数(既有整数又有小数部分)的转换。

- 分别将整数部分和小数部分按照上述方法转换,然后将结果组合起来。

例如十进制数255.6875,整数部分255转换为十六进制是FF,小数部分0.6875转换为十六进制是0.B,组合起来就是FF.B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进制数与十六进制数的
转换方法
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
若十进制数23785转为十六进制,则用23785/16=1486余9,1486/16=92余14,
92/16=5余12, 5/16=0余5,十六进制中,10对应为a、11对应为b、。

、15对应为f,再将余数倒写为5ce9,则十进制23785=十六进制5ce9
的第0位的为16的,第1位的为16的1次方,第2位的为16的2次方……
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?
用: 2AF5换算成10进制:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
第2位: A * 16^2 = 2560
第3位: 2 * 16^3 = 8192 +
-------------------------------------
10997
直接计算就是:
5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997
二进制的1101转化成十进制
1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13 转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始
:用2辗转相除至结果为1 将余数和最后的1从下向上倒序写就是结果例如302 302/2 = 151 余0 151/2 = 75 余1 75/2 = 37 余1
37/2 = 18 余1 18/2 = 9 余0 9/2 = 4 余1 4/2 = 2 余0 2/2 = 1 余0 1/2 = 0 余1 故二进制为
二进制转
在把转换为表示形式时,对每三位二进制位进行分组,应该从小数点所在位置分别向左向右划分,若整数部分倍数不是3的倍数,可以在最高位前面补若干个0;对小数部分,当其位数不是的倍数时,在最后补若干个0.然后从左到右把每组的码依次写出,即得转换结果.
你算一下就知道了啊比如110=1*2^2+1*2^1+0*2^0=6 比如: 1001110分组001 001 110
001=0*2^2+0*2^1+1*2^0=1
001=0*2^2+0*2^1+1*2^0=1
110=1*2^2+1*2^1+0*2^0=6
结果为116
二进制转
要将二进制转为16进制,只需将二进制的位数由右向左每四位一个单位分隔,分的不够的前边补零,用四位数的来代表一个16进制。

转换表如下,括号内为
0000(0) 0001 (1) 0010 (2) 0011 (3) 0100 (4) 0101 (5)0110 (6) 0111 (7) 1000 (8) 1001 (9) 1010(A) 1011 (B)1100 (C) 1101 (D) 1110 (E) 1111 (F)
例如:划分为1010 1011,根据转换表为AB。

相关文档
最新文档