高等数学第十一章第六节
高数下册第11章解析
则 1时级数收敛; 1 时级数发散; 1时失效.
(5) 根值审敛法 (柯西判别法)
设 un 是正项级数,
n1
如果lim n n
un
(为数或 ),
则 1时级数收敛; 1时级数发散; 1时失效.
3、交错级数及其审敛法
定义 正 、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
如果级数 an x n 在x x0处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
函数
1、常数项级数
定义
un u1 u2 u3 un
n1
n
级数的部分和 sn u1 u2 un ui
i 1
级数的收敛与发散
常数项级数收敛(发散)
lim
n
sn
存在(不存在).
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变.
性质2:收敛级数可以逐项相加与逐项相减.
(2)
讨论
lim
n
Rn
0
或
f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
b.间接法 根据唯一性, 利用常见展开式, 通过 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积 分等方法,求展开式.
(4) 常见函数展开式
e x 1 x 1 x2 1 xn x (,)
G11_6高斯公式
2
1
1
d x d ydz Dxy( x 2 ) d x d y
o
x
1y
2
1 2
13 1 3 1 2 2 z d z d r d r 1 0 12 2 0
d 1 x 2 y 2 d dz 2 Dz D
A n d S 为向量场 A 通过
P Q R 记作 div A x y z
称为向量场 A 在点 M 的散度.
20
说明: 由引例可知, 散度是通量对体积的变化率, 且
div A 0 表明该点处有正源, div A 0 表明该点处有负源, div A 0 表明该点处无源,
上有连续的一阶偏导数 , 则有
P d y d z Q d z d x Rdx d y (Gauss 公式)
下面先证: R z d x d y d z R d x d y
3
证明: 设
为XY型区域 , 1 2 3 ,
1 : z z1 ( x, y ) ,
x y z
作辅助球面 1 : x 2 y 2 z 2 2
I
( 足够小)取内侧。
( P Q R )dv 1 x y z 3 1 1
1
xdydz ydzdx zdxdy
1
11
3 4 3 3 3 dv 4 3 3
原式 =
( y z ) d x d y d z
3
(用柱坐标)
zdv 0 zdz d
9 2
Dxy
o 1 (用对称性) x
高等数学 第六节 高斯公式 通量与散度
Φ Pdydz Qdzdx Rdxdy
n
Σ
当 > 0, 说明流入 的流体质量少于
流出的, 表明 内有泉;
n
当 < 0, 说明流入 的流体质量多于流出的,
表明 内有洞 ; 当 = 0, 说明流入与流出 的流体质量相等 。
根据高斯公式, 流量也可表为
P x
Q y
R z
dxdydz
2、是否满足高斯公式的条件;
3、Σ 是取闭曲面的外侧。
第2xzdydz yzdzdx z2dxdy ,
其中 是由曲面 z x2 y2 与
z 2 x2 y2 所围立体的表面外侧。
z
Dxy
2y
x
第十一章 第六节
7
例2 计算 ( x y)dxdy ( y z)xdydz ,其中 Σ 是
cos
n
0
r
0
n
0
r
0
则
x cos y cos z cos
r
r
r
1 3
r
cos
dS
1
3dv V
3 第十一章 第六节
23
内容小结
1 高斯公式及其应用
公式
P Q R
Ω
(
x
y
z
)dv
Σ
Pdydz
Qdzdx
Rdxdy
应用 (1) 计算曲面积分
(非闭曲面时注意添加辅助面的技巧)
(2) 闭曲面积分为零的充要条件:
Gauss
I 2 (x y z)dv
1 1
1
对称性
2 zdv h2dS
1方 程
1
1 2
h4
高数第11章 线性代数PPT课件
• 本章重点:
1. 利用行列式的性质计算n阶行列式的方法 2.利用克莱姆法则解线性方程 3.矩阵各种运算,矩阵的初等变换 4.矩阵秩的求法,用初等变换求逆矩阵的方法
5.高斯消元法解线性方程组 6. 层次分析法
• 本章难点:
1. 利用行列式的性质计算n阶行列式的方法
2.用矩阵的初等变换求矩阵的秩,逆矩阵
1111213215321213132111163631316??????????????按第一行展开1612106?????21111226121111111111112111126120211211226120261200313100212????????????1111200011111111111112102110211224261200310031????????????11111111211123001212031031???????按第一行展开211111134131124??????????按第二行展开例例2用行列式的性质计算下列行列式
3.高斯消元法解线性方程组
4.层次分析法
第一节 二、三阶行列式的概念与计算方法
1.引理:
对于二元线性方程组
aa2111xx11
a12x2 a22x2
b1 b2
解得
x1
x
2
b1a 22 b2 a12 a11a22 a12a21 b2 a11 b1a 21 a11a22 a12a21
河北机电职业技术学院
线 性代数课件
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
第十一章 线性代数
高等数学基础第十一章
形如 y'' +py' qy f (x)
(11-2)
的方程(其中p,q为常数),称为二阶常系数非齐次线性微分方
程。称 y'' +py' qy 0为方程(11-2)所对应的齐次方程。
定理11.2 (非齐次线性方程解的结构) 若 yp是线性非齐次方程(2)的 某个特解, yc 为对应的齐次线性方程的通解,则 y yp yc 为
以 s t
t0 0
,ds
dt
t0 0
。代入上式得
C1 C2=0
所以
s t 1 gt2
2
二、微分方程的基本概念
定义11.1 凡表示未知函数、未知函数的导数与自变量之间的关系 的方程称为微分方程。未知函数是一元函数的微分方程称为常微 分方程,未知函数是多元函数的微分方程称为偏微分方程。 微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶
把初始条件y x0 2 代入上式,得C 2
所以方程的特解为
y (x2 2)ex2
第三节 可降阶的高阶微分方程
一、y(n) f (x) 型的微分方程
例1 求微分方程 y 2x sinx 的通解。
解
因为 y 2x sinx,所以
y' x2 cosx C1
y
1 3
x3
sinx
C1x
x3
1 5
x5 )
+
C2
例4 求微分方程(1 ex ) y'' y' 0 的通解。
解
设 y' p(x) ,代入方程,得
(1 ex ) p' p 0
分离变量得
dp p
高等数学(三)第11章 无穷级数
无穷级数是高等数学的一个重要内容,是无限个常量或变量之和的数学模型,它是表示函数、研究函数性态以及进行数值计算的一种有效工具,在数学理论以及工程技术中都有广泛的应用.11.1 数项级数的概念及性质11.1.1 数项级数的概念 实例1 小球运动的时间小球从1米高处自由落下, 每次跳起的高度减少一半, 问小球运动的总时间. 解 由自由落体运动方程221gt s =知g s t 2=.设k t 表示第k 次小球落地的时间, 则小球运动的总时间为+++++=k t t t t T 222321.这里出现了无穷多个数依次相加的式子.在物理、化学等许多学科中,也常能遇到这种无穷多个数或函数相加的情形,在数学上称之为无穷级数.上述级数的定义只是一个形式上的定义,怎样理解无穷级数中无穷多个数相加呢?我们可以从有限项出发,观察它们的变化趋势,由此来理解无穷多个数量相加的含义.令n n u u u S +++= 21,称n S 为级数(11.1.1)的部分和.当n 依次为1,2,3,…,时,得到一个数列1S ,2S ,…,n S ,…,称为级数(11.1.1)的部分和数列.从形式上不难知道∑∞=1n n u =n n S ∞→lim ,所以我们可以根据部分和数列的收敛与发散来定义级数的敛散性. 当级数∑∞=1n n u 收敛于S 时,常用其部分和S n 作为和S 的近似值,其差∑∑∑∞+==∞==-=-111n k knk k k k n u u u S S叫做该级数的余项,记为n r .用部分和S n 近似代替和S 所产生的绝对误差为| r n |.例11.1.1 判定级数 ++⋅++⋅+⋅)1(1321211n n 的敛散性.解 所给级数的一般项为111)1(1+-=+=n n n n u n ,部分和)1(1321211+⋅++⋅+⋅=n n S n 111)111()3121()211(+-=+-++-+-=n n n ,所以1)111(lim lim =+-=∞→∞→n S n n n ,故该级数收敛于1,即1)1(11=+∑∞=n n n . 例11.1.2 考察波尔察诺级数∑∞=--11)1(n n 的敛散性.解 它的部分和数列是1, 0, 1, 0, … ,显然n n S ∞→lim 不存在,∑∞=--11)1(n n 发散.例11.1.3 讨论几何级数(也称等比级数)∑∞=0n naq +++++=n aq aq aq a 2的敛散性,其中a ≠ 0, q 称为级数的公比.解 该几何级数前n 项的部分和21(1),11 ,1n n n a q q qS a aq aq aq na q -⎧-≠⎪-=++++=⎨⎪=⎩, 当q = 1时,由于lim lim n n n S na →∞→∞==∞,所以级数发散;当q = -1时,级数变为 +-+-a a a a ,显然lim n n S →∞不存在,所以级数发散;当| q | > 1时,由于lim n n S →∞=∞,所以级数发散;当| q | < 1时,由于lim 1n n a S q →∞=-,所以级数收敛于1a q-.因此,几何级数0n n aq ∞=∑当| q | < 1时收敛于qa-1;当| q | ≥ 1时发散. 几何级数的敛散性非常重要,许多级数敛散性的判别,都要借助几何级数的敛散性来实现.11.2 .2 数项级数的性质根据级数敛散性的概念,可以得到级数的几个基本性质.12()n n n ku k u u u kS ++=+++=,112)()k k k n k u u u u u u +++++++-+++S S -lim .从性质1的证明可以看出,如果n S 没有极限且k ≠0,则n σ也不可能有极限.换句话说,级数的每一项同乘以一个非零常数,其敛散性不改变.例如,47412)31(1313213231(32(3)1(2111=-=---+-=-+=-+∑∑∑∞=∞=∞=nn nn n n n n .由性质4知,若级数加括号后发散,则原级数必发散.但加括号后收敛的级数,去括号后未必收敛.例如,级数⋅⋅⋅+-+-+-)11()11(11()收敛,但去括号后级数⋅⋅⋅+-+-+-111111却发散.由级数收敛的必要条件可知,如果0lim ≠∞→n n u 或不存在,则级数一定发散.因此可用性质5判定级数∑∞=1n n u 发散性,有时性质5也称为“级数发散的第n 项判别法”.例11.1.4 判定级数∑∞=+112n n n 的敛散性.解 由于02112limlim ≠=+=∞→∞→n n u n n n ,故此级数发散.例11.1.5 证明调和级数 +++++n131211发散. 证明 将调和级数的两项、两项、四项、…、2m 项、… 加括号,得到一个新级数++++++++++++++++)21221121()81716151()4131()211(1m m m .因为 2141414131 ,21211=+>+>+, ,218181818181716151=+++>+++,21212121212211211111=+++>+++++++++m m m m m m , 所以新级数前m + 1项的和大于21+m ,故新级数发散.由性质4知,调和级数发散. 由于调和级数的一般项)(01∞→→=n nu n ,因此例5说明:级数的一般项u n 趋于零仅仅是级数收敛的必要条件,并非充分条件.所以,不可用性质5来判定级数的收敛性.例11.1.6 有甲,乙,丙三人按以下方式分一个苹果:先将苹果分成4份,每人各取一份;然后将剩下的一份又分成4份,每人又取一份;按此方法一直下去.那么最终每人分得多少苹果?解 依题意,每人分得的苹果为+++++n 4141414132. 它是41==q a 的等比级数,因此其和为 3141141=-=S . 即最终每人分得苹果的31.习题 11.11.写出下列级数的一般项.(1) -+-+-5645342312; (2) +-+-97535432a a a a .2.判断下列级数的敛散性. (1))1(1n n n -+∑∞=; (2)∑∞=16sinn n π; (3) ++⋅-++⋅+⋅)12()12(1531311n n ; (4) +++++++41312110021;(5)n n n n-∞=-+-∑)11()1(11; (6))31(1n n n+∑∞=.11.2 数项级数的审敛法11.2.1正项级数及其审敛法对于正项级数∑∞=1n n u ,其部分和S n = S n -1 + u n ≥ S n -1 (n = 2, 3, …),即部分和数列{S n }单调递增.若数列{S n }有界,则由单调有界数列必有极限的准则知,数列{S n }收敛,所以正项级数∑∞=1n n u 必收敛,设其和为S ,则有S n ≤ S .反之,若正项级数∑∞=1n n u 收敛于S ,则由收敛数列必有界的性质知,数列{S n }必有界.于是我们得到下述重要结论:例11.2.1证明正项级数 +++++=∑∞=!1!21!111!10n n n 收敛.证明 因为),2,1( 2122211211!11 ==⋅⋅⋅⋅≤⋅⋅⋅=-n n n n , 于是对任意的n ,有2221212111)!1(1!21!111-+++++≤-++++=n n n S,3213211211121<-=--+=--n n即正项级数∑∞=0!1n n 的部分和数列有界,故级数∑∞=0!1n n 收敛.利用定理11.2.1,可导出正项级数的若干审敛法,这里只介绍其中较为重要的两个.例11.2.2讨论广义调和级数(又称p —级数) +++++=∑∞=pppn pn n13121111 (其中p为常数)的敛散性.解 当 p ≤ 1时,有n n p 11≥,由于∑∞=11n n发散,由定理2.2知,p 级数发散. 当p >1时,取n x n ≤<-1,有ppx n 11≤,得到11111d d (2,3,)n n p pp n n x x n n n x --=≤=⎰⎰ 于是p 级数的部分和111123n p p p S n=++++231211111d d d np p pn x x x x x x -≤++++⎰⎰⎰1111111d 1(11,11n p p x x p n p -=+=+-<+--⎰即部分和数列{S n }有界,由定理11.2.1知,p 级数收敛.综上所述,当p > 1时,p 级数收敛 ;当p ≤ 1时,p 级数发散,以后我们常用p 级数作为比较审敛法时使用的级数.例11.2.3 判定下列级数的敛散性. (1) 2111n n ∞=+∑; (2)n ∞=. 解 (1) 因为22111n n u n ≤+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法知,级数∑∞=+1211n n 也收敛. (2) 因为n n n u n 111122=≥-=,而调和级数∑∞=11n n 发散,故级数∑∞=-1211n n 也发散.使用比较审敛法时,需要找到一个敛散性已知的正项级数来与所给正项级数进行比较,这对有些正项级数来说是很困难的.自然提出这样的问题:能否仅通过级数自身就能判定级数的敛散性呢?如果正项级数的一般项中含有乘积、幂或阶乘时,常用比值审敛法判定其敛散性. 例11.2.4 判定下列级数的敛散性:(1) 2132nnn n ∞=∑; (2) 11(1)!n n ∞=-∑; (3)11(21)n n n ∞=+∑. 解 (1) 因为123)1(23lim 322)1(3lim lim 2221211>=+=⋅+=∞→++∞→+∞→n n n n u u n n n n n n nn n ,所以级数∑∞=1223n n n n 发散.(2) 因为101lim !)!1(lim lim1<==-=∞→∞→+∞→n n n u u n n nn n ,所以级数∑∞=-1)!1(1n n 收敛. (3) 因为1)32)(1()12(lim lim1=+++=∞→+∞→n n n n u u n nn n ,此时比值审敛法失效,必须改用其他方法判别此级数的敛散性.由于22121)12(1n n n n u n <<+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法可知,级数∑∞=+1)12(1n n n 也收敛.11.2.2 交错级数及其审敛法交错级数的特点是正负项交替出现.关于交错级数敛散性的判定,有如下重要定理. 例11.2.5 判定交错级数 +-++-+--nn 1)1(41312111的敛散性.解 此交错级数的n u n 1=,且满足 1111+=+>=n n u n n u 且01lim lim ==∞→∞→n u n n n ,由定理11.2.4知,该交错级数收敛,其和小于1.11.2.3 任意项级数及其审敛法设有级数∑∞=1n n u ,其中u n ( n = 1, 2,…)为任意实数,称此级数为任意项级数.对于任意项级数,如何来研究其敛散性?除了用级数定义来判断外,还有什么办法?为此要介绍绝对收敛与条件收敛概念.1,2,)的级数,称为交错级例如,级数2111)1(n n n ∑∞=--绝对收敛,级数n n n 1)1(11∑∞=--条件收敛.定理11.2.5说明,对于任意项级数∑∞=1n n u ,如果它所对应的级数∑∞=1||n n u 收敛,则该级数必收敛,从而将任意项级数的敛散性判别问题转化为正项级数来讨论.但应注意,如果级数∑∞=1||n n u 发散,不能判定级数∑∞=1n n u 也发散.例11.2.6 判定级数∑∞=12)sin(n nn α的敛散性,其中α为常数. 解 由于n nn 212)sin(0≤≤α,而级数∑∞=121n n 是收敛的,由比较审敛法可知,级数∑∞=12)sin(n n n α收敛,即级数∑∞=12)sin(n n n α绝对收敛,由定理11.2.5知,级数∑∞=12)sin(n n n α收敛. 例11.2.7讨论交错p-级数p n n n 1)1(11∑∞=--的绝对收敛与条件收敛性,其中p 为常数.解 当p ≤ 0时,pn n nu 1)1(1--=不趋于)(0∞→n ,故该级数发散.当p >1时,有ppn n n11)1(1=--,且级数∑∞=11n p n收敛,故该级数绝对收敛.当0<p ≤ 1时,级数∑∞=11n p n 发散,但p n n n 1)1(11∑∞=--是交错级数,且满足定理11.2.4的条件,故所给级数条件收敛.习题11.21.用比较审敛法判定下列级数的敛散性. (1) ∑∞=-+133)1(n n n ;(2) )0(111>+∑∞=a an n .2.用比值审敛法判定下列级数的敛散性.(1) ∑∞=⋅1!2n n nnn ; (2) ∑∞=123n n n .3.判定下列级数是否收敛?若收敛,是条件收敛还是绝对收敛?(1) ;3)1(111-∞=-∑-n n n n (2) ∑∞=13sin n nn α. 11.3 幂 级 数11.3.1函数项级数的概念 实例1存款问题设年利率为r (实际上其随时间而改变),依复利计算,想要在第一年末提取1元,第二年末提取4元,第三年末提取9元,第n 年末提取2n 元,要能永远如此提取,问至少需要事先存入多少本金?分析:这里本金为存入的钱,设为A ,则一年后本金与利息之和为一年的本利和,即为)1(r A +,两年后的本利和为2)1(r A +,n 年后的本利和为n r A )1(+.解 若本金A 为n r -+)1(元,n 年后可提取本利和1)1()1(=+⋅+-n n r r (元).从而 若要n 年后提取本利和2n 元,则本金应为n r n -+)1(2元.所以为使第一年末提1元本利和,则要有本金1)1(-+r ;第二年末能提取本利和22=4元,则要有本金22)1(2-+r 元;第三年末能提取本利和32=9元,则要有本金32)1(3-+r 元,…第n 年末能提取2n 元本利和,则要有本金n r n -+)1(2元;如此下去,所需本金总数为∑∞=-+12)1(n n r n.令r x +=11,得∑∑∞=∞=-=+1212)1(n n n nx n r n .实例2中的∑∞=12n n x n 即为一个无穷级数,但通项不再是我们前面所学的常数,而是函数,称为函数项无穷级数.对于区间I 上的任意确定值x 0,函数项级数(3.1)便成为数项级数++++)()()(00201x u x u x u n . (11.3.2) 如果数项级数(11.3.2)收敛,则称点x 0为函数项级数(11.3.1)的收敛点;如果数项级数 (11.3.2)发散,则称点x 0为函数项级数(3.1)的发散点.函数项级数(11.3.1)的全体收敛点(或发散点)的集合叫做该级数的收敛域(或发散域).设函数项级数(11.3.1)的收敛域为D ,则对于任意的x ∈D ,函数项级数(11.3.1)都收敛,其和显然与x 有关,记作S (x ),称为函数项级数(11.3.1)的和函数,并记作D x x u x u x u x S n ∈++++=,)()()()(21 .例如,级数201n n n x x x x ∞==+++++∑的收敛域为(-1,1),和函数为x-11,即 01(1, 1)1n n x x x ∞==∈--∑.把函数项级数(11.3.1)的前n 项的和记作S n (x ),则在收敛域上有)()(lim 1x S x S un n n n==∞→∞=∑.将 r n (x ) = S (x ) -S n (x )称作该函数项级数的余项,则0)(lim =∞→x r n n .11.3.2 幂级数及其收敛性特别地,当x 0 = 0时,+++++=∑∞=n n n nn x a x a x a a x a 22100(11.3.4)称为关于x 的幂级数.本节主要讨论幂级数(11.3.4),幂级数(11.3.3)可通过代换t = x – x 0化成幂级数(11.3.4)来研究.下面首先讨论幂级数(11.3.4)的收敛域问题,即x 取数轴上哪些点时幂级数(11.3 .4) 收敛.0,1,2,),因此.定理11.3.1表明,如果幂级数(11.3.4)在x= x0处收敛(发散),则对于开区间(-| x0 |, | x0 |)内(闭区间[-| x0 |, | x0 |]外)的一切x,幂级数(11.3.4)都收敛(发散) .这样的正数R称为幂级数(11.3.4)的收敛半径.由于幂级数(11.3.4 )在区间(-R, R)一定是绝对收敛的,所以我们把(-R, R)称为幂级数(11.3.4)的收敛区间.幂级数在收敛区间内部有很好的性质.幂级数(11.3.4)在区间(-R, R)的两个端点x = ±R处可能发散也可能收敛,需要把x = ±R代入幂级数(11.3.4),化为数项级数来具体讨论.一旦知道了x =±R处幂级数(3.4)的敛散性,则幂级数(11.3.4)的收敛域为下面四个区间(-R, R), [-R, R) , (-R, R ], [-R, R ]之一.若幂级数(11.3.4)仅在x = 0处收敛,则规定收敛半径R = 0,此时收敛域退缩为一点,即原点;若对一切实数x,幂级数(11.3.4)都收敛,则规定收敛半径R = +∞,此时收敛区间与收敛域都是(-∞, +∞).下面给出幂级数(11.3.4)的收敛半径的求法.例11.3.1求下列幂级数的收敛半径.(1) 1(1)31nn n n x ∞=-+∑ (2) 0!n n x n ∞=∑; (3) 202n n n x ∞=∑.解 (1) 因311313lim 13)1(13)1(lim lim1111=++=+-+-==+∞→++∞→+∞→n n n n n n n n nn n a a ρ,故收敛半径31==ρR . (2) 因011lim !1)!1(1lim lim1=+=+==∞→∞→+∞→n n n a a n n nn n ρ,故收敛半径R = + ∞.(3) 因为该级数缺少奇次幂的项,定理3.2失效,换用比值审敛法求收敛半径.由于2(1)121212limlim 22n n n n n n nnx u x x u +++→∞→∞==,因此,由正项级数的比值审敛法知,当2112x <,即2||<x 时该幂级数绝对收敛;当2112x >,即2||>x 时该幂级数发散.故收敛半径2=R . 例11.3.2 求下列幂级数的收敛区间和收敛域.(1) 11(1)n nn x n +∞=-∑; (2) 21(2)n n x n ∞=-∑. 解 (1) 因为11lim )1(1)1(lim lim121=+=-+-==∞→++∞→+∞→n nnn a a n n n n nn n ρ, 所以收敛半径11==ρR ,收敛区间是(-1, 1),即该级数在(-1, 1)内绝对收敛.在端点x = 1处,级数成为交错级数∑∞=+-11)1(n n n ,这是收敛的级数.在端点x = -1处,级数成为∑∞=-11n n,这是发散的级数,故该级数的收敛域为(-1, 1].(2) 令t = x -2,则所给级数变成∑∞=12n n nt .因为 ,1)1(lim 1)1(1lim lim22221=+=+==∞→∞→+∞→n n n n a a n n nn n ρ故级数∑∞=12n n n t 的收敛半径11==ρR ,即级数∑∞=12n n nt 在区间(-1, 1)内绝对收敛.在端点t = 1处,级数∑∞=12n n n t 变成p 级数∑∞=121n n ,故收敛;在t = -1处,级数∑∞=12n n n t 变成交错级数∑∞=-121)1(n n n 也收敛.因此,幂级数∑∞=12n n n t 的收敛区间为(-1,1),收敛域为[-1, 1],从而级数∑∞=-12)1(n nn x 的收敛区间为(1,3),收敛域为[1, 3].(因为-1 ≤ t ≤ 1,即-1 ≤ x - 2 ≤ 1,所以13x ≤≤).11.3.3幂级数的运算 1. 四则运算设幂级数∑∞=0n n n x a 和∑∞=0n n n x b 的收敛半径分别为R 1和R 2,它们的和函数分别为S 1(x )和S 2( x ),令R = min{ R 1, R 2},则在(-R , R )内有(1) 加法运算(2) 乘法运算2. 分析运算设幂级数∑∞=0n n n x a 的收敛半径为(0)R R >),在(-R , R )内的和函数为S (x ),则有(1) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内连续.(2) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可导,且有逐项求导公式:(3) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可积,且有逐项积分公式:注意:逐项求导和逐项积分前后,两幂级数具有相同的收敛半径和收敛区间. 例11.3.3 求下列幂级数的和函数. (1)11(11)n n nx x ∞-=-<<∑; (2)10(11)1n n x x n ∞+=-<<+∑.解 (1) 设11(), (1, 1)n n S x nx x ∞-==∈-∑,两端积分,得111()d d 1xxn n n n xS x x nx x x x∞∞-=====-∑∑⎰⎰, 上式两端对x 求导,得21(), (1, 1)(1)S x x x =∈--.(2) 设10(), (1, 1)1n n x S x x n ∞+==∈-+∑,两端对x 求导,得 ∑∑∞=∞=+-=='+='10111)1()(n n n n x x n n x S .上式两端从0到x 积分,得01()(0)d ln(1)1xS x S x x x-==---⎰, 而S ( 0 ) = 0,所以()ln(1), (1, 1)S x x x =∈---.例11.3.4求幂级数20, (1, 1)21nn x x n ∞=∈-+∑的和函数,并计算()2011212nn n ∞=+∑的值.解 设20(), (1, 1)21nn x S x x n ∞==∈-+∑,两端同时乘以x ,得,12)(012∑∞=++=n n n x x xS 两端对x 求导,得 ,1112])([202012x x n x x xS n nn n -=='⎪⎭⎫ ⎝⎛+='∑∑∞=∞=+ 上式两端从0到x 积分,得 20111()ln ,211xx x x x xx S +==--⎰d 所以 11()ln , (1, 1)21x S x x x x+=∈--.因为21=x 在(-1, 1)内部,代入上式,得 3ln 211211ln21212112120=-+⨯=⎪⎭⎫ ⎝⎛+∑∞=nn n . 习题 11.31.求下列幂级数的收敛区间.(1) +⋅⋅+⋅+64242232x x x ; (2)∑∞=++-11212)1(n n nn x ;(3)∑∞=--122212n n nx n ; (4)∑∞=-1)5(n n n x .2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数. (1) )11( 14014<<-+∑∞=+x n x n n ; (2)∑∞=+<<-+0)1(2)11( )1(2n n x x n ,并求级数∑∞=-+01221n n n 的和. 11.4 函数展开成幂级数前面我们讨论了幂级数在收敛域内求和函数的问题,在实际应用中常常遇到与之相反的问题,就是对一个给定的函数,能否在一个区间内展开成幂级数?如果可以,又如何将其展开成幂级数?其收敛情况如何?本节就来解决这些问题.11.4.1泰勒(Taylor)级数如果函数f (x )在点x 0的某邻域U ( x 0, δ )内有定义,且能展开成x - x 0的幂级数,即对于任意的x ∈U ( x 0, δ ),有+-++-+-+=n n x x a x x a x x a a x f )()()()(0202010 . (11.4.1)由幂级数的分析性质知,函数f (x )在该邻域内一定具有任意阶导数,且 ),2,1( )()!1(!)(01)( =+-++=+n x x a n a n x fn n n . (11.4.2)在式(11.4.1)和式(11.4.2)中,令x = x 0,得)(00x f a =,!1)(01x f a '=,,!2)(02x f a ''= ,!)(,0)(n x f a n n =. (11.4.3) 将式(11.4.3)代入式(11.4.1)中,有+-++-''+-'+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)()(!1)()()(00)(200000.这说明,如果函数f (x )在x 0的某邻域U ( x 0, δ )内能用形如式(11.4.1)右端的幂级数表示,则其系数必由式(11.4.3)确定,即函数f (x )的幂级数展开式是唯一的.函数f (x )的泰勒级数(11.4.4)的前n + 1项之和记为S n +1(x ),即n n n x x n x f x x x f x x x f x f x S )(!)()(!2)()(!1)()()(00)(2000001-++-''+-'+=+ ,并把差式f (x )- S n +1(x )叫做泰勒级数(4.4)的余项,记作R n ( x ),即)()()(1x S x f x R n n +-=.显然,只要函数f (x )在点x 0的某邻域U ( x 0,δ )内具有任意阶导数,则它的泰勒级数(11.4.4) 就已经确定,问题是级数(11.4.4)是否在x 0的某邻域内收敛?若收敛,是否以f (x )为其和函数?为此有下面的定理.显然,使用定理11.4.1来进行收敛性的判定是困难的.下面直接给出余项R n (x )的表达式称上式为拉格朗日型余项.在实际应用,若取常数x 0 = 0,此时泰勒级数(11.4.4)变成称为f (x )的麦克劳林(Maclaurin)级数,其余项为11.4.2函数展开成幂级数将函数)(x f 展开成0x x -或x 的幂级数,就是用其泰勒级数或麦克劳林级数表示)(x f .下面结合例题来研究如何将函数展开成幂级数.1. 直接展开法直接利用麦克劳林公式将函数f (x )展开为x 的幂级数的方法称为直接展开法,可以按照下列步骤进行(展开为(x -x 0)的幂级数与之类似):第一步 求出函数f ( x )在x = 0处的各阶导数 ),0(,),0(),0(),0()(n ff f f '''.若函数在x = 0处的某阶导数不存在,就停止进行,该函数不能展开为x 的幂级数.例如,在点x = 0处,37)(x x f =的三阶导数不存在,它就不能展开为x 的幂级数.第二步 写出幂级数+++''+'+nn x n f x f x f f !)0(!2)0()0()0()(2并求出收敛半径R 及收敛区间(-R , R ).第三步 在收敛区间(-R , R )内,考察余项R n ( x )的极限1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ(ξ介于0与x 之间), 是否为零?如果为零,第二步所写出的幂级数就是函数f ( x )在(-R , R )内的展开式,即),(,!)0(!2)0()0()0()()(2R R x x n f x f x f f x f nn -∈+++''+'+= .如果不为零,第二步写出的幂级数虽然收敛,但它的和并不是所给的函数f ( x ). 例11.4.1将下列函数展开为x 的幂级数.(1) ()e x f x =; (2) x x f sin )(=; (3) m x x f )1()(+=(m 为任意常数). 解 (1) 因为f (x ) = e x ,故f (n )(0 ) = 1( n = 0,1, 2,…).从而e x 的麦克劳林级数为++++++!!3!2132n x x x x n . 容易求得它的收敛半径R = +∞,下面考察余项1e ()(1)!n n R x x n ξ+=+, (ξ介于0与x 之间). 因为ξ介于0与x 之间,所以||e e x ξ<,因而有||11e e |()|||||(1)!(1)!x n n n R x x x n n ξ++=<++. 对于任一确定的x 值,e |x |是一个确定的常数,而级数++++++!!3!2132n x x x x n是绝对收敛的,由级数收敛的必要条件可知0)!1(||lim 1=++∞→n x n n , 所以 1||||lime 0(1)!n x n x n +→∞=+.由此可得,0)(lim =∞→x R n n ,这表明级数收敛于e x ,所以23e 1 ()2!3!!n x x x x x x n =++++++-∞<<+∞.(2) 因为x x f sin )(=,所以),2,1( )2sin()()( =+=n n x x f n π,则 ,)1()0(,0)0(,,1)0(,0)0(,1)0(,0)0()12()2(n n n ff f f f f -==-='''=''='=+.于是sin x 的麦克劳林级数为++-++-+-+)!12()1(!7!5!312753n x x x x x n n .它的收敛半径R = + ∞,考察余项的绝对值)(0)!1(||)!1()21sin()(11∞→→+≤+++=++n n x n x n x R n n n πξ.于是得展开式)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n.(3) 用同样的方法,可以推得牛顿二项展开式)11( !)1()1(!2)1(1)1(2<<-++--++-++=+x x n n m m m x m m mx x nm .这里m 为任意实数.当m 为正整数时,就退化为中学所学的二项式定理.最常用的是12m =±的情形,读者可自己写出这两个式子.2.间接展开法以上几个例子是用直接展开法把函数展开为麦克劳林级数,直接展开法虽然步骤明确,但运算常常过于繁琐,尤其最后一步要考察n →∞时余项R n ( x )是否趋近于零,这不是一件容易的事.下面我们从一些已知函数的幂级数展开式出发,利用变量代换或幂级数的运算求得另外一些函数的幂级数展开式,这种将函数展开成幂级数的方法叫间接展开法.例11.4.2将下列函数展开为x 的幂级数. (1) x x f cos )(=; (2) )1ln()(x x f +=.解(1) 由例1中的(2)知,)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n,两边对x 逐项求导,得).( !2)1(!4!21cos 242+∞<<-∞+-+-+-=x n x x x x nn )( (2) 由牛顿二项展开式得)11( )1(11132<<-+-++-+-=+x x x x x xn n .上式两端从0到x 逐项积分,得)11( 1)1(432)1ln(1432<<-++-++-+-=++x n x x x x x x n n . 又因为当x = -1时该级数发散,当x = 1时该级数收敛,故有)11(11)1()1ln(10≤<-+-=++∞=∑x x n x n n n.例11.4.3将下列函数展开为x - 1的幂级数: (1) x x f ln )(=; (2) 2)(2--=x x x x f . 解 (1) )]1(1ln[ln )(-+==x x x f ,利用)1ln(x +的展开式得),111( 1)1()1(3)1(2)1()1(ln 132≤-<-++--+--+---=+x n x x x x x n n 即 )20(1)1()1(ln 1≤<+--=+∞=∑x n x x n n n.(2) ⎪⎭⎫ ⎝⎛--+=--=--=x x x x x x x x x f 221131)1)(2(2)(2 ][)1(12)211(2131----+=x x . 由)11( )1(110<<--=+∑∞=x x x n n n ,得 )1211( 21)1(212112111 2<-<-+⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=-+x x x x x nn . )111( )1()1()1(1)1(112<-<-+-++-+-+=--x x x x x n . 于是⎥⎦⎤⎢⎣⎡----=--∑∑∞=∞=002)1(2)21()1(21312n n n n n x x x x x n n n n x )1(22)1(3101-⎥⎦⎤⎢⎣⎡--=∑∞=+,)20(<<x . 习题 11.41.将下列函数展开成x 的幂级数,并指出其收敛区间. (1) xx f -=31)(; (2) x x f 2cos )(=; (3) x x f arcsin )(=. 2.将函数231)(2++=x x x f 展开成(x + 4)的幂级数.11.5幂级数展开式的应用利用函数的幂级数展开式,可以进行近似计算,即展开式成立的区间内,函数值用级数的部分和按规定的精度要求近似计算.例11.5.1计算2的近似值( 精确到小数点四位,即误差不超过0.0001).解 由于 ++--++-+⋅+=+n x n n x x x !)1()1(!2)1(!11)1(2ααααααα21)211(2242-=-=根据上一节二项式展开式,取21-=x ,21=α 21)211(2242-=-=)21!453121!33121!21211(28642 -⋅⋅-⋅---=取前四项的和作为近似值,其差(称截断误差)为4r )21!5753121!4531(2108 +⋅⋅⋅+⋅⋅=0098.025225))21()21(211(21!45312910328≈=⋅=++++⋅⋅< 于是,近似值为≈24219.1)21!33121!21211(2642≈⋅---=.由“四舍五入”引起的误差叫做舍入误差. 计算时取五位小数,四舍五入后误差不会超过小数点后四位.本题如果用下面做法,展开的级数收敛很快,同样取前四项计算,误差很小.2150114.12-⎪⎭⎫ ⎝⎛-⨯=⎥⎦⎤⎢⎣⎡+⋅+⋅+⋅+⋅+⨯= 43250112835501165501835012114.1取前四项来作计算, 则4142.1]50116550183501211[4.1232≈⋅+⋅+⋅+⨯≈前四项的截断误差⎪⎭⎫ ⎝⎛++⨯⨯< 544501*********.1r ⎪⎭⎫ ⎝⎛+++⨯⨯⨯= 245015011501128354.1 83341025.65012814950128354.14950501128354.1-⨯≈⨯=⨯⨯⨯=⨯⨯⨯=例11.5.2 计算2ln 的近似值(精确到小数点后第4位). 解 将展开式)11()1(432)1ln(1432≤<-+-++-+-=+-x nx x x x x x nn 中的x 换成x -,得)11(432)1ln(432<≤--------=-x nx x x x x x n两式相减,得到不含有偶次幂的展开式)11(7531211ln 753<<-⎪⎪⎭⎫ ⎝⎛+++=-+x x x x x x x令211=-+xx ,解出31=x .以31=x 代入得⎪⎭⎫⎝⎛+⋅+⋅+⋅+⋅= 753317131513131311122ln若取前四项作为2ln 的近似值,则误差为0001.0700001341911132])91(911[32)31131311113191(2||911211131194<<⨯=-⨯=+++<+⨯+⨯+⨯= r于是取 6931.0317131513131311122ln 753≈⎪⎭⎫⎝⎛⋅+⋅+⋅+⋅≈.例11.5.3 利用x sin 求12sin 的近似值(精确到小数点后第6位). 解 由于展开式+--+-+-=--!)12()1(!5!3sin 12153n x x x x x n n (+∞<<∞-x ) 是交错级数,取前n 项部分和做近似估计,误差!)12(!)12()(1212+=+≤++n x n x x R n n n (+∞<<∞-x )151801212ππ=⨯== x ,取前三项能满足精度要求,于是53)15(!51)15(!311515sin12sin ππππ+-≈= 20791170.0)20943951.0(1201)20943951.0(6120943951.053≈+-≈ 精确到六位小数,207912.012sin ≈.例11.5.4 计算定积分⎰=10sin dx x xI 的近似值,精确到0.0001.解 因1sin lim0=→xxx ,所给积分不是广义积分,若定义函数在0=x 处的值为1,则它在区间]1,0[上连续.由前一节知,被积函数的展开时为+--+-+-=--!)12()1(!5!31sin )1(2142n x x x x x n n (∞<<∞-x ) 在区间]1,0[上逐项积分,得⎰10sin dx x x+-⋅--++⋅-⋅+⋅-=-!)12()12(1)1(!771!551!33111n n n这是交错级数,因为第四项5109.2352801!771-⨯<=⋅,所以取前三项的和作为积分的近似值就能满足精度要求.0.9461!551!3311≈⋅+⋅-≈I 例11.5.5 在爱因斯坦(Einstein )的狭义相对论中,速度为v 的运动物体的质量为220/1cv m m -=其中0m 为静止着的物体的质量,c 为光速.物体的动能是它的总动能与它的静止能量之差202c m mc K -=(1)证明在v 与c 相比很小时,关于K 的表达式就是经典牛顿物理学中的动能公式2021v m K =(2)估计s m v /100≤时,这两个动能公式的差别.解 (1)]1)1[(212220202--=-=-cv c m c m mc K ,记22c v x -=,展开成泰勒级数,有]1)16583211[(66442220-+⋅+⋅+⋅+= cv c v c v c m K)1658321(66442220 +⋅+⋅+⋅=cv c v c v c m当cv 很小时,2022202121v m c v c m K =⋅⋅≈.(2) 由解(1)可见,泰勒公式中一阶余项为(22cv x -=)252240225202252021)-(83)1(83)1(83!2)()(v c cv m x x c m x x c m x x f x r =+≤+=''=θθ(10<<θ).因为s m c /1038⨯=,s m v /100≤,则252240225201)(83)1(83)(v c cv m x x c m x r +=-≤010252283840)107.4(]100-103[8)103(1003m m -⨯<⨯⨯⨯⨯≤)()(.可见,误差极小,说明两个公式极为接近.习题 11.51.利用函数的幂级数展开式求下列各函数的近似值: (1)ln 3(误差不超过0.0001); (2)cos2︒(误差不超过0.0001);2.利用函数的幂级数展开式求下列定积 分的近似值:(1)0.54011dx x +⎰(误差不超过0.0001); (2)0.5arctan xdx x⎰(误差不超过0.001); 11.6傅里叶级数实例1振动问题一根弹簧受力后产生振动,如不考虑各种阻尼,其振动方程为)sin(ϕω+=t A y ,其中A 为振幅,ω为频率,ϕ为初相,t 为时间,称为简谐振动.人们对它已有充分的认识.如果遇到复杂的振动,能否把它分解为一系列简谐振动的叠加,从而由简谐振动去认识复杂的振动呢?实例2正弦波问题在电子线路中,对一个周期性的脉冲)(t f ,能否把它分解为一系列正弦波的叠加,从而由正弦波去认识脉冲)(t f 呢?实际上科学技术中其他一些周期运动也有类似的问题,这些问题的解决都要用到一类重要的函数项级数―傅里叶级数.为了研究傅里叶级数,我们先来认识下面一个概念—三角级数.它在数学与工程技术中有着广泛的应用.三角级数的一般形式是)sin cos (210nx b nx a a n n n ++∑∞=, 其中n n b a a ,,0 ( n = 1,2,…)都是常数,称为三角级数的系数.特别地,当a n = 0 ( n = 0,1,2,…)时,级数只含正弦项,称为正弦级数;当b n = 0 ( n = 1,2,…)时,级数只含常数项和余弦项,称为余弦级数.对于三角级数,我们讨论它的收敛性以及如何把一个周期为2l 的周期函数展开为三角级数的问题.11.6.1 以2π为周期的函数展开成傅里叶级数 1三角函数系 函数列,sin cos , ,2sin ,2cos ,sin ,cos 1nx nx x x x x ,, (11.6.1)称作三角函数系.三角函数系(11.6.1)有下列重要性质.这个定理的证明很容易,只要通过积分的计算即可验证,请读者自己进行.设两个函数ϕ和φ在[,]a b 上可积,且满足⎰=bax x x 0d )()(φϕ,则称函数ϕ和φ在[,]a b 上正交.由定理11.6.1,三角函数系(11.6.1)在[,]ππ-上具有正交性,称为正交函数系.-π2 周期为2π的函数的傅里叶级数设函数f (x )是周期为2π的周期函数,且能展开成三角级数,即设)sin cos (2)(10nx b nx a a x f n n n++=∑∞= (11.6.2)为了求出式(11.6.2)中的系数,假设式(11.6.2)可逐项积分,把它从-π到π逐项积分,得1()(cos sin ),2n n k a f x x x a nx x b nx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d 由三角函数系的正交性知,上式右端除第一项外均为0,所以0(),2a f x x x a πππππ--==⎰⎰d d 于是得01(),a f x x πππ-=⎰d 为求a n ( n = 1,2,…),先用cos kx 乘以式(5.2)两端,再从-π到π逐项积分,得1()cos cos (cos cos sin cos )2n n k a f x kx x kx x a nx kx x b nx kx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d .由三角函数系正交性知,上式右端除k = n 的一项外其余各项均为0,所以2()cos cos ,n n f x nx x a nx x a πππππ--==⎰⎰d d于是得1()cos (1,2,3,) n a f x nx x n πππ-==⎰d .类似地,为求b n ( n = 1,2,…),用sin kx 乘以式(11.6.2)两端,再从-π到π逐项积分,得1()sin (1,2,3,). n b f x nx x n πππ-==⎰d显然,当f (x )为奇函数时,公式(5.3)中的a n = 0 (n = 0, 1, 2, 3,…);当f (x )为偶函数时,公式(11.6.3)中的b n = 0 (n = 1, 2, 3,…),所以有(1) 当f (x )是周期为2π的奇函数时,其傅里叶级数为正弦级数nx b n n sin 1∑∞=,其中2()sin (1,2,3,) n b f x nx x n πππ-==⎰d ;(2) 当)(x f 是周期为2π的偶函数时,其傅里叶级数为余弦级数nx a a n n cos 21∑∞=+,其中 2()cos (1,2,3,) n a f x nx x n πππ-==⎰d .3 傅里叶级数的收敛性对于给定的函数)(x f ,只要)(x f 能使公式(5.3)的积分可积,就可以计算出)(x f 的傅里叶系数,从而得到)(x f 的傅里叶级数.但是这个傅里叶级数却不一定收敛,即使收敛也不一定收敛于)(x f .为了确保得出的傅里叶级数收敛于)(x f ,还需给)(x f 附加一些条件.对此有下面的定理.2,3,)2,3,)例11.6.1 正弦交流电i (x ) = sin x 经二极管整流后变为(如图11.6.1)⎩⎨⎧+<≤<≤-=ππππ)12(2,sin 2)12(,0)(k x k x k x k x f ,其中k 为整数.把函数f (x )展开为傅里叶级数.解 函数)(x f 满足收敛定理的条件,且在整个数轴上连续,因此)(x f 的傅里叶级数处处收敛于)(x f .函数f (x )的傅里叶系数为00112()sin a f x x x x ππππππ-===⎰⎰d d ,图11.6.120,11()cos d sin cos d 2,1)n n a f x nx x x nx x n n ππππππ-⎧⎪===⎨-⎪-⎩⎰⎰为奇数为偶数(, 00,111()sin d sin sin d 1, 12n n b f x nx x x nx x n πππππ-≠⎧⎪===⎨=⎪⎩⎰⎰.所以)(x f 的傅里叶展开式为)142cos 356cos 154cos 32cos (2sin 211)(2 +-++++-+=k kx x x x x x f ππ,)(+∞<<-∞x . 例11.6.2 如图11.6.2所示,一矩形波的表达式为⎩⎨⎧+<≤<≤--=ππππ)12(2,12)12(,1)(k x k k x k x f ,k 为整数.求函数)(x f 的傅里叶级数展开式.图11.6.2解 函数)(x f 除点x = k π ( k 为整数)外处处连续,由收敛定理知,在连续点(x ≠ k π)处,)(x f 的傅里叶级数收敛于)(x f .在不连续点(x = k π)处,级数收敛于02)1(1=-+.又因)(x f 是周期为2π的奇函数,因此,函数)(x f 的傅里叶系数为0 (0,1,2,3,)n a n ==,004,22()sin d 1sin d 0, n n n b f x nx x nx x n πππππ⎧⎪==⋅=⎨⎪⎩⎰⎰为奇数为偶数.所以)(x f 的傅里叶展开式为)( )12)12sin(55sin 33sin (sin 4)(为整数,k k x k xk x x x x f ππ≠+--++++= .该例中)(x f 的展开式说明:如果把)(x f 理解为矩形波的波函数,则矩形波可看作是由一系列不同频率的正弦波叠加而成.4 [-,]ππ或[0,]π上的函数展开成傅里叶级数在实际应用中,经常会遇到函数)(x f 只在[-π, π]上有定义,或虽在[-π, π]外也有定义但不是周期函数,而且函数)(x f 在[-π, π]上满足收敛定理的条件,要求把其展开为傅里叶级数.由于求)(x f 的傅里叶系数只用到)(x f 在[-π, π]上的部分,所以我们仍可用公式(11.6.3)求()f x 的傅里叶系数,至少)(x f 在(-π,π)内的连续点处傅里叶级数是收敛于)(x f的,而在x =±π处,级数收敛于)]0()0([21+-+-ππf f .类似地,如果)(x f 只在[0, π]上有定义且满足收敛定理条件,要得到)(x f 在[0, π]上的傅里叶级数展开式,可以任意补充)(x f 在[-π, 0]上的定义(只要公式(11.6.3)中的积分可积),称为函数的延拓,常用的两种延拓办法是把)(x f 延拓成偶函数或奇函数(称为奇延拓或偶延拓),然后将奇延拓或偶延拓后的函数展开成傅里叶级数,再限制x 在[0, π]上,此时延拓后的函数F (x )≡f (x ),这个级数必定是正弦级数或余弦级数,这一展开式至少在(0, π)内的连续点处是收敛于)(x f 的.这样做的好处是可以把)(x f 展开成正弦级数或余弦级数.例11.6.3 将函数f (x ) = x, x ∈[0, π ]分别展开成正弦级数和余弦级数.解 为了把)(x f 展开成正弦级数,先把)(x f 延拓为奇函数F (x ) = x, x ∈[-π, π],如图11.6.3所示,则1222()sin sin (1)n n b F x nx x x nx x nππππ+==⋅=-⎰⎰d d . 由此得F (x )在(-π, π)上的展开式,也即)(x f 在[0, π)上的展开式为)0( )sin )1(33sin 22sin (sin 21π<≤+-+-+-=+x nnxx x x x n . 在x = π处,上述正弦级数收敛于 图11.6.30)(21)]0()0([21=+-=-++-ππππf f . 为了把)(x f 展开成余弦级数,把)(x f 延拓为偶函数||)(x x F =, x ∈[-π, π],如图11.6.4所示,则0022()a F x x x x πππππ===⎰⎰d d ,222()cos d cos d 4, (1,2,)0,n a F x nx x x nx xn n n n πππππ==-⎧⎪==⎨⎪⎩⎰⎰为奇数时为偶数时 于是得到)(x f 在[0, π]上的余弦级数展开式为 图11.6.4。
高等数学第十一章第六节函数项级数的一致收敛性课件.ppt
以后还建立了椭圆函
数的新结构.
他在分析学中建立了实数
理论,引进了极限的 – 定义,
定义及性质,
还构造了一个处处不可微的连续函数:
积分的逆转问题,
给出了连续函数的严格
为分析学的算术化作出了重要贡献 .
定理2.
若级数
则该级数在 [a, b] 上可逐项积分,
且上式右端级数在 [a, b] 上也一致收敛 .
证: 因为
所以只需证明对任意
一致有
根据级数的一致收敛性,
使当
n > N 时, 有
于是, 当 n > N 时, 对一切
有
因此定理结论正确.
证毕
说明:
若级数不一致收敛时, 定理结论不一定成立.
解:
显然所给级数对任意 x 都收敛 ,
且每项都有连续
导数,
而逐项求导后的级数
故级数②在 (-∞,+∞)
上一致收敛,
故由定理3可知
②
再由定理1可知
定理4 . 若幂级数
的收敛半径
则其和函
在收敛域上连续,
且在收敛区间内可逐项求导与
逐项求积分,
运算前后收敛半径相同,即
证: 关于和函数的连续性及逐项可积的结论由维尔斯
由条件2), 根据柯西审敛原理,
当
n > N 时,
对任意正整数 p , 都有
由条件1), 对 x ∈I , 有
故函数项级数
在区间 I 上一致收敛 .
证毕
推论.
若幂级数
的收敛半径 R > 0 ,
则此级
数在 (-R, R ) 内任一闭区间 [ a , b ] 上一致收敛 .
高等数学 第十一章 电子课件
第一节
概率论
一、随机事件
(一)随机事件的概念
引例1 如果问“苹果从树上脱落,会往地上落吗?”,答案是“会”. 引例2 如果问“掷一枚骰子,能否出现7点?”,答案是“不能”. 引例3 抛掷一枚质地均匀的硬币,结果可能是正面朝上,也可能是反面朝上, 且事先无法确定抛掷的结果是什么. 引例4 在400 m短跑比赛前,运动员需通过抽签决定自己所在的跑道,且每 次抽签前都无法预测自己会在哪条跑道.
(二)概率的古典定义
在某些情况下,随机试验具有以下特征. 有限性:试验中所有可能出现的基本事件只有有限个. 等可能性:每个基本事件出现的可能性相等. 具有以上两个特点的概率模型是大量存在的,这种概率 模型称为古典概率模型,简称古典概型,也称等可能概型.
(二)概率的古典定义
定义 3 对于古典概型,设试验含有 n 个基本事件,若事件 A 包含 m 个基本事件,则事件 A
第十一章
概率统计基础
导学
概率论与数理统计是研究随机现象内在规律性的重要工具,其应用已 遍及自然科学、社会科学、工程技术、军事科学及生活实际等各领域,因 此掌握一定的概率统计知识十分必要.
本章主要介绍随机事件及其概率,随机变量及其分布,随机变量的期 望与方差,数理统计的基础知识,参数估计,假设检验及回归分析.
随机试验的一切可能结果所组成的集合称为样本空间,记作 .随机试验的每
一个可能结果称为样本点,样本空间就是全体样本点的集合.
(一)随机事件的概念
定义1 随机试验的每一种可能的结果称为随机事件,简称事件.它通常用大写 英文字母A, B, C… 表示.
随机事件可分为基本事件和复合事件. 基本事件:在随机试验中,不可再分解的事件. 复合事件:在随机试验中,由若干个基本事件组合而成的事件.
经典高等数学课件D11-6高斯公式
P , Q, R在 所围区域内偏导,不连续(因在原点不连续)
添加曲面1:x 2 y2 z 2 a 2取外侧
13
添加曲面1:x y z a 取外侧
2 2 2 2
则I (
1
)
1
xd yd z yd zd x zd xd y ( x2 y2 z2 )
3 2
,
1 0 3 a
1 3 a
x d y d z y d z d x z d x d y,
1
3d v
3
是1所围区域
z o x x
z
n
yy
1 4 a 3 3 4 a 3
o
1
14
1.分面投影法 I Pdydz Qdzdx Rdxdy的计算方法 2.合一投影法 3.高斯公式法
I ( x 3 z x )d y d z x 2 yz d z d x x 2 z 2 d x d y.
解: 补充曲面 1 : z 1, 下侧
z
2
1
( x , y ) D x y : x 2 y 2 1,则
I
1 1
1
用柱坐标
则 xdydz 2 ydzdx 3( z 1)dxdy
.
2006研
2.计算 2 x 3dydz 2 y 3dzdx 3( z 2 1)dxdy,
其中是z 1 x y(z 0)的上侧.
2 2
2004研
11
z 2 x 2 y 2 , 1 z 2 取上侧, 求 练习:设 为曲面
同济版大一高数第十一章第六节高斯公式
(
P x
Q y
R z
)dv
1
3
1
xdydz ydzdx zdxdy
1
3
3
dv
3
3
4 3
3
4
11
2. 闭曲面积分为零的充要条件
定理2. 设 P(x, y, z),Q(x, y, z), R(x, y, z)在空间二维单
连通域G内具有连续一阶偏导数, 为G内任一闭曲面, 则
P d y d z Q d z d x R d x d y 0
u
2v x2
2v y2
2v z2
d
x
d
y
d
z
x Q u v
y
u
v x
cos
v y
cos
v z
cos
d
S
R u v z
u x
v x d z
z
其中 是整个 边界面的外侧.
分析:
高斯公式
P x
Q y
R z
dx d
ydz
P d y d z Q d z d x R d x d y
的夹角,
试证
证: 设 的单位外法向量为
则
cos
n
0
r
0
n0 r0
x cos y cos z cos
r
r
r
1 3
r
cos
dS
1 3
3
dv
V
28
方向向外的任一闭曲面 , 记 所围域为,
在③式两边同除以 的体积 V, 并令 以
任意方式缩小至点 M
则有
lim M V
P x
Q y
高等数学第11章 概率论
解法二 利用概率的加法公式
由于A1,A2,A3两两互斥
P (A ) P (A 1 ) P (A 2 ) P (A 3 )
CC 31C 230127
CC 32C 230117
CC 33C 230107
23 57
解法三 利用互逆事件的概率公式
A的逆事件表示没有取到白球,故
P(A)1P(A)1C30C13723 C2 30 57
定理11.1 如果事件A与B互斥,即 AB,
则 P (A B ) P (A ) P (B )。
推论1 若 A1,A2,,An两两互斥,则
P ( A 1 A 2 A n ) P ( A 1 ) P ( A 2 ) P ( A n )
推论2 P(A)1P(A)
(1)P(A) 70 7 100 10
(2)P(B) 25 1 100 4
(3)P(AB) 20 1 100 5
11.2 事件的独立性
由于甲厂产品有70件,其中次品有20件,故
P(B| A)202 70 7
类似地 P(A| B)204
25 5
从上例可引出求条件概率的计算方法,即
P ( C ) 0 .0 3 , P (A |B ) 0 .4 5
P (A ) P (A ) B P ( B ) P (A |B )
[ 1 P ( C ) ] P ( A |B ) ( 1 0 . 0 3 ) 0 . 4 5 0 . 4 3 6 5
11.2 事件的独立性
11.1 随机事件的概率
例4 袋中有20个球, 其中有3个白球、17个 黑球,从中任取3个,求至少有一个白球的概率。
分析 用Ai表示取到i个白球,用A表示至 少有一个白球。
高等数学:第十一章 广义积分与含参变量的积分
因此积分 dx发散. y
1x
y 1 x
b dx
1x
01
bx
例3. 使两个带电粒子从初始距离a分开到距离b 所需能量由
E
b kq1q2 a r2
dr
给出, 其中q1, q2是电荷的数量, k为常数. 若q1, q2 的单位为库仑(C), a, b是米(m), E的单位为焦耳(J).
k = 9109.
a
X
即当A X时有
A
g(x)dx
g(x)dx
X
X
由已知条件:当x X a时,0 f (x) g(x).
所以 A f (x)dx
A
g(x)dx
g(x)dx
X
X
X
而 g(x)dx收敛,所以当A X时,A f (x)dx有界,因此 f (x)dx收敛。
X
X
X
由于 f (x)dx
一个氢原子由一个质子和一个电子组成, 它们 带有数值为1.610–19 C的相反电荷. 求使氢原子激 发(即使电子从其轨道移动到离质子无穷远处)的 能量. 假设电子和质子之间的初始距离为玻尔半径
RB = 5.310–11m.
解: 因为由初始距离RB移动到最终距离的能 量由广义积分表示为
E
a
例.
判断
2
1 x ln
x
dx(
0,
R) 的敛散性.
解:
当
1时, 2
1 x ln
x
dx
2
1 x ln x
dx
ln
ln
xA 2
.
1
当
1时,x
ln 1
x
1 ln x
高等数学(下册)第十一章
第二节 第二类曲线积分
•性质
(1) Pdx Qdy Pdx Qdy Pdx Qdy
L
L1
L2
(L L1 L2 )
(2)L k(Pdx Qdy) k L Pdx Qdy
(3) P(x, y)dx Q(x, y)dy P(x, y)dx Q(x, y)dy
注 :定积分、二重积分、三重积分的积分域
方程不能代入到被积函数中.而曲线、曲面
的积分,积分域方程可代入到被积函数中.
例 求 xyds : (1)OAB;(2)OB : y x; L
(3)OMB : y x2.
解 (1) xyds xyds 1 ydy 1
OA
AB
0
记作
L P(x, y)dx Q(x, y)dy
L
M ykk B
Mxkk1
A
x
第二节 第二类曲线积分
定义 设 L 为xOy 平面内从 A 到B 的一条有向光滑 弧, 在L 上定义了一个向量函数
若对 L 的任意分割和在局部弧段上任意取点,
n
极限
lim
0
P(k
k 记1 作
, k )xk Q(k
ab P[x, (x)] Q[x, (x)] (x)dx
x (t) 对空间光滑曲线弧 : y (t) t : ,类似有
z (t)
P
[
(t),
(t)
,
(t)]
(t
)
(t)
(t )
第二节 第二类曲线积分
例 求L xydx ydy,
2π a2 k 2 (3a2 4π 2k 2 ) 3
高数第十一章六节11-6
余和:
1 1 1 1 rn (1 ) ( n 1)! ( n 2)! ( n 1)! n 2 1 1 1 1 (1 ) ( n 1)! n 1 ( n 1) 2 n n!
揭示了三角函数和复变量指数函数之间的 一种关系.
三、小结
1、近似计算
2、欧拉公式的证明
思考题
x arcsin x 利用幂级数展开式, 求极限 lim . 3 x 0 sin x
思考题解答
1 x3 1 3 x5 arcsin x x , 2 3 24 5
( x 1)
3 5
1 3 3 x o( x ) 1 6 lim . 3 3 x 0 x o( x ) 6
练 习 题
一、 利用函数的幂级数展开式求下列各数的近似值: 1、 ln 3 (精确到 0.0001); 2、 cos 2 (精确到 0.0001). 二、 将函数 e x cos x 展开成 x 的幂级数 .
sin x
cos x j sin x
e jx e jx jx cos x e cos x j sin x 2 jx jx sin x e e jx 又 e cos x j sin x 2j
欧拉公式
e x jy e x (cos y j sin y )
解
1 3 sin 9 sin ( ) , 20 20 6 20
0
1 5 1 1 5 10 5 , r2 ( ) ( 0 .2 ) 5! 20 120 300000
sin 9 0 0.157079 0.000646 0.156433
高等数学-11章无穷级数
第十一章 无穷级数教学目的:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与P 级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。
教学重点 :1、级数的基本性质及收敛的必要条件。
2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式;6、傅里叶级数。
教学难点:1、比较判别法的极限形式;2、莱布尼茨判别法;3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。
§11. 1 常数项级数的概念和性质一、常数项级数的概念 常数项级数: 给定一个数列 u 1, u 2, u 3, ⋅ ⋅ ⋅, u n , ⋅ ⋅ ⋅, 则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋅ ⋅ ⋅+ u n + ⋅ ⋅ ⋅叫做常数项)无穷级数, 简称常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项u n 叫做级数的一般项. 级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和,并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值r n =s -s n =u n +1+u n +2+ ⋅ ⋅ ⋅ 叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中a ≠0, q 叫做级数的公比. 例1 讨论等比级数n n aq ∑∞=0(a ≠0)的敛散性.解 如果q ≠1, 则部分和 qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当|q |<1时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞=0发散;当q =-1时, 级数n n aq ∑∞=0成为a -a +a -a + ⋅ ⋅ ⋅,时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零, 所以s n 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述, 如果|q |<1, 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散. 仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为qa -1.例2 证明级数 1+2+3+⋅ ⋅ ⋅+n +⋅ ⋅ ⋅ 是发散的.证 此级数的部分和为 2)1( 321+=+⋅⋅⋅+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的. 例3 判别无穷级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 的收敛性. 解 由于 111)1(1+-=+=n n n n u n ,因此 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1. 例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 提示: 111)1(1+-=+=n n n n u n .二、收敛级数的基本性质性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛,且其和为ks .性质1 如果级数∑∞=1n n u 收敛于和s , 则级数∑∞=1n n ku 也收敛, 且其和为ks .性质1 如果s u n n =∑∞=1, 则ks ku n n =∑∞=1.这是因为, 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为s n 与σn , 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21.这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s ±σ.性质2 如果s u n n =∑∞=1、σ=∑∞=1n n v , 则σ±=±∑∞=s v u n n n )(1.这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为s n 、σn 、τn , 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性. 比如, 级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的, 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的, 级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数1-1)+1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的. 推论: 如果加括号后所成的级数发散, 则原来级数也发散. 级数收敛的必要条件:性质5 如果∑∞=1n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0=→n n u .性质5 如果∑∞=1n n u 收敛, 则0lim 0=→n n u .证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n 是发散的.例4 证明调和级数∑∞=11n n是发散的. 证 假若级数∑∞=11n n 收敛且其和为s , s n是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面, 2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n , 故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.§11. 2 常数项级数的审敛法 一、正项级数及其审敛法正项级数: 各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n n u 收敛的充分必要条件它的部分和数列{s n }有界.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ ). 若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (k >0, ∀n ≥N ).若∑∞=1n n v 收敛, 则∑∞=1n n u 收敛; 若∑∞=1n n u 发散, 则∑∞=1n n v 发散.设∑u n 和∑v n 都是正项级数, 且u n ≤kv n (k >0, ∀n ≥N ). 若级数∑v n 收敛, 则级数∑u n 收敛; 反之, 若级数∑u n 发散, 则级数∑v n 发散.证 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和s n =u 1+u 2+ ⋅ ⋅ ⋅ +u n ≤v 1+ v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.证 仅就u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ )情形证明. 设级数∑v n 收敛, 其和为σ, 则级数∑u n 的部分和 s n =u 1+ u 2+ ⋅ ⋅ ⋅ + u n ≤v 1+v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界. 因此级数∑u n 收敛.反之, 设级数∑u n 发散, 则级数∑v n 必发散. 因为若级数 ∑v n 收敛, 由上已证明的结论, 级数∑u n 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n 的收敛性, 其中常数p >0. 例1 讨论p -级数)0( 11>∑∞=p np n 的收敛性. 解 设p ≤1. 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当p ≤1时级数p n n11∑∞=发散.设p >1. 此时有]1)1(1[111111111-------=≤=⎰⎰p p n n p n n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).对于级数]1)1(1[112--∞=--∑p p n n n , 其部分和111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s .因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s . 所以级数]1)1(1[112--∞=--∑p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数p n n11∑∞=当p >1时收敛.综上所述, p -级数p n n11∑∞=当p >1时收敛, 当p ≤1时发散. 解 当p ≤1时, n n p 11≥, 而调和级数∑∞=11n n发散, 由比较审敛法知,当p ≤1时级数pn n 11∑∞=发散. 当p >1时,]1)1(1[111111111-------=≤=⎰⎰p p n n pn n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).而级数]1)1(1[112--∞=--∑p p n n n 是收敛的, 根据比较审敛法的推论可知,级数pn n 11∑∞=当p >1时收敛.提示: 级数]1)1(1[112--∞=--∑p p n n n 的部分和为111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s . 因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s ,所以级数]1)1(1[112--∞=--∑p p n n n 收敛.p -级数的收敛性: p -级数pn n 11∑∞=当p >1时收敛, 当p ≤1时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果l v u nnn =∞→lim(0<l <+∞),则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u n nn =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; (2)如果+∞=>=∞→∞→n nn n n n v u l v u lim 0lim 或, 且级数∑∞=1n n v 发散, 则级数∑∞=1n n u 发散. 定理3(比较审敛法的极限形式) 设∑u n 和∑v n 都是正项级数,(1)如果lim(u n /v n )=l (0≤l <+∞), 且∑v n 收敛, 则∑u n 收敛;(2)如果lim(u n /v n )=l (0<l ≤+∞), 且∑v n 发散, 则∑u n 发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当n >N 时, 有不等式l l v u l l n n2121+<<-, 即n n n lv u lv 2321<<, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数∑∞=11sinn n的收敛性.解 因为111sin lim =∞→nn n , 而级数∑∞=11n n发散,根据比较审敛法的极限形式, 级数∑∞=11sinn n发散. 例4 判别级数∑∞=+12)11ln(n n 的收敛性. 解 因为11)11ln(lim22=+∞→n n n , 而级数211n n ∑∞=收敛, 根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛. 定理4(比值审敛法, 达朗贝尔判别法)若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ:ρ=+∞→nn n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散; 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 满足ρ=+∞→nn n u u 1lim, 则当ρ<1时级数收敛;当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散. 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法)设∑∞=1n n u 为正项级数, 如果ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的. 解 因为101lim 321)1( 321lim lim1<==⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅=∞→∞→+∞→nn n u u n n n n n ,根据比值审敛法可知所给级数收敛. 例6 判别级数10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性.解 因为∞=+=⋅+=∞→+∞→+∞→101lim ! 1010)!1(lim lim11n n n u u n nn n n n n ,根据比值审敛法可知所给级数发散.例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性. 解 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n .这时ρ=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性.因为212)12(1n n n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 解 因为212)12(1n n n <⋅-, 而级数211nn ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.提示: 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n , 比值审敛法失效.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.定理5(根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim)时级数发散; 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 若正项级数∑∞=1n n u 满足ρ=∞→nn n u lim, 则当ρ<1时级数收敛;当ρ>1(或+∞=∞→nn n u lim)时级数发散. 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 设∑∞=1n n u 为正项级数, 如果ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn 是收敛的. 并估计以级数的部分和s n 近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n ,所以根据根值审敛法可知所给级数收敛.以这级数的部分和s n 近似代替和s 所产生的误差为 )3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r )1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n + nn n )1(1+=. 例6判定级数∑∞=-+12)1(2n nn的收敛性. 解 因为21)1(221limlim =-+=∞→∞→n n n n n n u ,所以, 根据根值审敛法知所给级数收敛. 定理6(极限审敛法) 设∑∞=1n n u 为正项级数,(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或, 则级数∑∞=1n n u 发散;(2)如果p >1, 而)0( lim +∞<≤=∞→l l u n n pn , 则级数∑∞=1n n u 收敛.例7 判定级数∑∞=+12)11ln(n n 的收敛性. 解 因为)(1~)11ln(22∞→+n n n , 故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn n n u n n n n n ,根据极限审敛法, 知所给级数收敛.例8 判定级数)cos 1(11nn n π-+∑∞=的收敛性.解 因为 222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn ,根据极限审敛法, 知所给级数收敛.二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如,1)1(11∑∞=--n n n 是交错级数, 但 cos 1)1(11∑∞=---n n n n π不是交错级数.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足: (1)1+≥n n u u ; (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.简要证明: 设前n 项部分和为s n .由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛.设s 2n →s (n →∞), 则也有s 2n +1=s 2n +u 2n +1→s (n →∞), 所以s n →s (n →∞). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例9 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.证 这是一个交错级数. 因为此级数满足 (1)1111+=+>=n n u n n u (n =1, 2,⋅ ⋅ ⋅), (2)01lim lim ==∞→∞→nu n nn ,由莱布尼茨定理, 级数是收敛的, 且其和s <u 1=1, 余项11||1+=≤+n u r n n .三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例10 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n 是条件收敛的.定理7 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散,则我们可以断定级数∑∞=1n n u 必定发散.这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例11 判别级数∑∞=12sin n nna 的收敛性. 解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n n na 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例12 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.解: 由2)11(21||n nn n u +=, 有121)11(lim 21||lim >=+=∞→∞→e n u n n n nn ,可知0lim ≠∞→n n u , 因此级数∑∞=+-12)11(21)1(n n nnn 发散.§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称 点x 0是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n n x u 发散, 则称 点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ).在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x . 注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 0≠0)时收敛, 则适合不等式 |x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n 当 x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散. 提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n n n x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n →0(n →∞) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅). 因为 n n n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||⋅∑∞=收敛, 所以级数∑|a n x n |收敛, 也就是级数∑a nx n 绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |>R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径. 开区间(-R , R )叫做幂级数∑∞=0n nn xa 的收敛区间. 再由幂级数在x =±R 处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nn x a 的收敛域是(-R , R )(或[-R , R )、(-R , R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n nn x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+∞, 这时收敛域为(-∞, +∞). 定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 1R .定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为: 当ρ≠0时ρ1=R , 当ρ=0时R =+∞, 当ρ=+∞时R =0.简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R .(2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0. 例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域. 例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径: 幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R . 提示: 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n nnt .因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ,所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n , 此级数收敛. 因此级数∑∞=12n n nnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算 设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b xa ,减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续. 性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式 ∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1. 在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得 )1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(1100x dx x dx x x x n n--=-==⎰⎰∑∞=, 所以, 当x ≠0时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然S (0)=1. 因为 ⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x xx n n, 所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=.从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性, 2ln )(lim )1(1==-+-→x S S x .综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n nx n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n nn .§11. 4 函数展开成幂级数一、泰勒级数要解决的问题: 给定函数f (x ), 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数f (x ). 如果能找到这样的幂级数, 我们就说, 函数f (x )在该区间内能展开成幂级数, 或简单地说函数f (x )能展开成幂级数, 而该级数在收敛区间内就表达了函数f (x ).泰勒多项式: 如果f (x )在点x 0的某邻域内具有各阶导数, 则在该邻域内f (x )近似等于 )(!2)())(()()(200000⋅⋅⋅+-''+-'+=x x x f x x x f x f x f )()(!)(00)(x R x x n x f n n n +-+,其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间). 泰勒级数: 如果f (x )在点x 0的某邻域内具有各阶导数f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ , 则当n →∞时, f (x )在点x 0的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+= 成为幂级数)(!3)()(!2)())(()(300200000⋅⋅⋅+-'''+-''+-'+x x x f x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数f (x )的泰勒级数. 显然, 当x =x 0时, f (x )的泰勒级数收敛于f (x 0).需回答的问题: 除了x =x 0外, f (x )的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于f (x )? 定理 设函数f (x )在点x 0的某一邻域U (x 0)内具有各阶导数, 则f (x )在该邻域内能展开成泰勒级数的充分必要条件是f (x )的泰勒公式中的余项R n (x )当n →0时的极限为零, 即))(( 0)(lim 0x U x x R n n ∈=∞→.证明 先证必要性. 设f (x )在U (x 0)内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设s n +1(x )是f (x )的泰勒级数的前n +1项的和, 则在U (x 0)内s n +1(x )→ f (x )(n →∞). 而f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是R n (x )=f (x )-s n +1(x )→0(n →∞). 再证充分性. 设R n (x )→0(n →∞)对一切x ∈U (x 0)成立.因为f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是s n +1(x )=f (x )-R n (x )→f (x ), 即f (x )的泰勒级数在U (x 0)内收敛, 并且收敛于f (x ). 麦克劳林级数: 在泰勒级数中取x 0=0, 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为f (x )的麦克劳林级数.展开式的唯一性: 如果f (x )能展开成x 的幂级数, 那么这种展式是唯一的, 它一定与f (x )的麦克劳林级数一致. 这是因为, 如果f (x )在点x 0=0的某邻域(-R , R )内能展开成x 的幂级数, 即 f (x )=a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 那么根据幂级数在收敛区间内可以逐项求导, 有 f '(x )=a 1+2a 2x +3a 3x 2+ ⋅ ⋅ ⋅+na n x n -1+ ⋅ ⋅ ⋅ , f ''(x )=2!a 2+3⋅2a 3x + ⋅ ⋅ ⋅ + n ⋅(n -1)a n x n -2 + ⋅ ⋅ ⋅ , f '''(x )=3!a 3+ ⋅ ⋅ ⋅+n ⋅(n -1)(n -2)a n x n -3 + ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ f (n )(x )=n !a n +(n +1)n (n -1) ⋅ ⋅ ⋅ 2a n +1x + ⋅ ⋅ ⋅ , 于是得a 0=f (0), a 1=f '(0), !2)0(2f a ''=, ⋅ ⋅ ⋅, !)0()(n f a n n =, ⋅ ⋅ ⋅.应注意的问题: 如果f (x )能展开成x 的幂级数, 那么这个幂级数就是f (x )的麦克劳林级数. 但是, 反过来如果f (x )的麦克劳林级数在点x 0=0的某邻域内收敛, 它却不一定收敛于f (x ). 因此, 如果f (x )在点x 0=0处具有各阶导数, 则f (x )的麦克劳林级数虽然能作出来, 但这个级数是否在某个区间内收敛, 以及是否收敛于f (x )却需要进一步考察. 二、函数展开成幂级数展开步骤:第一步 求出f (x )的各阶导数: f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ . 第二步 求函数及其各阶导数在x =0 处的值: f (0), f '(0), f ''(0), ⋅ ⋅ ⋅ , f (n )( 0), ⋅ ⋅ ⋅ . 第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(-R , R )内时是否R n (x )→0(n →∞).1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ是否为零. 如果R n (x )→0(n →∞), 则f (x )在(-R , R )内有展开式!)0( !2)0()0()0()()(2⋅⋅⋅++⋅⋅⋅+''+'+=nn x n f x f x f f x f (-R <x <R ).例1 将函数f (x )=e x 展开成x 的幂级数.解 所给函数的各阶导数为f (n )(x )=e x (n =1, 2, ⋅ ⋅ ⋅), 因此f (n )(0)=1(n =1, 2, ⋅ ⋅ ⋅). 于是得级数 ⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x ,它的收敛半径R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(| |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ,而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例2 将函数f (x )=sin x 展开成x 的幂级数. 解 因为)2sin()()(π⋅+=n x x f n (n =1, 2, ⋅ ⋅ ⋅),所以f (n )(0)顺序循环地取0, 1, 0, -1, ⋅ ⋅ ⋅ ((n =0, 1, 2, 3, ⋅ ⋅ ⋅), 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(]2)1(sin[||)(|11+≤+++=++n x x n n x R n n n πξ→0 (n →∞). 因此得展开式)( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n . )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x . 例3 将函数f (x )=(1+ x )m 展开成x 的幂级数, 其中m 为任意常数. 解: f (x )的各阶导数为 f '(x )=m (1+x )m -1, f ''(x )=m (m -1)(1+x )m -2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,f (n )(x )=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1)(1+x )m -n , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,所以 f (0)=1, f '(0)=m , f ''(0)=m (m -1), ⋅ ⋅ ⋅, f (n )(0)=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1), ⋅ ⋅ ⋅ 于是得幂级数 !)1( )1( !2)1(12⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++n x n n m m m x m m mx . 可以证明)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x nm .间接展开法:例4 将函数f (x )=cos x 展开成x 的幂级数. 解 已知 )!12()1( !5!3sin 12153⋅⋅⋅+--+⋅⋅⋅-+-=--n x x x x x n n (-∞<x <+∞).对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n . 例5 将函数211)(x x f +=展开成x 的幂级数.解 因为)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , 把x 换成-x 2, 得)1( 1112422⋅⋅⋅+-+⋅⋅⋅-+-=+n n x x x x (-1<x <1). 注: 收敛半径的确定: 由-1<-x 2<1得-1<x <1. 例6 将函数f (x )=ln(1+x ) 展开成x 的幂级数.解 因为xx f +='11)(,而x +11是收敛的等比级数∑∞=-0)1(n n n x (-1<x <1)的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x.所以将上式从0到x 逐项积分, 得)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n . 解: f (x )=ln(1+x )⎰⎰+='+=x x dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n n n n x dx x (-1<x ≤1).上述展开式对x =1也成立, 这是因为上式右端的幂级数当x =1时收敛, 而ln(1+x )在x =1处有定义且连续.例7 将函数f (x )=sin x 展开成)4(π-x 的幂级数.解 因为)]4sin()4[cos(22)]4(4sin[sin ππππ-+-=-+=x x x x , 并且有)( )4(!41)4(!211)4cos(42+∞<<-∞⋅⋅⋅--+--=-x x x x πππ, )( )4(!51)4(!31)4()4sin(53+∞<<-∞⋅⋅⋅--+---=-x x x x x ππππ, 所以 )( ] )4(!31)4(!21)4(1[22sin 32+∞<<-∞⋅⋅⋅+-----+=x x x x x πππ.例8 将函数341)(2++=x x x f 展开成(x -1)的幂级数. 解 因为 )411(81)211(41)3(21)1(21)3)(1(1341)(2-+--+=+-+=++=++=x x x x x x x x x f ∑∑∞=∞=-----=004)1()1(812)1()1(41n n nn n n n n x x)31( )1)(2121()1(0322<<----=∑∞=++x x n n n n n .提示: )211(2)1(21-+=-+=+x x x ,)411(4)1(43-+=-+=+x x x . ∑∞=<-<---=-+0)1211( 2)1()1(2111n nn n x x x , ∑∞=<-<---=-+0)1411( 4)1()1(4111n nn n x x x , 收敛域的确定: 由1211<-<-x 和1411<-<-x 得31<<-x .展开式小结:)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn ,。
高等数学 课件 PPT 第十一章 无穷级数
第二节 正项级数及其审敛法
定 理3
(比较审敛法的极限形式)设有两个正项级数
(1)如果
级数
收敛.
,且级数 收敛,则
(2)如果
,且级数
发散,则级数
发散.
第二节 正项级数及其审敛法
证 因为 n>N时
对任给ε>0,存在正整数N,当
(1)当n>N时
因为 收敛,由比较审敛法的推论可知
也收敛.
第二节 正项级数及其审敛法
则 (1)当ρ<1时,级数 (2)当ρ>1时,级数 (3)当ρ=1时,级数
收敛. 发散(包括ρ=∞). 可能收敛也可能发散.
第二节 正项级数及其审敛法
证 由极限的定义可知,对任给ε>0,存在正整数N, 当n>N时,不等式
成立. (1)当ρ<1时,取ε使得ρ+ε=q<1,于是当n>N时,
即
第二节 正项级数及其审敛法
二、收敛级数的基本性质
性质1
设k为非零常数,若级数 敛,且其和为ks.
收敛于和s,则级数
也收
证明
设级数
,
的部分和分别为sn,τn,则
二、收敛级数的基本性质
于是
因此,级数
也收敛,且其和为ks.
二、收敛级数的基本性质
性质2
若级数
与
分别收敛于s与τ,则级数
也收敛,其和为 s±τ.
二、收敛级数的基本性质
第二节 正项级数及其审敛法
容易看出,上式各项小于下面级数所对应的各项,即
因为后一个级数是公比为
的等比级数,并且由
得知r<1.所以该级数收敛.再根据比较审敛法推得前 一个级数也收敛.又因为收敛的正项级数去掉括号后仍收敛,所以 原级数收敛.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9 d d ( sin z ) d z 0 0 0 2
2
( sin z ) d d d z
1
o 1 x
y
3
思考: 若 改为内侧, 结果有何变化? 若 为圆柱侧面(取外侧) , 如何计算?
例2. 计算曲面积分
1 2 其中 是旋转抛物面 z ( x y 2 ) 2
I ( x 3 z x) d y d z x 2 yz d z d x x 2 z 2 d x d y. z 解: 作取下侧的辅助面 2 ( x, y ) D x y : x 2 y 2 1 1 : z 1 1 用极坐标 1 I 用柱坐标
A n d S 为向量场 A 通过
2.定义:在场中点 M(x, y, z) 处 P Q R 记作 div A x y z 称为向量场 A 在点 M 的散度.
例5 求下列向量 A 穿过曲面Σ流向指定侧的通量. ① A xi yj zk Σ:正方体 0 x 1,0 y 1,0 z 1的全表面,流向外侧. ② A yzi xzj xyk Σ:圆柱 x 2 y 2 a 2 (0 z b)
n n
当 > 0 时, 说明流入 的流体质量少于
流出的, 表明 内有泉; 当 < 0 时, 说明流入 的流体质量多于流出的, 表明
内有洞 ;
当 = 0 时, 说明流入与流出 的流体质量相等 .
根据高斯公式, 流量也可表为
③
设有向量场 A( x , y , z ) ,在场内作包围点M V V 的闭曲面 , 包围的区域为 ,记体积为 .若 当V 收缩成点 M 时,
*二、物理意义----通量与散度
1.定义: 设有向量场
A( x, y, z ) P( x, y, z ) i Q( x, y, z ) j R( x, y, z ) k
其中P, Q, R 具有连续一阶偏导数, 是场内的一片有向
曲面, 其单位法向量 n, 则称
有向曲面 的通量(流量) . 即 通量 Pdydz Qdzdx Rdxdy
出的流体的总质量. 左端解释: 即流体的质量: 不可压缩流体 (假设密度为1)
分布在Ω内的源头在
单位时间内所产生的
通过闭曲面的流体质量. 右端解释: 单位时间内离开闭区域Ω的
的流体的总质量.
的流体的总质量.
若 为方向向外的闭曲面, 则单位时间通过 的流量为
P d y d z Q d z d x Rdx d y
z轴的柱面的一部分,取外侧.
根据三重积分的计算法
R dv z
{
D xy
z2 ( x , y )
z1 ( x , y )
R dv z
{
D xy
z2 ( x , y )
z1 ( x , y )
R dz } dx dy z
{ R[ x , y, z2 ( x , y )] R[ x , y, z1 ( x , y )]}dxdy.
1 1
d x d ydz (1) ( x ) d x d y
2
o
x
1y
13 12
2
0
Dxy
d
1 0
d
2 0
cos d
2
使用Guass公式时应注意:
1. P , Q , R是对什么变量求偏导数;
2.是否满足高斯公式的条件;
3.Σ 是取闭曲面的外侧.
散度绝对值的大小反映了源的强度. 若向量场 A 处处有 div A 0 , 则称 A 为无源场. 例如, 匀速场 v (v x , v y , v z ) (其中v x , v y , v z 为常数 ),
div v 0
故它是无源场.
*例7. 置于原点, 电量为 q 的点电荷产生的场强为 q q ( r 0) E 3 r 3 ( x, y , z ) r r
求 div E . x y z 3 解: div E q 3 x r y r z r 3
r 2 3x 2 r 2 3 y 2 r 2 3z 2 q 5 5 5 r r r ( r 0) 0
如果G内任一闭曲线总可以张一片完全属于 G的曲面, 则称G为空间一维单连通区域.
G G G
一维单连通
二维单连通
一维单连通
二维不连通
一维不连通
二维单连通
例1. 用Gauss 公式计算 其中 为柱面 及平面 z = 0 , z = 3 所围空间 z 闭域 的整个边界曲面的外侧. 3 解: 这里 P ( y z ) x, Q 0, R x y 利用Gauss 公式, 得 原式 = ( y z ) d x d y d z (用柱坐标)
的全表面,流向外侧.
例6 求下列向量场 A 的散度. A e xy i cos( xy) j cos( xz2 )k
P Q R ( x y z )dv Pdydz Qdzdx Rdxdy
是单位时间内源头散发 表示流量,此处也叫通量.
证明 设闭区域 在面 xoy 上的投影区域为D xy .
z
由1 , 2 和 3 三部分组成, 1 : z z1 ( x , y ) ,取下侧
2 3
1
2 : z z2 ( x , y ),取上侧
3 : 是以 Dxy 的边界
o
为准线而母线平行于
D xy
y
x
R dz } dx dy z
Gauss公式的实质
表达了空间闭区域上的三重积分与其边界 曲面上的曲面积分之间的关系. 使用Guass公式时应注意:
1. P , Q , R是对什么变量求偏导数; 2.是否满足高斯公式的条件;
3.Σ 是取闭曲面的外侧.
设空间区域G, 如果G内任一闭曲面所围成 的区域全属于G, 则称G是空间二维单连通域;
P Q R M x y z 此式反应了流速场在点M 的特点: 其值为正,负或 0, 分别反映在该点有流体涌出, 吸入, 或没有任何变化.
说明: 由引例可知, 散度是通量对体积的变化率, 且
div A 0 表明该点处有正源, div A 0 表明该点处有负源, div A 0 表明该点处无源,
2 D xy
R( x , y, z )dxdy 0.
3
于是
R( x , y, z )dxdy
{ R[ x , y, z2 ( x , y )] R[ x , y, z1 ( x , y )]}dxdy,
D xy
R 所以 z d x d y d z R d x d y 若 不是 XY–型区域 , 则可引进辅助面 将其分割成若干个 XY–型区域, 在辅助面 正反两侧面积分正负抵消, 故上式仍成立 . P 类似可证 d v Pd y d z x Q d v Qd z d x y 三式相加, 即得所证 Gauss 公式: P Q R d v x y z P d y d z Q d z d x R d xdy --------高斯公式
I 2 ( x y z ) d xdydz
Dx y
h d xd y
z
2
利用质心公式, 注意 x y 0
4 2 z d x d ydz h
1 h h
o x
2 z z 2 d z h
0
h
y
4
1 4 h 2
2 2 例4. 设 为曲面 z 2 x y , 1 z 2 取上侧, 求
在 1 上 , 0 记 , 1所围区域为, 则 2
I (
1
)( x 2 cos y 2 cos z 2 cos ) d S
1
Dx y
2
( x y z ) d x d y d z
h2 d x d y
介于 z = 0 及 z = 2 之间部分的下侧. (上一节例题)
解法2: 作辅助面 1 : z 2, ( x 2 y 2 4) 取上侧
I (
1
1
)( z x)dydz zdxdy
2
1
1
( z 2 x)dydz z d x d y (1 0 1) d V
极限 lim
A dS
V M
V
存在,
div 则称此极限值为A 在点M 处的散度, 记为 A .
散度在直角坐标系下的形式
P Q R ( x y z )dv vndS
1 P Q R 1 ( x y z )dv V vndS V P Q R 1 ( ) ( , , ) vndS 积分中值定理, x y z V
一、高 斯 公 式
P Q R ( x y z )dv Pdydz Qdzdx Rdxdy P Q R 或 ( )dv x y z
( P cos Q cos R cos )dS
这里 是 的整个边界曲面的外侧, cos , cos , cos 是 上点( x , y , z ) 处的法向 量的方向余弦.
由两类曲面积分之间的关系知