人教版九年级上册数学:概率(公开课课件)
合集下载
概率课件人教版九年级数学上册
人教版九年级数学上册
25.1.2概率
导入新课
(1)打开电视正在播放世界杯足球预选赛. 随机事件
(2)卡塔尔将举办2022年世界杯足球赛. 必然事件
(3)杜老师将参加2022年世界杯足球赛. 不可能事件
FIFAWORLD CUP
Qat ar2022
公平吗?
问题1:足球比赛开始前,主裁判抛一枚硬币,正面向上则紫队梅西开球.
随机掷出
共同
特征
e
(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.
在这些试验中出现的事件为等可能事件.
探究新知
例 如 :问题2的掷骰子试验中,“点数为2”这个事件包含工种可能结果,在全部6 种可能的结果中所占的比为
想一想:“点数为奇数”事件的概率是多少呢?
这样设计合理吗?为什么?
拓展探索
给你一个空白的圆盘,你会怎么设计?
课后探索
这一天还会发生什么事情?请发挥你的想象力,利用我们所 学的概率,设计各种事件,使用合理的工具,并求出相应事件的 概率 .
课堂小结
ቤተ መጻሕፍቲ ባይዱ
知识小结
1、概率的定义: 一般地,对一个随机事件A, 我们把刻画其发生可能性大小的数值,称为
这样做公平吗?
形状规则 质地均匀 随机掷出
1.骰子向上一面有几种可能?分别是?
向上一面的点数有6种可能,即:1,
2,3,4,5,6.
2.它们的可能性相等吗?
每种点数出现的可能性相等.
3.能否用数值刻画可能性大小呢?
我们用二表示每个数字被抽到的可能性大小.
6
概率的定义
数值2 和 刻画了问题1和问题2中随机事件发生的可能性大小.
25.1.2概率
导入新课
(1)打开电视正在播放世界杯足球预选赛. 随机事件
(2)卡塔尔将举办2022年世界杯足球赛. 必然事件
(3)杜老师将参加2022年世界杯足球赛. 不可能事件
FIFAWORLD CUP
Qat ar2022
公平吗?
问题1:足球比赛开始前,主裁判抛一枚硬币,正面向上则紫队梅西开球.
随机掷出
共同
特征
e
(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.
在这些试验中出现的事件为等可能事件.
探究新知
例 如 :问题2的掷骰子试验中,“点数为2”这个事件包含工种可能结果,在全部6 种可能的结果中所占的比为
想一想:“点数为奇数”事件的概率是多少呢?
这样设计合理吗?为什么?
拓展探索
给你一个空白的圆盘,你会怎么设计?
课后探索
这一天还会发生什么事情?请发挥你的想象力,利用我们所 学的概率,设计各种事件,使用合理的工具,并求出相应事件的 概率 .
课堂小结
ቤተ መጻሕፍቲ ባይዱ
知识小结
1、概率的定义: 一般地,对一个随机事件A, 我们把刻画其发生可能性大小的数值,称为
这样做公平吗?
形状规则 质地均匀 随机掷出
1.骰子向上一面有几种可能?分别是?
向上一面的点数有6种可能,即:1,
2,3,4,5,6.
2.它们的可能性相等吗?
每种点数出现的可能性相等.
3.能否用数值刻画可能性大小呢?
我们用二表示每个数字被抽到的可能性大小.
6
概率的定义
数值2 和 刻画了问题1和问题2中随机事件发生的可能性大小.
人教版九年级数学上册(课件)25.1.2概率
① P(点数为2)= 1 .
② 点数为奇数有 3 种6可能,分别为_1_,__3_,_5__,
P(点数为奇数)= ③点数大于2且小于5有
3 6
=
1 2
.
2 种可能,分别_
3,4___,
2 P(点数大于2且小于5)= 6
=
1 3
.
三、研学教材
抛掷一枚质地均匀的硬币,向上一面 有几种可能的结果?它们的可能性相等吗? 由此能得到“下面向上”的概率吗? 答:有2种可能;它们的可能性相等;
三、研学教材
知识点一 概率的意义与表示方法
1、①在问题1中,从分别标有1,2,3,4, 5的五个纸团中随机抽取一个,由于每个数 字1被抽到的可能性大小 相等 ,所以我们用
5 表示每个数字被抽到的可能性大小。 ②在问题2中,掷一枚骰子,向上一面的点 数大有 小6相个等可能,,所由以于我每们种用点1数出表现示的每可一能个性点 数出现的可能性大小。 6
九年级数学上册·R
第25章 概率初步
25.1.2概率
一、学习目标
1、理解概率的定义,掌握求事件A发
生的概率的方法P( A )= m ;
mn
2、理解并应用P(A)=
n
(在一次试验中有n种可能 的 结果,其中A包含m种)的意义。
二、新课引入
彩票广告上说2元中256万元, 某人买了100张彩票,那么他中奖 是 随机 事件.
分析:转动此转盘共有_7_种__等可能结果.
三、研学教材
解:(1)指针指向红色的结果有___3__个, 所以P(指针指向红色)=___3__ (2)指针指向红色或黄色的7结果有__5__个, 所以P(指针指向红色或黄色)=__5__ (3)指针不指向红色的结果有___47___个, 所以P(指针不指向红色)=__4___0
初三上数学课件(人教版)-概率
答案:①③.
D
C
1 4
解:(1) 1 (2) 3
4
4
一般地,如果在一次试验中,有n种可能的结果,并且 它们发生的可能性都相等,事件A包含其中的m种结果,那 么事件A发生的概率P(A)= m ,因为0≤m≤n,所以
n 0≤P(A)≤1.
特别地:当A为必然事件时,P(A)=1;当A为不可 能事件时,P(A)=0;当A为随机事件时,P(A)的取值 范围0≤P(A)≤1.
2.当试验具有以下特点时:①每次试验,可能出现的结 果只有_有__限__个;②每次试验,各结果出现的可能性相__等__.可 以从事件所包含的_各__种__可__能_的结果数在全__部__可__能__的结果数中
所占的_比__,分析出事件发生的概率.
3.一般地,如果在一次试验中,有_n_种可能的结果,并 且它们发生的可能性都_相__等_,事件A包含其中的_m_种结果,那
⑤频率是概率的近似值,概率是频率的稳定值.
其中正确的是_①__④__⑤__.___.
解析:在相同的条件下重复试验n次,事件A发生的次数nA
为事件A发生的频数;事件A发生的比例
fn ( A)
nA n
称为事件
A发生的频率.对于给定的随机事件A,如果随着试验次数的
增加,事件A发生的频率fn(A)稳定在某个常数上.若这个
归纳:一般地,如果在一次试验中,有n种可能的结果,并且 它事们件A发发生生的的可概能率性P都(相A)等=,m事,件因A为包0含≤m其≤中n,的所m以种0结≤P果(,A)那≤么1.
n
特别地:当A为必然事件时,P(A)=1;当A为不可能事件 时,P(A)=0;当A为随机事件时,P(A)的取值范围0≤P(A)≤1.
么事件A发生的概率为_P_(_A_)_.m .
D
C
1 4
解:(1) 1 (2) 3
4
4
一般地,如果在一次试验中,有n种可能的结果,并且 它们发生的可能性都相等,事件A包含其中的m种结果,那 么事件A发生的概率P(A)= m ,因为0≤m≤n,所以
n 0≤P(A)≤1.
特别地:当A为必然事件时,P(A)=1;当A为不可 能事件时,P(A)=0;当A为随机事件时,P(A)的取值 范围0≤P(A)≤1.
2.当试验具有以下特点时:①每次试验,可能出现的结 果只有_有__限__个;②每次试验,各结果出现的可能性相__等__.可 以从事件所包含的_各__种__可__能_的结果数在全__部__可__能__的结果数中
所占的_比__,分析出事件发生的概率.
3.一般地,如果在一次试验中,有_n_种可能的结果,并 且它们发生的可能性都_相__等_,事件A包含其中的_m_种结果,那
⑤频率是概率的近似值,概率是频率的稳定值.
其中正确的是_①__④__⑤__.___.
解析:在相同的条件下重复试验n次,事件A发生的次数nA
为事件A发生的频数;事件A发生的比例
fn ( A)
nA n
称为事件
A发生的频率.对于给定的随机事件A,如果随着试验次数的
增加,事件A发生的频率fn(A)稳定在某个常数上.若这个
归纳:一般地,如果在一次试验中,有n种可能的结果,并且 它事们件A发发生生的的可概能率性P都(相A)等=,m事,件因A为包0含≤m其≤中n,的所m以种0结≤P果(,A)那≤么1.
n
特别地:当A为必然事件时,P(A)=1;当A为不可能事件 时,P(A)=0;当A为随机事件时,P(A)的取值范围0≤P(A)≤1.
么事件A发生的概率为_P_(_A_)_.m .
人教版数学九年级上册教学课件-.. 概率ppt课件
笔 记
在一定条件下:必然会发生的事 件叫必然事件; 在一定条件下:必然不会发生的事件 叫不可能事件; 在一定条件下:可能会发生,也可 能不发生的事件叫随机事件.
注意:必然事件和不可能事件统称为确定事件
人教版数学九年级上册教学课件-.. 概率ppt课件
问题1:5名同学参加演讲比赛,以抽签方式决 定每个人的出场顺序。盒中有5个看上去完全一 样的纸团,每个纸团分别写有出场的序号1,2, 3,4,5。小军首先抽,他在看不到纸团上数字 的情况下从盒中随机(任意)取一个纸团。 (1)抽到的序号有几种可能的结果?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
(1)已知地球表面陆地面积与海洋面积的比为 3:7。如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落在陆地上”哪个可能性 更大?
(2)一个袋子里装有20个形状、质地、大小一样 的球,其中4个白球,2个红球,3个黑球,其它 都是黄球,从中任摸一个,摸中哪种球的可能 性最大?
活动1(摸球游戏):三个不透明的箱子均装有 10个乒乓 人教版数学九年级上册教学课件-.. 概率ppt课件 球: 1号箱10个黑球, 2号箱10个白球,
3号箱5个黑球和5个白球。 猜一猜:每个箱能摸到什么颜色的球?
活动2(摸牌游戏):三堆扑克牌中(每堆10张): 第一堆 10张红牌,第二堆 10张黑牌, 第三堆 5张红牌和5张黑牌。 猜一猜:每一堆牌中能摸出什么颜色的牌?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
再猜猜,辩辩:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?
必然发生
人教版数学九年级上册教学课件-.. 概率ppt课件
在一定条件下:必然会发生的事 件叫必然事件; 在一定条件下:必然不会发生的事件 叫不可能事件; 在一定条件下:可能会发生,也可 能不发生的事件叫随机事件.
注意:必然事件和不可能事件统称为确定事件
人教版数学九年级上册教学课件-.. 概率ppt课件
问题1:5名同学参加演讲比赛,以抽签方式决 定每个人的出场顺序。盒中有5个看上去完全一 样的纸团,每个纸团分别写有出场的序号1,2, 3,4,5。小军首先抽,他在看不到纸团上数字 的情况下从盒中随机(任意)取一个纸团。 (1)抽到的序号有几种可能的结果?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
(1)已知地球表面陆地面积与海洋面积的比为 3:7。如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落在陆地上”哪个可能性 更大?
(2)一个袋子里装有20个形状、质地、大小一样 的球,其中4个白球,2个红球,3个黑球,其它 都是黄球,从中任摸一个,摸中哪种球的可能 性最大?
活动1(摸球游戏):三个不透明的箱子均装有 10个乒乓 人教版数学九年级上册教学课件-.. 概率ppt课件 球: 1号箱10个黑球, 2号箱10个白球,
3号箱5个黑球和5个白球。 猜一猜:每个箱能摸到什么颜色的球?
活动2(摸牌游戏):三堆扑克牌中(每堆10张): 第一堆 10张红牌,第二堆 10张黑牌, 第三堆 5张红牌和5张黑牌。 猜一猜:每一堆牌中能摸出什么颜色的牌?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
再猜猜,辩辩:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?
必然发生
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版九年级数学上册25.概率课件
概率为0.因此0 PA 1.
(3)随机事件的概率为 0<P A< 1
例1.掷一枚骰子,视察向上的一面的点 数,求下列事件的概率。
①点数为2. P(点数为2)= 1 ②点数为奇数。 6
P(点数为奇数)= 3 1 ③点数大于2且小于5. 6 2
P(点数大于2且小于5)= 2 1 63
例1变式 掷1个质地均匀的正方体骰 子,视察向上一面的点数, (1)求掷得点数为2或4或6的概率; (2)小明在做掷骰子的实验时,前五 次都没掷得点数2,求他第六次掷得点 数2的概率。
千分之一的成功率
百分之九十九的成功率
概率 用数值表示随机事件产生的可 能性大小。
1.概率的定义:
一般地,对于一个随机事件A,我们把刻 画其产生可能性大小的数值,称为随机事件A 产生的概率,记为P(A).
概率从数量上刻画了一个随机事件产生 的可能性大小。
实验1:掷一枚硬币,落地后 (1)会出现几种可能的结果?两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
事件A产生的概率 PA m .
n
不可能事件,必然事件与随机事件的关系 1、当A是必然产生的事件时,P(A)是多少 ?
必然事件产生的可能性是100% ,P(A)=1;
2、当A是不可能产生的事件时,P(A)是多少? 不可能事件产生的可能性是 0; P(A)= 0; 3、不确定事件产生的可能性是大于0而小于1的.
25.1.2 概率
请用数学的思维和眼光描述 :
瓮中捉鳖 守株枚质地均匀的硬币,硬币落下 后,会出现两种情况:
正面朝上
反面朝上
请问:正面朝上 和反面朝上的 可能性大小相同
吗?
思考:
掷一枚质地均匀的骰子,掷到结果有多少 种?
(3)随机事件的概率为 0<P A< 1
例1.掷一枚骰子,视察向上的一面的点 数,求下列事件的概率。
①点数为2. P(点数为2)= 1 ②点数为奇数。 6
P(点数为奇数)= 3 1 ③点数大于2且小于5. 6 2
P(点数大于2且小于5)= 2 1 63
例1变式 掷1个质地均匀的正方体骰 子,视察向上一面的点数, (1)求掷得点数为2或4或6的概率; (2)小明在做掷骰子的实验时,前五 次都没掷得点数2,求他第六次掷得点 数2的概率。
千分之一的成功率
百分之九十九的成功率
概率 用数值表示随机事件产生的可 能性大小。
1.概率的定义:
一般地,对于一个随机事件A,我们把刻 画其产生可能性大小的数值,称为随机事件A 产生的概率,记为P(A).
概率从数量上刻画了一个随机事件产生 的可能性大小。
实验1:掷一枚硬币,落地后 (1)会出现几种可能的结果?两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
事件A产生的概率 PA m .
n
不可能事件,必然事件与随机事件的关系 1、当A是必然产生的事件时,P(A)是多少 ?
必然事件产生的可能性是100% ,P(A)=1;
2、当A是不可能产生的事件时,P(A)是多少? 不可能事件产生的可能性是 0; P(A)= 0; 3、不确定事件产生的可能性是大于0而小于1的.
25.1.2 概率
请用数学的思维和眼光描述 :
瓮中捉鳖 守株枚质地均匀的硬币,硬币落下 后,会出现两种情况:
正面朝上
反面朝上
请问:正面朝上 和反面朝上的 可能性大小相同
吗?
思考:
掷一枚质地均匀的骰子,掷到结果有多少 种?
人教版九年级上册 25.1.2 概率(共23张PPT)
所有可能结果的总数为7,并且它们出现的可能性相等.
(1)指针指向红色(记为事件A)的结果有3种,
即红1
,红2
,红3
,因此
P( A)
3 7
.
绿1 红2
黄1
红1 绿2
红3黄2
(2)指针指向红色或黄色(记为事件B)的结果有5种,
即红1
பைடு நூலகம்,红2
,红3
,黄1
,黄2
,因此
P(B)
5. 7
(3)指针不指向红色(记为事件C)的结果有4种,
(1)点数为2有1种可能,因此P(点数为2)= 1 .
6
(2)点数为奇数有3种可能,即点数为1,3,5, 因此 P(点数为奇数)= 3 = 1 .
62
(3)点数大于2且小于5有2种可能,即点数为3,4, 因此P(点数大于2且小于5)= 2 = 1 .
63
例2 如图是一个转盘,转盘分成7个大小相同的扇形,颜色分为红、
n
具备元素有限且等 可能行的数学模型
称为古典概型
思考
在P
A
m n
中,分子m和分母n都表示结果的数目,两者有
何区别,它们之间有怎样的数量关系?P(A)可能小于0吗?可能大
于1吗?
要点归纳
在P A m,由m和n的含义,可知0≤m≤n,进而有 0≤ m ≤1,
n
n
故: 0 ≤ P(A)≤ 1
特别地, (1)当A是必然事件时,P(A)= 1. (2)当A是不可能事件时,P(A)= 0.
2
4. 有10张正面分别写有1,2,…,10的卡片,背面图案相同.将卡片背面朝 上充分混匀后,从中随机抽取1张卡片,得到一个数.设A=“得到的数是 5”,B=“得到的数是偶数”,C=“得到的数能被3整除”,求事件A,B,C 发生的概率.
人教版初中数学九年级上册 概率 数学教学课件PPT
当A为必然事件时,P(A)=1; 当A为不可能事件时,P(A)=0.
18:10
归纳总结
事件发生的概率越大,它的概率越接近于1, 反之,事件发生的概率越小,它的概率越接近 于0.
0 不可能发生
事件发生的可能性越来越小 事件发生的可能性越来越大
1 概率的值
必然发生
18:10
实际运用
例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率 :
概率从数量上刻画了一个随机事件发生 的可能性大小。
18:10
探索新知
实验1.
从分别标有1、2、3、4、5号的5根纸签中随 机地抽取一根, 抽出的签上的号码有几种可能? 每个号被抽到的可能性大小相同吗?
抽出的签上的号码有5种可能,即 1、2、3、4、5.
每个号被抽到的可能性大小相同,都是
全部可能结果总数的 1.
1
②P(抽到大王或小王)=____2;7
2
③P(抽到A)=___2_7;
13
④P(抽到方块)=____5;4
4.袋子中装有5个红球、3个绿球,这些球除了颜色外都相同. 从色袋的子概中 率随是机__83地__摸. 出一个球,它是红色的概率是_8_5__,是绿
18:10
课堂小结
1、概率的定义及基本性质。
18:10
5
探索新知
实验2.
掷一枚骰子,向上一面的点数有几种可能? 每种可能性出现的大小相同吗?
向上一面的点数有6种可能,即 1、2、3、4、5、6.
每个点数向上的可能性大小相同,都是全部 可能结果总数的 . 1
6
18:10
探索新知
可以发现以上试验有两个共同点: 1.每一次试验中,可能出现的结果是有限个; 2.每一次试验中,出现的结果可能性相等.
18:10
归纳总结
事件发生的概率越大,它的概率越接近于1, 反之,事件发生的概率越小,它的概率越接近 于0.
0 不可能发生
事件发生的可能性越来越小 事件发生的可能性越来越大
1 概率的值
必然发生
18:10
实际运用
例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率 :
概率从数量上刻画了一个随机事件发生 的可能性大小。
18:10
探索新知
实验1.
从分别标有1、2、3、4、5号的5根纸签中随 机地抽取一根, 抽出的签上的号码有几种可能? 每个号被抽到的可能性大小相同吗?
抽出的签上的号码有5种可能,即 1、2、3、4、5.
每个号被抽到的可能性大小相同,都是
全部可能结果总数的 1.
1
②P(抽到大王或小王)=____2;7
2
③P(抽到A)=___2_7;
13
④P(抽到方块)=____5;4
4.袋子中装有5个红球、3个绿球,这些球除了颜色外都相同. 从色袋的子概中 率随是机__83地__摸. 出一个球,它是红色的概率是_8_5__,是绿
18:10
课堂小结
1、概率的定义及基本性质。
18:10
5
探索新知
实验2.
掷一枚骰子,向上一面的点数有几种可能? 每种可能性出现的大小相同吗?
向上一面的点数有6种可能,即 1、2、3、4、5、6.
每个点数向上的可能性大小相同,都是全部 可能结果总数的 . 1
6
18:10
探索新知
可以发现以上试验有两个共同点: 1.每一次试验中,可能出现的结果是有限个; 2.每一次试验中,出现的结果可能性相等.
人教版九年级数学上册25.概率教学课件优秀公开课
人教版 数学 九年级 上册
第二十五章 概率初步 25.1.2 概率
学习目标:
1.在具体情境中理解概率的定义,体会事件产生的可能性 大 小与概率的关系。
2.理解概率的计算公式,明确概率的取值范围,能求简单 的 等可能性事件的概率。
在一定条件下: 必然会产生的事件叫必然事件; 必然不会产生的事件叫不可能事件; 可能会产生,也可能不产生的事件叫不确定事件或随机事件.
把这个例中的(1),(3)两问及答案联系起来,你有什么发现?
1. 当A是必然产生的事件时,P(A)= 1 。 当B是不可能产生的事件时,P(B)= 0 。 当C是随机事件时,P(C)的范围是 0 ≦ P(C)≦ 1 。
2.投掷一枚骰子,出现点数是4的概率约是 1/6 。
3.一次抽奖活动中,印发奖券10 000张,其中一等奖一名 奖金5000元,那么第一位抽奖者,(仅买一张)中奖概率 为 1/10000 。
实验2:掷一枚骰子,向上的一面的点数有6种可能,即1, 2,3,4,5,6。由于骰子形状规则、质地均匀,又是随机掷 出,所以出现每种结果的可能性大小相等,都是全部可能结果 总数的1/6。
上述数值1/5和1/6反应了实验中相应随机事件产生的可能 性大小。
概率的定义:
一般地,对于一个随机事件A,我们把刻画其产生可能性大小的数值, 称为随机事件A产生的概率,记作P(A)。
必然事件的概率和不可能事件的概率分别是多少呢? P(必然事件)=1 P(不可能事件)=0
在上述类型的实验中,通过对实验结果以及事件本身的分析,我
m
们就可以求出相应事件的概率,在P(A)= n 中,由m和n的含 义可知0≤m≤n,进而 0≤m/n≤1。因此
0≤P(A) ≤1.
特别地: 必然事件的概率是1,记作:P(必然事件)=1; 不可能事件的概率是0,记作: P(不可能事件)=0
第二十五章 概率初步 25.1.2 概率
学习目标:
1.在具体情境中理解概率的定义,体会事件产生的可能性 大 小与概率的关系。
2.理解概率的计算公式,明确概率的取值范围,能求简单 的 等可能性事件的概率。
在一定条件下: 必然会产生的事件叫必然事件; 必然不会产生的事件叫不可能事件; 可能会产生,也可能不产生的事件叫不确定事件或随机事件.
把这个例中的(1),(3)两问及答案联系起来,你有什么发现?
1. 当A是必然产生的事件时,P(A)= 1 。 当B是不可能产生的事件时,P(B)= 0 。 当C是随机事件时,P(C)的范围是 0 ≦ P(C)≦ 1 。
2.投掷一枚骰子,出现点数是4的概率约是 1/6 。
3.一次抽奖活动中,印发奖券10 000张,其中一等奖一名 奖金5000元,那么第一位抽奖者,(仅买一张)中奖概率 为 1/10000 。
实验2:掷一枚骰子,向上的一面的点数有6种可能,即1, 2,3,4,5,6。由于骰子形状规则、质地均匀,又是随机掷 出,所以出现每种结果的可能性大小相等,都是全部可能结果 总数的1/6。
上述数值1/5和1/6反应了实验中相应随机事件产生的可能 性大小。
概率的定义:
一般地,对于一个随机事件A,我们把刻画其产生可能性大小的数值, 称为随机事件A产生的概率,记作P(A)。
必然事件的概率和不可能事件的概率分别是多少呢? P(必然事件)=1 P(不可能事件)=0
在上述类型的实验中,通过对实验结果以及事件本身的分析,我
m
们就可以求出相应事件的概率,在P(A)= n 中,由m和n的含 义可知0≤m≤n,进而 0≤m/n≤1。因此
0≤P(A) ≤1.
特别地: 必然事件的概率是1,记作:P(必然事件)=1; 不可能事件的概率是0,记作: P(不可能事件)=0
人教版初中数学九年级上册 概率 数学教学课件PPT
概率
游戏 :从一堆牌中任意抽一张抽到红牌
必然事件
不可能事件
随机事件
随机事件
小明得了很严重的 病,动手术只有千 分之一的成功率, 父母很担心!
小红生病了,需要动 手术,父母很担心,但 当听到手术有百分之九 十九的成功率的时候, 父母松了一口气,放心 了不少!
实验1:掷一枚硬币,落地后 (1)会出现几种可能的结果? 两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
摸到红球的概率
例1:掷一个骰子,观察向上的一面的点数,求下
列事件的概率:
思考:(1)、(2)
(1)点数为2;
、(3)掷到哪个的可
(2)点数为奇数;
能性大一点?
(3)点数大于2且小于5。
解:掷一个骰子时,向上一面的点数可能为1,2,3,4 ,5,6,共6种。这些点数出现的可能性相等。 (1)P(点数为2 )=1/6
正面朝上
开 始
反面朝上
实验2:抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果?
6种
(2)各点数出现的可能性会相等吗?相等 (3)试猜想:你能用一个数值来说明各点数 出现的可能性大小吗?
实验3:从分别标有1,2,3,4,5的5根纸签抽到的可能性会相等吗?
(3)试猜想:你能用一个数值来说明每根纸签 被抽到的可能性大小吗?
试验具有两个共同特征:
(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等。
在这些试验中出现的事件为等可能事件.
摸到红球的概率
P(摸到红球)=
摸到红球可能出现的结果数 3
4
摸出一球所有可能出现的结果数
游戏 :从一堆牌中任意抽一张抽到红牌
必然事件
不可能事件
随机事件
随机事件
小明得了很严重的 病,动手术只有千 分之一的成功率, 父母很担心!
小红生病了,需要动 手术,父母很担心,但 当听到手术有百分之九 十九的成功率的时候, 父母松了一口气,放心 了不少!
实验1:掷一枚硬币,落地后 (1)会出现几种可能的结果? 两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
摸到红球的概率
例1:掷一个骰子,观察向上的一面的点数,求下
列事件的概率:
思考:(1)、(2)
(1)点数为2;
、(3)掷到哪个的可
(2)点数为奇数;
能性大一点?
(3)点数大于2且小于5。
解:掷一个骰子时,向上一面的点数可能为1,2,3,4 ,5,6,共6种。这些点数出现的可能性相等。 (1)P(点数为2 )=1/6
正面朝上
开 始
反面朝上
实验2:抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果?
6种
(2)各点数出现的可能性会相等吗?相等 (3)试猜想:你能用一个数值来说明各点数 出现的可能性大小吗?
实验3:从分别标有1,2,3,4,5的5根纸签抽到的可能性会相等吗?
(3)试猜想:你能用一个数值来说明每根纸签 被抽到的可能性大小吗?
试验具有两个共同特征:
(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等。
在这些试验中出现的事件为等可能事件.
摸到红球的概率
P(摸到红球)=
摸到红球可能出现的结果数 3
4
摸出一球所有可能出现的结果数
人教版九年级数学上册《概率》概率初步PPT优质课件
13
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
人教版数学九上课件《概率》教学课件
(2)点数为奇数有3种可能,即点数为1,3,5,
P(点数为奇数)= 3 1
62
(3)点数大于2且小于5有2种可能,即点数为3,
4,
P(点数大于2且小于5)=
2 6
1 3
思考:两人在掷骰子比大小,
第一个人先掷出一个2点,
那么另一个人胜它的概率有多大?
8/9/2019
例2、如图:是一个转盘,转盘分成7个相同 的扇形,颜色分为红黄绿三种,指针固定, 转动转盘后任其自由停止,某个扇形会停在 指针所指的位置,(指针指向交线时当作指 向右边的扇形)求下列事件的概率。
必然事件
8/9/2019
例题解析
例1、掷一个骰子,观察向上的一面的点数, 求下列事件的概率:
(1)点数为2; (2)点数为奇数; (3)点数大于2且小于5.
8/9/2019
解:掷一个骰子时,向上一面的点数可能为1,2,
3,4,5,6,共6种,这些点数出现的可能性相
(等1).P(点数为2)=1 6
8/9/2019
例题解析
解:(1)A区域的方格共有8个,标号3表示在这
8个方格中有3个方格各藏有1颗地雷.因此,踩A 区域的任一方格,遇到地雷的概率是 3
8
(2)B区域中共有 9×9-9=72 个小方格,其中有10-3=7 个方格内各藏有1颗地雷.因此,
踩B区域的任一方格,遇到地雷 的概率是 7
72
8/9/2019
提高练习
如图所示,转盘被等分为16个扇形。请在转盘的适 当地方涂上颜色,使得自由转动这个转盘,当它停 止转动时
①指针落在红色区域的
概率为多少?
3 8
②你还能再举出一个不确
定事件,使得它发生的概
人教版九年级上册数学:概率(公开课课件)
经典事例 例1 掷一个骰子,观察向上的一面的点数,求下 列事件的概率:
(1)点数为2;(2)点数为奇数;(3)点数大于2小于5。
解:(1)点数为2有1种可能,因此P(点数为2)=1/6;
(2)点数为奇数有3种可能,即点数为1,3,5, 因此P(点数为奇数)= 3/6 =1/2;
(3)点数大于2且小于5有2种可能,即点数为3,4, 因此 P(点数大于2且小于5)= 2/6=1/3 。
第二十五章 概率初步
独山县第一中学 周燕明
25.1.2 概 率
学习目标: 1.理解一个事件概率的意义。 2.会在具体情境中求出一个事件的概率。(重点) 3.会进行简单的概率计算及应用。(难点)
知识回顾:
1.什么是必然事件,不可能事件和随机事件? 必然事件:在一定条件下,必然会发生的
事件
不可能事件:必然不会发生的事件
问题一
在第一个箱子有可能摸到一等奖吗?在第二 个箱子有可能摸到一等奖吗?它们属于什么事件?
问题二 我现在去摸奖,那么,请同学们告诉我要取得
一等奖,你们会建议我到哪个箱子去摸奖呢,为什 么?
由此,你有什么感悟?
讲授新课: 概率的定义及适用对象
思考:
在同样条件下,随机事件可能发生,也可能不发 生,那么它发生的可能性有多大呢?能否用数值果种数, n
n是试验总结果种数).
谈谈你本节课的收获?
作业: 教科书习题25.1第2,3题
事件A发生 的结果种数
试验的总共 结果种数
活动5 你能举出一些用数值刻画随机事件可能性大小的 例子吗?
想一想:对于 P( A) m 你能断定m的取值范围吗? n
归纳:
∵0 m n,0 m 1. n
∴ 0 P(A) 1, 特别的
人教版九年级上册数学《概率》概率初步PPT电子教学课件
学习目标
1.会在具体情境中求出一个事件的概率.
2.会进行简单的概率计算及应用.
课堂导入
上节课我们学习了概率的定义,那么在具体情境中, 我们怎样求出一个事件的概率呢?本节课我们将会解 决这个问题.
新知探究 知识点
计算简单事件的概率的主要类型: ① 个数类型:如摸球、掷骰子等可以表示出所有可能 出现的结果的试验; ② 面积类型:如向区域S内任意掷一点,求恰好出现 在区域A(A在S内)内的概率 .
对接中考
1.(2020·深圳中考)一口袋内装有编号分别为1,2,3,
4,5,6,7的七个球(除编号外都相同),从中随机摸
出一个球,则摸出编号为偶数的球的概率是
3 7
.
解:∵从袋子中随机摸出一个球共有7种等可能结果,
其中摸出编号为偶数的球的结果数为3,
∴摸出编号为偶数的球的概率为
3 7
.
2.任意转动正六边形转盘一次,当转盘停止转动时,指
为什么以每个扇形为一种结果, 而不以每一种颜色为一种结果?
例1中,P(指向红色)= ;P(不指向红色) = .
同一事件,发生的概率与不发生的 概率之和为1.
例2 如图是计算机中“扫雷”游戏的画面.在一个有 9×9的方格的正方形雷区中,随机埋藏着10颗地雷, 每个方格内最多只能藏1颗地雷. 小王在游戏开始时随机地点击一个方格, 点击后出现如图所示的情况.我们把与标 号3的方格相邻的方格记为A区域(画线部 分),A区域外的部分记为B区域.数字3表 示在A区域有3颗地雷.下一步应该点击A 区域还是B区域?
事件发生的可能性越来越大
例1 掷一个骰子,2) 点数为奇数; (3) 点数大于2小于5.
向上一面的点数可能为1,2, 3,4,5,6,共6种,且每种 出现的可能性相同
人教版九年级数学上册概率PPT精品课件
6
P(点数为2 )=1/6
(5)点数为奇数;
点数为奇数有3种可能,即点数为1,3,5,
P(点数为奇数)=3/6=1/2
人教版九年级数学上册 25.1.2概率课件
人教版九年级数学上册 25.1.2概率课件
实验2:抛掷一个质地均匀的骰子
(6)点数大于2且小于5。
点数大于2且小于5有2种可能,即点数为3,4, P(点数大于2且小于5 )=2/6=1/3
人教版九年级数学上册 25.1.2概率课件
人教版九年级数学上册 25.1.2概率课件
等可能事件概率的求法
一般地,如果在一次试验中,有n种 可能的结果,并且它们发生的可能性都 相等,事件A包含其中的m种结果,那么
事件A发生的概率 PA m .
n
P(A)= 事件A发生的结果数 所有可能的结果总数
人教版九年级数学上册 25.1.2概率课件
7
(即3绿)1指,针 绿不2,指黄向1红,色黄(2.因记此为事件PC(B))=的74结果有4种,
人教版九年级数学上册 25.1.2概率课件
人教版九年级数学上册 25.1.2概率课件
1、不透明袋子里有5个红球,3个白球和 2个绿球,每一个球除颜色外都相同,从中
任意摸出一个球,则 1
P(摸到红球)= 2;
人教版九年级数学上册 25.1.2概率课件
例2、如图,一个转盘被分成7个相同的扇形,颜色分为 红、黄、绿三种,指针的位置固定,转动转盘后任其自 由停止,其中的某个扇形会恰好停在指针所指的位置 (指针指向两个扇形的交线时,当作指向右边的扇形).求 下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
分析:指针的指向可能出现的结果有7种.因为 这7个扇形大小相同,转动的转盘又是自由停 止,所以指针指向每个扇形的可能性相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动3:袋子中装有4个黑球2个白球,这些球形状、大小、质地
等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
⑴ቤተ መጻሕፍቲ ባይዱ出的这个球是白球还是黑球?
大家通过实践,不难发现,摸出的这个球可能是白 白球,也有可能是黑球.
⑵如果两种球都有可能被摸出,那么“摸出黑球”和 “摸出白球”的可能性一样大吗?
试着做一做,验证你的结论
人教2011课标版 九年级上册(2014年3月第1版)
广东省云浮市云安区石城中学 黄勇胜
学习目标: 1、了解必然发生的事件、不可能发生的事件、
随机事件 的特点。
2、理解随机事件发生的可能性是有大小的, 不同的随机事件发生的可能性的大小有可能不同。
学习重点:了解必然发生的事件、不可能发生的事件、
随机事件的特点。 难点突破:理解随机事件发生的可能性是有大小的,
(二)随机事件的特点: 1、随机事件发生的可能性是有大小的; 2、不同的随机事件发生的可能性的大小有可能不同。
(三)1、请同学们列举一些生活中必然发生的事件、不 可能事件和随机事件。 2、列举一些属于 必然事件、不可能事件, 随机事件 的成语
随机事件练习与作业
谢谢各位倾听!
(2)抽到的序号会是0吗?抽到的序号是0这是什么事件?
(3)抽到的序号小于6吗?抽到的序号小于6是什么事件?
(4)抽到的序号会是1吗?抽到的序号是1这是什么事件?
问题2:小伟掷一个质地均匀的骰子,骰子的 六个面上分别刻有1至6的点数。请考虑以下问题,掷 一次骰子,观察骰子向上的一面: (1)可能出现哪些点数?
(1)已知地球表面陆地面积与海洋面积的比为 3:7。如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落在陆地上”哪个可能性 更大?
(2)一个袋子里装有20个形状、质地、大小一 样的球,其中4个白球,2个红球,3个黑球, 其它都是黄球,从中任摸一个,摸中哪种球的 可能性最大?
(一)识别日常生活中的三种事件 必然事件:在一定条件下,有的事件必然会发生。 不可能事件:在一定条件下,有的事件是不可能发生的。 随机事件:在一定条件下,可能发生也可能不发生的事
⑵姚明在罚球线上投篮时,未投中; (随机事件)
⑶掷一次骰子,向上的一面点数是6;(随机事件)
⑷度量三角形的内角和,结果是360°;(不可能事件)
⑸经过城市中某一有交通信号灯的路口,遇到红灯; (随机事件)
⑹某射击运动员射击一次,命中靶心。 (随机事件)
2、下列成语是必然事件的是( D ) A 水中捞月 B 守株待兔 C 竹蓝打水 D 瓮中捉鳖
不同的随机事件发生的可能性的大小有可能不同。
活动1(摸球游戏):三个不透明的箱子均装有10个乒 乓球: 1号箱10个黑球, 2号箱10个白球,
3号箱5个黑球和5个白球。 猜一猜:每个箱能摸到什么颜色的球?
活动2(摸牌游戏):三堆扑克牌中(每堆10张): 第一堆 10张红牌,第二堆 10张黑牌, 第三堆 5张红牌和5张黑牌。 猜一猜:每一堆牌中能摸出什么颜色的牌?
由于两种球的数量不等,所以“摸出黑球”和“摸 出白球”的可能性的大小是不一样的,且“摸出黑球” 的可能性大于“摸出白球”的可能性.
一般地,
1、随机事件发生的可能性是有大小的; 2、不同的随机事件发生的可能性的大小有
可能不同。
思考:能否通过改变袋子中某种颜色的球的 数量,使“摸出黄球”和“摸出白球”的可 能性的大小相同?
思考1 : 从1号箱中一定能摸到黑球吗? 从2号箱中一定能摸到黑球吗? 从3号箱中一定能摸到黑球吗? 思考2: 从第一堆中一定能摸到红牌吗? 从第二堆中一定能摸到红牌吗? 从第三堆中一定能摸到红牌吗?
再猜猜,辩辩:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?
必然发生
必然不会发生
可能发生, 也 可能不发生
(2)出现的点数会是7吗?出现的点数是7这是什么事件?
(3)出现的点数大于0吗?出现的点数大于0是什么事件?
(4)出现的点数会是4吗? 出现的点数是4是什么事件?
练一练,看谁做得快:
1、指出下列事件中,哪些是必然事件,哪些是不可能 事件,哪些是随机事件; ⑴通常加热到100℃时,水沸滕; (必然事件)
笔 记
在一定条件下:必然会发生的事 件叫必然事件; 在一定条件下:必然不会发生的事件 叫不可能事件; 在一定条件下:可能会发生,也可 能不发生的事件叫随机事件.
注意:必然事件和不可能事件统称为确定事件
问题1:5名同学参加演讲比赛,以抽签方 式决定每个人的出场顺序。盒中有5个看上去完 全一样的纸团,每个纸团分别写有出场的序号1, 2,3,4,5。小军首先抽,他在看不到纸团上数 字的情况下从盒中随机(任意)取一个纸团。 (1)抽到的序号有几种可能的结果?