高二数学 空间向量与立体几何教学案 新人教A版

合集下载

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.

高中数学 3.2.3立体几何中的向量方法教案 新人教A版选修2

高中数学 3.2.3立体几何中的向量方法教案 新人教A版选修2

§3.2.3立体几何中的向量方法——利用空间向量求空间角教学目标1、使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;2、使学生能够应用向量方法解决一些简单的立体几何问题;3、使学生的分析与推理能力和空间想象能力得到提高.教学重点求解二面角的向量方法 教学难点二面角的大小与两平面法向量夹角的大小的关系 教学过程 一、复习引入1、用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。

(回到图形)2、向量的有关知识:(1)两向量数量积的定义:(2)两向量夹角公式:(3)平面的法向量:与平面垂直的向量二、知识讲解与典例分析知识点1、异面直线所成的角(范围: )(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a´与b´,那么直线a´与b´ 所成的不大于90°的角 ,叫做异面直线a 与b 所成的角。

(2)用向量法求异面直线所成角bab a ⋅=,cos⎝⎛∈θθb a ⋅⋅=⋅a ´b ´•oθ设两异面直线a 、b 的方向向量分别为m 和 ,问题1 当m 与n 的夹角不大于90°时,异面直线a 、b 所成的角 与m 和的夹角的关系? 相等问题 2 当m 与的夹角大于90°时,异面直线a 、b 所成的角 与m 和的夹角的关系? 互补所以,异面直线a 、b 所成的角的余弦值为典型例题1:在到△A1O1B1的位置,已知BD1与AF1所成的角的余弦值。

解:以点O 为坐标原点建立空间直角坐标系,并设OA=1,则A(1,0,0) B(0,1,0)F1(21 ,0,1) D1(21 , 21,1)所以,异面直线BD1与AF1所成的角的余弦值为知识点2、直线与平面所成的角(范围: )=cos θ =),1,0,21(1-=∴AF )1,21,21(1-=BD =⋅=BD =⋅++-23451041⎥⎦⎤⎢⎣⎡∈2,0πθθθ10301030据图分析平面所成弦值为典型正方体ABCD-A1B1C1D1的棱长为1,点E 、F 分别为CD 、DD1的中点, (1)求直线B1C1与平面AB1C 所成的角的正弦值; (2)求二面角F-AE-D 的余弦值。

人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案第一章:绪论1. 教学目标1.1 了解立体几何的概念和研究对象1.2 掌握空间点的表示方法1.3 理解空间向量的概念及其运算1. 教学内容1.1 立体几何的概念和研究对象1.2 空间点的表示方法1.3 空间向量的概念及其运算2. 教学方法2.1 采用多媒体教学,展示立体几何图形2.2 结合实际例子,引导学生理解空间点的表示方法2.3 运用几何直观,讲解空间向量的概念及其运算3. 教学步骤3.1 引入立体几何的概念和研究对象,引导学生思考立体的特点3.2 讲解空间点的表示方法,结合具体例子进行演示和练习3.3 引入空间向量的概念,讲解其运算规则,并通过几何直观进行解释4. 课后作业4.1 复习立体几何的概念和研究对象4.2 练习空间点的表示方法4.3 巩固空间向量的概念及其运算第二章:直线与平面1. 教学目标1.1 理解直线的概念及其性质1.2 掌握平面的概念及其性质1.3 掌握直线与平面的位置关系2. 教学内容2.1 直线的概念及其性质2.2 平面的概念及其性质2.3 直线与平面的位置关系3. 教学方法3.1 采用多媒体教学,展示直线和平面的图形3.2 结合实际例子,引导学生理解直线的性质3.3 运用几何直观,讲解直线与平面的位置关系4. 教学步骤4.1 引入直线的概念,讲解其性质,并通过实际例子进行演示和练习4.2 引入平面的概念,讲解其性质,并通过实际例子进行演示和练习4.3 讲解直线与平面的位置关系,并通过几何直观进行解释5. 课后作业5.1 复习直线的概念及其性质5.2 练习平面的概念及其性质5.3 巩固直线与平面的位置关系第三章:平面几何1. 教学目标1.1 理解平面几何的基本概念和性质1.2 掌握平面几何的基本运算和证明方法1.3 掌握平面几何图形的判定和性质2. 教学内容2.1 平面几何的基本概念和性质2.2 平面几何的基本运算和证明方法2.3 平面几何图形的判定和性质3. 教学方法3.1 采用多媒体教学,展示平面几何图形3.2 结合实际例子,引导学生理解平面几何的基本概念和性质3.3 运用几何直观,讲解平面几何的基本运算和证明方法4. 教学步骤4.1 引入平面几何的基本概念和性质,引导学生思考平面几何的特点4.2 讲解平面几何的基本运算和证明方法,并通过实际例子进行演示和练习4.3 引入平面几何图形的判定和性质,并通过实际例子进行演示和练习5. 课后作业5.1 复习平面几何的基本概念和性质5.2 练习平面几何的基本运算和证明方法5.3 巩固平面几何图形的判定和性质第四章:空间几何1. 教学目标1.1 理解空间几何的基本概念和性质1.2 掌握空间几何的基本运算和证明方法1.3 掌握空间几何图形的判定和性质2. 教学内容2.1 空间几何的基本概念和性质2.2 空间几何的基本运算和证明方法2.3 空间几何图形的判定和性质3. 教学方法3.1 采用多媒体教学,展示空间几何图形3.2 结合实际例子,引导学生理解空间几何的基本概念和性质3.3 运用几何直观,讲解空间几何的基本运算和证明方法4. 教学步骤4.1 引入空间几何的基本概念和性质,引导学生思考空间几何的特点4.2 讲解空间几何的基本运算和证明方法,并通过实际例子进行演示和练习4.3 引入空间几何图形的判定和性质,并通过实际例子进行演示和第六章:立体几何中的角和距离1. 教学目标1.1 理解立体几何中的角和距离的概念1.2 掌握立体几何中角的计算方法1.3 学会计算立体几何中的距离2. 教学内容2.1 立体几何中的角的概念和分类2.2 立体几何中的角的计算方法2.3 立体几何中的距离的计算方法3. 教学方法3.1 采用多媒体教学,展示立体几何中的角和距离的图形3.2 结合实际例子,引导学生理解立体几何中的角和距离的概念3.3 运用几何直观,讲解立体几何中的角的计算方法和距离的计算方法4. 教学步骤4.1 引入立体几何中的角的概念和分类,引导学生思考立体几何中角的特点4.2 讲解立体几何中的角的计算方法,并通过实际例子进行演示和练习4.3 引入立体几何中的距离的概念,讲解其计算方法,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的角的概念和分类5.2 练习立体几何中的角的计算方法5.3 巩固立体几何中的距离的计算方法第七章:立体几何中的体积和表面积1. 教学目标1.1 理解立体几何中的体积和表面积的概念1.2 掌握立体几何中体积和表面积的计算方法1.3 学会应用体积和表面积解决实际问题2. 教学内容2.1 立体几何中的体积的概念和计算方法2.3 应用体积和表面积解决实际问题3. 教学方法3.1 采用多媒体教学,展示立体几何中的体积和表面积的图形3.2 结合实际例子,引导学生理解立体几何中的体积和表面积的概念3.3 运用几何直观,讲解立体几何中的体积和表面积的计算方法4. 教学步骤4.1 引入立体几何中的体积的概念,讲解其计算方法,并通过实际例子进行演示和练习4.2 引入立体几何中的表面积的概念,讲解其计算方法,并通过实际例子进行演示和练习4.3 应用体积和表面积解决实际问题,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的体积的概念和计算方法5.2 练习立体几何中的表面积的概念和计算方法5.3 巩固应用体积和表面积解决实际问题的能力第八章:立体几何中的对称变换1. 教学目标1.1 理解立体几何中的对称变换的概念1.2 掌握立体几何中对称变换的性质和应用1.3 学会运用对称变换解决立体几何问题2. 教学内容2.2 立体几何中对称变换的性质和应用2.3 运用对称变换解决立体几何问题3. 教学方法3.1 采用多媒体教学,展示立体几何中的对称变换的图形3.2 结合实际例子,引导学生理解立体几何中的对称变换的概念3.3 运用几何直观,讲解立体几何中对称变换的性质和应用4. 教学步骤4.1 引入立体几何中的对称变换的概念和分类,引导学生思考对称变换的特点4.2 讲解立体几何中对称变换的性质,并通过实际例子进行演示和练习4.3 引入立体几何中对称变换的应用,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的对称变换的概念和分类5.2 练习立体几何中对称变换的性质和应用5.3 巩固运用对称变换解决立体几何问题的能力第九章:立体几何中的坐标变换1. 教学目标1.1 理解立体几何中的坐标变换的概念1.2 掌握立体几何中坐标变换的性质和应用1.3 学会运用坐标变换解决立体几何问题2. 教学内容2.1 立体几何中的坐标变换的概念和分类2.3 运用坐标变换解决立体几何问题3. 教学方法3.1 采用重点和难点解析重点环节1:立体几何的概念和研究对象难点解析1:立体几何的研究对象是三维空间中的点、线、面及其之间的位置关系。

新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册

新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册

新教材高中数学教案新人教A 版选择性必修第一册:第1章 空间向量与立体几何1.1 空间向量及其运算 1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD ­A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A ­BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD ­A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD ­A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD ­A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ­ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD ­A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD ­A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。

掌握空间几何体的结构特征,如表面积、体积等。

1.2 教学内容柱体、锥体、球体的定义及性质。

空间几何体的结构特征的计算方法。

1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。

3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。

1.4 课堂练习完成课本练习题,巩固所学知识。

1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。

第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。

掌握点、线、面的位置关系的判定方法。

2.2 教学内容点、线、面的位置关系的定义及判定方法。

2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。

2.4 课堂练习完成课本练习题,巩固所学知识。

2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。

第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。

掌握空间角的计算方法。

3.2 教学内容空间角的定义及性质。

空间角的计算方法。

3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。

3.4 课堂练习完成课本练习题,巩固所学知识。

3.5 课后作业完成课后作业,加深对空间角的计算的理解。

第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。

掌握空间向量的应用方法。

空间向量的定义及性质。

空间向量的应用方法。

4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。

4.4 课堂练习完成课本练习题,巩固所学知识。

4.5 课后作业完成课后作业,加深对空间向量的应用的理解。

第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。

5.2 教学内容立体几何中的综合问题的解题策略。

5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。

高二数学《空间向量与立体几何》教案

高二数学《空间向量与立体几何》教案

AB空间向量解立体几何西林县中学 程锦芳 2010年5月29日一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a ai a j ak =++ 有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -标,记作123(,,)a a a a = .在空间直角坐标系O xyz -点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><,cos ||||叫作向量ba ,的数量积,记作b a ⋅,即⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。

2、模长公式||a== 3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB , 或,A B d =4、夹角:cos ||||a ba b a b ⋅⋅=⋅ . 注:①0(,a b a b a b ⊥⇔⋅= 是两个非零向量); ②22||a a a a =⋅= 。

高中数学 空间向量与立体几何复习教案1 新人教版选修2-1-新人教版高二选修2-1数学教案

高中数学 空间向量与立体几何复习教案1 新人教版选修2-1-新人教版高二选修2-1数学教案

空间向量与立体几何(复习一)【学情分析】:学生已经掌握了空间向量的基础知识,并能较好地用它证明立体几何中的平行、垂直问题,计算空间角、空间距离。

但运用还不娴熟,计算易错的环节仍然出错。

【教学目标】:(1)知识目标:运用空间向量证明立体几何中的平行、垂直问题,及计算空间角的计算。

同时也试用传统的方法来解题。

(2)过程与方法目标:总结归纳,讲练结合,以练为主。

(3)情感与能力目标:通过总结归纳,综合运用,让学生享受成功的喜悦,提高学习数学兴趣,提高计算能力和空间想象能力。

【教学重点】:。

运用空间向量证明立体几何中的平行、垂直问题。

【教学难点】:计算空间角【课前准备】:投影AP=(-a,0,z)AC=(-a,a,0)DB=(a,a,a),1∵B1D⊥面PAC∴-a2+az=0∴点P方法二:引导学生用三垂线定理来解题。

,3,0),所以(2,BE =1(1,3AB =--故12BE AB ⋅=⨯因此,有BE AB ⊥(Ⅱ)设1(,n x =是平面1ABB 的法向量,因为1(1,AB =--1(0,BB =111111112n AB n AB x n BB n BB z ⎧⊥⋅=-⎪⇒⎨⊥⋅=⎪⎩1(3,1,0)n =-;同理,2(2,0,1)n =是平面设二面角B AB D --的平面角为121212||15|cos ,|5||||n n n n n n ⋅<>==⋅本例中没有现成的三条互相垂直的直线,需动脑筋构造。

二面角的大小与其两个面的法向量的夹角相等或互补,要根据实际情况来取舍。

1,,CD CB CC 为运算的基向BD CD CB =-。

注意向量间的方向对夹角的影响2)设1(0)CDCC λλ=>1CD CC λ= 211112()()0AC C D CD CB CC CD CC a λ-⋅=-++⋅-=-=,解得1λ=当1λ=时,11()()0AC BD CD CB CC CD CB ⋅=-++⋅-=四、小结学生归纳,教师适当的补充、概括。

高二数学 (人教a版)选修1-1教案:3.2立体几何中的向量方法第3课时

高二数学     (人教a版)选修1-1教案:3.2立体几何中的向量方法第3课时

§3.2.3利用向量解决平行与垂直问题练习与测试:(基础题)1,直三棱柱ABC—A1B1C1中,若,则()A.+- B.-+ C.-++ D.-+-答:D2,若向量、()A. B.C. D.以上三种情况都可能答:B3,一空间四边形ABCD的对边AB与CD,AD与BC都互相垂直,用向量证明:AC与BD也互相垂直.证明: . 又,即.……①.又,即.……②由①+②得:即..4,如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点.(1)求证:EF∥平面PAD;(2)求证:EF⊥CD;证:如图,建立空间直角坐标系A-xyz,设AB=2a,BC=2b,PA=2c,则:A(0, 0, 0),B(2a, 0, 0),C(2a, 2b, 0),D(0, 2b, 0),P(0, 0, 2c)∵ E为AB的中点,F为PC的中点∴ E(a, 0, 0),F(a, b, c)(1)∵ =(0, b, c),=(0, 0, 2c),=(0, 2b, 0)∴ =(+) ∴ 与、共面又∵ EÏ 平面PAD∴ EF∥平面PAD.(2) ∵=(-2a , 0, 0 )∴ ·=(-2a , 0, 0)·(0, b , c )=0 ∴ CD ⊥EF .(较难题)5,对于任何空间四边形,试证明它的一对对边中点的连线段与另一对对边平行于同一平面。

分析 要证明EF 、BC 、AD 平行于同一平面(E 、F 分别为AB 、CD 的中点),只要证明相应向量EF 与AD 、BC 共面即可。

证明:如图,利用多边形加法法则可得,EF =EA +AD +DF ,EF =EB +BC +CF …①。

又E 、F 分别是AB 、CD 的中点,故有=-,=-CF …② 将②代入①后,两式相加得2EF =AD +BC ,∴EF =12 AD +12 BC 即EF 与BC 、AD 共面,∴EF 与AD 、BC 平行于同一平面。

人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案第一章:绪论1.1 立体几何的概念教学目标:1. 理解立体几何的概念,掌握立体几何的研究对象和基本元素。

2. 掌握空间点、线、面的位置关系,培养空间想象能力。

教学重点:立体几何的概念,空间点、线、面的位置关系。

教学难点:立体几何的概念的理解,空间点、线、面的位置关系的应用。

教学过程:一、导入:引导学生回顾平面几何的基本概念,引出立体几何的概念。

二、新课:讲解立体几何的研究对象和基本元素,通过实物展示和图形绘制,介绍空间点、线、面的位置关系。

三、练习:学生自主完成练习题,巩固所学知识。

四、小结:总结本节课的主要内容,强调立体几何的概念和空间点、线、面的位置关系的重要性。

第二章:直线与平面2.1 直线与平面的位置关系教学目标:1. 理解直线与平面的位置关系,掌握直线与平面平行和直线与平面垂直的判定方法。

2. 培养空间想象能力和逻辑思维能力。

教学重点:直线与平面的位置关系,直线与平面平行和直线与平面垂直的判定方法。

教学难点:直线与平面平行和直线与平面垂直的判定方法的运用。

教学过程:一、导入:通过实例引入直线与平面的位置关系。

二、新课:讲解直线与平面的位置关系,介绍直线与平面平行和直线与平面垂直的判定方法。

三、练习:学生自主完成练习题,巩固所学知识。

四、小结:总结本节课的主要内容,强调直线与平面的位置关系和判定方法的重要性。

第三章:平面与平面3.1 平面与平面的位置关系教学目标:1. 理解平面与平面的位置关系,掌握平面与平面平行和平面与平面垂直的判定方法。

2. 培养空间想象能力和逻辑思维能力。

教学重点:平面与平面的位置关系,平面与平面平行和平面与平面垂直的判定方法。

教学难点:平面与平面平行和平面与平面垂直的判定方法的运用。

教学过程:一、导入:通过实例引入平面与平面的位置关系。

二、新课:讲解平面与平面的位置关系,介绍平面与平面平行和平面与平面垂直的判定方法。

三、练习:学生自主完成练习题,巩固所学知识。

人教A版高中同步学案数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量基本定理

人教A版高中同步学案数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量基本定理
解 ∵a,b,c 不共面,∴由 3a-2b+c=xa+yb+zc 可得 -2 = , 即 = -2,
1 = ,
= 1.
4.[北师大版教材习题]已知空间的一个基底{i,j,k},a=i-2j+k,b=-i+3j+2k.
(1)写出一个与向量a平行的向量c1;
(2)写出一个与向量a,b共面的向量c2;
= +
= +
1
'
2
1
(
2

= +
1
(
2
1
)+ '
2
= ' + ' = ' +
=
+ ')= +
1

2
1
(''
2
1
+
2
+
1

2
1
'
2
+ '')=' +
+
=
1
'
2
1
(a+b+c).
2
1
(
2
+
1
1
)=a+2b+2c.
所以 cos<1 , >=
1 ·
|1 || |
=
6
.
6
所以 AC 与 BD1 所成角的余弦值为
6
.
6
规律方法 利用数量积求夹角或其余弦值的基本步骤
变式训练4[2024福建三明高二统考期末]如图,在四面体ABCD中,∠BAC

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法学案新人教A版选修2-1(2021年整理)

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法学案新人教A版选修2-1(2021年整理)

(浙江专版)2018年高中数学第三章空间向量与立体几何3.2 立体几何中的向量方法学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学第三章空间向量与立体几何3.2 立体几何中的向量方法学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学第三章空间向量与立体几何3.2 立体几何中的向量方法学案新人教A版选修2-1的全部内容。

3。

2 错误!第一课时空间向量与平行、垂直关系预习课本P102~108,思考并完成以下问题1.平面的法向量的定义是什么?2.设直线l的方向向量u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l∥α,l ⊥α的充要条件分别是什么?错误!1.平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a=λb ⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u =λv⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a·b=0⇔a1b1+a2b2+a3b3=0。

黑龙江省绥化市第九中学高二理科新人教A版选修2-1第三章空间向量与立体几何导学案

黑龙江省绥化市第九中学高二理科新人教A版选修2-1第三章空间向量与立体几何导学案

⿊龙江省绥化市第九中学⾼⼆理科新⼈教A版选修2-1第三章空间向量与⽴体⼏何导学案1. 理解空间向量的概念,掌握其表⽰⽅法;2. 会⽤图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能⽤空间向量的运算意义及运算律解决简单的⽴体⼏何中的问题.8486 复习1:平⾯向量基本概念:具有和的量叫向量,叫向量的模(或长度);叫零向量,记着;叫单位向量.叫相反向量, a的相反向量记着 .叫相等向量. 向量的表⽰⽅法有,,和共三种⽅法.复习2:平⾯向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有法则和法则.2. 实数与向量的积:实数λ与向量a 的积是⼀个量,记作,其长度和⽅向规定如下: (1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成⽴吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb⼆、新课导学※学习探究探究任务⼀:空间向量的相关概念问题:什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表⽰?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同⼀平⾯内,变为OB =, AB = ,试试:1. 分别⽤平⾏四边形法则和三⾓形法则求,.a b a b +-.2. 点C 在线段AB 上,且52AC CB =,则AC = AB , BC = AB . 反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※典型例题例 1 已知平⾏六⾯体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量:AB BC + ⑴;'AB AD AA ++⑵;1'2AB AD CC ++ ⑶1(')2AB AD AA ++ ⑷.变式:在上图中,⽤',,AB AD AA 表⽰'',AC BD 和'DB.⼩结:空间向量加法的运算要注意:⾸尾相接的若⼲向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若⼲向量之和时,可通过平移使它们转化为⾸尾相接的向量.. b1. 掌握空间向量的数乘运算律,能进⾏简单的代数式化简;2. 理解共线向量定理和共⾯向量定理及它们的推论;3. 能⽤空间向量的运算意义及运算律解决简单的⽴体⼏何中的问题.⼀、课前准备(预习教材P 86~ P 87,找出疑惑之处)复习1:化简:⑴ 5(32a b - )+4(23b a -);⑵ ()()63a b c a b c -+--+- .复习2:在平⾯上,什么叫做两个向量平⾏?在平⾯上有两个向量,a b ,若b 是⾮零向量,则a与b平⾏的充要条件是⼆、新课导学※学习探究探究任务⼀:空间向量的共线问题:空间任意两个向量有⼏种位置关系?如何判定它们的位置关系?新知:空间向量的共线:1. 如果表⽰空间向量的所在的直线互相或,则这些向量叫共线向量,也叫平⾏向量.2. 空间向量共线:定理:对空间任意两个向量,a b (0b ≠ ), //a b的充要条件是存在唯⼀实数λ,使得推论:如图,l 为经过已知点A 且平⾏于已知⾮零向量的直线,对空间的任意⼀点O ,点P 在直线l 上的充要条件是试试:已知5,28,AB a b BC a b =+=-+()3CD a b =-,求证: A,B,C 三点共线.反思:充分理解两个向量,a b共线向量的充要条件中的0b ≠,注意零向量与任何向量共线.※典型例题例 1 已知直线AB ,点O 是直线AB 外⼀点,若OP xOA yOB =+,且x +y =1,试判断A,B,P 三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外⼀点,若12OP OA tOB =+,那么t =例2 已知平⾏六⾯体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对⾓线A 'C 上,且CG:GA '=2:1,设CD =a ,',CB b CC c ==,试⽤向量,,a b c 表⽰向量',,,CA CA CM CG .变式1:已知长⽅体''''ABCD A B C D -,M 是对⾓线AC '中点,化简下列表达式:⑴ 'AA CB - ;⑵ '''''AB B C C D ++⑶ '111222AD AB A A +-D试试:若空间任意⼀点O 和不共线的三点A,B,C 满⾜关系式111236OP OA OB OC =++,则点P 与 A,B,C共⾯吗?反思:若空间任意⼀点O 和不共线的三点A,B,C 满⾜关系式OP xOA yOB zOC =++,且点P 与 A,B,C 共⾯,则x y z ++= .※典型例题例1 下列等式中,使M ,A ,B ,C 四点共⾯的个数是()①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++= . A. 1 B. 2 C. 3 D. 4变式:已知A,B,C 三点不共线,O 为平⾯ABC 外⼀点,若向量()17,53OP OA OB OC R λλ=++∈则P ,A,B,C 四点共⾯的条件是λ=例2 如图,已知平⾏四边形ABCD,过平⾯AC 外⼀点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F ,G ,H,并且使,OE OF OG OHk OA OB OC OD==== 求证:E,F ,G ,H 四点共⾯.变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共⾯,E,F ,G ,H 分别是AB,BC,CD,AD 的中点,求证:E,F ,G ,H 四点共⾯.⼩结:空间向量的化简与平⾯向量的化简⼀样,加法注意向量的⾸尾相接,减法注意向量要共起点,并且要注意向量的⽅向.※动⼿试试练1. 已知,,A B C 三点不共线,对平⾯外任⼀点,满⾜条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否⼀定共⾯?练 2. 已知32,(1)8a m n b x m n =-=++ ,0a ≠,若//a b ,求实数.x三、总结提升※学习⼩结 1. 空间向量的数乘运算法则及它们的运算律; 2. 空间两个向量共线的充要条件及推论. ※知识拓展平⾯向量仅限于研究平⾯图形在它所在的平⾯内的平移,⽽空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的⽅向移动相.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在平⾏六⾯体ABCD -A 1B 1C 1D 1中,向量1D A、1D C 、11AC是() A. 有相同起点的向量 B .等长向量 C .共⾯向量 D .不共⾯向量.2. 正⽅体''''ABCD A B C D -中,点E 是上底⾯''''A B C D 的中⼼,若''BB xAD yAB zAA =++, 则x =,y =,z = .3. 若点P 是线段AB 的中点,点O 在直线AB 外,则OP OA + OB .4. 平⾏六⾯体''''ABCD A B C D -, O 为A 1C 与B 1D的交点,则'1()3AB AD AA ++=AO .5. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平⾏;②若a 、b 所在的直线是异⾯直线,则a 、b ⼀定不共⾯;③若a 、b 、c 三向量两两共⾯,则a 、b 、c 三向量⼀定也共⾯;④已知三向量a 、b 、c ,则空间任意⼀个向量p 总可以唯⼀表⽰为p =x a +y b +z c .其中正确命题的个数为().A .0 B.1 C. 2D. 3 1. 若324,(1)82a m n p b x m n yp =--=+++, 0a ≠ ,若//a b ,求实数,x y .2.已知两个⾮零向量21,e e不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共⾯.A B C D F E G H§3.1.3.空间向量的数量积(1)1. 掌握空间向量夹⾓和模的概念及表⽰⽅法;2.复习1:什么是平⾯向量a 与b的数量积?复习2:在边长为1的正三⾓形⊿ABC 中,求AB BC ?⼆、新课导学※学习探究探究任务⼀:空间向量的数量积定义和性质问题夹⾓和空间线段的长度问题?新知:1) 两个向量的夹⾓的定义:已知两⾮零向量,a b在空间⼀点O ,作,OA a OB b ==,则AOB ∠做向量a 与b 的夹⾓,记作 .试试:⑴范围: ,a b ≤<>≤,a b ?? =0时,a b 与 ;,a b ?? =π时,a b 与⑵ ,,a b b a <>=<>成⽴吗?⑶,a b <>=,则称a 与b 互相垂直,记作 .2) 向量的数量积:已知向量,a b ,则叫做,a b作a b ? ,即a b ?=.规定:零向量与任意向量的数量积等于零.反思:⑴两个向量的数量积是数量还是向量?⑵ 0a ?= (选0还是0 )⑶你能说出a b ?的⼏何意义吗? 3) 空间向量数量积的性质:(1)设单位向量e ,则||cos ,a e a a e ?=<>.(2)a b a b ⊥??=.= .4) 空间向量数量积运算律:(1)()()()a b a b a b λλλ?=?=?.(2)a b b a ?=?(交换律).(3)()a b c a b a c ?+=?+?(分配律反思:⑴ )()a b c a b c ??=??(吗?举例说明.⑵若a b a c ?=? ,则b c =吗?举例说明.⑶若0a b ?= ,则00a b ==或吗?为什么?※典型例题例1 ⽤向量⽅法证明:在平⾯上的⼀条直线,如果和这个平⾯的⼀条斜线的射影垂直,那么它也和这条斜线垂直.变式1:⽤向量⽅法证明:已知:,m n 是平⾯α内的两条相交直线,直线l 与平⾯α的交点为B ,且,l m l n ⊥⊥. 求证:l α⊥.例2 如图,在空间四边形ABCD 中,2AB =,3BC =,BD =,3CD =,30ABD ∠= ,60ABC ∠= ,求AB 与CD 的夹⾓的余弦值变式:如图,在正三棱柱ABC-A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的⾓为()A. 60°B. 90°C. 105°D. 75°例3 如图,在平⾏四边形ABCD-A 1B 1C 1D 1中,4,3AB AD ==,'5AA =,90BAD ∠=?,'BAA ∠='DAA ∠=60°,求'AC 的长.※动⼿试试练1. 已知向量,a b满⾜1a = ,2b = ,3a b +=,则a b -= ____.练 2. 222,,22a b a b ==?=-已知, 则a b 与的夹⾓⼤⼩为_____. 三、总结提升※学习⼩结1..向量的数量积的定义和⼏何意义.2. 向量的数量积的性质和运算律的运⽤.※知识拓展向量给出了⼀种解决⽴体⼏何中证明垂直问题,求两条直线的夹⾓和线段长度的新⽅法.学习评价※⾃我评价你完成本节导学案的情况为().A. 很好B. 较好C. ⼀般D. 较差※当堂检测(时量:5分钟满分:10分)计分: 1. 下列命题中:①若0a b ?= ,则a ,b 中⾄少⼀个为0②若a 0≠ 且a b a c ?=? ,则b c =③()()a b c a b c ??=??④22(32)(32)94a b a b a b +?-=-正确有个数为()A. 0个B. 1个C. 2个D. 3个2. 已知1e 和2e 是两个单位向量,夹⾓为3π,则下⾯向量中与212e e -垂直的是()A. 12e e +B. 12e e -C. 1eD. 2e 3.已知ABC ?中,,,A B C ∠∠∠所对的边为,,a b c ,且3,1a b ==,30C ∠=?,则BC CA ?=4. 已知4a = ,2b =,且a 和b 不共线,当 a b λ+ 与a b λ-的夹⾓是锐⾓时,λ的取值范围是 .5. 已知向量,a b满⾜4a = ,2b = ,3a b -= ,则a b +=____课后作业:1. 已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥.2. 已知线段AB 、BD 在平⾯α内,BD ⊥AB , 线段AC α⊥,如果AB =a ,BD =b ,AC =c ,求C 、D 间的距离.D B C§3.1.4 空间向量的正交分解及其坐标表⽰1. 掌握空间向量的正交分解及空间向量基本定理和坐标表⽰;2. 掌握空间向量的坐标运算的规律;⼀、课前准备(预习教材P 92-96找出疑惑之处)复习1:平⾯向量基本定理:对平⾯上的任意⼀个向量P ,,a b 是平⾯上两个向量,总是存在实数对(),x y ,使得向量P 可以⽤,a b 来表⽰,表达式为,其中,a b 叫做 . 若a b ⊥,则称向量P 正交分解.复习2:平⾯向量的坐标表⽰:平⾯直⾓坐标系中,分别取x 轴和y 轴上的向量,i j 作为基底,对平⾯上任意向量a ,有且只有⼀对实数x ,y ,使得a xi y j =+,,则称有序对(),x y 为向量a 的,即a = .⼆、新课导学※学习探究探究任务⼀:空间向量的正交分解问题:对空间的任意向量a ,能否⽤空间的⼏个向量唯⼀表⽰?如果能,那需要⼏个向量?这⼏个向量有何位置关系?新知:⑴空间向量的正交分解:空间的任意向量a,均可分解为不共⾯的三个向量11a λ、22a λ、33a λ,使112233a a a a λλλ=++ . 如果123,,a a a两两,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,,a b c ,对空间任⼀向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++. 把的⼀个基底,,,a b c 都叫做基向量.反思:空间任意⼀个向量的基底有个.⑶单位正交分解:如果空间⼀个基底的三个基向量互相,长度都为,则这个基底叫做单位正交基⑷空间向量的坐标表⽰:给定⼀个空间直⾓坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正⽅向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++,则称有序实数组{,,}x y z 为向量a的坐标,记着p =.⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB= .⑹向量的直⾓坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++;⑵a -b =112233(,,)a b a b a b ---;⑶λa =123(,,)a a a λλλ()R λ∈;⑷a ·b =112233a b a b a b ++.试试: 1. 设23a i j k =-+,则向量a 的坐标为 .2. 若A (1,0,2),B (3,1,1)-,则AB= . 3. 已知a =(2,3,5)-,b =(3,1,4)--,求a +b ,a -b ,8a ,a ·b※典型例题例1 已知向量,,a b c 是空间的⼀个基底,从向量,,a b c 中选哪⼀个向量,⼀定可以与向量,p a b =+q a b =-构成空间的另⼀个基底?变式:已知O,A,B,C 为空间四点,且向量,,OA OB OC不构成空间的⼀个基底,那么点O,A,B,C 是否共⾯?⼩结:判定空间三个向量是否构成空间的⼀个基底的⽅法是:这三个向量⼀定不共⾯. 例2 如图,M,N 分别是四⾯体QABC 的边OA,BC 的中点,P ,Q 是MN 的三等分点,⽤,,OA OB OC表⽰OP 和OQ .变式:已知平⾏六⾯体''''ABCD A B C D -,点G是侧⾯''BB C C 的中⼼,且OA a =,',OC b OO c == ,试⽤向量,,a b c 表⽰下列向量: ⑴''',,;OB BA CA ⑵ OG .※动⼿试试练1. 已知()()()2,3,1,2,0,3,0,0,2a b c =-==,求:⑴()a b c ?+ ;⑵68a b c +- .练2. 正⽅体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z 轴正⽅向建⽴空间直⾓坐标系,则点1D ,',AC AC 的坐标分别是,, .三、总结提升※学习⼩结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表⽰及其运算※知识拓展建⽴空间直⾓坐标系前,⼀定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已知条件,.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 若{}a,,b c为空间向量的⼀组基底,则下列各项中,能构成基底的是()A.,,a a b a b +-B. ,,b a b a b +-C. ,,c a b a b +-D. 2,,a b a b a b ++-2. 设i 、j 、k 为空间直⾓坐标系O -xyz 中x 轴、y 轴、z 轴正⽅向的单位向量,且AB i j k =-+-,则点B 的坐标是 3. 在三棱锥OABC 中,G 是ABC ?的重⼼(三条中线的交点),选取,,OA OB OC 为基底,试⽤基底表⽰OG =4. 正⽅体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA为x 轴、y 轴、z 轴正⽅向建⽴空间直⾓坐标系,E 为BB 1中点,则E 的坐标是 .5. 已知关于x 的⽅程()222350x t x t t --+++=有两个实根,c a tb =+ ,且()()1,1,3,1,0,2a b =-=-,当t =时,c的模取得最⼤值. 1. 已知()()3,5,7,2,4,3A B =-=-,求,,AB BA线段AB的中点坐标及线段AB 的长度.2. 已知,,a b c 是空间的⼀个正交基底,向量,,a b a b c +- 是另⼀组基底,若p 在,,a b c 的坐标是()1,2,3,求p 在,,a b a b c +-的坐标.§3.1.5空间向量运算的坐标表⽰1. 掌握空间向量的长度公式、夹⾓公式、两点间距离公式、中点坐标公式;※典型例题例1. 如图,在正⽅体1111ABCD A B C D -中,点11,E F 分别是1111,A B C D 的⼀个四等分点,求1BE 与1DF 所成的⾓的余弦值.变式:如上图,在正⽅体1111A B C D A B C D -中,1111113A BB E D F ==,求1BE 与1DF 所成⾓的余弦值.例2. 如图,正⽅体1111ABCD A B C D -中,点E,F 分别是111,BB D B 的中点,求证:1EF DA ⊥.变式:如图,正⽅体1111ABCD A B C D -中,点M 是AB 的中点,求1DB 与CM 所成⾓的余弦值.1. 若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分⼜不不要条件2. 已知()()2,1,3,4,2,a b x =-=-,且a b ⊥,则x = .3. 已知()()1,0,0,0,1,1A B -,OA OB λ+ 与OB 的夹⾓为120°,则λ的值为()A. B. C. D. 4. 若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹⾓为钝⾓,则x 的取值范围是()A. 4x <-B. 40x -<<C. 04x <<D. 4x >5. 已知 ()()1,2,,,1,2a y b x =-=,且(2)//(2)a b a b +-,则()A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-1. 如图,正⽅体''''ABCD ABC D -棱长为a ,⑴求'',A B B C 的夹⾓;⑵求证:''A B AC ⊥.2. 如图,正⽅体1111ABCD A B C D -中,点M,N 分别为棱11,A A B B 的中点,求CM 和1D N 所成⾓的余弦值.§3.1 空间向量及其运算(练习)1. 熟练掌握空间向量的加法,减法,向量的数乘运算,向量的数量积运算及其坐标表⽰;a xi y j zk =++,则称有序实数组{,,}x y z 为向量a的坐标,记着p =.10. 设A 111(,,)x y z ,B 222(,,)x y z ,则AB = .11. 向量的直⾓坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =;⑵a -b =;⑶λa =;⑷a ·b =※动⼿试试 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平⾏;②若a 、b 所在的直线是异⾯直线,则a 、b ⼀定不共⾯;③若a 、b 、c 三向量两两共⾯,则a 、b 、c 三向量⼀定也共⾯;④已知三向量a 、b 、c ,则空间任意⼀个向量p 总可以唯⼀表⽰为p =x a +y b +z c .其中正确命题的个数为()A .0 B. 1 C. 2 D. 3 2.在平⾏六⾯体ABCD -A 1B 1C 1D 1中,向量1D A、1D C 、11AC 是() A .有相同起点的向量 B .等长向量C .共⾯向量D .不共⾯向量3.已知a =(2,-1,3),b =(-1,4,-2), c =(7,5,λ),若a 、b 、c 三向量共⾯,则实数λ=() A. 627 B. 637 C. 647 D. 657 4.若a 、b 均为⾮零向量,则||||?=a b a b 是a 与b 共线的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分⼜不必要条件5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为() A .2 B .3C .4D .56. 32,2,a i j k b i j k =+-=-+ 则53a b ?= ()A .-15B .-5C .-3D .-1※典型例题例1 如图,空间四边形OABC 中,,OA a OB b == , OC c =,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN = .变式:如图,平⾏六⾯体''''ABCD A B C D -中,,AB a AD b ==,'AA c = ,点,,P M N 分别是'''',,CA CD C D 的中点,点Q 在'CA 上,且'41CQ QA =,⽤基底,,a b c表⽰下列向量:⑴ AP ; ⑵ AM ; ⑶ AN ; ⑷ AQ .例2 如图,在直三棱柱ABC —A 1B 1C 1中,190,1,2,6ABC CB CA ∠=?==,点M 是1CC 的中点,求证:1AM BA ⊥.变式:正三棱柱ABC —A 1B 1C 1的侧棱长为2,底⾯边长为1,点M 是BC 的中点,在直线1CC 上求⼀点N ,使得1MN AB ⊥※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB =b ,1CC = c ,则1A B =() A. +-a b c B. -+a b c C. -++a b c D.-+-a b c 2.,,m a m b ⊥⊥ (,n a b R λµλµλ=+∈向量且、0)µ≠则()A .//m nB . m 与n不平⾏也不垂直C. m n ⊥, D .以上情况都可能.3. 已知a +b +c =0 ,|a |=2,|b |=3,|c|则向量a 与b之间的夹⾓,a b <> 为()A .30°B .45°C .60°D .以上都不对4.已知()()1,1,0,1,0,2,a b==-且ka b + 与2a b - 互相垂直,则k 的值是()A. .1B. 15C. 35D. 755. 若A (m +1,n -1,3), B. (2m ,n ,m -2n ),C (m +3,n -3,9)三点共线,则m +n =如图,在棱长为1的正⽅体1111ABCD A B C D -中,点,,E F G 分别是11,,DD BD BB 的中点. ⑴求证:EF CF ⊥;⑵求EF 与CG 所成⾓的余弦;⑶求CE 的长.§3.2⽴体⼏何中的向量⽅法(1)1. 掌握直线的⽅向向量及平⾯的法向量的概念;⾏、垂直、夹⾓等⽴体⼏何问题.⼀、课前准备(预习教材P 102~ P 104,找出疑惑之处)复习1:可以确定⼀条直线;确定⼀个平⾯的⽅法有哪些?复习2:如何判定空间A ,B ,C 三点在⼀条直线上?复习3:设a =123(,,)a a a ,b =123(,,)b b b ,a ·b =⼆、新课导学※学习探究探究任务⼀:向量表⽰空间的点、直线、平⾯问题:怎样⽤向量来表⽰点、直线、平⾯在空间中的位置?新知:⑴点:在空间中,我们取⼀定点O 作为基点,那么空间中任意⼀点P 的位置就可以⽤向量OP来表⽰,我们把向量OP称为点P 的位置向量. ⑵直线:①直线的⽅向向量:和这条直线平⾏或共线的⾮零向量.②对于直线l 上的任⼀点P ,存在实数t ,使得AP t AB =,此⽅程称为直线的向量参数⽅程. ⑶平⾯:①空间中平⾯α的位置可以由α内两个不共线向量确定.对于平⾯α上的任⼀点P ,,a b是平⾯α内两个不共线向量,则存在有序实数对(,)x y ,使得OP x a y b =+ .②空间中平⾯α的位置还可以⽤垂直于平⾯的直线的⽅向向量表⽰空间中平⾯的位置.⑷平⾯的法向量:如果表⽰向量n的有向线段所在直线垂直于平⾯α,则称这个向量n垂直于平⾯α,记作n ⊥α,那么向量n叫做平⾯α的法向量.试试: .1.如果,a b 都是平⾯α的法向量,则,a b的关系 .2.向量n是平⾯α的法向量,向量a 是与平⾯α平⾏或在平⾯内,则n 与a的关系是 .反思:1. ⼀个平⾯的法向量是唯⼀的吗?2. 平⾯的法向量可以是零向量吗?⑸向量表⽰平⾏、垂直关系:设直线,l m 的⽅向向量分别为,a b,平⾯,αβ的法向量分别为,u v,则① l ∥m ?a ∥b a kb ?=② l ∥α?a u ⊥ 0a u ??=③α∥β?u ∥v .u kv ?=※典型例题例1 已知两点()()1,2,3,2,1,3A B --,求直线AB与坐标平⾯YOZ 的交点.变式:已知三点()()1,2,3,2,1,2,A B ()1,1,2P ,点Q 在OP 上运动(O 为坐标原点),求当QA QB ?取得最⼩值时,点Q 的坐标.⼩结:解决有关三点共线问题直接利⽤直线的参数⽅程即可.例2 ⽤向量⽅法证明两个平⾯平⾏的判定定理:⼀个平⾯内的两条相交直线与另⼀个平⾯平⾏,则这两个平⾯平⾏.变式:在空间直⾓坐标系中,已知()()()3,0,0,0,4,0,0,0,2A B C ,试求平⾯ABC 的⼀个法向量.⼩结:平⾯的法向量与平⾯内的任意向量都垂直.※动⼿试试练1. 设,a b分别是直线12,l l 的⽅向向量,判断直线12,l l 的位置关系:⑴ ()()1,2,2,2,3,2a b =-=-;⑵ ()()0,0,1,0,0,3a b ==.练2. 设,u v分别是平⾯,αβ的法向量,判断平⾯,αβ的位置关系:⑴ ()()1,2,2,2,4,4u v =-=--;⑵ ()()2,3,5,3,1,4u v =-=--.三、总结提升※学习⼩结1. 空间点,直线和平⾯的向量表⽰⽅法2. 平⾯的法向量求法和性质.※知识拓展:求平⾯的法向量步骤:⑴设平⾯的法向量为(,,)n x y z =;⑵找出(求出)平⾯内的两个不共线的向量的坐标;⑶根据法向量的定义建⽴关于,,x y z 的⽅程组;,即得法向量.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 设()()2,1,2,6,3,6a b =--=--分别是直线12,l l 的⽅向向量,则直线12,l l 的位置关系是 .2. 设()()2,2,5,6,4,4u v =-=-分别是平⾯,αβ的法向量,则平⾯,αβ的位置关系是 .3. 已知n α⊥,下列说法错误的是()A. 若a α?,则n a ⊥B.若//a α,则n a ⊥C.若,m α⊥,则//n mD.若,m α⊥,则n m = 4.下列说法正确的是()A.平⾯的法向量是唯⼀确定的B.⼀条直线的⽅向向量是唯⼀确定的C.平⾯法向量和直线的⽅向向量⼀定不是零向量D.若m 是直线l 的⽅向向量,//l α,则//m α5. 已知()()1,0,1,0,3,1AB AC =-=-,能做平⾯ABC 的法向量的是()A. ()1,2,1B.11,,13??C.()1,0,0D. ()2,1,31. 在正⽅体1111ABCD A B C D -中,求证:1DB是平⾯1ACD 的⼀个法向量.2.已知()()2,2,1,4,5,3AB AC ==,求平⾯ABC 的⼀个法向量.§3.2⽴体⼏何中的向量⽅法(2)的⽴体⼏何问题;2. 掌握向量运算在⼏何中求两点间距离和求空间图形中的⾓度的计算⽅法.⼀、课前准备(预习教材P 105~ P 107,找出疑惑之处.复习1:已知1a b ?= ,1,2a b ==,且2m a b =+ ,求m .复习2:什么叫⼆⾯⾓?⼆⾯⾓的⼤⼩如何度量?⼆⾯⾓的范围是什么?⼆、新课导学※学习探究探究任务⼀:⽤向量求空间线段的长度问题:如何⽤向量⽅法求空间线段的长度?新知:⽤空间向量表⽰空间线段,然后利⽤公式a = 求出线段长度.试试:在长⽅体''''A B C DA B C D -中,已知'1,2,1AB BC CC ===,求'AC 的长.反思:⽤向量⽅法求线段的长度,关键在于把未知量⽤已知条件中的向量表⽰.※典型例题例1 如图,⼀个结晶体的形状为平⾏六⾯体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹⾓都是60°,那么以这个顶点为端点的晶体的对⾓线的长与棱长有什么关系?变式1:上题中平⾏六⾯体的对⾓线1BD 的长与棱长有什么关系?变式2:如果⼀个平⾏六⾯体的各条棱长都相等,并且以某⼀顶点为端点的各棱间的夹⾓都等于α, 那么由这个平⾏六⾯体的对⾓线的长可以确定棱长吗?探究任务⼆:⽤向量求空间图形中的⾓度例2 如图,甲站在⽔库底⾯上的点A 处,⼄站在⽔坝斜⾯上的点B 处.从A ,B 到直线l (库底与⽔坝的交线)的距离,AC BD 分别为,a b ,CD 的长为c ,AB 的长为d .求库底与⽔坝所成⼆⾯⾓的余弦值.变式:如图,60?的⼆⾯⾓的棱上有,A B 两点,直线,AC BD 分别在这个⼆⾯⾓的两个半平⾯内,且都垂直于,AB 已知4,6,8AB AC BD ===,求CD 的长.※动⼿试试练1. 如图,已知线段AB 在平⾯α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD∠= ,如果AB =a ,AC =BD =b ,求C 、D 间的距离.练2. 如图,M 、N 分别是棱长为1的正⽅体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异⾯直线MN 与'CD 所成的⾓.三、总结提升※学习⼩结 1. 求出空间线段的长度:⽤空间向量表⽰空间线段,然后利⽤公式a ; 2. 空间的⼆⾯⾓或异⾯直线的夹⾓,都可以转化为利⽤公式cos ,a ba b a b= 求解.※知识拓展解空间图形问题时,可以分为三步完成:(1)建⽴⽴体图形与空间向量的联系,⽤空间向量表⽰问题中涉及的点、直线、平⾯,把⽴体⼏何问题转化为向量问题(还常建⽴坐标系来辅助);(2)通过向量运算,研究点、直线、平⾯之间的位置关系以及它们之间距离和夹⾓等问题;“翻译”成相应的⼏何意义.※⾃我评价你完成本节导学案的情况为().A. 很好B. 较好C. ⼀般D. 较差※当堂检测(时量:5分钟满分:10分)计分: 1. 已知()()1,02,1,1,3A B -,则AB = .2. 已知1cos ,2a b =- ,则,a b 的夹⾓为 .3. 若M 、N 分别是棱长为1的正⽅体''''ABCD A B C D-的棱''',A B BB 的中点,那么直线,AM CN 所成的⾓的余弦为()C.35D.25 4.将锐⾓为60?边长为a 的菱形ABCD 沿较短的对⾓线折成60?的⼆⾯⾓,则,AC BD 间的距离是()A.32a C.34a 5.正⽅体'''A B C D AB C D -中棱长为a ,'13AM AC=,N 是'BB 的中点,则MN 为()1. 如图,正⽅体''''ABCD A B C D -的棱长为1, ,M N 分别是''',BB B C 的中点,求:⑴ ',MN CD 所成⾓的⼤⼩;⑵ ,MN AD 所成⾓的⼤⼩;⑶ AN 的长度.§3.2⽴体⼏何中的向量⽅法(3)C。

高中数学 第三章 空间向量与立体几何 3.2 第1课时 空间向量与平行、垂直关系学案 新人教A版选修

高中数学 第三章 空间向量与立体几何 3.2 第1课时 空间向量与平行、垂直关系学案 新人教A版选修

第1课时空间向量与平行、垂直关系1.理解直线的方向向量与平面的法向量的概念.2.会求平面的法向量.3.能利用直线的方向向量和平面的法向量判断并证明空间中的平行、垂直关系.1.直线的方向向量和平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量,一条直线的方向向量有无数个.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a =λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u =λv⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0.(2)线面垂直设直线l的方向向量是a=(a1,b1,c1),平面α的法向量是u=(a2,b2,c2),则l⊥α⇔a∥u⇔a=λu⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔u⊥v⇔u·v=0 ⇔a1a2+b1b2+c1c2=0.判断(正确的打“√”,错误的打“×”)(1)若两条直线平行,则它们的方向向量方向相同或相反.( )(2)平面α的法向量是惟一的,即一个平面不可能存在两个不同的法向量.( ) (3)两直线的方向向量平行,则两直线平行.( )(4)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.( ) 答案:(1)√ (2)× (3)× (4)√若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D.(-3,0,1)答案:A若平面α⊥β,且平面α的一个法向量为n =⎝ ⎛⎭⎪⎫-2,1,12,则平面β的法向量可以是( )A.⎝⎛⎭⎪⎫-1,12,14B .(2,-1,0)C .(1,2,0) D.⎝ ⎛⎭⎪⎫12,1,2答案:C若直线的方向向量为u 1=⎝ ⎛⎭⎪⎫2,43,1,平面的法向量为u 2=(3,2,z ),则当直线与平面垂直时z =________.答案:32设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =__________.答案:4探究点1 求直线的方向向量与平面的法向量[学生用书P64]如图,四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.【解】因为PA ⊥平面ABCD ,底面ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,建立空间直角坐标系,则D (0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎪⎫0,32,12, AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3).[变问法]本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解:如图所示,建立空间直角坐标系,则P (0,0,1),C (1,3,0),所以PC →=(1,3,-1),即为直线PC 的一个方向向量.设平面PCD 的法向量为n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为(0,1,3).待定系数法求平面法向量的步骤(1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量.1.已知A (0,y ,3),B (-1,-2,z ),若直线l 的方向向量v =(2,1,3)与直线AB 的方向向量平行,则y +z 等于( )A .-3B .0C .1D.3解析:选B.由题意,得AB →=(-1,-2-y ,z -3),则-12=-2-y 1=z -33,解得y =-32,z =32,所以y +z =0,故选B. 2.在△ABC 中,A (1,-1,2),B (3,3,1),C (3,1,3),设M (x ,y ,z )是平面ABC 内任意一点.(1)求平面ABC 的一个法向量; (2)求x ,y ,z 满足的关系式.解:(1)设平面ABC 的法向量n =(a ,b ,c ). 因为AB →=(2,4,-1),AC →=(2,2,1),所以⎩⎪⎨⎪⎧n ·AB →=2a +4b -c =0n ·AC →=2a +2b +c =0,所以⎩⎪⎨⎪⎧c =b a =-32b ,令b =2,则a =-3,c =2.所以平面ABC 的一个法向量为n =(-3,2,2). (2)因为点M (x ,y ,z )是平面ABC 内任意一点,所以AM →⊥n ,所以-3(x -1)+2(y +1)+2(z -2)=0, 所以3x -2y -2z -1=0.故x ,y ,z 满足的关系式为3x -2y -2z -1=0. 探究点2 利用空间向量证明平行关系[学生用书P64]已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点.求证:FC 1∥平面ADE .【证明】 如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2).FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则⎩⎪⎨⎪⎧n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1. 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0. 所以FC 1→⊥n 1.因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .[变问法]在本例条件下,求证:平面ADE ∥平面B 1C 1F .证明:由本例证明知C 1B 1→=(2,0,0), 设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .证明线、面平行问题的方法(1)用向量法证明线面平行:①是证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;②是证明直线的方向向量可以用平面内两个不共线向量表示;③是证明直线的方向向量与平面的法向量垂直且直线不在平面内.(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.在长方体ABCD ­A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2,点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥RS .证明:法一:如图所示,建立空间直角坐标系,根据题意得M (3,0,43),N (0,2,2),R (3,2,0),S (0,4,23).所以MN →=(-3,2,23),RS →=(-3,2,23),所以MN →=RS →,所以MN →∥RS →,因为M ∉RS ,所以MN ∥RS . 法二:设AB →=a ,AD →=b ,AA 1→=c ,则MN →=MB 1→+B 1A 1→+A 1N →=13c -a +12b ,RS →=RC →+CD →+DS →=12b -a +13c .所以MN →=RS →,所以MN →∥RS →. 又R ∉MN ,所以MN ∥RS .探究点3 利用空间向量证明垂直关系[学生用书P65]在四棱锥S ABCD 中,底面ABCD 是正方形,AS ⊥底面ABCD ,且AS =AB ,E 是SC 的中点.求证:平面BDE ⊥平面ABCD .【证明】 设AS =AB =1,建立如图所示的空间直角坐标系Axyz ,则B (1,0,0),D (0,1,0),A (0,0,0),S (0,0,1),E ⎝ ⎛⎭⎪⎫12,12,12.法一:如图,连接AC ,交BD 于点O ,连接OE ,则点O 的坐标为⎝ ⎛⎭⎪⎫12,12,0.易知AS →=(0,0,1),OE →=⎝⎛⎭⎪⎫0,0,12,所以OE →=12AS →,所以OE ∥AS .又AS ⊥底面ABCD ,所以OE ⊥平面ABCD . 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD . 法二:设平面BDE 的法向量为n 1=(x ,y ,z ). 易知BD →=(-1,1,0),BE →=⎝ ⎛⎭⎪⎫-12,12,12,所以⎩⎪⎨⎪⎧n 1⊥BD →,n 1⊥BE →,即⎩⎨⎧n 1·BD →=-x +y =0,n 1·BE →=-12x +12y +12z =0.令x =1,可得平面BDE 的一个法向量为n 1=(1,1,0). 因为AS ⊥底面ABCD ,所以平面ABCD 的一个法向量为n 2=AS →=(0,0,1). 因为n 1·n 2=0,所以平面BDE ⊥平面ABCD .证明线、面垂直问题的方法(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直即可.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0即可.如图,△ABC 中,AC =BC ,D 为AB 边中点,PO ⊥平面ABC ,垂足O 在CD上,求证:AB ⊥PC .证明:设CA →=a ,CB →=b ,OP →=v .由条件知,v 是平面ABC 的法向量, 所以v ·a =0,v ·b =0, 因为D 为AB 中点,所以CD →=12(a +b ),因为O 在CD 上,所以存在实数λ,使CO →=λCD →=λ2(a +b ).因为CA =CB , 所以|a |=|b |, 所以AB →·CP →=(b -a )·⎣⎢⎡⎦⎥⎤λ2(a +b )+v =λ2(a +b )·(b -a )+(b -a )·v=λ2(|b |2-|a |2)+b ·v -a ·v =0, 所以AB →⊥CP →, 所以AB ⊥PC .1.在正方体ABCD ­A 1B 1C 1D 1中,M 是棱DD 1的中点,O 是正方形ABCD 的中心,证明:OA 1⊥AM . 证明:设正方体棱长为1,建立空间直角坐标系,如图,则A (1,0,0),A 1(1,0,1),M ⎝⎛⎭⎪⎫0,0,12,O ⎝⎛⎭⎪⎫12,12,0,所以OA 1→=(1,0,1)-⎝ ⎛⎭⎪⎫12,12,0=⎝ ⎛⎭⎪⎫12,-12,1,AM →=⎝⎛⎭⎪⎫0,0,12-(1,0,0)=⎝⎛⎭⎪⎫-1,0,12,所以OA 1→·AM →=12×(-1)+⎝ ⎛⎭⎪⎫-12×0+1×12=0,即OA 1⊥AM .2.在长方体ABCD ­A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.求证:CE ∥平面C 1E 1F .证明:以D 为原点,以DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎪⎫1,12,2.设平面C 1E 1F 的法向量为n =(x ,y ,z ), 因为C 1E 1→=⎝ ⎛⎭⎪⎫1,-12,0,FC 1→=(-1,0,1),所以⎩⎪⎨⎪⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x =12y ,x =z , 取n =(1,2,1).因为CE →=(1,-1,1),n ·CE →=1-2+1=0,所以CE →⊥n ,且CE ⊄平面C 1E 1F . 所以CE ∥平面C 1E 1F .[学生用书P66]知识结构深化拓展用空间向量解决立体几何的问题有三步(1)首先建立适当的空间坐标系,一般是用互相垂直的直线为x ,y ,z 轴,设出点的坐标.(2)通过向量的坐标运算,来研究点、直线、平面之间的关系,把几何问题转化为代数问题.(3)把向量的运算结果“翻译”为相应的几何意义,据几何意义求出结果.[学生用书P137(单独成册)])[A 基础达标]1.已知a =⎝ ⎛⎭⎪⎫1,2,52,b =⎝ ⎛⎭⎪⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( )A .x =3,y =152B .x =32,y =154C .x =3,y =15D.x =3,y =154解析:选D.因为l 1∥l 2,所以321=x 2=y 52,所以x =3,y =154,故选D.2.直线l 的一个方向向量和平面β的一个法向量分别是m =(-1,1,3),n =⎝ ⎛⎭⎪⎫13,0,19,则直线l 与平面β的位置关系是( )A .l ∥βB .l ⊥βC .l ∥β或l ⊂βD.无法判断解析:选C.因为m ·n =-13+0+13=0,所以m ⊥n .所以l ∥β或l ⊂β.3.设直线l 的方向向量u =(-2,2,t ),平面α的一个法向量v =(6,-6,12),若直线l ⊥平面α,则实数t 等于( )A .4B .-4C .2D.-2解析:选B.因为直线l ⊥平面α,所以u ∥v ,则-26=2-6=t12,解得t =-4,故选B.4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32 D.⎝⎛⎭⎪⎫-1,3,-32解析:选B.要判断点P 是否在平面α内,只需判断向量PA →与平面α的法向量n 是否垂直,即PA →·n 是否为0,因此,要对各个选项进行检验. 对于选项A ,PA →=(1,0,1),则PA →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ; 对于选项B ,PA →=⎝⎛⎭⎪⎫1,-4,12,则PA →·n =⎝ ⎛⎭⎪⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.5.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( )A .1∶2B .1∶1C .3∶1D.2∶1解析:选B.建立如图所示的空间直角坐标系,设正方形边长为1,PA =a ,则B (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y ,0),则BF →=(-1,y ,0),PE →=⎝ ⎛⎭⎪⎫12,1,-a .因为BF ⊥PE , 所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, 所以F 为AD 的中点, 所以AF ∶FD =1∶1.6.已知平面α的一个法向量a =(x ,1,-2),平面β的一个法向量b =⎝ ⎛⎭⎪⎫-1,y ,12,若α⊥β,则x -y =________.解析:因为α⊥β,所以a ⊥b ,所以-x +y -1=0,得x -y =-1. 答案:-17.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).解析:AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,所以AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.答案:①②③8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.解析:因为AB →⊥BC →,所以AB →·BC →=0, 所以3+5-2z =0, 所以z =4.因为BP →=(x -1,y ,-3),且BP →⊥平面ABC , 所以⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157, 故BP →=⎝ ⎛⎭⎪⎫337,-157,-3.答案:⎝⎛⎭⎪⎫337,-157,-39.已知正三棱柱ABC ­A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明:设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝ ⎛⎭⎪⎫-12,0,0,B ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫0,32,0,N ⎝⎛⎭⎪⎫0,32,14, B 1⎝⎛⎭⎪⎫12,0,1,M ⎝ ⎛⎭⎪⎫14,34,0. 所以MN →=⎝ ⎛⎭⎪⎫-14,34,14,AB 1→=(1,0,1),所以MN →·AB 1→=-14+0+14=0.所以MN →⊥AB 1→,所以AB 1⊥MN .10.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点.求证:EF ⊥平面B 1AC .证明:设正方体的棱长为2a ,建立如图所示的空间直角坐标系.则A (2a ,0,0),C (0,2a ,0),B 1(2a ,2a ,2a ),E (2a ,2a ,a ),F (a ,a ,2a ). 所以EF →=(a ,a ,2a )-(2a ,2a ,a )=(-a ,-a ,a ),AB 1→=(2a ,2a ,2a )-(2a ,0,0)=(0,2a ,2a ),AC →=(0,2a ,0)-(2a ,0,0)=(-2a ,2a ,0).因为EF →·AB 1→=(-a ,-a ,a )·(0,2a ,2a )=(-a )×0+(-a )×2a +a ×2a =0,EF →·AC →=(-a ,-a ,a )·(-2a ,2a ,0)=2a 2-2a 2+0=0,所以EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A ,所以EF ⊥平面B 1AC .[B 能力提升]11.如图,在正方体ABCD ­A 1B 1C 1D 1中,M ,N ,P 分别是AD 1,BD 和B 1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ; (2)平面MNP ∥平面CC 1D 1D .证明:(1)以D 为坐标原点,DA →,DC →,DD 1→分别为x ,y ,z 轴的正方向,建立空间直角坐标系(图略),并设正方体的棱长为2,则A (2,0,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1).由正方体的性质知AD ⊥平面CC 1D 1D ,所以DA →=(2,0,0)为平面CC 1D 1D 的一个法向量.由于MN →=(0,1,-1),则MN →·DA →=0×2+1×0+(-1)×0=0,所以MN →⊥DA →. 又MN ⊄平面CC 1D 1D , 所以MN ∥平面CC 1D 1D .(2)由于MP →=(0,2,0),DC →=(0,2,0), 所以MP →∥DC →,即MP ∥DC . 由于MP ⊄平面CC 1D 1D , 所以MP ∥平面CC 1D 1D .又由(1),知MN ∥平面CC 1D 1D ,MN ∩MP =M ,所以由两个平面平行的判定定理,知平面MNP ∥平面CC 1D 1D .12.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,点E 为BC 的中点.(1)在B 1B 上是否存在一点P ,使D 1P ⊥平面B 1AE? (2)在平面AA 1B 1B 上是否存在一点N ,使D 1N ⊥平面B 1AE? 解:(1)如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则点A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,B 1(1,1,1),D 1(0,0,1),B 1A →=(0,-1,-1),B 1E →=⎝ ⎛⎭⎪⎫-12,0,-1.假设存在点P (1,1,z )满足题意,于是D 1P →=(1,1,z -1),所以⎩⎪⎨⎪⎧D 1P →·B 1A →=0,D 1P →·B 1E →=0,所以⎩⎪⎨⎪⎧0-1-z +1=0,-12+0-z +1=0,解得⎩⎪⎨⎪⎧z =0,z =12,矛盾.故在B 1B 上不存在点P 使D 1P ⊥平面B 1AE .(2)假设在平面AA 1B 1B 上存在点N ,使D 1N ⊥平面B 1AE . 设N (1,y ,z ),则⎩⎪⎨⎪⎧D 1N →·B 1A →=0,D 1N →·B 1E →=0.因为D 1N →=(1,y ,z -1),所以⎩⎪⎨⎪⎧0-y -z +1=0,-12+0-z +1=0,解得⎩⎪⎨⎪⎧y =12,z =12,故平面AA 1B 1B 上存在点N ⎝ ⎛⎭⎪⎫1,12,12,使D 1N ⊥平面B 1AE .13.(选做题)如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠BCD =90°,AB =4,CD =1,点M在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD .证明:以点C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°.因为PC =2,所以BC =23,PB =4.所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32.所以DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32.(1)令n =(x ,y ,z )为平面PAD 的法向量,则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,所以⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).因为n ·CM →=-3×32+2×0+1×32=0,所以n ⊥CM →,又CM ⊄平面PAD , 所以CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).因为PB =AB , 所以BE ⊥PA .又因为BE →·DA →=(-3,2,1)·(23,3,0)=0. 所以BE →⊥DA →,所以BE ⊥DA , 又因为PA ∩DA =A , 所以BE ⊥平面PAD , 又因为BE ⊂平面PAB , 所以平面PAB ⊥平面PAD .。

第一章空间向量与立体几何小结教学设计2023-2024学年高二上学期数学人教A版2019选择性必修一

第一章空间向量与立体几何小结教学设计2023-2024学年高二上学期数学人教A版2019选择性必修一

空间向量与立体几何小结(2)教学设计-2023-2024学年高二上学期数学人教A版(2019)选择性必修第一册主备人备课成员教学内容本章节内容出自《数学人教A版(2019)选择性必修第一册》第3章,主要涉及空间向量与立体几何的相关知识。

具体内容包括:1. 空间向量的概念及其表示;2. 空间向量的基本运算(加法、减法、数乘、数量积);3. 空间向量与空间几何图形的性质;4. 空间向量的坐标表示;5. 空间向量在立体几何中的应用(点、线、面的位置关系,几何图形的面积、体积计算等);6. 空间向量与解析几何的联系与区别。

在教学过程中,教师应引导学生通过空间向量这一工具,更好地理解和掌握立体几何的相关知识,提高学生的空间想象能力和逻辑思维能力。

同时,注重培养学生的实际应用能力,使学生能够运用空间向量解决实际问题。

教学目标1. 知识目标:使学生掌握空间向量的概念及其表示方法,了解空间向量的基本运算规则,理解空间向量与立体几何图形的性质之间的联系,能够运用空间向量坐标表示法进行点、线、面的位置关系分析,掌握空间向量在立体几何中的应用技巧,如计算几何图形的面积和体积等。

2. 能力目标:通过本章学习,培养学生运用空间向量解决立体几何问题的能力,提高学生的空间想象能力和逻辑思维能力,使学生能够在实际问题中灵活运用空间向量分析问题、解决问题。

3. 情感目标:激发学生对空间向量与立体几何知识的学习兴趣,培养学生的数学探究精神和合作学习意识,使学生在学习过程中感受数学的美妙和应用价值,增强学生的自信心和成就感。

4. 教学目标:通过本章学习,使学生能够熟练运用空间向量解决立体几何问题,提高学生的空间想象能力和逻辑思维能力,培养学生对数学知识的热爱和探究精神,使学生在学习过程中感受到数学的魅力和应用价值。

5. 学习目标:使学生能够理解空间向量与立体几何图形的性质之间的联系,掌握空间向量的基本运算规则,了解空间向量坐标表示法,能够运用空间向量解决实际问题,提高学生的空间想象能力和逻辑思维能力。

高中数学《立体几何中的向量方法》教案3 新人教A版选修2-1

高中数学《立体几何中的向量方法》教案3 新人教A版选修2-1

第三课时: 3.2立体几何中的向量方法(三)
教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.
教学重点:向量运算在几何证明与计算中的应用.
教学难点:向量运算在几何证明与计算中的应用.
教学过程:
一、复习引入
1. 法向量定义:如果直线, 取直线l的方向向量为,则向量叫作平面α的法向量(normal vectors). 利用法向量,可以巧妙的解决空间角度和距离.
2. 讨论:如何利用法向量求线面角?→面面角?
直线AB与平面α所成的角,可看成是向量所在直线与平面α的法向量所在直线夹角的余角,从而求线面角转化为求直线所在的向量与平面的法向量的所成的线线角,根据两个向量所成角的余弦公式,我们可以得到如下向量法的公式:
.
3. 讨论:如何利用向量求空间距离?
两异面直线的距离,转化为与两异面直线都相交的线段在公垂向量上的投影长.
点到平面的距离,转化为过这点的平面的斜线在平面的法向量上的投影长.
二、例题讲解:
1. 出示例1:长方体中,AD==2,AB=4,E、F分别是、AB的中点,O是的交点. 求直线OF 与平面DEF所成角的正弦.
解:以点D为空间直角坐标系的原点,DA、DC、为坐标轴,建立如图所示的空间直角坐标系. 则
.
设平面DEF的法向量为,
则,而, .
∴,即, 解得,∴ .
∵,而.

所以,直线OF与平面DEF所成角的正弦为.
2. 变式:用向量法求:二面角余弦;OF与DE的距离;O点到平面DEF的距离.
三、巩固练习
作业:课本P121、习题A组 5、6题.。

高中数学《空间向量与立体几何》教案新课标人教A版选修2-1

高中数学《空间向量与立体几何》教案新课标人教A版选修2-1

3.1.2空间向量的数乘运算(一)教学要求:了解共线或平行向量的概念,掌握表示方法;理解共线向量定理及其推论;掌握空间直线的向量参数方程;会运用上述知识解决立体几何中有关的简单问题. 教学重点:空间直线、平面的向量参数方程及线段中点的向量公式. 教学过程: 一、复习引入1. 回顾平面向量向量知识:平行向量或共线向量?怎样判定向量b 与非零向量a是否共线?方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .称平面向量共线定理, 二、新课讲授1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作a //b.2.关于空间共线向量的结论有共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0),a //b的充要条件是存在实数λ,使a=λb .理解:⑴上述定理包含两个方面:①性质定理:若a ∥b (a ≠0),则有b =λa,其中λ是唯一确定的实数。

②判断定理:若存在唯一实数λ,使b =λa (a≠0),则有a ∥b (若用此结论判断a 、b 所在直线平行,还需a (或b )上有一点不在b (或a)上).⑵对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa|,当λ>0时与a 同向,当λ<0时与a反向的所有向量.3. 推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 OP OA t =+a.其中向量a叫做直线l 的方向向量. 推论证明如下:∵ l //a ,∴ 对于l 上任意一点P ,存在唯一的实数t ,使得AP t =a.(*)又∵ 对于空间任意一点O ,有AP OP OA =-,∴ OP OA t -=a , OP OA t =+a. ① 若在l 上取AB =a,则有OP OA t AB =+.(**)又∵ AB OB OA =- ∴ ()OP OA t OB OA =+-(1)t OA tOB =-+.② 当12t =时,1()2OP OA OB =+.③理解:⑴ 表达式①和②都叫做空间直线的向量参数表示式,③式是线段的中点公式.事实上,表达式(*)和(**)既是表达式①和②的基础,也是直线参数方程的表达形式.⑵ 表达式①和②三角形法则得出的,可以据此记忆这两个公式. ⑶ 推论一般用于解决空间中的三点共线问题的表示或判定. 空间向量共线(平行)的定义、共线向量定理与平面向量完全相同, 是平面向量相关知识的推广.4. 出示例1:用向量方法证明顺次连接空间四边形四边中点的四边形 是平行四边形. ( 分析:如何用向量方法来证明?)5. 出示例2:如图O 是空间任意一点,C 、D 是线段AB 的三等分点,分别用OA 、OB 表示OC 、OD .三、巩固练习: 作业:3.1.2空间向量的数乘运算(二)教学要求:了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;理解共面向量定理及其推论;掌握点在已知平面内的充要条件;会用上述知识解决立几中有关的简单问题.教学重点:点在已知平面内的充要条件.教学难点:对点在已知平面内的充要条件的理解与运用.教学过程:一、复习引入1. 空间向量的有关知识——共线或平行向量的概念、共线向量定理及其推论以及空间直线的向量表示式、中点公式.2. 必修④《平面向量》,平面向量的一个重要定理——平面向量基本定理:如果e1、e2是同一平面内两个不共线的向量,那么对这一平面内的任意一个向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中不共线向量e1、e2叫做表示这一平面内所有向量的一组基底.二、新课讲授1. 定义:如果表示空间向量a的有向线段所在直线与已知平面α平行或在平面α内,则称向量a平行于平面α,记作a//α.向量与平面平行,向量所在的直线可以在平面内,而直线与平面平行时两者是没有公共点的.2. 定义:平行于同一平面的向量叫做共面向量.共面向量不一定是在同一平面内的,但可以平移到同一平面内.3. 讨论:空间中任意三个向量一定是共面向量吗?请举例说明.结论:空间中的任意三个向量不一定是共面向量.例如:对于空间四边形ABCD,AB、AC、AD这三个向量就不是共面向量.4. 讨论:空间三个向量具备怎样的条件时才是共面向量呢?5. 得出共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使得p= x a+y b.证明:必要性:由已知,两个向量a、b不共线.∵向量p与向量a、b共面∴由平面向量基本定理得:存在一对有序实数对x,y,使得p= x a+y b.充分性:如图,∵x a,y b分别与a、b共线,∴x a,y b都在a、b确定的平面内.又∵x a+y b是以|x a|、|y b|为邻边的平行四边形的一条对角线所表示的向量,并且此平行四边形在a、b确定的平面内,∴ p= x a+y b在a、b确定的平面内,即向量p与向量a、b共面.说明:当p、a、b都是非零向量时,共面向量定理实际上也是p、a、b所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内.6. 共面向量定理的推论是:空间一点P在平面MAB内的充要条件是存在有序实数对x,y,使得MP xMA yMB=++.②=+,①或对于空间任意一定点O,有OP OM xMA yMB分析:⑴推论中的x、y是唯一的一对有序实数;⑵由OP OM xMA yMB=++得:OP x y OM xOA yOB=--++③OP OM x OA OM y OB OM()()=+-+-,∴(1)公式①②③都是P、M、A、B四点共面的充要条件.7. 例题:课本P88例1 ,解略.小结:向量方法证明四点共面三、巩固练习向量的数量积(2)一、教学目标:①向量的数量积运算②利用向量的数量积运算判定垂直、求模、求角二、教学重点:①向量的数量积运算②利用向量的数量积运算判定垂直、求模、求角三、教学方法:练习法,纠错法,归纳法四、教学过程:考点一:向量的数量积运算(一)、知识要点:1)定义:① 设<,a b >=θ,则a b = (θ的范围为 )②设11(,)a x y =,22(,)b x y =则a b = 。

学高中数学空间向量与立体几何空间向量与空间角教学用书教案新人教A版选修

学高中数学空间向量与立体几何空间向量与空间角教学用书教案新人教A版选修

第3课时空间向量与空间角学习目标核心素养1.会用向量法求线线、线面、面面的夹角.(重点、难点)2.正确区分向量夹角与所求线线角、面面角的关系.(易错点)通过利用空间向量求异面直线所成的角、直线与平面所成的角和二面角的学习,提升学生的逻辑推理、数学运算的核心素养.空间角的向量求法角的分类向量求法范围两异面直线l1与l2所成的角θ设l1与l2的方向向量为a,b,则cos θ==错误!错误!直线l与平面α所成的角θ设l的方向向量为a,平面α的法向量为n,则sin θ==错误!错误!二面角α­l­β的平面角θ设平面α,β的法向量为n1,n2,则|cos θ|==错误![0,π](2)二面角与二面角的两个半平面的法向量所成的角有怎样的关系?[提示] (1)设n为平面α的一个法向量,a为直线a的方向向量,直线a与平面α所成的角为θ,则θ=错误!(2)条件平面α,β的法向量分别为u,υ,α,β所构成的二面角的大小为θ,〈u,υ〉=φ,图形关系θ=φθ=π—φ计算cos θ=cos φcos θ=—cos φ1.如图所示,在正方体ABCD­A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小是()A.等于90°B.小于90° C.大于90° D.不确定A[A1B1⊥平面BCC1B1,故A1B1⊥MN,则错误!·错误!=(错误!+错误!)·错误!=错误!·错误!+错误!·错误!=0,∴MP⊥MN,即∠PMN=90°.]2.已知二面角α­l­β等于θ,异面直线a,b满足a⊂α,b⊂β,且a⊥l,b⊥l,则a,b所成的角等于()A.θB.π—θC.错误!—θD.θ或π—θD[应考虑0≤θ≤错误!与错误!<θ≤π两种情况.]3.已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈m,n〉=—错误!,则l 与α所成的角为()A.30° B.60°C.150° D.120°B[设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=错误!,∴θ=60°,应选B.]4.正方体ABCD­A′B′C′D′中,M,N分别是棱BB′和B′C′的中点,则异面直线MN与AD所成角的大小为________.45°[以错误!,错误!,错误!为正交基底建立空间直角坐标系O­xyz,设正方体棱长为1,则A (1,0,0),M错误!,N错误!,∴错误!=(—1,0,0),错误!=错误!.∵cos〈错误!,错误!〉=错误!=错误!=错误!,∴〈错误!,错误!〉=45°,即MN和AD所成角的大小为45°.]求两条异面直线所成的角【例1】如图,在三棱柱OAB­O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=错误!,求异面直线A1B与AO1所成角的余弦值的大小.[解] 建立如图所示的空间直角坐标系,则O(0,0,0),O1(0,1,错误!),A(错误!,0,0),A1(错误!,1,错误!),B(0,2,0),∴错误!=(—错误!,1,—错误!),错误!=(错误!,—1,—错误!).∴|cos〈错误!,错误!〉=错误!=错误!=错误!.∴异面直线A1B与AO1所成角的余弦值为错误!.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程,只需对相应向量进行运算即可.2.由于两异面直线夹角θ的范围是错误!,而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意.错误!1.如图所示,在平行六面体ABCD­A1B1C1D1中,平面ABCD与平面D1C1CD垂直,且∠D1DC=错误!,DC=DD1=2,DA=错误!,∠ADC=错误!,求异面直线A1C与AD1所成角的余弦值.[解] 建立如图所示的空间直角坐标系,则A(错误!,0,0),D1(0,1,错误!),C(0,2,0),D(0,0,0),由错误!=错误!得A1(错误!,1,错误!).因为错误!=错误!—错误!=(—错误!,1,—错误!),错误!=错误!—错误!=(错误!,—1,—错误!).所以cos〈错误!,错误!〉=错误!=错误!=—错误!.所以异面直线A1C与AD1所成角的余弦值为错误!.求直线与平面所成的角PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.思路探究:(1)线面平行的判定定理⇒MN∥平面PAB.(2)利用空间向量计算平面PMN与AN方向向量的夹角⇒直线AN与平面PMN所成角的正弦值.[解] (1)证明:由已知得AM=错误!AD=2.如图,取BP的中点T,连接AT,TN,由N为PC的中点知TN∥BC,TN=错误!BC=2.又AD∥BC,故TN綊AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)如图,取BC的中点E,连接AE.由AB=AC得AE⊥BC,从而AE⊥AD,且AE=错误!=错误!=错误!.以A为坐标原点,错误!的方向为x轴正方向,建立如图所示的空间直角坐标系A­xyz.由题意知P(0,0,4),M(0,2,0),C(错误!,2,0),N错误!,错误!=(0,2,—4),错误!=错误!,错误!=错误!.设n=(x,y,z)为平面PMN的法向量,则错误!即错误!可取n=(0,2,1).于是|cos〈n,错误!〉|=错误!=错误!.所以直线AN与平面PMN所成角的正弦值为错误!.若直线l与平面α的夹角为θ,利用法向量计算θ的步骤如下:错误!2.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解] (1)证明:由已知可得,BF⊥PF,BF⊥EF,又PF⊂平面PEF,EF⊂平面PEF,且PF∩EF=F,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H­xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,PF2+PE2=EF2,故PE⊥PF.可得PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!为平面ABFD的法向量.设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!.所以DP与平面ABFD所成角的正弦值为错误!.求二面角[1.建立空间直角坐标系时,如何寻找共点的两两垂直的三条直线?[提示] 应充分利用题目给出的条件,如线面垂直,面面垂直,等腰三角形等,作出适当的辅助线然后证明它们两两垂直,再建系.2.如何确定二面角与两个平面的法向量所成角的大小关系?[提示] 法一:观察法,通过观察图形,观察二面角是大于错误!,还是小于错误!.法二:在二面角所含的区域内取一点P,平移两个平面的法向量,使它们的起点为P,然后观察法向量的方向,若两个法向量同时指向平面内侧或同时指向外侧,则二面角与法向量的夹角互补,若两个法向量方向相反,则二面角与法向量的夹角相等.【例3】如图,在四棱锥P­ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A­PB­C的余弦值.思路探究:(1)先证线面垂直,再证面面垂直;(2)建立空间直角坐标系,利用向量法求解.[解] (1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.因为AB∥CD,所以AB⊥PD.又AP∩DP=P,所以AB⊥平面PAD.因为AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PF⊥AD,垂足为点F.由(1)可知,AB⊥平面PAD,故AB⊥PF,又AD∩AB=A,可得PF⊥平面ABCD.以F为坐标原点,错误!的方向为x轴正方向,|错误!|为单位长度建立如图所示的空间直角坐标系F­xyz.由(1)及已知可得A错误!,P错误!,B错误!,C错误!,所以错误!=错误!,错误!=(错误!,0,0),错误!=错误!,错误!=(0,1,0).设n=(x1,y1,z1)是平面PCB的一个法向量,则错误!即错误!所以可取n=(0,—1,—错误!).设m=(x2,y2,z2)是平面PAB的一个法向量,则错误!即错误!所以可取m=(1,0,1),则cos〈n,m〉=错误!=错误!=—错误!.所以二面角A­PB­C的余弦值为—错误!.利用坐标法求二面角的步骤设n1,n2分别是平面α,β的法向量,则向量n1与n2的夹角(或其补角)就是二面角的大小,如图.用坐标法解题的步骤如下:(1)建系:依据几何条件建立适当的空间直角坐标系.(2)求法向量:在建立的坐标系下求两个平面的法向量n1,n2.(3)计算:设n1与n2所成锐角θ,cos θ=错误!.(4)定值:若二面角为锐角,则为θ;若二面角为钝角,则为π—θ.错误!3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是错误!的中点.(1)设P是错误!上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E­AG­C的大小.[解] (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,错误!,3),C(—1,错误!,0),故错误!=(2,0,—3),错误!=(1,错误!,0),错误!=(2,0,3).设m=(x1,y1,z1)是平面AEG的一个法向量,由错误!可得错误!取z1=2,可得平面AEG的一个法向量m=(3,—错误!,2).设n=(x2,y2,z2)是平面ACG的一个法向量,由错误!可得错误!取z2=—2,可得平面ACG的一个法向量n=(3,—错误!,—2).所以cos〈m,n〉=错误!=错误!.故所求二面角E­AG­C的角为60°.利用空间向量求空间角的基本思路是把空间角转化为两个向量夹角的关系,解决方法一般有两种,即坐标法和基向量法,当题目中有明显的线面垂直关系时,尽量建立空间直角坐标系,用坐标法解决.需要注意的是要理清所求角与向量夹角之间的关系,以防求错结果.1.如图,在正四棱柱ABCD­A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.错误!B.错误!C.错误!D.错误!D[以D为坐标原点,DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系D­xyz(图略),设AB=1.则B(1,1,0),A1(1,0,2),A(1,0,0),D1(0,0,2),错误!=(0,1,—2),错误!=(—1,0,2),cos〈错误!,错误!〉=错误!=错误!=—错误!,∴异面直线A1B与AD1所成角的余弦值为错误!.]2.正方体ABCD­A1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A.错误!B.错误!C.错误!D.错误!B[设正方体的棱长为1,依题意,建立如图所示的坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1),B1(1,1,1)∴错误!=(—1,0,1),错误!=(—1,1,0)设平面ACD的法向量为n=(x,y,z),∴错误!令x=1,∴n=(1,1,1),又∵错误!=(0,0,1),∴BB1与平面ACD1所成角的正弦值为错误!=错误!.]3.在一个二面角的两个面内都和二面角的棱垂直的两个向量分别为(0,—1,3),(2,2,4),则这个二面角的余弦值为________.±错误![设a=(0,—1,3),b=(2,2,4),则cos〈a,b〉=错误!=错误!,又因为两向量的夹角与二面角相等或互补,所以这个二面角的余弦值为±错误!.]4.如图所示,直三棱柱ABC­A1B1C1,∠BCA=90°,点F1是A1C1的中点,BC=CA=2,CC=1.1(1)求异面直线AF1与CB1所成角的余弦值;(2)求直线AF1与平面BCC1B1所成的角.[解] (1)如图所示,分别以错误!,错误!,错误!为x,y,z轴的非负半轴建立空间直角坐标系,由BC=CA=2,CC1=1,得A(2,0,0),B(0,2,0),C1(0,0,1),A1(2,0,1),B1(0,2,1).因为F1为A1C1的中点,所以F1(1,0,1).所以错误!=(0,2,1),错误!=(—1,0,1).所以cos〈错误!,错误!〉=错误!=错误!=错误!,即异面直线AF1与CB1所成角的余弦值为错误!.(2)因为三棱柱ABC­A1B1C1为直三棱柱,所以BB1⊥平面ABC,AC⊂平面ABC,所以BB1⊥AC.因为∠BCA=90°,所以BC⊥AC,因为BC∩BB1=B,BC,BB1⊂平面BCC1B1,所以AC⊥平面BCC1B1,所以错误!=(2,0,0)是平面BCC1B1的一个法向量.设直线AF1与平面BCC1B1所成的角为θ,则sin θ=|cos〈错误!,错误!〉|=错误!=错误!,所以θ=错误!,所以直线AF1与平面BCC1B1所成的角为错误!.。

高二数学 (人教a版)选修1-1教案:3.2立体几何中的向量方法第2课时

高二数学     (人教a版)选修1-1教案:3.2立体几何中的向量方法第2课时

§3.2.2空间角与距离的计算举例练习与测试:(基础题)1. 正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( )A .75°B .60°C .45°D .30° 答:C 。

2.如图,在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点。

那么异面直线OE 和1FD 所成的角的余弦值等于( )A .510 B .515 C .54 D .32答:B 。

3,把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为 )A .90°B . 60°C ,45°D . 30° 答:C 。

A· B 1PAC DA 1C 1D 1BO H·4,已知AB 是两条异面直线,AC BD 的公垂线段,1,10,301AB AC BD CD ====,则,AC BD 所成的角为 . 答:060或0120。

(中等题)5,一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是30°, 这条线段与这个二面角的棱所成的角为 。

答:0456,棱长为4的正方体1111ABCD A B C D -中,O 是正方形1111A B C D 的中心,点P 在棱1CC 上,且14CC CP =.(Ⅰ)求直线AP 与平面11BCC B 所成的角的三角函数值;(Ⅱ)设O 点在平面1D AP 上的射影是H ,求证:1D H AP ⊥.解:(1)连BP ,则角APB 为直线AP 与平面11BCC B 所成的角, 17174174tan ===∠BP AB APB (2)021)(111=•=•+•=•+=•AP DB AP OH AP O D AP OH O D AP H D 所以 1D H AP ⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市太平村中学高二数学 空间向量与立体几何教学案 新人
教A 版
如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,
2,60AB BAD =∠=.
(Ⅰ)求证:BD ⊥平面;PAC
(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;
(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
2.如图,在锥体P ABCD -中, ABCD 是边长为1的
菱形,且60DAB ∠=,PA PD ==
2PB =,,E F 分别是BC ,PC 的中点.
(1)证明:AD ⊥平面DEF ;
(2)求二面角P AD B --的余弦值.
3,如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =
12
PD . (I )证明:平面PQC ⊥平面DCQ ;
(II )求二面角Q —BP —C 的余弦值.
4在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
5如图,在直三棱柱ABC-A 1B 1C 1中.∠ BAC=90°,AB=AC=AA 1 =1.D 是棱CC 1上的一P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA . (I )求证:CD=C 1D :
(II )求二面角A-A 1D-B 的平面角的余弦值;
(Ⅲ)求点C 到平面B 1DP 的距离.
6如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB+AD=4,CD=2,︒=∠45CDA .
(I )求证:平面PAB ⊥平面PAD ;
(II )设AB=AP .
(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长; (ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C , D
的距离都相等?说明理由。

相关文档
最新文档