解析几何100题经典大题汇编

合集下载

解析几何基础100题

解析几何基础100题

5.已知二面角 l 的平面角为 ,PA ,PB ,A,B 为垂足,
且 PA=4,PB=5,设 A、B 到二面角的棱 l 的距离为别为 x, y ,当 变化
时,点 (x, y) 的轨迹是下列图形中的
A
B
C
D
解 答: D
易错原因:只注意寻找 x, y
3
D 35
正确答案: C 错因:学生不能借助圆心到直线的距离来处理本
题。
9.P1 (x1 ,y1 )是直线 L:f(x,y)=0 上的点,P 2 (x 2 ,y 2 )是直线 L 外一
点 , 则 方 程 f(x,y)+f(x1,y1)+f(x 2 ,y 2 )=0 所 表 示 的 直 线

A、1
B、2
18.已知实数 x,y 满足 3x2+2y2=6x,则 x2+y2 的最大值是(
)
A、 9
2
B、4
C、5
D、2
正确答案:B 错误原因:忽视了条件中 x 的取值范围而导致出错。
x2 19.双曲线 -y2=1(n>1)的焦点为 F1、F2,,P 在双曲线上 ,且满足:|
n PF1|+|PF2|=2 n + 2,则ΔPF1F2 的面积是( )
围。
6.若曲线 y x2 4 与直线 y k(x 2) +3 有两个不同的公共点,则实
数 k 的取值范围是 A 0 k 1 B 0 k 3
4
解 答:C
C 1 k 3
4
D 1 k 0
易错原因:将曲线 y x2 4 转化为 x2 y2 4 时不考虑纵坐标的范
围;另外没有看清过点(2,-3)且与渐近线 y x 平行的直线与双曲线的

解析几何试题库完整

解析几何试题库完整

解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B.22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D.22(1)(1)2x y +++=[解析]圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径错误!即可. [答案]B 2.直线1y x =+与圆221x y +=的位置关系为〔A .相切B .相交但直线不过圆心C .直线过圆心D .相离 [解析]圆心(0,0)为到直线1y x =+,即10x y -+=的距离1222d ==,而2012<<,选B 。

[答案]B 3.圆心在y 轴上,半径为1,且过点〔1,2的圆的方程为〔A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1〔直接法:设圆心坐标为(0,)b ,则由题意知2(1)(2)1o b -+-=,解得2b =,故圆的方程为22(2)1x y +-=。

解法2〔数形结合法:由作图根据点(1,2)到圆心的距离为1易知圆心为〔0,2,故圆的方程为22(2)1x y +-=解法3〔验证法:将点〔1,2代入四个选择支,排除B,D,又由于圆心在y 轴上,排除C 。

[答案]A4.点P 〔4,-2与圆224x y +=上任一点连续的中点轨迹方程是〔A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=[解析]设圆上任一点为Q 〔s,t,PQ 的中点为A 〔x,y,则⎪⎪⎩⎪⎪⎨⎧+-=+=2224t y s x ,解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得〔2x -42+〔2y +22=4,整理,得:22(2)(1)1x y -++=[答案]A5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是〔A. 1或3B.1或5C.3或5D.1或2 [解析]当k =3时,两直线平行,当k ≠3时,由两直线平行,斜率相等,得:kk --43=k -3,解得:k =5,故选C 。

线性代数与空间解析几何综合练习100题

线性代数与空间解析几何综合练习100题

综合练习100题一、填空题1.设A 是n 阶矩阵,满足,||0'=<AA E A ,则||+=A E 0. 2.若4阶行列式D 的某一行的所有元素及其余子式都相等,则D =0.3.在一个n 阶行列式中,如果等于零的元素多于2n n -个,那么这个行列式D =0. 4.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,若m n >,则||=AB 0. 5.若n 阶方阵,A B 满足,||0=-≠AB B A E ,则=B 0. 6.若n 阶方阵,A B 满足+=A AB E ,则+=A BA E . 7.若n 阶方阵,,A B C 满足=ABC E ,则'''=B A C E . 8.若、A B 都是n 阶方阵,||1,||3==-A B ,则*1|3|-=A B13n --.9.若n 阶方阵A 满足*||0.=≠0A A ,则秩()=A 1n -. 10.设,A B 是两个n 阶方阵,||1,||2+=-=A B A B ,则=A B BA2 .11.设矩阵111022003⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*1()-=A 111666110331002⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 12.A 为m 阶方阵,B 为n 阶方阵,||,||a b ==A B ,则C=0AB (1)mn ab -.13.设矩阵A 满足24+-=0A A E ,其中E 为单位矩阵,则1()--=A E 1(2)2+A E .14.设A 为3阶方阵,其特征值为3,1,2-,则2||+=A E 100.15.已知11000101100100110100*********a -⎛⎫⎪- ⎪ ⎪=-⎪- ⎪ ⎪-⎝⎭A ,则4,4,()5,4.a R a =-⎧=⎨≠-⎩当时当时A16.已知n 阶方阵A 的各行元素之和都等于0,且()1n =-R A ,则=0AX 的通解为(1,1,,1),k k '为任意常数.17.矩阵m n ⨯A 满足,m n <||0'≠AA ,则=0AX 的基础解系一定由n m -个线性无关的解向量构成.18.若矩阵A 满足3=A A ,则A 的特征值只能是0或1或1-.19.如果(1,1,1)'=-ξ是方阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量,则a =3-;b =0.20.已知A 与B 相似,且3021⎛⎫= ⎪⎝⎭B ,则2||λ-=A A 3(1)(31)λλ--.21.已知33⨯A 的特征值为1,2,3,则1*||-+=A A 376.22.已知2是A 的一个特征值,则2|6|+-=A A E 0.23.设,αβ是n 维列向量,0'=βα,则'αβ的特征值为0()n 重. 24.若n 阶方阵A 的行向量组线性相关,则0一定是A 的一个特征值. 25.直线1022270x y x x y z +-=⎧⎨+-=⎩的单位方向向量为. 26.已知2768444424798188D =,41424344,,,A A A A 为D 中第4行元素的代数余子式,则41424344+++=A A A A 0.27.设A 是3阶方阵,X 是3维列向量,使得2,,X AX A X 线性无关,且3232=-A X AX A X ,记2(,,)=P X AX A X ,则1-=P AP 000103012⎛⎫⎪⎪ ⎪-⎝⎭.28.若两个非零几何向量,a b 满足||||a b a b +=-,则a 与b 是夹角θ=2π.29.直线260:210x y z L x y z +--=⎧⎨-+-=⎩的参数方程为8,5113,55.x t y t z t ⎧=-⎪⎪⎪=+⎨⎪=⎪⎪⎩30.圆22212462402210x y z x y z x y z ⎧++-+-+=⎨+++=⎩的半径R =3.二、选择题1.设n 元齐次线性方程组=0AX 的系数矩阵A 的秩为r ,则=0AX 有非零解的充要条件是(C ).(A )r n =; (B )A 的行向量组线性无关; (C )A 的列向量组线性相关; (D )A 的列向量组线性无关.2.设A 是m n ⨯矩阵,=0AX 是非齐次线性方程组=AX β所对应的齐次线性方程组,则下列结论正确的是(C ).(A )若=0AX 只有零解,则=AX β有唯一解; (B )若=0AX 有非零解,则=AX β有无穷多解; (C )若=AX β有无穷多解,则=0AX 有非零解; (D )=AX β的任两解之和还是=AX β的解.3.设非齐次线性方程组=AX β的系数行列式为零,则(C ). (A )方程组有无穷多解; (B )方程组无解; (C )若方程组有解,则有无穷多解; (D )方程组有唯一解.4.设A 是m n ⨯矩阵,对于线性方程组=AX β,下列结论正确的是(A ). (A )若A 的秩等于m ,则方程组有解; (B )若A 的秩小于n ,则方程组有无穷多解; (C )若A 的秩等于n ,则方程组有唯一解; (D )若m n >,则方程组无解.5.设5阶方阵A 的秩是3,则其伴随矩阵*A 的秩为(C ). (A )3; (B )4; (C )0; (D )2.6.设A 是n 阶方阵,*2,n >A 是A 的伴随矩阵,则下列结论正确的是(B ).(A )*||=AA A ; (B )若||0≠A ,则*||0≠A ; (C )**1||=A A A ; (D )秩()=A 秩*()A . 7.设,AB 是n 阶方阵,A 非零,且=AB 0,则必有(D ).(A )=0B ; (B )=0BA ; (C )222()+=+A B A B ; (D )||0=B . 8.设有两个平面方程 11111:0a x b y c z d π+++=,22222:0a x b y c y d π+++=,如果 秩1112222a b c a b c ⎛⎫=⎪⎝⎭,则一定有(D ) (A )1π与2π平行; (B )1π与2π垂直; (C )1π与2π重合; (D )1π与2π相交.9.设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随阵*A 的特征根之一是(D ). (A )1n λ-; (B )||λA ; (C )λ; (D )1||λ-A .10.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的(B ). (A )充分必要条件; (B )充分而非必要条件; (C )必要而非充分条件; (D )既非充分条件也非必要条件. 11.已知n 阶方阵A 与某对角阵相似,则(C ).(A )A 有n 个不同的特征值; (B )A 一定是n 阶实对称阵;(C )A 有n 个线性无关的特征向量; (D )A 的属于不同特征值的特征向量正交. 12.下列说法正确的是(D ). (A )若有全不为0的数12,,,m k k k 使11m m k k ++=0αα,则向量组12,,,mααα线性无关;(B )若有一组不全为0的数12,,,m k k k 使得1122m m k k k +++≠0ααα,则向量组12,,,m ααα线性无关;(C )若存在一组数12,,,m k k k 使1122m m k k k +++=0ααα,则向量组12,,,m ααα线性相关;(D )任意4个3维几何向量一定线性相关.13.设,A B 是n 阶方阵,满足:对任意12(,,,)n x x x '=X 都有''X AX =X BX ,下列结论中正确的是(D ).(A )若秩()=A 秩()B ,则=A B ; (B )若'=A A ,则'=B B ;(C )若'=B B ,则=A B ; (D )若,''==A A B B ,则=A B . 14.设,A B 均为n 阶正定矩阵,则必有(B ).(A )AB 正定; (B )2+A B 正定; (C )-A B 正定; (D )k A 正定. 15.设A 是n 阶方阵,2=A E ,则(C ).(A )A 为正定矩阵;(B )A 为正交矩阵;(C )*2()=A E ;(D )2tr()n =A . 16.设,A B 是n 阶方阵,下列结论中错误的是(D ). (A )若,A B 都可逆,则'A B 也可逆;(B )若,A B 都是实对称正定矩阵,则1-+A B 也是实对称正定矩阵; (C )若,A B 都是正交矩阵,则AB 也是正交矩阵; (D )若,A B 都是实对称矩阵,则AB 是实对称矩阵. 17.设,A B 是n 阶方阵,下列结论中错误的是(B ). (A )若A 经列的初等变换化成B ,则秩()=A 秩()B ; (B )若A 经行的初等变换化成B ,则11--=A B ;(C )若A 经行的初等变换化成B ,则=0AX 与=0BX 同解;(D )若A 经列的初等变换化成B ,则A 的列向量组与B 的列向量组等价.18.设111213212223212223111213313233311132123313,a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭A B 12010100100010001101⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P ,则必有(C ).(A )12=AP P B ;(B )21=AP P B ;(C )12=P P A B ;(D )21=P P A B .19.若A 与B 相似,则(B ).(A )λλ-=-E A E B ;(B )||||λλ+=+E A E B ;(C )**=A B ;(D )11--=A B .20.若2=A E ,则(D ).(A )+A E 可逆; (B )-A E 可逆;(C )+=0A E 或-=A E 0; (D )≠A E 时,+A E 不可逆.21.设1111111111111111⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭A ,4000000000000000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭B ,则A 与B (A ).(A )合同且相似; (B )合同但不相似; (C )不合同但相似; (D )不合同且不相似.22.实二次型f '=X AX 为正定二次型的充要条件是(C ). (A )f 的负惯性指数是0; (B )存在正交阵P 使'=A P P ; (C )存在可逆阵T 使'=A T T ; (D )存在矩阵B 使'=A B B . 23.设B 是m n ⨯实矩阵,'=A B B ,则下列结论中错误的是(D ). (A )线性方程组=0BX 只有零解⇔A 正定;(B )()()R R =A B ; (C )A 的特征值大于等于0; (D )()R m =⇔B A 正定. 24.设A 是n 阶方阵,||0a =≠A ,则*1||-A A 等于(C ). (A )a ; (B )1a; (C )2n a -; (D )na . 25.设,A B 是n 阶方阵,则必有(D ). (A )11||||||--+=+A BA B ; (B )111||---+=+A B B A ;(C )222()=AB A B ; (D )||||'=A B BA .26.已知12,ηη是非齐次线性方程组=AX β的两个不同的解,12,ξξ是对应的齐次线性方程组=0AX 的基础解系,12,k k 为任意常数,则方程组=AX β的通解为(B ). (A )1211222k k -++ηηξξ; (B )1211212()2k k ++++ηηξξξ;(C )112121()k k +-+ξηηη; (D )1121212()()k k +-++ξηηηη.27.设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为(C ). (A )6π; (B )4π; (C )3π; (D )2π.28.若12312,,,,αααββ都是4维列向量,且4阶行列式1231||,m =αααβ 1223||n =ααβα,则4阶行列式12312||+αααββ等于(D ).(A )m n +; (B )()m n -+; (C )m n -; (D )n m -. 29.设n 阶矩阵A 非奇异(2)n >,则(C ). (A )**1()||n -=A A A ; (B )**1()||n +=A A A ; (C )**2()||n -=A A A ; (D )**2()||n +=A A A .30.设矩阵111222333a b c a b c a b c ⎛⎫⎪⎪ ⎪⎝⎭的秩是3,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A ).(A )相交于一点; (B )重合; (C )平行但不重合; (D )异面.三、计算题1.设1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭A ,求5A 及10||A . 解:由311111111||(4)11111111λλλλλλλ+---+--==+-+---+E A故A 的特征值为12340,4λλλλ====-.对0λ=,由1()λ-=0E A x ,可解得三个线性无关的特征向量,1(1,1,0,0)'=ξ,2(1,0,1,0)'=ξ,3(1,0,0,1)'=-ξ.对4λ=-,由(4)--=0E A x ,可解得特征向量4(1,1,1,1)'=--ξ,令 12341111010010(),0101000114D⎛⎫⎛⎫⎪⎪- ⎪ ⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭T T T T T ,由=AT TD 得 11*13111131111113||41111---⎛⎫ ⎪- ⎪=== ⎪--- ⎪ ⎪--⎝⎭A TDTT T T 故 1111013111001011311()0101011134001141111-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪-- ⎪⎪⎪=⋅ ⎪⎪⎪---- ⎪⎪⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭A 1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭551511110131110010113110101011134001141111--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-⎪⎪ ⎪==⋅ ⎪⎪ ⎪---- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭A TD T 88111111112211111111--⎛⎫ ⎪-- ⎪== ⎪-- ⎪ ⎪--⎝⎭A . 又10161016642,|||2|2||0====A A A A A .2.设0100102a c b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A ,(1),,a b c 满足什么条件时,A 的秩是3;(2),,a b c 取何值时,A 是对称矩阵; (3)取一组,,a b c ,使A 为正交阵.解:(1)01002002000010010010120120100102a c a bc a bc a c b b b ⎛⎫⎪--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭A当2a bc ≠时,A 的秩是3.(2)0100102a b c ⎛⎫ ⎪ ⎪'= ⎪ ⎪ ⎪⎝⎭A ,要想A 成为对称矩阵,应满足'=A A ,即1,0a b c ===.(3)要想A 为正交阵,应满足'=A A E ,即00101001000010110010022a b a c c b ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭⎝⎭.2221,10,211,2a b ac b c ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 解得1,2a b c ===. 3.设有三维列向量123211101,1,1,111λλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ 问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一; (2)β可由123,,ααα线性表示,但表达式不唯一; (3)β不能由123,,ααα线性表示.解法1: 设111111111λλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭A , 21110111111λλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭B由22211100(2)(1)1110(1)111111λλλλλλλλλλλλλλλλ⎛⎫+--+-+⎛⎫⎪ ⎪=+−−→-- ⎪ ⎪⎪ ⎪++⎝⎭⎝⎭行B 22222003(12)1110(1)0(1)11100(3)(12)λλλλλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫----+ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭行行(1)当0λ≠且3λ≠-时,()()3R R ==A B ,此时β可由123,,ααα线性表示,且表达式唯一.(2)当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一.(3)当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示. 解法2:2111||111(3)111λλλλλ+=+=++A① 当0λ≠且3λ≠-时,||0≠A ,β可由123,,ααα线性表示,且表达式唯一, ② 当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一, ③ 当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示.4.设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为,1231111,2,3149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ,又12322=-+βξξξ,求nA β(n 为正整数).解:由于 123123222(,,)21⎛⎫⎪=-+=- ⎪ ⎪⎝⎭βξξξξξξ又由于 1111n n λ==A ξξξ,22222n n nλ==A ξξξ,33333n n n λ==A ξξξ. 所以 12312322(,,)2(,,)211n n n n n⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A A βξξξξξξ111232221232(,2,3)2123211231nn n n n n n n ++++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ 12132223223223n n n n n n +++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭.5.设122212221-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,(1)求A 的特征值;(2)求1-+E A 的特征值.解:(1)2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A得A 的特征值为1231,5λλλ===-.·129·(2)由A 是对称阵,A 的特征值是1,1,5-,存在可逆阵T 使1115-⎛⎫ ⎪= ⎪ ⎪-⎝⎭T AT 于是 111115--⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪⎝⎭T A T , 112()245--⎛⎫⎪ ⎪+= ⎪ ⎪⎪⎝⎭T E A T ,故1-+E A 的特征值为42,2,5.6.已知(1,,1)k '=α是211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆阵1-A 的特征向量,试求常数k 的值.解:设α为A 的特征值为λ的特征向量,则λ=A αα.即 2111112111211k k λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.即 322k k kλλ+=⎧⎨+=⎩解得 220k k +-=,即1k =或2-.7.设11 111, 1112a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,已知线性方程组=AX β有无穷多解,试求:(1)a 的值;(2)正交阵P ,使'P AP 为对角阵.解:(1)211111111101101120112a a a a aa a a a ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭B 111011000(1)(2)2a a a a a a ⎛⎫ ⎪→-- ⎪ ⎪-+--⎝⎭要使=AX β有无穷多解,必须()()3R R =<A B ,因此2a =-.·130· (2)此时112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,112||121(3)(3)0211λλλλλλλ---=-+-=-+=--E A ,得A 的特征值1230,3,3λλλ===-.对于10λ=,由1112121211ξ--⎛⎫⎪--=⎪ ⎪--⎝⎭0,得特征向量1111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,单位化得13⎛⎫ ⎪=⎝⎭η; 对于23λ=,由2212151212ξ-⎛⎫⎪--= ⎪ ⎪-⎝⎭0,得特征向量2101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得2202⎛⎫⎪⎪= ⎪ - ⎝⎭η;对于34λ=-,由3412111214ξ--⎛⎫ ⎪---= ⎪ ⎪--⎝⎭0,得特征向量3121⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得363η⎛⎫ ⎪ =- ⎪⎪⎪⎪⎝⎭;·131·令3260⎛⎫ ⎪=⎪⎪⎪⎪⎝⎭P ,此时P 为正交阵,并且'P AP 为对角阵033⎛⎫⎪⎪ ⎪-⎝⎭. 8.已知线性方程组(I )1111221331442112222332440a x a x a x a x a x a x a x a x +++=⎧⎨+++=⎩的一个基础解系为112112221213231424, b b b bb b b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,试求线性方程组.(II )11112213314421122223324400b y b y b y b y b y b y b y b y +++=⎧⎨+++=⎩的通解.解:设11121314111213142122232421222324a a a a b b b b a a a a b b b b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭A B由12,ξξ为(I )的一个基础解系得0'=AB .由12,ξξ线性无关,所以()2R =B ,又0'=BA ,所以1111213142(,,,),a a a a '==ηη21222324(,,,)a a a a '是B 的基础解系,通解为112212,,k k k k +ηη为任意常数.9.已知方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有三个线性无关的解向量,求,a b 的值及方程组的通解.解:1111111111(|)43511011531310131a b a a b a a --⎛⎫⎛⎫⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭行A β10242011530042452a b a a -⎛⎫⎪−−→-- ⎪ ⎪-+--⎝⎭行由于该非齐次线性方程组有三个线性无关的解向量,故()(|),()1 3.R R A n R =-+=A A β·132· 其中4n =. 于是()(|)2R R ==A A β.从而2,3a b ==-. 该方程组与方程组13423424253x x x x x x =-++⎧⎨=--⎩ 同解. 令3142,x k x k ==得该方程组的通解112212314224253x k k x k k x k x k -++⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭X 12242153100010k k -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k 为任意常数.10.设3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,问当k 为何值时,存在可逆阵P ,使得1-P AP 为对角阵,并求出一个P 及相应的对角阵A . 解:A 的特征方程为:322122||11423123k k k λλλλλλλλ-----=+-=+---+--+E A2122(1)01(1)(1)0123k λλλλλ-=-+-=-+=-+.解得特征根为1231,1λλλ===-.当1λ=时,()2,R -=E A A 有1个线性无关的特征向量.当1λ=-时,211422211100022422000000E A -⎛⎫---⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭k k k k k k·133·因存在可逆阵P ,使1-P AP 为对角阵,所以(1)1R --=E A ,从而0k =.因此 322010423-⎛⎫⎪=-⎪ ⎪-⎝⎭A , 对应于11λ=的特征向量为1ξ,由222020424--⎛⎫⎪⎪ ⎪--⎝⎭1=0ξ得1(1,0,1)'=ξ 对应于231λλ==-的特征向量为23,ξξ,由422000422--⎛⎫ ⎪= ⎪ ⎪--⎝⎭0ξ,得 23(1,2,0),(0,1,1)''=-=ξξ令110021101⎛⎫⎪=- ⎪ ⎪⎝⎭P 且P 为可逆阵,相应的对角阵111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .11.设101020101⎛⎫⎪=⎪ ⎪⎝⎭A ,方阵B 满足2+=+AB E A B ,求B . 解:由2+=+AB E A B 得 2()()()-=-=-+A E B A E A E A E由于001010100⎛⎫ ⎪-= ⎪ ⎪⎝⎭A E ,所以-A E 可逆,得 201030102⎛⎫ ⎪=+= ⎪ ⎪⎝⎭B A E ,12.已知将3阶可逆阵A 的第2行的2倍加到第3行得矩阵B ,求1-AB .解:令100010021⎛⎫⎪= ⎪ ⎪⎝⎭C ,则=CA B ,由于,A C 均可逆,故B 可逆,所以 11100010021--⎛⎫ ⎪== ⎪ ⎪-⎝⎭AB C .13.设有线性方程组·134· 123123123000ax bx bx bx ax bx bx bx ax ++=⎧⎪++=⎨⎪++=⎩ (,a b 不全为0) (1),a b 为何值时方程组有非零解; (2)写出相应的基础解系及通解; (3)求解空间的维数.解:(1)齐次方程组有非零解的充要条件是系数行列式0a b bba b b b a=即 2()(2)0a b a b -+= 故0a b =≠,或20a b =-≠时,方程组有非零解. (2)当0a b =≠时,方程组为1230x x x ++=,即123x x x =--.其基础解系为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ,通解为12121110,,10k k k k --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.当20a b =-≠时,方程组为123123123202020x x x x x x x x x -++=⎧⎪-+=⎨⎪+-=⎩,解得基础解系为111⎛⎫ ⎪⎪ ⎪⎝⎭,通解为11,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭为任意常数.(3)当0a b =≠时,解空间维数为2;当20a b =-≠时,解空间维数为1.14.设二次型222123122313222f x x x ax x bx x x x =+++++经正交变换=X PY 化成22232f y y =+,其中123123(,,),(,,),x x x y y y ''==X Y P 是3阶正交矩阵,求,a b 及满足上述条件的一个P .解:正交变换前后,二次型的矩阵分别为11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A , 000010002⎛⎫⎪= ⎪ ⎪⎝⎭B故二次型可以写成f '=X AX 和f '=Y BY ,且1-'==B P AP P AP .·135·由,A B 相似知||||λλ-=-E A E B ,即322223(2)()a b a b λλλ-+--+-3232λλλ=-+,比较系数得:0,0a b ==.由1000010002-⎛⎫ ⎪== ⎪ ⎪⎝⎭P AP B ,知A 的特征值是0,1,2.解方程组(0)-=0E A x ,得1101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得11120||2ξξ⎛⎫⎪ ⎪== ⎪ - ⎝⎭P 解方程组()-=0E A x ,得22201,0⎛⎫ ⎪== ⎪ ⎪⎝⎭P ξξ,解方程组(2)-=0E A x ,得3101⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得33320||2⎛ ⎪== ⎪ ⎝⎭P ξξ故123022()010022⎛ ⎪== ⎪ - ⎝⎭P P P P . 15.求直线110:220x y z L x y z +--=⎧⎨+--=⎩与2220:2240x y z L x y z +--=⎧⎨+++=⎩的公垂线方程.解:1L 与2L 的标准式及参数形式分别为:11:011x y z L -==与1,,;x y t z t =⎧⎪=⎨⎪=⎩22:210x y z L +==-与2,,2.x y z λλ=⎧⎪=-⎨⎪=-⎩·136· 1L 的方向向量为12(0,1,1),L =s 的方向向量为2(2,1,0)=-s .设1L 与2L 公垂线垂足为(1,,),(2,,2)t t λλ--A B ,则应有(21,,2)AB t t λλ=-----,且1220s λ⋅=---=AB t ,2520s λ⋅=+-=AB t .解得4,32.3t λ⎧=-⎪⎪⎨⎪=⎪⎩所以1{1,2,2}3AB =-,故公垂线方程为 44133122y z z ++-==-. 16.求直线210:10x y z L x y z -+-=⎧⎨+-+=⎩在平面:20x y z π+-=上投影的方程.解:A 点坐标为44(1,,)33--.设通过直线L 垂直于平面π的平面0π的方程为21(1)0x y z x y z λ-+-++-+=.0π的法向量为1(2,1,1)λλλ=+-+-n . 平面π的法向量为(1,2,1)=-n . 由0ππ⊥,知10⋅=n n ,得 22(1)(1)0λλλ++-+--= 解得14λ=. 从而得0π方程为310.x y z -+-=所以所求直线0L 方程为310,20.x y z x y z -+-=⎧⎨+-=⎩17.设矩阵A 与B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求一个可逆阵P ,使1-=P AP B .解:(1)因为A 与B 相似,所以有||||λλ-=-E A E B ,32111||242(5)(53)6633a a a aλλλλλλλ---=--=-++++--E A232||(2)()(4)(44)4b b b b λλλλλλ-=--=-+++-E BππL 0L·137·比较两式系数可得:5344664a b a b +=+⎧⎨-=-⎩解得56a b =⎧⎨=⎩.(2)因A 与226⎛⎫⎪= ⎪ ⎪⎝⎭B 相似,所以A 的特征值为2,2,6. 1112222333-⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭E A . 解(2)-=0E A X 得A 的对应于特征值2的特征向量12111,001-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,5116222331-⎛⎫ ⎪-=- ⎪ ⎪⎝⎭E A . 解()E A X -=60得A 的对应于特征值6的特征向量3123⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令123111()102013P -⎛⎫ ⎪==- ⎪ ⎪⎝⎭ξξξ,则有1-=P AP B .18.已知3阶实对称阵A 的特征值为03,2,2,10⎛⎫ ⎪- ⎪ ⎪⎝⎭及01 ⎪ ⎪⎝⎭分别是A 的对应于特征值3,2的特征向量,(1)求A 的属于特征值2-的一个特征向量;(2)求正交变换=X PY 将二次型f '=X AX 化为标准形.解:(1)设2-对应的特征向量为X ,则有12(,)0,(,)0==X X ξξ,可取310⎛⎫⎪= ⎪ ⎝ξ.(2)把特征向量规范正交化后得:·138·12310221,0,00122⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ - ⎪⎝⎭⎝⎭P P P .令10221001022⎛⎫ ⎪⎪= ⎪ - ⎝⎭P , 则在正交变换=X PY 下f 化为 222123322f y y y =+-.19.已知二次型22212312232355266f x x cx x x x x x x =++-+-的秩为2,求c 及此二次型对应矩阵的特征值,指出123(,,)1f x x x =代表三维几何空间中何种几何曲面.解:二次型f 所对应的矩阵为51315333c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,因f 的秩为2,即A 的秩为2,故有||0=A ,所以3c =.513||153(4)(9)0333λλλλλλλ---=-=--=--E A ,得特征值为0,4,9. 与特征值相对应的单位特征向量分别为123(,,'''===P P P , 取正交变换阵0⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P ,则在正交线性变换=X PY 下,方程123(,,)1f x x x =化为椭圆柱面2223491y y +=.20.设有数列01201321120,1,,,,,n n n a a a a a a a a a a a --===+=+=+,求1000a .解法1:·139·由1121110n n n n a a a a ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 得9991000109991110a a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.记 1110⎛⎫=⎪⎝⎭A 得A,并且1211,2211⎛⎫⎛⎫+ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ分别是A的对应于特征值1122+的特征向量.记1211(,)2211⎛⎫+ ⎪== ⎪ ⎪⎝⎭T ξξ,于是111-⎛ ⎪=⎪-⎪⎝⎭T则100-⎫⎪ = ⎝A T T99999911020-⎛⎫+ ⎪= ⎝A T T1000100010001000999999999999]]-+⎪= ⎪-+⎪⎝⎭所以10001000100011(()())522a +-=-. 解法2:设 1111n D +++=++αβαβαβαβαβαβαβαβ·140· 将n D 按第一行展开可得1n n n D D αβ--= (1)由, αβ的对称性可得1nn n D D βα--= (2)若αβ≠,(1)、(2)联立解之11n n n D αβαβ++-=- (3)若αβ=,由(1)1(1)n nn n D D n ααα-=+=+ (4)考察令 11111111111n D --=-补充定义100,1D D -==,则12,1,2,n n n D D D n --=+= 于是1n n a D -= 解:11αβαβ+=⎧⎨=-⎩, 得001122αβ+==,由(3)知 00000000001000999000000111a D αβαβαβαβαβαβαβαβ+++==++100010000000αβαβ-=-10001000⎡⎤⎥=-⎥⎝⎭⎝⎭⎦.·141·四、证明题1.证明69169169(1)316916n n D n ==+,(n 为正整数). 证:1 1n =时,16(11)3D ==+⋅2 假设当n k ≤时结论成立,当1n k =+时,若12k +=,由226936927(21)316D ==-==+⋅知命题成立.若13k +≥,将1k D +按第一行展开得11169169696(1)39316916k k k k k D D D k k -+-==-=+-⋅⋅1(2)3k k +=+⋅由数学归纳法,对一切自然数n 结论都成立.2.设A 为2阶方阵,证明:若存在大于等于2的自然数m 使m=0A ,则=20A .证:因m=0A ,所以||||0mm==A A ,又A 为2阶方阵,故()1R ≤A .所以A 经初等变换可以化为100000000000⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,于是存在可逆阵,P Q ,使 1000100000(100)00000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P Q P Q ,·142· 取10,(100)0⎛⎫ ⎪ ⎪'== ⎪ ⎪⎝⎭U P V Q ,则'=A UV .令k '=V U ,则2.k k '''===A UV UV UV A 由m m k -==10A A 知0k =,或者=0A ,故2k ==0A A . 3.设A 是幂等阵2()=A A ,试证 (1)A 的特征值只能是1或0, (2)()()n R R n +-=A A E , (3)A 可相似对角化; (4)()tr()R =A A .证:(1)设λ是A 的任一特征值,则存在≠0X 使λ=AX X . 于是22λ=A X X .由2=A A 知,2λλ=X X . 由≠0X 得2λλ=,故1λ=或0. (2)由2=A A 知,()-=0A A E ,于是()()R R n +-≤A A E (1)由()n n +-=A E A E 知()()()()()n n n R R R R R =≤+-=+-E A E A A A E (2)综合(1),(2)可得()().n R R n +-=A A E(3)记12(),()n R r R r =-=A A E .当10r =或20r =时,=0A 或n =A E ,命题显然成立. 以下设120,0r r ≠≠,由12r r n +=知10r n <<,20r n <<. 取112,,,n r -ξξξ为=0AX 的基础解系212,,,n r -ηηη是()n -=0A E X 的基础解系,则112,,,n r -ξξξ是A 的属于特征值0的线性无关的特征向量,212,,,n r -ηηη是A 的属于特征值1的线性无关的特征向量,故由12()()n r n r n -+-=知A 有n 个线性无关的特征向量1211,,,,,n r n r --ξξηη. 从而A可相似对角化.(4)由(1)、(3)可知存在可逆阵T 使10r-⎛⎫=⎪⎝⎭E T AT 于是1()tr()tr()R r -===A TAT A .4.设,A B 是n 阶正定矩阵,证明:AB 的特征值全大于0.·143·证:因,A B 正定,则存在可逆阵12,P P ,使11221122''''===A P P B P P AB P P P P12221121212()()()-'''''==P AB P P P P P P P P P因12,P P 可逆,则12'P P 可逆,从而1212()()''P P PP 正定,它的特征值全大于0, 因AB 与1212()()''''P P P P 相似,从而AB 的特征值全大于0. 5.设A 为n 阶方阵,试证:(1)若1k +=0A α且k≠0A α,则1,,,,kk -A A A αααα线性无关;(2)1n +=0A X 的解一定是n =0A X 的解; (3)1()()n nR R +=A A .证:(1)反证法若1,,,,kk +A A A αααα线性相关,则存在不全为零的数01,,,k l l l ,使01k k l l l +++=0αααA A ,设i l 是第一个不等于零的系数,即0110,0i i l l l l -====≠, 则 11i i k i i k l l l +++++=0A A A ααα,两边乘以矩阵k i -A ,得121k k k i i i k l l l +-++++=0A A A ααα,由于1k +=0Aα,故对任意1m k ≥+都有m =0A α,从而由上式得k i l α=0A ,但k ≠0A α,故0i l =与假设矛盾. (2)证明:假设α是1n +=0A X 的解,但不是n =0A X 的解,即有 1n +=0A α 但n≠0A α.由(1)知1,,,,nn -A A A αααα线性无关,与1n +个n 维向量1,,,,n n -A A A αααα线性相关矛盾,故α是n =0A X 的解. (3)由(2)知1n +=0AX 的解一定是n =0A X 的解,且易知n =0A X 的解一定是1n +=0A X 的解,所以方程1n +=0A X 与n =0A X 同解,所以1()()n n +=R A R A .6.已知向量组12,,,(2)m m ≥ααα线性无关,试证:向量组1112,m k =+=βααβ22111,,,m m m m m m m k k ---+=+=ααβααβα线性无关.证:假设有一组数121,,,,m m l l l l -使得112211m m m m l l l l --++++=0ββββ.则有11222111()()()m m m m m m m m l k l k l k l ---+++++++=0ααααααα,即有·144· 112211112211()m m m m m m l l l l k l k l k l ----++++++++=0αααα由于12,,,m ααα线性无关,所以 1211122110m m m m l l l l k l k l k l ---====++++=,所以1210m m l l l l -=====.故12,,,m βββ线性无关.7.设12,,,m ααα线性无关,m 为奇数,试证:1122231,,,m -=+=+=βααβααβ11,m m m m -+=+ααβαα线性无关.证:假设存在一组数12,,,m k k k 使112211m m m m k k k k --++++=0ββββ,则有112223111()()()()m m m m m k k k k --++++++++=0αααααααα,即111221()()()m m m m k k k k k k -++++++=0ααα 又由于12,,,m ααα线性无关,所以11210m m m k k k k k k -+=+==+=,因为m 是奇数,所以线性方程组(1)的系数行列式1101111(1)20010001m D +==+-=≠, 1121000m m m k k k k k k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ (1) 故(1)只有零解,所以120m k k k ====,故12,,,m βββ线性无关.8.设n 阶矩阵A 的n 个列向量为12,,,n ααα,n 阶矩阵B 的n 个列向量为122311,,,,,()n n n R n -++++=ααααααααA ,问齐次线性方程组=0BX 是否有非零解,证明你的结论.证:当n 为奇数时,齐次线性方程组=0BX ,没有非零解. 当n 为偶数时,=0BX 有非零解.·145·由于()R n =A ,所以n 阶矩阵A 的n 个列向量12,,,n ααα线性无关,由上题知,当n 为奇数时,122311,,,,n n n -++++αααααααα也线性无关,所以()R n =B ,因此齐次线性方程组=0BX 没有非零解,但当n 为偶数时,因122311()()()()n n n -+-++++-+=0αααααααα,122311,,,,n n n -++++αααααααα线性相关,所以()R n <B .因此,齐次线性方程组=0BX 有非零解.9.设12,,,n ξξξ是n 阶方阵A 的分别属于不同特征值的特征向量,12n =+++αξξξ. 试证:1,,,n -A A ααα线性无关.证:设A 的n 个互不相同的特征值为12,,,n λλλ,对应的特征向量依次为12,,,n ξξξ,则1111(),,n n n n λλ=++=++=++A A A A αξξξξξξ11111n n n n n λλ---=++A αξξ.设有一组数011,,,n k k k -,使得1011n n k k k --+++=0αααA A 即1101111111()()()n n n n n n n k k k λλλλ---+++++++++=0ξξξξξξ.可得1101111101212201(λλ)(λλ)(λn n n n n k k k k k k k k ξξ----+++++++++++11)n n n n k λ--+=0ξ.由于12,,,n ξξξ线性无关,所以1011111012121011000n n n n n nn n k k k k k k k k k λλλλλλ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 即 1011212211111n n n n n n k k k ----⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0λλλλλλ又由于1111221111()01n n i j j i nn nn --≤<≤-=-≠∏λλλλλλλλ.所以0110n k k k -====, 即21,,,,n -A A A αααα线性无关.·146· 10.已知,A B 是两个n 阶实对称矩阵,试证A 与B 相似的充要条件是,A B 的特征多项式相等.证:(1)若A 与B 相似,记1-=T AT B ,则11||||||||||||λλλλ---=-=-=-E B E T AT T E A T E A .(2)若,A B 的特征多项式相等,则,A B 有相同的特征值12,,,n λλλ. 因,A B 都是实对称矩阵,存在正交阵,P Q 使112211,n n λλλλλλ--⎛⎫⎛⎫⎪⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP Q BQ 于是11--=P AP Q BQ .即111()()---=PQ A PQ B故A 与B 相似.11.设A 是n 阶实矩阵,证明当0k >时,k '+E A A 正定.证:()()()k k k ''''''+=+=+E A A E A A E A A ,即k '+E A A 是实对称阵. 对任意n 维非零实列向量X ,有()()()()k k k '''''''+=+=+X E A A X X E X X A AX X X AX AX由于0k >,所以()0k '>X X ,又()0'≥AX AX ,所以()0k ''+>X E A A X .即k '+E A A 正定.12.设A 是m n ⨯实矩阵,证明:()()()R R R ''==A A AA A ,并举例说明A 是复矩阵时,结论未必成立. 证:考察方程组'=0A AX , (1)=0AX (2)显然(2)的解均为(1)的解,因而()()n R n R '-≤-A A A ,即有()()R R '≤A A A (3)·147·另一方面,对任意1nn x x ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭R X 如果'=0A AX ,则()0''=X A AX , 即()()0'=AX AX (4)设12(,,,)n a a a '=AX ,由(4)知210ni i a ==∑,因为A 为实矩阵,X 为实向量,故i a 均为实数,所以120n a a a ====,即=0AX ,由于(2)的解也是(1)的解,故有()()n R n R '-≤-A A A ,即()()R R '≤A A A (5)综合(3),(5)式知()()R R '=A A A由()()R R '=A A 知()(())()()R R R R '''''===AA A A A A故有()()()R R R ''==A A AA A .令1i ⎛⎫= ⎪⎝⎭A ,则(1,)i '=A ,于是(0)'=A A ,即A 是复矩阵,结论不成立. 13.若任意n 维列向量都是n 阶方阵A 的特征向量,试证:A 一定是标量矩阵. 证:先证A 的任两个特征值都相等,否则设1212,()λλλλ≠是A 的两个特征值,≠0X ,≠0Y ,使12,λλ==AX X AY Y . 因12λλ≠,所以,X Y 线性无关,+≠0X Y . 依题意存在k ,使()()k +=+A X Y X Y ,于是1212()(),k k k λλλλ-+-===0X Y ,矛盾,故A 的所有特征值都相等,记为λ.令j e 为n 阶单位阵E 的第j 个列向量,1,,j n =,于是 1()E e e e =jn由已知,1,2,,j j j n λ==Ae e得11()(),,A e e e e e e AE E A E λλλ===j n j n即A 是数量矩阵.14.设A 是n 阶正定矩阵,试证:存在正定矩阵B 使2=A B . 证:A 是正定阵,则存在正交矩阵P ,使得·148· 121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭P AP D ,其中0,(1,2,,)ii n λ>=令(1,2,,)i i n δ==,则21111222222n n n n λδδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 11221n n δδδδδδ-⎛⎫⎛⎫ ⎪⎪⎪⎪'== ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪''= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 12n δδδ⎛⎫ ⎪⎪'= ⎪ ⎪ ⎪⎝⎭B P P ,易验证B 为正定阵,故2=A B . 15.设α是n 维非零实列向量,证明:2'-'E αααα为正交矩阵.证:因为22()'''-=-''E E αααααααα,故2222()()()()'''''--=--''''E E E E αααααααααααααααα 224444()()()()()''''''=-+=-+''''E E αααααααααααααααααααα 44''=-+=''E E αααααααα. 因而2'-'E αααα为正交矩阵.16.设方程组=0AX 的解都是=0BX 的解,且()()R R =A B ,试证:=0AX 与·149·=0BX 同解.证:设()()R R r ==A B ,则=0AX 的基础解系含有n r -个线性无关的向量,不妨设为12,,,n r -ξξξ. 有,(,,)A ==-01i i n r ξ.又=0AX 的解必为=0BX 的解,从而,(,,)i i n r ξ==-01B从而12,,,n r -ξξξ也是=0BX 的基础解系.于是=0BX 的通解为11.n r n r k k --+ξξ则=0AX 与=0BX 同解.17.设A 是n 阶方阵,12(,,,)n b b b '=β是n 维列向量,0⎛⎫= ⎪'⎝⎭A B ββ,若()()R R =A B ,则=AX β有解.证:由于()()()R R R ≤=A B A β,又由于()()R R ≤A A β,所以()()R R =A A β即=AX β有解.18.设12(,,,)(1,2,,,)i i i in a a a i r r n '==<α是r 个线性无关的n 维实向量,12(,,,)n b b b '=β 是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的实非零解向量,试证:12,,,,r αααβ线性无关.证:假设12,,,,r αααβ线性相关,由已知12,,,r ααα线性无关,必有1122r r k k k =+++βααα, (1)又由β为方程组的解,从而(,)0,(1,,)i i r ==βα于是11(,)(,)0r r k k =++=βββαα, 从而=0β,矛盾.所以12,,,,r αααβ线性无关. 19.设,A B 是两个n 阶正定矩阵,若A 的特征向量都是B 的特征向量,则AB 正定. 证:因为,A B 是两个n 阶正定矩阵,因此,A B 也必为实对称矩阵,设12,,,n P P P 为A 的n 个标准正交的特征向量,记12()n =P P P P ,则·150· 112211,,n n k k k λλλ--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP P BP 并且,0,(1,,)i i k i n λ>=,所以 1122111n n k k k λλλ---⎛⎫⎛⎫ ⎪⎪ ⎪⎪=⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭P ABP P AP P BP 1122n n k k k λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 且0,(1,,)i i k i n λ>=. 再由1-'=P P 得()'=AB AB ,因此AB 正定.20.设12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关. 证:设有一组数01,,,t k k k 使得011()()t t k k k +++++=0ββαβα即0121122()t t t k k k k k k k ++++++++=0βααα (1)由于12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,所以β不能表为1,,t αα的线性组合,所以0120t k k k k ++++=,因此(1)式变为1122t t k k k +++=0ααα,由于1,,t αα线性无关,所以120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.。

解析几何大题精选题-共四套(答案)

解析几何大题精选题-共四套(答案)

解析几何大题精选题-共四套(答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率;(II) 如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。

高中数学题库之解析几何综合部分(百题尖子生高考数学分类汇编)

高中数学题库之解析几何综合部分(百题尖子生高考数学分类汇编)

高中数学题库之解析几何综合部分(百题尖子生高考数学分类汇编)一、选择题(共30小题;共150分) 1. 抛物线 y =2x 2 的焦点坐标是 ( ) A. (0,18)B. (14,0)C. (1,0)D. (0,14)2. 下列两点确定的直线的斜率不存在的是 ( )A. (4,2),(−4,1)B. (0,3),(3,0)C. (3,−1),(2,−1)D. (−2,2),(−2,5)3. 已知点 M (a,b ) 在圆 O :x 2+y 2=1 外,则直线 ax +by =1 与圆 O 的位置关系是 ( )A. 相切B. 相交C. 相离D. 不确定4. 已知双曲线x 2a 2−y 2b 2=1 (a >0,b >0) 的一条渐近线平行于直线 l:y =2x +10,双曲线的一个焦点在直线 l 上,则双曲线的方程为 ( ) A. x 25−y 220=1B. x 220−y 25=1C. 3x 225−3y 2100=1 D. 3x 2100−3y 225=15. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的焦距为 2√5,且双曲线的一条渐近线与直线 2x +y =0 垂直,则双曲线的方程为 ( ) A.x 24−y 2=1 B. x 2−y 24=1 C.3x 220−3y 25=1 D.3x 25−3y 220=16. 已知过点 P (2,2) 的直线与圆 (x −1)2+y 2=5 相切,且与直线 ax −y +1=0 垂直,则 a = ( ) A. −12 B. 1 C. 2D. 127. 若曲线 C 1:x 2+y 2−2x =0 与曲线 C 2:y (y −mx −m )=0 有四个不同的交点,则实数 m 的取值范围是 ( )A. (−√33,√33) B. (−√33,0)∪(0,√33)C. [−√33,√33] D. (−∞,−√33)∪(√33,+∞)8. 已知双曲线 x 24−y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于 A ,B ,C ,D 四点,四边形 ABCD 的面积为 2b ,则双曲线的方程为 ( )A.x 24−3y 24=1 B.x 24−4y 23=1 C.x 24−y 24=1 D.x 24−y 212=19. 过抛物线 x 2=4y 的焦点 F 作直线 AB ,CD 与抛物线交于 A ,B ,C ,D 四点,且 AB ⊥CD ,则 FA ⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗⃗ ⋅FD ⃗⃗⃗⃗⃗ 的最大值等于 ( ) A. −4B. 8C. 4D. −1610. 已知长方形的四个顶点 A (0,0),B (2,0),C (2,1) 和 D (0,1).一质点从 AB 的中点 P 0 沿与 AB 夹角为 θ 的方向射到 BC 上的点 P 1 后,依次反射到 CD 、 DA 和 AB 上的点 P 2,P 3 和 P 4(入射角等于反射角).设 P 4 的坐标为 (x 4,0),若 1<x 4<2,则 tanθ 的取值范围是 ( )A. (13,1)B. (13,23)C. (25,12)D. (25,23)11. 已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,离心率为√2.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A. x24−y24=1 B. x28−y28=1 C. x24−y28=1 D. x28−y24=112. 已知双曲线x2a2−y2b2=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线方程为( )A. x24−y212=1 B. x212−y24=1 C. x23−y2=1 D. x2−y23=113. 下列说法正确的个数为( )①:a=1是直线x−ay=0与直线x+ay=0互相垂直的充要条件②:直线x=π12是函数y=2sin(2x−π6)的图象的一条对称轴③:已知直线l:x+y+2=0与圆C:(x−1)2+(y+1)2=2,则圆心C到直线的距离是2√2④:若命题P:“存在x0∈R,x2−x−1>0,x02−x0−1>0",则命题P的否定:"任意x∈R,x2−x−1≤0 "A. 1B. 2C. 3D. 414. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,离心率为√33,过F2的直线l交C于A,B两点,若△AF1B的周长为4√3,则C的方程为( )A. x23+y22=1 B. x23+y2=1 C. x212+y28=1 D. x212+y24=115. 已知双曲线C1:x2a2−y2b2=1(a>0,b>0)的离心率为2 .若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为( )A. x2=8√33y B. x2=16√33y C. x2=8y D. x2=16y16. 在平面直角坐标系xOy中,M为不等式组{2x−y−2≥0,x+2y−1≥0,3x+y−8≤0.所表示的区域上一动点,则直线OM斜率的最小值为( )A. 2B. 1C. −13D. −1217. 已知双曲线x2a2−y2b2=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(−1,−2),则双曲线的焦距为( )A. 6√5B. 3√5C. 6√3D. 3√318. 如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )A. √2B. √3C. 32D. √6219. 设变量 x ,y 满足条件 {x −2y +4≥03x −y −3≤02x +y −2≥0,则 z =(x +1)2+y 2 的最小值为 ( )A. 5B. 4C.4√55D. 16520. 若点 O 和点 F (−2,0) 分别为双曲线x 2a 2−y 2=1(a >0) 的中心和左焦点,点 P 为双曲线右支上的任意一点,则 OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ 的取值范围为 ( ) A. [−74,+∞) B. [74,+∞)C. [3−2√3,+∞)D. [3+2√3,+∞)21. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的左、右焦点分别为 F 1,F 2 ,以点 F 2 为圆心的圆与双曲线的渐近线相切,切点为 P .若 ∠F 1PF 2=2π3,则双曲线的离心率为 ( )A.√133B.√213C. √5D. √3722. 已知双曲线 M:x 2a 2−y 2b 2=1(a >0,b >0) 两个焦点分别为 F 1(−√3,0),F 2(√3,0),过点 F 2 的直线 l 与该双曲线的右支交于 M ,N 两点,且 △F 1MN 是等边三角形,则以点 F 2 为圆心,与双曲线 M 的渐近线相切的圆的方程为 ( ) A. (x −√3)2+y 2=2 B. (x −√3)2+y 2=4C. (x −√3)2+y 2=1D. (x −√3)2+y 2=3523. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的右焦点为 F (c,0) ,直线 x =a 2c与一条渐近线交于点 A ,若 △OAF 的面积为 a 22 ( O 为原点),则抛物线 y 2=4a bx 的准线方程为 ( )A. x =−1B. x =−2C. y =−1D. y =−224. 设变量 x ,y 满足约束条件 {2x −y −7≥0,x +y −8≥0,x −2y −2≤0,则目标函数 z =x 2+y 2 的最小值为 ( )A. 32B. 17C. 40D. 3425. 设函数 f (x )={x 2+bx +2,x ≤0∣a −x∣,x >0,若两条平行直线 6x +8y +a =0 与 3x +by +11=0 之间的距离为 a ,则函数 g (x )=f (x )−ln (x +2) 的零点个数为 ( )A. 1B. 2C. 3D. 426. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的两条渐近线与抛物线 y 2=2px (p >0) 的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为 2,△ABO 的面积为 √3,则 p 的值为 ( ) A. 1B. 32C. 2D. 327. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知 F 1 、 F 2 是一对相关曲线的焦点,P 是它们在第一象限的交点,当 ∠F 1PF 2=60∘ 时,这一对相关曲线中双曲线的离心率是 ( )A. √3B. √2C. 2√33D. 228. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的顶点是 A 1,A 2,虚轴的一端点是 B ,F 为右焦点,若线段 BF (不含端点)上存在不同的两点 P 1,P 2,使得 △P 1A 1A 2 和 △P 2A 1A 2 均为以 A 1A 2 为斜边的直角三角形,则双曲线的离心率 e 的取值范围是 ( ) A. (√2,+∞)B. (√5+12,+∞) C. (1,√5+12) D. (√2,√5+12)29. 在平面直角坐标系中,两点 P 1(x 1,y 1),P 2(x 2,y 2) 间的“L − 距离”定义为 ∣∣P 1P 2∣∣=∣x 1−x 2∣+∣y 1−y 2∣,则平面内与 x 轴上两个不同的定点 F 1,F 2 的“L − 距离”之和等于定值(大于 ∣∣F 1F 2∣∣)的点的轨迹可以是 ( )A. B.C. D.30. 设 m,n ∈R ,若直线 (m +1)x +(n +1)y −2=0 与圆 (x −1)2+(y −1)2=1 相切,则 m +n的取值范围是 ( )A. [1−√3,1+√3]B. (−∞,1−√3]∪[1+√3,+∞)C. [2−2√2,2+2√2]D. (−∞,2−2√2]∪[2+2√2,+∞)二、填空题(共30小题;共150分)31. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的一条渐近线为 2x +y =0,一个焦点为 (√5,0),则 a = ;b = .32. 已知圆 C 的圆心是直线 x −y +1=0 与 x 轴的交点,且圆 C 与直线 x +y +3=0 相切,则圆C 的方程为 .33. 已知圆 C 的圆心在 x 轴的正半轴上,点 M (0,√5) 在圆 C 上,且圆心到直线 2x −y =0 的距离为4√55,则圆 C 的方程为34. 在平面直角坐标系中,曲线 C 的参数方程为 {x =1+3cosαy =3sinα(α为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,直线 l 的极坐标方程为,ρcos (θ−π4)=√22m ,若曲线 C 上恰有 3 个点到直线 l 的距离等于 1,则实数 m = .35. 已知圆 C 的圆心为 C (1,1),且经过直线 x +y =4 上的点 P ,则周长最小的圆 C 的方程是 .36. 已知圆的方程为 x 2+y 2−6x −8y =0,设该圆过点 (3,5) 的最长弦和最短弦分别为 AC 和 BD ,则四边形 ABCD 的面积为 .37. 已知圆 C 过点 (1,0),且圆心在 x 轴的正半轴上,直线 l:y =x −1 被圆 C 所截得的弦长为 2√2,则过圆心且与直线 l 垂直的直线的方程为 .38. 若圆 x 2+y 2=4 与圆 x 2+y 2+2ay −6=0(a >0) 的公共弦的长为 2√3,则 a = . 39. 设抛物线 y 2=4x 的焦点为 F ,准线为 l .已知点 C 在 l 上,以 C 为圆心的圆与 y 轴的正半轴相切于点 A .若 ∠FAC =120∘,则圆的方程为 .40. 在极坐标系中,直线 4ρcos (θ−π6)+1=0 与圆 ρ=2sinθ 的公共点的个数为 .41. 在极坐标系中,O 为极点,直线 l 过圆 C :ρ=2√2cos (θ−π4) 的圆心 C ,且与直线 OC 垂直,则直线 l 的极坐标方程为 .42. 在极坐标系中,点 (m,π6)(m >1) 到直线 ρcos (θ−π6)=3 的距离为 2,则 m 的值为 .43. 已知 A (−12,0),B 是圆 (x −12)2+y 2=4(F 为圆心)上一动点,线段 AB 的垂直平分线交 BF于点 P ,则动点 P 的轨迹方程为 .44. 过点 P(−√3,−1) 的直线 l 与圆 x 2+y 2=1 有公共点,则直线 l 的倾斜角的取值范围是 .45. 已知双曲线 x 2a 2−y 2b 2=1(a >0,b >0) 的一条渐近线方程是 y =√3x ,它的一个焦点与抛物线y 2=16x 的焦点相同.则双曲线的方程为 .46. 若直线 l 与圆 C :{x =2cosθ,y =−1+2sinθ,(θ为参数) 相交于 A ,B 两点,且弦 AB 的中点坐标是 (1,−2),则直线 l 的倾斜角为 .47. 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线 l 的参数方程是 {x =t +1y =t −3(t 为参数),圆 C 的极坐标方程是 ρ=4cosθ,则直线 l 被圆 C 截得的弦长l 为 .48. 在以 O 为极点的极坐标系中,直线 ρcosθ+√3ρsinθ=4√3 与圆 {x =2cosθ,y =2+2sinθ( θ 为参数)交于 M ,N 两点,则线段 MN 的长度为 .49. 已知直线 l 的方程为:(2m +1)x +(m +1)y −7m −4=0(m ∈R ),以坐标原点 O 为极点,x轴的正半轴为极轴建立极坐标系,圆 C 的极坐标方程为 ρ2−20=2ρcosθ+4ρsinθ,则直线 l 被圆 C 截得的线段的最短长度为 .50. 已知双曲线的参数方程为 {x =acosθy =√7tanθ(其中 θ 为参数,a >0 ),直线 l 过其左焦点 F 1 交双曲线的左支于 A 、 B 两点,且 AB =4,点 F 2 为双曲线右焦点,△ABF 2 的周长为 20,则此双曲线的离心率为 .51. 过抛物线 y 2=4x 的焦点 F 的直线交抛物线于 A (x 1,y 1),B (x 2,y 2) 两点,且满足 ∣AB ∣=10,则 ∣x 2−x 1∣= .52. 已知过抛物线 y 2=4x 的焦点且斜率为 1 的直线交抛物线于 A ,B 两点,设 ∣FA∣>∣FB∣,则∣FA∣∣FB∣= .53. 已知直线 l 的参数方程为 {x =4t y =1+3t (t 为参数),圆 C 的参数方程为 {x =2+cosθy =sinθ(θ 为参数),则圆 C 上的点到直线 l 的距离的最大值为 .54. 已知直线 l 的参数方程为 {x =3t +2y =4t +3(t 为参数),圆 C 的极坐标方程为 ρ=2cosθ,则圆 C 的圆心到直线 l 的距离等于 .55. 在直角坐标系 xOy 中,以原点 O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线 M 的极坐标方程为 √2pcos (θ+ π4)=1,曲线 N 的参数方程为 {x =4t 2y =4t( t 为参数).若曲线 M 与 N相交于 A ,B 两点,则线段 AB 的长等于 ( ).56. 已知椭圆x 2a 2+y 2b 2=1(a >b >0) 上一点 A 关于原点 O 的对称点为 B ,F 为其右焦点,若 AF ⊥BF ,设 ∠ABF =α,且 α∈[π12,π4],则椭圆离心率的范围是 .57. 在 △ABC 中,已知 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =9,sinB =cosAsinC ,S △ABC =6,P 为线段 AB 上的点,且 CP⃗⃗⃗⃗⃗ =x CA ⃗⃗⃗⃗⃗∣CA ⃗⃗⃗⃗⃗ ∣+y CB⃗⃗⃗⃗⃗∣CB ⃗⃗⃗⃗⃗ ∣,则 CP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为 ( ).58. 已知 a 、 b 均为实数,log b (3a −1) 为正数,点 (b,a ) 在圆 (x −12)2+(y +13)2=c 2 上,其中 c >0,则 c 的取值范围是 .59. 在棱长为 2√3 的正方体 ABCD −A 1B 1C 1D 1 中,正方形 BCC 1B 1 所在平面内的动点 P 到直线 D 1C 1,DC 的距离之和为 4,则 PC 1⃗⃗⃗⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ 的取值范围为 .60. 设抛物线 {x =2pt 2y =2pt(t 为参数,p >0)的焦点为 F ,准线为 l .过抛物线上一点 A 作 l 的垂线,垂足为 B .设 C (72p,0),AF 与 BC 相交于点 E .若 ∣CF ∣=2∣AF ∣,且 △ACE 的面积为 3√2,则 p 的值为 .三、解答题(共40小题;共520分)61. 已知圆 N 经过点 A (3,1),B (−1,3),且它的圆心在直线 3x −y −2=0 上.(1)求圆 N 的方程;(2)求圆 N 关于直线 x −y +3=0 对称的圆的方程. (3)若点 D 为圆 N 上任意一点,且点 C (3,0),求线段 CD 的中点 M 的轨迹方程.62. 设椭圆x 2a2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2,右顶点为 A ,上顶点为 B .已知∣AB∣=√32∣F 1F 2∣. (1)求椭圆的离心率;(2)设 P 为椭圆上异于其顶点的一点,以线段 PB 为直径的圆经过点 F 1,经过点 F 2 的直线 l 与该圆相切与点 M ,∣MF 2∣=2√2.求椭圆的方程.63. P 是椭圆 x 225+y 216=1 上任一点,F 1,F 2 分别是左右焦点,O 是椭圆的中心.(1)若 PF 1=6,且 M 是 PF 1 的中点,求 OM 的长; (2)若 ∠F 1PF 2=60∘,求 △F 1PF 2 的面积; (3)若 A (1,1),求 ∣PA ∣+∣PF 1∣ 的最小值.64. 已知三角形 △ABC 的三个顶点是 A (4,0),B (6,7),C (0,8).(1)求 BC 边上的高所在直线的方程; (2)求 BC 边上的中线所在直线的方程.65. 命题 p :直线 y =kx +3 与圆 x 2+y 2=1 相交于 A ,B 两点;命题 q :曲线 x 2k−6−y 2k=1 表示焦点在 y 轴上的双曲线,若 p ∧q 为真命题,求实数 k 的取值范围.66. 已知方程 x 2+y 2−2x −4y +m =0.(1)若此方程表示圆,求 m 的取值范围;(2)若1中的圆与直线 x +2y −4=0 相交于 M 、 N 两点,且 OM ⊥ON (O 为坐标原点),求 m ;(3)在2的条件下,求以 MN 为直径的圆的方程.67. 已知圆 C 和 y 轴相切,圆心在直线 x −3y =0 上,且被直线 y =x 截得的弦长为 2√7,求圆 C的方程.68. 已知椭圆 x 2a 2+y 2b 2=1(a >b >0),点 P (√55a,√22a) 在椭圆上. (1)求椭圆的离心率;(2)设 A 为椭圆的左顶点,O 为坐标原点.若点 Q 在椭圆上且满足 ∣AQ ∣=∣AO ∣,求直线 OQ 的斜率的值.69. 已知椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 经过点 (1,√32),一个焦点为 (√3,0). (1)求椭圆 C 的方程;(2)若直线 y =k (x −1)(k ≠0) 与 x 轴交于点 P ,与椭圆 C 交于 A,B 两点,线段 AB 的垂直平分线与 x 轴交于点 Q ,求∣AB∣∣PQ∣的取值范围.70. 设椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2,A 是椭圆上的一点,AF 2⊥F 1F 2,原点O 到直线 AF 1 的距离为 13∣OF 1∣.(1)证明:a =√2b ;(2)求 t ∈(0,b ) 使得下述命题成立:设圆 x 2+y 2=t 2 上任意点 M (x 0,y 0) 处的切线交椭圆于 Q 1,Q 2 两点,则 OQ 1⊥OQ 2.71. 已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2,在第一象限椭圆上的一点 M 满足MF 2⊥F 1F 2,且 ∣MF 1∣=3∣MF 2∣. (1)求椭圆的离心率;(2)设 MF 1 与 y 轴的交点为 N ,过点 N 与直线 MF 1 垂直的直线交椭圆于 A ,B 两点,若 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ +F 1A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1B⃗⃗⃗⃗⃗⃗⃗ =5417,求椭圆的方程.72. 已知椭圆 C:x 2b2+y 2a 2=1(a >b >0) 的离心率为 √22,以坐标原点为圆心,椭圆的短半轴为半径的圆与直线 x −y +√2=0 相切 (1)求椭圆 C 的方程(2)过椭圆 C 的右顶点 B 作两条互相垂直的直线 l 1,l 2,且分别交椭圆 C 于 M ,N 两点,探究直线 MN 是否过定点?若过定点求出定点坐标,否则说明理由.73. 设椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2,右顶点为 A ,上顶点为 B ,已知∣AB∣=√32∣F 1F 2∣. (1)求椭圆的离心率;(2)设 P 为椭圆上异于其顶点的一点,以线段 PB 为直径的圆经过点 F 1,经过原点 O 的直线 l 与该圆相切.求直线 l 的斜率.74. 设椭圆 x 2a 2+y 2b 2=1 (a >b >0) 的左、右顶点分别为 A ,B ,点 P 在椭圆上且异于 A ,B 两点,O 为坐标原点.(1)若直线 AP 与 BP 的斜率之积为 −12,求椭圆的离心率;(2)若 ∣AP ∣=∣OA ∣,证明直线 OP 的斜率 k 满足 ∣k ∣>√3.75. 已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的两个焦点分别为 F 1(−c,0) 和 F 2(c,0)(c >0),过点 E (a 2c,0)的直线与椭圆相交于 A,B 两点,且 F 1A ∥F 2B ,∣F 1A∣∣=2∣∣F 2B∣∣. (1)求椭圆的离心率; (2)求直线 AB 的斜率;(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求nm的值.76. 设椭圆x2a2+y23=1(a>√3)的右焦点为F,右顶点为A.已知1∣OF∣+1∣OA∣=3e∣FA∣,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.77. 设椭圆x2a2+y23=1(a>√3)的右焦点为F,右顶点为A.已知1∣OF∣+1∣OA∣=3e∣FA∣,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.78. 设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.79. 给定椭圆C:x2a2+y2b2=1(a>b>0),称圆x2+y2=a2+b2为椭圆C的“伴随圆”,已知椭圆C的短轴长为2,离心率为√63.(1)求椭圆C的方程;(2)若直线l与椭圆C交于A,B两点,与其“伴随圆”交于C,D两点,当∣CD∣=√13时,求△AOB面积的最大值.80. 已知函数f(x)=x3+ax2+b的图象上一点P(1,0),且在P点处的切线与直线3x+y=0平行.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[0,t](0<t<3)上的最大值和最小值;(3)在(1)的结论下,关于x的方程f(x)=c在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.81. 已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(−c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为b22.(1)求椭圆的离心率;(2)设点Q在线段AE上,∣FQ∣=32c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.82. 抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠−1).(1)求抛物线 C 的焦点坐标和准线方程;(2)设直线 AB 上一点 M ,满足 BM ⃗⃗⃗⃗⃗⃗ =λMA ⃗⃗⃗⃗⃗⃗ ,证明线段 PM 的中点在 y 轴上; (3)当 λ=1 时,若点 P 的坐标为 (1,−1),求 ∠PAB 为钝角时点 A 的纵坐标 y 1 的取值范围.83. 已知中心在原点的双曲线 C 的一个焦点是 F 1(−3,0),一条渐近线的方程是 √5x −2y =0.(1)求双曲线 C 的方程;(2)若以 k (k ≠0) 为斜率的直线 l 与双曲线 C 相交于两个不同的点 M ,N ,且线段 MN 的垂直平分线与两坐标轴围成的三角形的面积为 812,求 k 的取值范围.84. 某人在一山坡 P 处观看对面山项上的一座铁塔,如图所示,塔高 BC =80(米),塔所在的山高 OB =220(米),OA =200(米),图中所示的山坡可视为直线 l 且点 P 在直线 l 上,l 与水平地面的夹角为 a ,tana =12.试问此人距水平地面多高时,观看塔的视角 ∠BPC 最大(不计此人的身高).85. 已知常数 a >0,向量 c =(0,a ),i =(1,0).经过原点 O 以 c +λi 为方向向量的直线与经过定点A (0,a ) 以 i −2λc 为方向向量的直线相交于点 P ,其中 λ∈R .试问:是否存在两个定点 E,F ,使得 ∣PE ∣+∣PF ∣ 为定值.若存在,求出 E,F 的坐标;若不存在,说明理由.86. 已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的离心率 e =√32,连接椭圆的四个顶点得到的菱形的面积为 4. (1)求椭圆的方程;(2)设直线 l 与椭圆相交于不同的两点 A,B ,已知点 A 的坐标为 (−a,0),点 Q (0,y 0) 在线段AB 的垂直平分线上,且 QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗ =4,求 y 0 的值.87. 设椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2.点 P (a,b ) 满足 ∣PF 2∣=∣F 1F 2∣.(1)求椭圆的离心率 e ;(2)设直线 PF 2 与椭圆相交于 A ,B 两点,若直线 PF 2 与圆 (x +1)2+(y −√3)2=16 相交于M ,N 两点,且 ∣MN ∣=58∣AB ∣,求椭圆的方程.88. 设椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左焦点为 F ,右顶点为 A ,离心率为 12.已知 A 是抛物线 y 2=2px (p >0) 的焦点,F 到抛物线的准线 l 的距离为 12. (1)求椭圆的方程和抛物线的方程;(2)设 l 上两点 P ,Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B (B 异于 A ),直线 BQ 与 x轴相交于点 D .若 △APD 的面积为 √62,求直线 AP 的方程.89. 已知椭圆 E:x 2a 2+y 2b 2=1(a >b >0) 的离心率 e =√32,且点 (1,√32) 在椭圆 E 上. (1)求椭圆 E 的方程;(2)直线 l 与椭圆 E 交于 A ,B 两点,且线段 AB 的垂直平分线经过点 (0,12).求 △AOB ( O为坐标原点)面积的最大值.90. 已知椭圆 C 的中心在原点,离心率等于 12,它的一个短轴的端点恰好是抛物线 y =√324x 2的焦点. (1)求椭圆 C 的方程.(2)已知 P (2,3),Q (2,−3) 是椭圆上的两点,A ,B 是椭圆上位于直线 PQ 两侧的动点.若直线 AB 的斜率为 12,求四边形 APBQ 面积的最大值.(3)当 A ,B 运动时,满足直线 PA ,PB 与 x 轴始终围成一个等腰三角形,试问直线 AB 的斜率是否为定值,请说明理由.91. 已知两点 M (−1,0),N (1,0),且点 P 使 MP ⃗⃗⃗⃗⃗⃗ ⋅MN ⃗⃗⃗⃗⃗⃗⃗ ,PM ⃗⃗⃗⃗⃗⃗ ⋅PN ⃗⃗⃗⃗⃗⃗ ,NM ⃗⃗⃗⃗⃗⃗⃗ ⋅NP⃗⃗⃗⃗⃗⃗ 成公差小于零的等差数列. (1)点 P 的轨迹是什么曲线? (2)若点 P 坐标为 (x 0,y 0),记 θ 为 PM ⃗⃗⃗⃗⃗⃗ 与 PN⃗⃗⃗⃗⃗⃗ 的夹角,求 tanθ.92. 设椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2.点 P (a,b ) 满足 ∣PF 2∣=∣F 1F 2∣.(1)求椭圆的离心率 e ;(2)设直线 PF 2 与椭圆相交于 A ,B 两点,若直线 PF 2 与圆 (x +1)2+(y −√3)2=16 相交于 M ,N 两点,且 ∣MN∣=58∣AB∣,求椭圆的方程.93. 已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的一个顶点为 (0,−1),离心率 e =√22. (1)求椭圆 C 的方程;(2)过 M (0,m )(−1<m <0) 的直线 l 交椭圆 C 于 A ,B 两点,试问:在椭圆 C 上是否存在定点 T ,使得无论直线 l 如何转动,以 AB 为直径的圆恒过定点 T ?若存在,求出 m 的值及点 T的坐标;若不存在,请说明理由.94. 在直角坐标系 xOy 中,已知中心在原点,离心率为 12 的椭圆 E 的一个焦点为圆 C:x 2+y 2−4x +2=0 的圆心. (1)求椭圆 E 的方程;(2)设 P 是椭圆 E 上一点,过 P 作两条斜率之积为 12 的直线 l 1,l 2,当直线 l 1,l 2 都与圆 C 相切时,求 P 的坐标.95. 如图,在平面直角坐标系 xOy 中,椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 √63,直线 l 与 x 轴交于点 E ,与椭圆 C 交于 A,B 两点.当直线 l 垂直于 x 轴且点 E 为椭圆 C 的右焦点时,弦 AB 的长为2√63.(1)求椭圆 C 的方程;(2)若点 E 的坐标为 (√32,0),点 A 在第一象限且横坐标为 √3,连接点 A 与原点 O 的直线交椭圆 C 于另一点 P ,求 △PAB 的面积;(3)是否存在点 E ,使得 1EA 2+1EB 2 为定值?若存在,请指出点 E 的坐标,并求出该定值;若不存在,请说明理由.96. 如图,以椭圆 x 2a 2+y 2b 2=1(a >b >0) 的中心 O 为圆心,分别以 a 和 b 为半径作大圆和小圆.过椭圆右焦点 F (c,0) (c >b ) 作垂直于 x 轴的直线交大圆于第一象限内的点 A .连接 OA 交小圆于点 B .设直线 BF 是小圆的切线.(1)证明:c 2=ab ,并求直线 BF 与 y 轴的交点 M 的坐标; (2)设直线 BF 交椭圆于 P 、 Q 两点,证明 OP⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =12b 2.97. 设椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1、F 2,A 是椭圆上的一点,AF 2⊥F 1F 2,原点 O 到直线 AF 1 的距离为 13∣OF 1∣.(1)证明 a =√2b ;(2)设 Q 1,Q 2 为椭圆上的两个动点,OQ 1⊥OQ 2,过原点 O 作直线 Q 1Q 2 的垂线 OD ,垂足为 D ,求点 D 的轨迹方程.98. 已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的离心率 e =√32,连接椭圆的四个顶点得到的菱形的面积为 4. (1)求椭圆的方程;(2)设直线 l 与椭圆相交于不同的两点 A,B ,已知点 A 的坐标为 (−a,0). (i )若 ∣AB ∣=4√25,求直线 l 的倾斜角;(ii )若点 Q (0,y 0) 在线段 AB 的垂直平分线上,且 QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗ =4.求 y 0 的值.99. 已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左焦点为 F (−c,0),离心率为 √33,点 M 在椭圆上且位于第一象限,直线 FM 被圆 x 2+y 2=b 24截得的线段的长为 c ,∣FM∣=4√33. (1)求直线 FM 的斜率; (2)求椭圆的方程;(3)设动点 P 在椭圆上,若直线 FP 的斜率大于 √2,求直线 OP (O 为原点)的斜率的取值范围.100. 已知椭圆x 2a2+y 2b 2=1(a >b >0) 的上顶点为 B ,左焦点为 F ,离心率为 √55.(1)求直线 BF 的斜率;(2)设直线 BF 与椭圆交于点 P (P 异于点 B ),过点 B 且垂直于 BP 的直线与椭圆交于点 Q(Q 异于点 B ),直线 PQ 与 y 轴交于点 M ,∣PM∣=λ∣∣MQ∣∣. ① 求 λ 的值; ② 若 ∣PM∣sin∠BQP =7√59,求椭圆的方程.答案第一部分 1. A 【解析】抛物线 y =2x 2 的方程即 x 2=y 2,所以 p =14,故焦点坐标为 (0,18).2. D 【解析】选项D 中两点的横坐标相同,所以这两点确定的直线与 x 轴垂直,斜率不存在.3. B【解析】由点 M 在圆外,得 a 2+b 2>1,所以圆心 O 到直线 ax +by =1 的距离 d =√a 2+b 2<1,则直线与圆 O 相交. 4. A【解析】依题意得{b =2a,c =5,c 2=a 2+b 2,所以a 2=5,b 2=20,双曲线的方程为x 25−y 220=1. 5. A【解析】由题意,得 c =√5,ba =12,解得 a =2,b =1,所以双曲线的方程为 x 24−y 21=1.6. C【解析】由题意知点 P (2,2) 在圆 (x −1)2+y 2=5 上,设切线的斜率为 k ,则 k ⋅2−02−1=−1,解得 k =−12,直线 ax −y +1=0 的斜率为 a ,且与切线垂直,所以 −12a =−1,解得 a =2. 7. B【解析】曲线 x 2+y 2−2x =0 表示以 (1,0) 为圆心,以 1 为半径的圆.曲线 y (y −mx −m )=0 表示 y =0和y −mx −m =0 两条直线. 其中 y −mx −m =0 过定点 (−1,0),y =0 与圆有两个交点, 故 y −mx −m =0 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切情况分别对应m =−√33和m =√33, 由图可知,m 的取值范围应为(−√33,0)∪(0,√33).其他解法:观察选项,提炼出待检样例 m =0 和 m =1.当 m =0 时,C 2:y 2=0 即 y =0,与 C 1 至多只有两个不同交点,不符合题意,排除A 、C ; 当 m =1 时,C 2:y =0 或 y =x +1,与 C 1 交于 (0,0) 、 (2,0),不符合题意,排除D ;选B . 8. D【解析】方法一:如图所示,由 {x 2+y 2=4,y =b2x, 得 D (√b 2+4√b 2+4). 根据对称性得四边形 ABCD 的面积为 4×√b 2+4×√b 2+4=2b ,所以 b 2=12. 故双曲线的方程为x 24−y 212=1.方法二:设 D (2cosθ,2sinθ). 所以 ∣AD ∣=4cosθ,∣CD ∣=4sinθ.由点 D 在双曲线的渐近线 y =b2x 上,得 2sinθ=bcosθ. ⋯⋯①四边形 ABCD 的面积为 2b =4×2cosθ×2sinθ. ⋯⋯② 由 ①② 得 cosθ=12,所以 θ=60∘, 所以 b =2√3. 故双曲线的方程为 x 24−y 212=1.9. D【解析】如图所示,由抛物线 x 2=4y 可得焦点 F (0,1). 设直线 AB 的方程为:y =kx +1(k ≠0), 因为 AB ⊥CD ,可得直线 CD 的方程为 y =−1kx +1.设 A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).联立 {y =kx +1,x 2=4y, 化为 x 2−4kx −4=0,得 x 1+x 2=4k ,x 1x 2=−4.同理可得 x 3+x 4=−4k,x 3x 4=−4.所以FA⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =(x 1,y 1−1)⋅(x 2,y 2−1)=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2=−4(1+k 2).同理可得 FC ⃗⃗⃗⃗⃗ ⋅FD ⃗⃗⃗⃗⃗ =−4(1+1k 2).所以FA⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗⃗ ⋅FD ⃗⃗⃗⃗⃗ =−4(2+k 2+1k 2)≤−4(2+2√k 2⋅1k2)=−16,当且仅当 k =±1 时取等号.所以 FA ⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗⃗ ⋅FD ⃗⃗⃗⃗⃗ 的最大值等于 −16. 10. C【解析】如图所示:由 ∠P 1P 0B =θ,可推出 ∠CP 2P 1=∠DP 2P 3=∠P 3P 4A =θ.因为 P 0B =1,所以 P 1B =tanθ,P 1C =1−tanθ,P 2C =1tanθ−1,P 2D =3−1tanθ,DP 3=3tanθ−1,P 3A =2−3tanθ,AP 4=2tanθ−3,又1<x 4<2,故 1<2tanθ−3<2,所以 tanθ∈(25,12).其他方法:考虑由 P 0 射到 BC 的中点上,这样依次反射最终回到 P 0,此时容易求出 tanθ=12.但由题设条件,知 1<x 4<2,则 tanθ≠12,这样就可以淘汰掉A ,B ,D .11. B 【解析】设双曲线的左焦点 F (−c,0),离心率 e =ca =√2,c =√2a ,则双曲线为等轴双曲线,即 a =b ,双曲线的渐近线方程为 y =±ba x =±x ,则经过 F 和 P (0,4) 两点的直线的斜率 k =4−00+c =4c ,则 4c =1,c =4,则 a =b =2√2,所以双曲线的标准方程:x 28−y 28=1.12. D 【解析】双曲线x 2a2−y 2b 2=1(a >0,b >0) 的右焦点为 F ,点 A 在双曲线的渐近线上,△OAF是边长为 2 的等边三角形(O 为原点), 可得 c =2,ba =√3,即b 2a 2=3,c 2−a 2a 2=3,解得 a =1,b =√3,双曲线的焦点坐标在 x 轴,所得双曲线方程为:x 2−y 23=1.13. A 【解析】直线 x −ay =0 与直线 x +ay =0 垂直的充要条件为 a =±1,故 ① 不正确.x =π12 时,y =0,故 ② 不正确.圆心 C 到直线 l 的距离为 √12+12=√2,故 ③ 不正确.由特称命题的否定可知.④ 正确.14. A 【解析】依题意可得:{c a=√33,4a =4√3,a 2=b 2+c 2,解出 {a 2=3,b 2=2.所以椭圆方程为 x 23+y 22=1.15. D 【解析】因为x 2a 2−y 2b 2=1 的离心率为 2,所以 ca=2,即c 2a2=a 2+b 2a 2=4,所以 ba=√3 . x 2=2py 的焦点坐标为 (0,p 2),x 2a 2−y 2b 2=1 的渐近线方程为 y =±ba x ,即 y =±√3x . 由题意,得p2√1+(√3)=2,所以 p =8.故 C 2:x 2=16y .16. C 【解析】不等式组 {2x −y −2≥0,x +2y −1≥0,3x +y −8≤0.所表示的平面区域如图阴影部分.由图可知,当 M 与 C 重合时,直线 OM 斜率最小.由 {x +2y −1=0,3x +y −8=0. 得 C (3,−1),所以直线 OM 斜率的最小值为 K OC =−13.17. A 【解析】由题意可知 −1=−p2,所以 p =2,抛物线方程 y 2=4x .因为双曲线的左顶点与抛物线的焦点距离为 4,所以 a +p2=4,所以 a =3.又 (−1,−2) 在双曲线上的渐近线上,所以 ba=2,b =6,c =3√5,所以焦距为 6√5.18. D 【解析】由椭圆定义有 ∣AF 1∣+∣AF 2∣=2a =4,又 AF 1⊥AF 2,所以 AF 12+AF 22=(2c )2=12,所以 ∣AF 1−AF 2∣=2√2. 由双曲线定义可知,aʹ=√2,所以 e =c aʹ=√62. 19. D 【解析】可行域为:由图可知,z =(x +1)2+y 2 的几何意义是可行域内的点到 (−1,0) 的距离的平方,所以 z 的最小值为 (−1,0) 到直线 2x +y −2=0 的距离,即 z min =√5=√5,所以 z min 2=165.20. D【解析】设 P (x,y ) (x >a ),则 OP⃗⃗⃗⃗⃗ =(x,y ),FP ⃗⃗⃗⃗⃗ =(x +2,y ),所以 OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =x (x +2)+y 2. 因为双曲线中 c =2,b =1,所以 a =√3,所以 y 2=x 23−1,所以 OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =43x 2+2x −1=43(x +34)2−74(x >√3), 所以 OP⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ >3+2√3. 21. B 【解析】双曲线的渐近线为 y =±ba x ,取 y =ba x ,双曲线的右焦点 (c,0),则圆心 (c,0) 到 bx −ay =0 的距离 d =√a 2+b 2=b即 PF 2=b ,则 PF 1=2b .在 △PF 1F 2 中,由余弦定理得 cos∠F 1PF 2=PF 12+PF 22−F 1F 222PF 1⋅PF 2.所以 −12=(2b )2+b 2−4c 22⋅2b⋅b,解得 e =√213. 22. A 【解析】因为 △F 1MN 为等边三角形,且 ∣F 1F 2∣=2c =2√3,所以 ∣F 1M ∣=2×√3=4,∣F 2M ∣=√3=2,所以 ∣F 1M ∣−∣F 2M ∣=2a =2,a =1,b =√2,因为以 F 2 为圆心,与双曲线的渐近线相切,又 F 2 到渐近线的距离为 b ,所以圆的方程为 (x −√3)2+y 2=2 23. A 【解析】双曲线的一条渐近线方程为 y =ba x .则与直线 x =a 2c的交点坐标为 A (a 2c ,abc),所以S △OAF =12OF ⋅ y A =12c ⋅ab c=a 22,所以 a =b ,则抛物线方程为 y 2=4x ,则抛物线方程为 x =−1 .24. D 【解析】画出可行域,如图,设 d 2=x 2+y 2,则 d 表示可行域内的点到原点的距离. 由图可知点 (5,3) 可使 d 取得最小值,此时 d 2=52+33=34. 25. D【解析】因为直线 6x +8y +a =0 与 3x +by +11=0 平行,所以 b =4. 又∣∣a 2−11∣√32+42=a ,所以 a =2.在同一坐标系内作出函数 y =f (x ) 和 y =ln (x +2) 的图象,如下图所示:由图可以看出,共有 4 个交点.26. C 【解析】因为 e =2,所以 ca =2,ba =√3,所以 A (−p 2,√32p),B (−p 2,−√32p),所以 S △ABO =12×p2×√3p =√3⇒p =2.27. A 【解析】设 F 1P =m ,F 2P =n ,F 1F 2=2c ,由余弦定理可得 (2c )2=m 2+n 2−mn ,即 4c 2=m 2+n 2−mn ⋯①.设 a 1 是椭圆的实半轴,a 2 是双曲线的实半轴,由椭圆及双曲线的定义可得 {m +n =2a 1,m −n =2a 2, 解出 {m =a 1+a 2,n =a 1−a 2.将它们代入①,得 {3a 22+a 12−4c 2=0,a 1=3a 2,所以 e 1e 2=c a 1⋅c a 2=c 23a 22=1,解出 e 2=√3.28. D 【解析】由题意可知,原命题等价于以 A 1A 2 为直径的圆与线段 BF 有交点,√b 2+c 2<a ,整理得 e 4−3e 2+1<0,因为 e >1, 所以 1<e 2<3+√52=6+2√54=(√5+1)24,所以 1<e <√5+12, 又因为 a <b ,所以 a 2<c 2−a 2,ca >√2, 所以 e ∈(√2,√5+12). 29. A 【解析】以线段 F 1F 2 的中点为原点,F 1F 2 所在直线为 x 轴建立直角坐标系,设 F 1(−c,0),F 2(c,0),P (x,y ),则 c >0.依题意有 ∣x +c ∣+∣y ∣+∣x −c ∣+∣y ∣=2a (a 为定值),整理得 ∣x +c ∣+∣x −c ∣+2∣y ∣=2a . 当 x ≤−c 时,化为 ∣y ∣=x +a ,即 {y =x +a,y ≥0,y =−x −a,y <0.当 x ≥c 时,化为 ∣y ∣=−x +a ,即 {y =−x +a,y ≥0,y =x −a,y <0.当 −c <x <c 时,化为 2c +2∣y ∣=2a ,即 ∣y ∣=−c +a . 30. D【解析】∵ 直线 (m +1)x +(n +1)y −2=0 与圆 (x −1)2+(y −1)2=1 相切, ∴ 圆心 (1,1) 到直线的距离为d =()()√(m +1)2+(n +1)2=1,所以mn =m +n +1≤(m +n 2)2,设 t =m +n ,则 14t 2≥t +1,解得t ∈(−∞,2−2√2]∪[2+2√2,+∞).第二部分 31. a =1,b =2【解析】y =±2x ,所以 ba =21,c 2=5,所以 a =1;b =2. 32. (x +1)2+y 2=2 33. (x −2)2+y 2=9【解析】设 C (a,0),其中 a >0,则 √5=4√55,解得 a =2,从而 r =√22+5=3,故圆 C 的方程为(x −2)2+y 2=9. 34. 1±2√2【解析】曲线 C 的方程化为 (x −1)2+y 2=9,圆心 (1,0),r =3,直线 l 的方程化为 x +y −m =0. 若曲线 C 上恰有 3 个点到直线 l 的距离等于 1,则圆心到直线 l 的距离等于 2,即 √2=2,所以 m =1±2√2.35. (x −1)2+(y −1)2=2【解析】圆与直线相切的时候,圆的半径最小,即周长最小.此时圆的半径为 r =√12+12=√2,故周长最小的圆 C 的方程是 (x −1)2+(y −1)2=2. 36. 20√6【解析】点 (3,5) 在圆内,最长弦 ∣AC ∣ 即为该圆直径. ∴∣AC∣=10,最短弦 BD ⊥AC .∴∣BD∣=4√6,S 四边形ABCD =12∣AC∣⋅∣BD∣=20√6. 37. x +y −3=0【解析】由已知设圆心 C (a,0)(a >0),则圆心到直线 l:y =x −1 的距离为 d =√2,半弦长为 √2,半径为 ∣a −1∣,三者构成以半径长为斜边的直角三角形,则∣a −1∣=2,解得 a =3 或 a =−1(舍去).又所求直线与 l:x −y −1=0 垂直,故所求直线方程为 x +y −3=0.38. 1【解析】两圆公共弦所在的直线方程为 (x 2+y 2−4)−(x 2+y 2+2ay −6)=0,即 y =1a .圆 x 2+y 2+2ay −6=0 的半径为 √a 2+6,圆心为 (0,−a ),所以弦心距为 a +1a ,所以 (√3)2+(a +1a )2=a 2+6,解得 a =1. 39. (x +1)2+(y −√3)2=1 40. 241. ρcosθ+ρsinθ−2=0【解析】圆 C 的标准方程为 (x −1)2+(y −1)2=2,所以 C (1,1),k OC =1.因为直线 l 过圆心 C ,且与直线 OC 垂直,所以直线 l 的方程为 y −1=−(x −1),即 x +y −2=0,化为极坐标方程为 ρcosθ+ρsinθ−2=0. 42. 5【解析】点的坐标可以化为 (√32m,12m),直线的方程可以化为 √3x +y −6=0,所以 d =∣∣32m+12m−6∣∣2=2,所以 m =5 或 1(舍),所以 m =5.43. x 2+43y 2=1【解析】如图所示,因为 ∣PA∣=∣PB∣,∣PB∣+∣PF∣=r =2,所以 ∣PA∣+∣PF∣=2.其中 A (−12,0),F (12,0). 则动点 P 的轨迹是以 A 、 F 为焦点的椭圆.根据椭圆的定义,得 a =1,c =12,b =√32.因此,动点 P 的轨迹方程为 x 2+43y 2=1.44. [0,π3]【解析】方法一:如图所示,过点 P 作圆的切线 PA,PB ,切点为 A ,B .。

(完整版)解析几何专题含答案

(完整版)解析几何专题含答案

椭圆专题练习1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .592.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .B C D .133.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<14.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )345.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r。

【推荐】 专题1.4 解析几何-2017年高考数学(理)走出题海之黄金100题系列

【推荐】 专题1.4 解析几何-2017年高考数学(理)走出题海之黄金100题系列

1.直线0x y m -+=与圆22210x y x +--=有两个不同交点的一个必要不充分条件是( )A. 01m <<B. 40m -<<C. 1m <D.31m -<<【答案】C【解析】联立直线与圆的方程得: 22{210x y m x y x -+=+--=,消去y 得: ()2222210x m x m +-+-=,根据题意得: ()()()222228141160m m m ∆=---=-++>,变形得: ()()310m m +-<,计算得出:31m -<<,因为01m <<是31m -<<的一个真子集,所以直线与圆有两个不同交点的一个充分不必要条件是01m <<.所以C 选项是正确的.2有相同的焦点,则m n +的取值范围是 ( )A.(]0,6 B. []3,6 C.D. [)6,9 【答案】C3.设F 为双曲线 O 为坐标原点,若OF 的垂直平分线)A. B. C. D. 【答案】B4.已知双曲线22:21C x my +=的两条渐近线互相垂直,则抛物线2:E y mx =的焦点坐标是( )A. B. C. ()0,1D. ()0,1- 【答案】A【解析】因为双曲线22:21C x my +=的两条渐近线互相垂直,所以两条渐近线方程为y x =±,双曲线方程为221x y -=,则,即22x y =-,则其焦点A. 5的右焦点和虚轴上的一个端点分别为,F A ,点P 为双曲线C 左支上一点,若APF ∆周长的最小值为6b ,则双曲线C 的离心率为( )A.B. C.【解析】设双曲线的右焦点为'F ,AFP ∆的周长为所以三角形周长的最小76b a =, B. 6.已知点()03,M y 是抛物线22(06)y px p =<<上一点,且M 到抛物线焦点的距离是M 到的距离的倍,则p 等于( )A. B. C. D. 【答案】B,即2p =或18p =(舍),故选B. 7.已知抛物线2:4C y x =的焦点为F ,准线为,过点F 的直线交抛物线于,A B 两点(A 在第一象限),过点A 作准线的垂线,垂足为E ,若60AFE ∠=︒,则AFE ∆的面积为( )A. B. C.D.【答案】A8的渐近线与圆22430x y y +-+=相切,则该双曲线C 的离心率为( )A. B. 2 C.【解析】圆标准方程为()2221x y +-=,圆心为()0,2,半径为1,双曲线的渐近线方程为,即0bx ay -=,所以B . 9.的右焦点F 作双曲线的一条渐近线的垂线,垂足为E , O 为坐标原点,若2,OFE EOF ∠=∠则b =( )A.B. C.D.【答案】D【解析】由题意, 260OFE EOF ∠=∠=︒,故选D.10.已知椭圆1C 和双曲线2C 焦点相同,且离心率互为倒数, 12,F F 是它们的公共焦点, P 是椭圆和双曲线在第一象限的交点,若1260F PF ∠=︒,则椭圆1C 的离心率为( )A. B. C.D.【答案】AA.B. C. 2±D.【答案】B 【解析】2,c o ,OA OB OA OB AOB ⋅=∴∠,22,2AB d ⎛+ ⎝B . 12.的一个焦点与抛物线220y x =的焦点重合,则该双曲线的标准方程为__________.【解析】的一个焦点与抛物线220y x =的焦点则222b 20c a =-=,所求的双曲线方程为: 13,则线段AB 的中点P 离轴最近时点的纵坐标为__________. 【答案】14.已知实数4,,9m 构成一个等比数列,则圆锥曲线__________.【解析】因为4,,9m 构成一个等比数列,所以24936m =⨯=,故6m =±,当6m =时椭圆,当6m =-时双曲线的焦距为15.已知圆C 过抛物线24y x =的焦点,且圆心在此抛物线的准线上,若圆C 的圆心不在轴上,相切,则圆C 的半径为__________. 【答案】14【解析】因抛物线的准线方程为1x =-,焦点坐标为()1,0F ,故设圆心坐标为()()1,0C t t -≠,由题意圆的半径解之得,所以圆的半径,应填答案14.16.已知,P Q 是椭圆上关于原点O 对称的任意两点,且点,P Q 都不在轴上.(1)若(),0D a ,求证: 直线PD 和QD 的斜率之积为定值;(2)若椭圆长轴长为,点()0,1A 在椭圆E 上,设,M N 是椭圆上异于点A 的任意两点,且AM AN ⊥.问直线MN 是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.【答案】(1)见解析;(2)直线MN 恒定过点,?AM AN AM AN x x ⊥∴=,()()()()2212121110k x x k t x x t ∴++-++-=,或1t = (舍去), MN ∴方程为,则直线MN 恒定过点综上所述,直线MN 恒定过点17.已知动圆C 与圆()22:21C x y -+=外切,又与直线:1l x =-相切 .(1)求动圆C 的圆心的轨迹方程E ;(2)若动点M 为直线上任一点,过点()1,0P 的直线与曲线E 相交,A B 两点.求证:2MA MB MP k k k +=.【答案】(1) 28y x =;(2) 见解析.()()()1122,,,,1,A x y B x y M t -,则2121212128,8,82,1y y m y y x x m x x +=⋅=-+=+⋅=,所以2MA MB MP k k k +=成立.18.设已知双曲线2:2C y px =的焦点为1F ,过1F 的直线与曲线C 相交于M N 、两点. (1)若直线的倾斜角为60︒,且,求p ;2p =P Q 、P Q F 、、PQ MN ⊥四边形PMQN的面积的最小值.p (2【答案】(1)219.在平面直角坐标系xOy 中, ,M N 是轴上的动点,且,过点,M N 分的两条直线交于点P ,设点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)过点()1,1Q 的两条直线分别交曲线E 于点,A C 和,B D ,且//AB CD ,求证直线AB 的斜率为定值.【答案】(Ⅱ)直线AB 的斜率为定值【解析】试题分析:(Ⅰ)设(),P m n ,直,令0y =,得,同理得,根据22OM ON m ⎛+= 化简可得结果;(Ⅱ) 设,,(0)AQ QC BQ QDλλλ==>,可得1,1A C A C x x y y λλλλ=+-=+-①,同理(Ⅱ)∵//AB CD,设,,(0)AQ QC BQ QD λλλ==>,()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则()()1,11,1A A C C x y x y λ--=--,即1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②将()(),,,A A B B A x y B x y ,代入椭圆方程得化简得()()()()34A B A B A B A B x x x x y y y y +-=-+-③ 把①②代入③,得()()()()()()()()()3223422422C D C D C D C D C D C D x x x x x x y y y y y y λλλλλ+--+-=-+-+++-将()(),,,C C D D C x y D x y ,代入椭圆方程,同理得()()()()34C D C D C D C D x x x x y y y y +-=-+-代入上式得()()34C D C D x x y y -=--.∴直线AB 的斜率为定值 20.在平面直角坐标系xOy 内,动点(),M x y 与两定点()2,0-, ()2,0连线的斜率之积(1)求动点M 的轨迹C 的方程;(2)设点()11,A x y , ()22,B x y 是轨迹C 上相异的两点.(Ⅰ)过点A , B 分别作抛物线,证明: 0NA NB ⋅=;(Ⅱ)若直线OA 与直线OB 的斜率之积为 AOBS 为定值,并求出这个定值.【答案】(12)(Ⅰ)0(Ⅱ)1。

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。

高中数学解析几何大题专项练习

高中数学解析几何大题专项练习

高中数学解析几何大题专项练习1、已知椭圆G:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(x,y)到椭圆上的点最远距离为52.1)求此时椭圆G的方程;2)设斜率为k(k≠0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于直线对称?若能,求出k的取值范围;若不能,请说明理由。

2、已知双曲线x-y=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x+y=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1)、P2(x2,y2)。

Ⅰ)求k的取值范围,并求x2-x1的最小值;Ⅱ)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么,k1×k2是定值吗?证明你的结论。

3、已知抛物线C:y=ax^2的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A、B两点,点A关于x轴的对称点为D。

1)求抛物线C的方程。

2)证明:点F在直线BD上;3)设FA×FB=9,求△BDK的面积。

4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为1/2,中点T在直线OP上,且A、O、B三点不共线。

I)求椭圆的方程及直线AB的斜率;Ⅱ)求△PAB面积的最大值。

5、设椭圆(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a(b^2/a)交x轴于点A,且AF1=2AF2.Ⅰ)试求椭圆的方程;Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E(如图所示),若四边形DMENE的面积为27,求DE 的直线方程。

6、已知抛物线P:x^2=2py(p>0)。

Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.ⅰ)求抛物线P的方程;ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;Ⅱ)设过焦点F的动直线l交抛物线于A、B两点,连接AO,BO并延长分别交抛物线的准线于C、D。

(完整版)解析几何(大题)

(完整版)解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆()2222:10x y C a b a b+=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线,AP BP 的斜率分别为12,k k ,且1214k k =-,AP OM ∥,BP ON ∥.(1)求椭圆C 的方程;(2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.【答案】(1)22:14x C y +=;(2)定值1. 【解析】(1)221,11442,AP BPb k k b a a ⎫=⎪=-⇒⇒=⎬⎪=⎭g ,椭圆22:14x C y +=.(2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y ,()22222,4184401,4y kx t k x ktx t x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 122841kt x x k +=-+,21224441t x x k -=+,()()1212121212121211404044y y k k y y x x kx t kx t x x x x ⋅=-⇒⋅=-⇒+=⇒+++=, ()()22121241440kx x kt x x t ++++=,()2222222448414402414141t ktk kt t t k k k ⎛⎫-+-+=⇒-= ⎪++⎝⎭,MN ====,d =,1S ===. ∴OMN △的面积为定值1.20.(本小题满分12分)[2017平安一中]上顶点B 是抛物线24x y =的焦点. (1)求椭圆M 的标准方程;(2)若P 、Q 是椭圆M 上的两个动点,且OP ⊥OQ (O 是坐标原点),由点O 作OR ⊥PQ 于R ,试求点R 的轨迹方程.【答案】(1【解析】(1① 又1b =······②所以椭圆M(2)(i )若直线PQ ∥x 轴,设直线:PQ y m =OP ⊥OQ (ii )若直线PQ 不平行x 轴,设直线:PQ x ty n =+()t R n R ∈∈,,联立椭圆M 的方程消x 得222(2)2(2)0t y tny n +++-=,设11()P x y ,,22()Q x y ,,OP ⊥OQ 得0OP OQ ⋅=u u u r u u u r ,即12120x x y y +=, 即1212()()0ty n ty n y y +++=······⑤又原点O 到直线PQ 所以动点R20.(本小题满分12分)[2017郑州一中]已知圆M :222()0x y r r +=>与直线1l :40x +=相切,设点A 为圆上一动点,AB x ⊥轴于B ,且动点N 满足2AB NB =u u u r u u u r ,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线l 与直线1l 垂直且与曲线C 交于P ,Q 两点,求OPQ △面积的最大值.【答案】(1)2214x y +=;(2)1. 【解析】(1)设动点()N x y ,,00()A x y ,,因为AB x ⊥轴于B ,所以0(0)B x ,, 设圆M 的方程为222:x y M r +=, 由题意得2r ==, 所以圆M 的方程为22:4x M y +=.由题意,2AB NB =u u u r u u u r,所以00(0)2()y x x y -=--,,, 所以,即002x xy y =⎧⎨=⎩,将(2)A x y ,代入圆22:4x M y +=,得动点N 的轨迹方程2214x y +=.(2)由题意设直线l :0x m +=,设直线l 与椭圆2214x y +=交于11()P x y ,,22()Q x y ,,联立方程2244y m x y ⎧=-⎪⎨+=⎪⎩,得2213440x m ++-=, 222192413(44)16(13)0m m m ∆=-⨯-=-+>,解得2 13m <,12x ==,又因为点O 到直线l 的距离||2m d =,122||PQ x x =-=。

高考数学复习训练:解析几何100道经典大题(含答案)高中生打印

高考数学复习训练:解析几何100道经典大题(含答案)高中生打印
所以今天给同学们整理了一份高中数学几何的题库大全,包含解析,一共79页,希望同学们可以认真做题,认真复习。家长也可以给孩子打印下来。
篇幅有限,仅为部分资料。但,可免费领取电子版。
所以今天给同学们整理了一份高中数学几何的题库大全包含解析一共79页希望同学们可以认真做题认真复习
高考数学复习训练:解析几何100道经典大题(含答案)高中生打印
几何是高中数学最常考的考点之一,用代数的方法解决几何问题,难度பைடு நூலகம்用我说,大家都知道怎么回事。在几何的学习中,重点是用“数形结合”的思想把几何转化为代数问题。

新高考卷解析几何热门考题汇编(学生版)

新高考卷解析几何热门考题汇编(学生版)

新高考卷解析几何热门考题汇编选填部分一、基本原理1.圆中与距离最值有关的常见的结论结论1. 圆外一点A 到圆上距离最近为AO -r ,最远为AO +r ;结论2. 过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3. 直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d +r ,最近为d -r ;从圆外任一点P (x 0,y 0)向圆引两条切线,圆心C ,两切点A ,B ,我们把线段PA ,PB 的长度叫做切线长,设圆的半径为r ,则有:结论4.切线长的计算:PA =PB =PC 2−r 2,当半径给定,切线长最小等价于PC 最小.结论5. 过圆外一点P 向圆O 引两条切线,切点记为A ,B ,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.结论6. 圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7. 圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8. 圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.2.椭圆三定义1.椭圆的第二定义:a 2−cx =a (x −c )2+y 2⇒(x −c )2+y 2a 2c−x=ca①. ①式表明椭圆上的点P 到右焦点F 2的距离与到直线x =a 2c 的距离之比是离心率e .2.角度形式焦半径:上加下减.QF 2 =b 2a -c ⋅cos θ,PF 2 =b 2a +c ⋅cos θ,AB =2ab 2a 2-c 2⋅cos 2θ3.第三定义假设A ,B 是椭圆上任意两点且关于坐标原点中心对称,那么椭圆上任意点P (不与A ,B 重合)到A ,B 点的斜率之积为一个定值.证明:设A ,B 的坐标分别为(x 0,y 0),(−x 0,−y 0),P (x ,y ),则由于三点均在椭圆上,故满足:x 20a 2+y 20b 2=1,x 2a 2+y 2b 2=1,即x 20a 2+y 20b 2=x 2a 2+y 2b 2⇒y −y 0x −x 0⋅y +y 0x +x 0=−b 2a2.3.椭圆焦点三角形焦点三角形主要结论:椭圆定义可知:ΔPF 1F 2中,(1). |PF 1|+|PF 2|=2a ,|F 1F 2|=2c .(2). 焦点三角形的周长为L =2a +2c .(3).|PF 1||PF 2|=2b 21+cos ∠F 1PF 2.(4). 焦点三角形的面积为:S =12|PF 1||PF 2|sin ∠F 1PF 2=b 2tan ∠F 1PF 22.①设F 1、F 2是椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点,P 是椭圆C 上的一个动点,则当P 为短轴端点时,∠F 1PF 2最大.②.S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;(5). 假设焦点ΔPF 1F 2的内切圆半径为r ,则S =(a +c )r .(6).焦半径公式:设P (x 0,y 0)是椭圆上一点,那么|PF 1|=a +ex 0,|PF 2|=a −ex 0,进一步,有PF 1 •PF 2 =a 2-ex 2∈b 2,a 2推导:根据两点间距离公式:|PF 1|=(x 0+c )2+y 2,由于x 20a 2+y 20b2=1,(a >b >0)代入两点间距离公式可得|PF 1|=(x 0+c )2+b 21−x 20a2,整理化简即可得|PF 1|=a +ex 0. 同理可证得|PF 1|=a −ex 0.(7).设P (x 0,y 0)是椭圆上一点,那么PF 1 ⋅PF 2 =b 2−c 2+e 2x 20,由于x 0∈[0,a 2],故我们有PF 1 •PF 2 =b 2-c 2+e 2x 2∈b 2-c 2,b 2(8)若约定椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为左、右焦点;顶点P (x 0,y 0)在第一象限;∠PF 2F 1=α,∠PF 1F 2=β(α>β),∠F 1PF 2=γ,则对于椭圆,离心率e =2c 2a =ca =sin γsin α+sin β=sin (α+β)sin α+sin β4.双曲线焦点三角形1.如图,F 1、F 2是双曲线的焦点,设P 为双曲线上任意一点,记∠F 1PF 2=θ,则△PF 1F 2的面积S =b 2tan θ2.OF 1F 2Pxy .2.离心率e =2c 2a =ca =sin γsin α−sin β=sin (α+β)sin α−sin β.3.焦半径公式:如图,对于双曲线,PF 1 =ex 0+a ,PF 2 =ex 0−a ,对双曲线,其焦半径的范围为c −m ,+∞ .4.双曲线中,焦点三角形的内心I 的轨迹方程为x =a (−b <y <b ,y ≠).5.已知具有公共焦点F 1,F 2的椭圆与双曲线的离心率分别为e 1,e 2,P 是它们的一个交点,且∠F 1PF 2=2θ,则有sin θe 12+cos θe 22=1.6.如图,过焦点F 2的弦AB 的长为t ,则ΔABF 1的周长为4m +2t .5.双曲线的渐近线1.双曲线x 2a 2−y 2b 2=1中,右焦点为F 2,作F 2P 垂直于渐近线y =b a x ,垂足为P ,则点P 在双曲线的右准线上,且P 的坐标为a 2c ,abc,且OP =a ,F 2P =b ,F 2O =c .2.过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 且与渐近线y =ba x 垂直的直线分别交C 的两条渐近线于P 、Q 两点,则OF =c ,FQ =b ,OQ =a .(1)当1<e <2时,设∠FOQ =α,则tan α=ba,tan2α=2tan α1−tan 2α=2⋅b a 1−b a2=2aba 2−b 2,PQ =a ⋅tan2α=2a 2b a 2−b 2,PF =PQ −FQ =2a 2b a 2−b 2−b =bc 2a 2−b2,OP =a 2+2a 2b a 2−b 22=ac 2a 2−b 2.进一步,若QF =λFP(0<λ<1),则e 2=2λ+1(2)当e >2时,设M 是直线PQ 与y 轴的交点,∠MOQ =β,则tan β=a b,tan2β=2βtan 1-2βtan =2⋅a b 1-a b 2=2ab b 2-a 2,PQ =a ⋅tan2β=2a 2bb 2−a 2,OP =a 2+2a 2b b 2−a 22=ac 2b 2−a2,MQ =a tan β=a 2b ,PM=PQ -MQ =2a 2b b 2−a 2-a 2b =a 2c 2b b 2−a 2OM =a 2b 2+a 2=ac b ,MF =ac b 2+c 2=c 2b.进一步:若FP =λFQ λ>0,λ≠1 ,则e 2=2λλ−16.抛物线焦半径假设抛物线方程为y 2=2px .过抛物线焦点的直线l 与抛物线交于A ,B 两点,其坐标分别为A (x 1,y 1),B (x 2,y 2).性质1.|AF |=x A +p 2,|BF |=x B +p2,|AB |=x A +x B +p .性质2.抛物线y 2=2px 的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:x 1x 2=p 24,y 1y 2=−p 2.一般地,如果直线l 恒过定点M (m ,0)与抛物线y 2=2px (p >0)交于A ,B 两点,那么x A x B =m 2,y A y B =−2pm .于是,若OA ⊥OB ⇒AB 恒过定点(2p ,0).性质3.已知倾斜角为θ直线的l经过抛物线y2=2px的焦点F,且与抛物线交于A,B两点,则(1)|AF|=p1−cosθ,|BF|=P1+cosθ,1|FA|+1|FB|=2p.(2)|AB|=2psin2θ,SΔOAB=p22sinθ,|AB|=2p1+1k2.性质4.抛物线的通径(1).通径长为2p.(2).焦点弦中,通径最短.(3).通径越长,抛物线开口越大.性质5.已知直线l经过抛物线y2=2px的焦点F,且与抛物线交于A,B两点,若弦AB中点的坐标为(x0,y0),则|AB|=2x0+p 2.性质6.以焦点弦为直径的圆与准线相切.7.抛物线中的阿基米德三角形如图,假设抛物线方程为x2=2py(p>0),过抛物线准线y=−p2上一点P(x0,y0)向抛物线引两条切线,切点分别记为A,B,其坐标为(x1,y1),(x2,y2). 则以点P和两切点A,B围成的三角形PAB中,有如下的常见结论:结论1.直线AB过抛物线的焦点F.结论2.直线AB的方程为x0x=2p y0+y2=p(y0+y).结论3.过F的直线与抛物线交于A,B两点,以A,B分别为切点做两条切线,则这两条切线的交点P (x0,y0)的轨迹即为抛物线的准线.结论4.PF⊥AB.结论5.AP⊥PB.结论6.直线AB的中点为M,则PM平行于抛物线的对称轴.二.试题汇编1.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知⊙O 1:(x -2)2+(y -3)2=4,⊙O 1关于直线ax +2y +1=0对称的圆记为⊙O 2,点E ,F 分别为⊙O 1,⊙O 2上的动点,EF 长度的最小值为4,则a =( )A.-32或56B.-56或32C.-32或-56D.56或322.(福建省厦门市2023届高三下学期第二次质量检测)圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP ⋅AO的取值范围为( )A.-12,4B.0,2C.-12,2D.0,43.(广东省2023届高考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),点B 的坐标为0,b ,若C 上的任意一点P 都满足PB ≥b ,则C 的离心率取值范围是( )A.1,5+12B.5+12,+∞ C.1,2D.2,+∞4.(广东省佛山市2023届高三教学质量检测(一))已知双曲线C 的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线4x +3y -20=0与C 的一条渐近线垂直,则C 的离心率为( )A.54B.43C.53D.745.(广东省广州市2023届高三综合测试(一))已知抛物线C 的顶点为坐标原点O ,焦点F 任x 铀上,过点2,0 的且线交C 于P ,Q 两点,且OP ⊥OQ ,线段PQ 的中点为M ,则直线MF 的斜率的取大值为( )A.66B.12C.22D.16.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB=3F 2A ,BF 2平分∠F 1BC ,则双曲线Γ的离心率为( )A.7B.5C.3D.27.(湖北省武汉市2023届高三下学期二月调研)设A ,B 是半径为3的球体O 表面上两定点,且∠AOB =60°,球体O 表面上动点P 满足PA =2PB ,则点P 的轨迹长度为( )A.121111π B.4155π C.6147π D.121313π8.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为( )A.54B.85C.52D.21059.(江苏省南京市、盐城市2023届高三下学期一模)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB ⊥x 轴,CD ⊥y 轴.若PA :PB :PC :PD =1:3:1:5,则椭圆E 的离心率为( )A.55B.105C.255D.210510.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))已知椭圆x 2a 2+y 2b 2=1a >b >0的右焦点为F c ,0 ,点P ,Q 在直线x =a 2c 上,FP ⊥FQ ,O 为坐标原点,若OP ⋅OQ =2OF 2,则该椭圆的离心率为( )A.23B.63C.22D.3211.(2023年湖北省八市高三(3月)联考)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,OD =3,E 为线段的DF 1中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB成立,且△BF 1F 2内切圆的圆心在直线x =2上.则双曲线的离心率是()A.43B.3C.2D.3212.(山东省青岛市2023届高三下学期第一次适应性检测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,直线y =3x 与C 的左、右两支分别交于A ,B 两点,若四边形AF 1BF 2为矩形,则C 的离心率为( )A.3+12B.3C.3+1D.5+113.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知一个抛物线形拱桥在一次暴雨前后的水位之差是1.5m ,暴雨后的水面宽为2m ,暴雨来临之前的水面宽为4m ,暴雨后的水面离桥拱顶的距离为( )A.0.5mB.1mC.1.5mD.2m多选14.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知曲线C :x 24+y 22m 2-4=1( )A.若m >2,则C 是椭圆B.若-2<m <2,则C 是双曲线C.当C 是椭圆时,若m 越大,则C 越接近于圆D.当C 是双曲线时,若m 越小,则C 的张口越大15.(广东省2023届高考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是( )A.若BF 为△ACF 的中线,则AF =2BF B.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF16.(广东省佛山市2023届高三教学质量检测(一))设单位圆O 与x 轴的左、右交点分别为A 、B ,直线l :x cos θ-y sin θ+1=0(其中0<θ<π)分别与直线x +1=0、x -1=0交于C 、D 两点,则( )A.θ=2π3时,l 的倾斜角为π6B.∀θ∈0,π ,点A 、B 到l 的距离之和为定值C.∃θ∈0,π ,使l 与圆O 无公共点D.∀θ∈0,π ,恒有OC ⊥OD17.(广东省广州市2023届高三综合测试(一))平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的,已知在平面直角坐标系xOy 中,M (-2,0),N (2,0),动点P 满足|PM |⋅|PN |=5,则下列结论正确的是( )A.点P 的横坐标的取值范围是-5,5 B.OP 的取值范围是1,3C.△PMN 面积的最大值为52D.PM +PN 的取值范围是25,518.(广东省深圳市2023届高三第一次调研)已知抛物线C :y 2=2x 的准线为l ,直线x =my +n 与C 相交于A 、B 两点,M 为AB 的中点,则( )A.当n =12时,以AB 为直径的圆与l 相交B.当n =2时,以AB 为直径的圆经过原点OC.当AB =4时,点M 到l 的距离的最小值为2D.当AB =1时,点M 到l 的距离无最小值19.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知直线l :y =k x +2 交y 轴于点P ,圆M :x -2 2+y 2=1,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则( )A.若直线l 与圆M 相切,则k =±1515B.当k =2时,四边形PAMB 的面积为219C.直线AB 经过一定点D.已知点Q 74,0,则CQ 为定值20.(湖北省武汉市2023届高三下学期二月调研)若椭圆x 2m 2+2+y 2m 2=1(m >0)的某两个顶点间的距离为4,则m 的可能取值有( )A.5B.7C.2D.221.(江苏省南京市、盐城市2023届高三下学期一模)已知点A -1,0 ,B 1,0 ,点P 为圆C :x 2+y 2-6x -8y +17=0上的动点,则( )A.△PAB 面积的最小值为8-42 B.AP 的最小值为22C.∠PAB 的最大值为5π12D.AB ⋅AP的最大值为8+4222.(山东省济南市2023届高三下学期3月一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则( )A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=023.(山东省青岛市2023届高三下学期第一次适应性检测)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA ⋅OB =r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是( )A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则AD AE为定值24.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知圆的方程为(x -m )2+(y -m )2=m 2,对任意的m >0,该圆( )A.圆心在一条直线上 B.与坐标轴相切C.与直线y =-x 不相交D.不过点1,1填空25.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知曲线f x =x 3-3x 2+6x +2在点P 处的切线与在点Q 处的切线平行,若点P 的纵坐标为1,则点Q 的纵坐标为__________.26.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知椭圆C :x 212+y 26=1,直线l 与C在第二象限交于A ,B 两点(A 在B 的左下方),与x 轴,y 轴分别交于点M ,N ,且|MA |:|AB |:|BN |=1:2:3,则l 的方程为__________.27.(福建省厦门市2023届高三下学期第二次质量检测)写出与直线x =1, y =1,和圆x 2+y 2=1都相切的一个圆的方程________.28.(福建省厦门市2023届高三下学期第二次质量检测)不与x 轴重合的直线l 过点N (x N ,0)(xN ≠0),双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上存在两点A 、B 关于l 对称,AB 中点M 的横坐标为x M .若x N =4x M ,则C 的离心率为____________.29.(广东省2023届高考一模)已知动圆N 经过点A -6,0 及原点O ,点P 是圆N 与圆M :x 2+(y -4)2=4的一个公共点,则当∠OPA 最小时,圆N 的半径为___________.30.(广东省佛山市2023届高三教学质量检测(一))抛物线C :y 2=8x 的焦点为F ,准线为l ,M 是C 上的一点,点N 在l 上,若FM ⊥FN ,且MF =10,则NF =______.31.(广东省深圳市2023届高三第一次调研)若椭圆上的点到焦点距离的最大值是最小值的2倍,则该椭圆的离心率为_________.32.(广东省深圳市2023届高三第一次调研)设a >0,A 2a ,0 ,B 0,2 ,O 为坐标原点,则以OA 为弦,且与AB 相切于点A 的圆的标准方程为____;若该圆与以OB 为直径的圆相交于第一象限内的点P (该点称为直角△OAB 的Brocard 点),则点P 横坐标x 的最大值为______.33.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知M 1,2 为抛物线C :y 2=2px p >0 上一点,过点T 0,1 的直线与抛物线C 交于A ,B 两点,且直线MA 与MB 的倾斜角互补,则TA ⋅TB =__________.34.(湖北省武汉市2023届高三下学期二月调研)若两条直线l 1:y =3x +m ,l 2:y =3x +n 与圆x 2+y 2+3x +y +k =0的四个交点能构成矩形,则m +n =____________.35.(湖北省武汉市2023届高三下学期二月调研)设F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为双曲线E 的左右顶点,点P 为双曲线E 上异于A ,B 的动点,直线l :x =t 使得过F 作直线AP 的垂线交直线l 于点Q 时总有B ,P ,Q 三点共线,则t a的最大值为____________.36.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知点P 在抛物线C :y 2=2px p >0 上,过P 作C 的准线的垂线,垂足为H ,点F 为C 的焦点.若∠HPF =60°,点P 的横坐标为1,则p =_______.37.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)过点-1,0 作曲线y =x 3-x 的切线,写出一条切线的方程_______.38.(江苏省南京市、盐城市2023届高三下学期一模)已知抛物线y 2=4x 的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为____________.39.(江苏省南京市、盐城市2023届高三下学期一模)直线x =t 与曲线C 1:y =-e x +ax a ∈R 及曲线C 2:y =e -x +ax 分别交于点A ,B .曲线C 1在A 处的切线为l 1,曲线C 2在B 处的切线为l 2.若l 1,l 2相交于点C ,则△ABC 面积的最小值为____________.40.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))已知圆C :x 2-2x +y 2-3=0,过点T 2,0 的直线l 交圆C 于A ,B 两点,点P 在圆C 上,若CP ∥AB ,PA ⋅PB =12,则AB =________41.(2023年湖北省八市高三(3月)联考)已知抛物线y 2=2px (p >0)的焦点为F ,过点F 的直线与该抛物线交于A ,B 两点,AB =52,AB 的中点纵坐标为2,则p =__________.42.(山东省济南市2023届高三下学期3月一模)已知圆C 1:x 2+y 2=2关于直线l 对称的圆为圆C 2:x 2+y 2+2x -4y +3=0,则直线l 的方程为______.43.已知O 为坐标原点,在抛物线y 2=2px p >0 上存在两点E ,F ,使得△OEF 是边长为4的正三角形,则p =______.44.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知抛物线y2=4x和椭圆x2+a2y2=1(a>b>0)相交于A,B两点,且抛物线的焦点F也是椭圆的焦点,若直线AB过点F,则椭圆的b2离心率是__________.。

高考数学解析几何专题汇编及详细答案

高考数学解析几何专题汇编及详细答案

解析几何专题汇编1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,∴所求渐近线方程为y =±12x . 2. O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2 B .22C .2 3 D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42,∴x 0=32,∴y 20=42x 0=42×32=24,∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.已知椭圆E :x 2a 2+y2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1.②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2).∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.设椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13C.12 D.33解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m ∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3. ∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D.5.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p ,∴13|BF |+1|BF |=1,∴|BF |=43,|AF |=4,∴|AB |=163. 又由抛物线焦点弦公式:|AB |=2p sin 2θ,∴163=4sin 2θ,∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34].7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2.9.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .2x +y -3=0 B .2x -y -3=0C .4x -y -3=0 D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( A.316 B.38C.233 D.433解析:选D.∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p 2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2 B.3C.32 D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2C.83 D.1623解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2 D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是()A .m>12B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y 2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1. 15.双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255.16.已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a , ∴|1-2-2a|1+a2=5,解得a =2. 17.(2)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )A .12 B.22C .1 D. 2解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC 的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43,即|AP →|=43. 19.已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a |=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意; 若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1,所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件.20.已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33 B .-33C .±33 D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33.22.已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5 B .1∶2C . 1∶ 5 D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12,则|MH|∶|MN|=1∶5,即|MF|∶|MN|=1∶ 5. 24.已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相B .虚轴长相等C .离心率相等D .焦距相等解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.抛物线y 2=8x 的焦点到直线x -3y =0的距离是( )A .2 3 B .2C . 3 D .1 解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D.26.从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a 2=b 4a 2.∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac. ∵A(a,0),B(0,b),∴k AB =b -00-a =-b a .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac ,∴b =c.∴e =ca=c b 2+c 2=c 2c 2=22.故选C. 27.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32C .1 D. 3 解析:选B.由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A .52-4 B.17-1C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3,∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4.29.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6 B .4C .3 D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0 B .x +y +1=0C .x +y -1=0 D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b=-2,故直线方程为x +y -2=0,故选A.31.已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1C .x 22-y 25=1 D.x 22-y25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B.32.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1 B.x 24+y 23=1C .x 24+y 22=1 D.x 24+y23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y23=1,故选D.33.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6 解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4.34.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦. |CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2.∴最短弦长为2 2.答案:2 235.已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0,即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e=c a =33.答案:3338 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 539若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p 2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1.答案:2;x =-140.设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.已知抛物线y 2=8x 的准线过双曲线x 2a 2-y2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.答案:x 2-y 23=1 42.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF 中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA =90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57.答案:5744.双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y 2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.设F 1,F 2是双曲线C :x 2a 2-y2b2=1(a>0,b>0)的两个焦点,P 是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a.又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a.∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca = 3.∴e = 3.答案: 350.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6.答案:6 51.椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,①①代入x 24+y 2=1,解得P ⎝⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0, 联立,得⎩⎪⎨⎪⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝ ⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4 =4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.② 由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4).答案:(2,4)53.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1,此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y=2与C 的两个交点间的距离为 6.(1)求a 、b ; (2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16,因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0),又F 1(-3,0),F 2(3,0),所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0,lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2,可得m +332x 0+2=3-m2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22,所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3,所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2,即|m +3||m -3|=|3x 0+4||3x 0-4|.因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334.综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0.由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎪⎨⎪⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|=2-m 22. 所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h. 将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0.设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2, 所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k2=2×1+2k 2-h 21+2k 2×|h|.又S △AOB=64, 所以2×1+2k 2-h 21+2k 2×|h|=64.③令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0. 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2),又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1,即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t =2或t =233.58.如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3. 由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 225t 2+6t +1>2 2. 当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是85 2.60.设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程. 设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c (x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k )≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.63.如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△AB D 面积取最大值时直线l 1的方程.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D(x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k 2,所以|P D|=8k 2+14+k2. 设△AB D 的面积为S ,则S =12|AB |·|P D|=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1.64.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N . (1)若点C 的纵坐标为2,求|MN |;(2)若|AF |2=|AM |·|AN |,求圆C 的半径.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2.又|CO |=5,所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝⎛⎭⎫y 204,y 0,则圆C 的方程为⎝⎛⎭⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0.设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4⎝⎛⎭⎫1+y 202=2y 20-4>0,y 1y 2=y22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4,所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝⎛⎭⎫32,6或⎝⎛⎭⎫32,-6,从而|CO |2=334,|CO |=332,即圆C 的半径为332. 65.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |= 3.(2)四边形OABC 不可能为菱形.理由如下:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.。

解析几何基础100题

解析几何基础100题

分析几何基础 100 题一、选择题:1. 若双曲线 x2y 25,则两条渐近线的方程为22 1的离心率为ab4AX Y B X Y CX Y DX Y 916 0 30 416943解答: C易错原由:审题不仔细, 混杂双曲线标准方程中的 a 和题目中方程的 a 的意义。

2. 椭圆的短轴长为 2,长轴是短轴的 2 倍,则椭圆的中心到其准线的 距离是A8 5 B 45 C8 3 D 4 35533解 答: D易错原由:短轴长误以为是 b3.过定点( 1,2)作两直线与圆 x 2 y 2 kx 2 y k 215 0 相切,则 k的取值范围是A k>2B -3<k<2C k<-3或 k>2 D 以上皆不对解 答: D易错原由:忽视题中方程一定是圆的方程,有些学生不考虑D 2E 2 4F4.设双曲线x2 y 2 1(a b0) 的半焦距为,直线 L 过 (a,0),(0, b) 两点, a2b 2C已知原点到直线 L 的距离为3C ,则双曲线的离心率为4A2B2 或23C 2D2 333解答: D易错原由:忽视条件 a b 0 对离心率范围的限制。

5.已知二面角 l的平面角为 ,PA ,PB ,A ,B 为垂足,且 PA=4,PB=5,设 A 、B 到二面角的棱 l 的距离为别为 x, y ,当 变化时,点 ( x, y) 的轨迹是以下图形中的ABCD解答:D易错原由:只注意找寻 x, y 的关系式,而未考虑实质问题中x, y 的范围。

6.若曲线 yx 24 与直线 yk( x2) +3 有两个不一样的公共点,则实数 k 的取值范围是A 0 k 1B 0 k3 C1 3 D 1 k 04 k4解答: C易错原由:将曲线 yx 2 4 转变为 x 2 y 2 4 时不考虑纵坐标的范围;此外没有看清过点 (2,-3) 且与渐近线 y x 平行的直线与双曲线的地点关系。

7.P(-2,-2) 、Q(0,-1) 取一点 R(2,m) 使︱ PR ︱+︱ RQ ︱最小,则 m=()A1 B 0 C–1 D -423正确答案: D错因:学生不可以应用数形联合的思想方法,借助对称来解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 2 , 2 ∴a=1,b=c= 2 2
2
…………………3 分
故 C 的方程为:y + =1 1 2 (2)当直线斜率不存在时: m = ±
x2
…………4 分
1 2
…………5 分
当直线斜率存在时:设 l 与椭圆 C 交点为 A(x 1,y1),B(x2,y2)
y kx + m = 2 2 2 得(k +2)x +2kmx+(m -1)=0………6 分 ∴ 2 2 1 2 x + y =
2
-2km 2 m -1 2 消去 x2,得 3(x1+x2) +4x1x2=0,∴3( 2 ) +4 2 =0………9 分 k +2 k +2 整理得 4k m +2m -k -2=0
2 2 2 2
m2= 时,上式不成立;m2≠ 时,k2=
2
1 4
1 4
2-2m , 2 4m -1
A E
2
………10 分
【山东省淄博市第一中学2014届高三第一学期期中理】22、(满分14分) 已知点 F1 , F2 分别为椭圆 C :
x2 y2 + = 1(a > b > 0) 的左、右焦点,点 P 为椭圆上任意 a2 b2
一点, P 到焦点 F2 的距离的最大值为 2 + 1 ,且 ∆PF1 F2 的最大面积为 1 (1)求椭圆 C 的方程。 (2)点 M 的坐标为 ( ,0) ,过点 F2 且斜率为 k 的直线 L 与椭圆 C 相交于 A, B 两点。对 于任意的 k ∈ R, MA • MB 是否为定值?若是求出这个定值;若不是说明理由。 1 2 2 2[来源:学科网 ZXXK] 【答案】22.解:⑴由题意可知:a+c= 2 +1 , ×2c×b=1,有∵a =b +c 2 2 2 2 ∴a =2, b =1, c =1
一点, O 为坐标原点, MP = OF , PF = λ OF .
y MOP FDA = ( 3 − 2) DB ,求双曲线的方程.
【答案】22: 解:(Ⅰ)Q MP = OF , ∴ OFPM 为平行四边形. 设 l 是双曲 线的右准线,且与 PM 交于 N 点, OF = c ,
x
Q PF = e PN , PF = λ OF , OF = PM , ∴ λ OF = e PN = e( PM − MN ).
要使上式与 K 无关,则有 6m + 14 = 0, ,解得 m = −
7 7 ,存在点 M (− ,0) 满足题意。12 分 3 3
【山东省济宁市金乡二中 2014 届高三 11 月月考理】23、 (本小题满分 12 分)[来源:学科网] 已知曲线 C 上的动点 P 到点 F (2,0) 的距离比它到直线 x = −1 的距离大 1 . (I)求曲线 C 的方程; (II)过点 F (2,0) 且倾斜角为 α (0 < α <
2-2m 1 1 2 ∴k = 2 ≥ 0,∴ − 1 ≤ m < − 或 < m ≤ 1 4m -1 2 2 2-2m 1 1 2 代入(*)得 − 1 < m < − 或 < m < 1 把k= 2 4m -1 2 2 ∴ −1 < m < −
2
1 1 或 < m <1 2 2
2
…………11 分
所以可设双曲线的方程是
2a 2 4a 2 x x = , . ①[来源:学科网 ZXXK] 1 2 a2 − 3 a2 − 3 由已知, D (0, a ) ,因为 DA = ( 3 − 2) DB , 设A( x1 , y1 ), B( x 2 , y 2 ), 则x1 + x 2 =
所以可得 x1 = ( 3 − 2) x 2 . ②…………10 分
4
p2 > 0. (不写,不扣分) 4 p2 由韦达定理, x1 + x 2 = 3 p, x1 x 2 = . .……………………………3 分 4 p p 由抛物线的定义, | AB |= ( x1 + ) + ( x 2 + ) = 3 p + p = 4 p. 2 2 2 从而 4 p = 8,2 p = 4. 所求抛物的方程为 y = 4 x. .…………………6 分 (2),易得 y1 y 2 = − p 2 , y1 + y 2 = 2 p. .……………………………7 分
∴ Δ= (2km)2-4(k2+2)(m2-1) =4(k2-2m2+2)>0 (*)
x1+x2=
-2km m -1 , x1x2= 2 2 k +2 k +2
A A A E E
…7 分
2
………8 分
∵ AP =3 ∴-x1=3x2 ∴
−2 x2 x1 + x2 =
2 x1 x2 = −3 x2
2a 2 4a 2 2 , , ( 3 − 2 ) x = 2 a2 − 3 a2 − 3 消去 x 2 得 a 2 = 2, 符合 ∆ > 0 ,
由①②得 ( 3 − 1) x 2 = 所以双曲线的方程是
x2 y2 − = 1 ………………14 分 2 6
【山东济南市 2014 界高三下学期二月月考理】已知椭圆 C 的中心为坐标原点 O,焦点在 y 轴上, 离心率 e =
解析几何解答题100题精选
【山东省滕州二中 2014 届高三上学期期中理】22: (本小题满分 14 分)如图, F 为双曲线
C:
x2 y2 − = 1(a > 0, b > 0) 的右焦点, P 为双曲线 C 在第一象限内的一点, M 为左准线上 a2 b2
(Ⅰ)推导双曲线 C 的离心率 e 与 λ 的关系式; (Ⅱ)当 λ = 1 时, 经过点 (1,0) 且斜率为 − a 的 直线交双曲线于 A, B 两点, 交 y 轴于点 D , 且
(3k 2 + 1) x 2 + 6k 2 x + 3k 2 − 5 = 0
………………4 分
设A( x1 , y1 ), B( x 2 , y 2 ), M (m,0) 则 x1 + x 2 = −
6k 2 3k 2 − 5 x x = , 1 2 3k 2 + 1 3k 2 + 1
………6 分
uuu r uuu r 1 6m + 14 MA ⋅ MB = (k 2 + 1) x1 x2 + (k 2 − m)( x1 + x1 ) + k 2 + m 2 = m 2 + 2m − − ……10 分 3 3(3k 2 + 1)
) 的直线与曲线 C 交于 A, B 两点,线段 AB 的 2 垂直平分线 m 交 x 轴于点 P ,证明: | FP | − | FP | ⋅ cos 2α 为定值,并求出此定值. 【答案】23、解:(I)设动点 P ( x, y ) ,动点 P 到点 F (2,0) 的距离比它到直线 x = −1 的
2a 2 ). ∴ e 2 − λe − 2 = 0. ………………6 分 c (Ⅱ)当 λ = 1 时,得 e = 2,∴ c = 2a, b = 3a.
即 λ ⋅ c = e(c −
x2 y2 − = 1 ,…8 分 a 2 3a 2 设 直 线 AB 的 方 程 是 y = − a ( x − 1), 与 双 曲 线 方 程 联 立 得: (3 − a 2 ) x 2 + 2a 2 x − 4a 2 = 0. 由 ∆ = 4a 4 + 16a 2 (3 − a 2 ) > 0 得 0 < a < 2 .
6 3
x 轴 , 且
a = 5, 又c = ea =
6 30 = b ,故 × 5= 3 3
a2 − c2
………………3 分
= 5−
10 5 x2 y 2 = , 故所求方程为 + = 1, 即 x 2 + 3 y 2 = 5 5 3 3 5 3
(2)假设存在点 M 符合题意,设 AB: y = k ( x + 1), 代入 E : x 2 + 3 y 2 = 5 得:
距离 多 1 。即动点 P 到点 F (2,0) 的距离等于它到直线 x = −2 的距离 则 ( x − 2) 2 + y 2 =| x + 2 |
3
π
两边平方 ( x − 2) 2 + y 2 = ( x + 2) 2 化简可得: y 2 = 8 x (II)如图,作 AC ⊥ l , BD ⊥ l 设 A , B 的横坐标分别为 x A , xB 则 | FA |=| AC |= x A + C
5 4
x2 ∴所求椭圆的方程为: + y2 = 1 2
5 ⑵设直线 l 的方程为:y=k(x-1)A(x1,y1) ,B(x2,y2),M( ,0)[来源:学科网 ZXXK] 4
5
x2 2 1 +y = 联立 2 消去y得:( 1 + 2k 2)x 2 - 4k 2 x + 2k 2 - 2 = 0 y=k ( x-1)
y
A
p 2
α
B F
D p p =| FA | cos α + + B 2 2 =| FA | cos α + 4 4 解得 | FA |= 1 − cos α 同理 | FB |= 4− | FB | cos α 4 解得 | FB |= 1 + cos α 记 m 与 AB 的交点为 E 1 1 4 4 ) − | FE |=| FA | − | AE | =| FA | − | AB | = ( 2 1 − cos α 1 + cos α 2 4 cos α = sin 2 α | FE | 4 ∴| FP |= = cos α sin 2 α 4 故 | FP | − | FP | ⋅ cos 2α = (1 − cos 2α ) = 8 sin 2 α 【山东省苍山县 2014 届高三上学期期末检测理】22.(本题满分 14 分) 如图,斜率为 1 的直线 l 过抛物线 Ω : y= 2 px( p > 0) 的焦点 F,与抛物线交于两点 A, B。 (1)若|AB|=8,求抛物线 Ω 的方程; (2)设 P 是抛物线 Ω 上异于 A,B 的任意一点,直线 PA,PB 分别交抛物线的准线于 M, N 两点,证明 M,N 两点的纵坐标之积为定值(仅与 p 有关)。
相关文档
最新文档