低频信号发生器

合集下载

低频信号发生器测试

低频信号发生器测试

❖ d)在表3中记录测试结果
信号频 10H 100H 1kHz 10kH 100k 200k 1MHz 2MH

zz
z
Hz Hz
z
失真系 数(%)
低频函数信号发生器性能测试
❖ 4)脉冲上升(下降)沿时间测试
❖ a)按照测试工艺,信号源通电,测试仪器通电,预热大约10分 钟;
❖ b)连接信号源与测试仪器;
❖ 概述
❖ EE1641B型 函数信号发生器是一种精密的测试仪器,因其具有连续 信号、扫频信号、函数信号、脉冲信号等多种输出信号和外部测频功 能,故定名为函数信号发生器/计数器。本仪器是电子工程师、电子 实验室、生产线及教学、科研需配备的理想设备。
❖ EE1641B函数信号发生器为 波段式(按十进制分类共分七档)的低 频函数信号发生器,采用大规模单片集成精密函数发生器电路,使得 该机具有很高的可靠性及优良性能/价格比。
❖ 式中 f 为仪器读盘或数字显示的输出信号频率;为实际输出频率。
❖f
3)频率稳定度 指在其他外界条件恒定不变的情况下,在规定时间内 o,信号源输出频率相对于预调值变化的大小。频率稳定度实际上是频
率不稳定度,它表示频率源能够维持恒定频率的能力。对于频率稳定
度的描述往往引入时间概念,如4×10-3/小时,5×10-9/天。
❖ 3)信号源输出波形置“方波”(或脉冲波),幅度5Vp-p,频率 “校准位置,使被测波形占满屏幕的 80%,读取稳态幅度10%~90%(或90%~10%)部分所对应的 时间,按式(4)计算上升(下降)沿时间
t r = L×K
(4)
式中:L—上升(下降)沿部分所占水平刻度;
5 )在规定的预热时间后,调节信号源输出频率,分别在每个波段选取高 、中、低3个频率点进行频率测量,频率误差按式计算。

低频函数信号发生器讲解学习

低频函数信号发生器讲解学习

浙江大学 蔡忠法
电子系统综合设计
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
对于信号产生电路的模拟电路实现方案,也 有几种电路方式可供选择。如用正弦波发生器产 生正弦波信号,然后用过零比较器产生方波,再 经过积分电路产生三角波,电路框图如图所示。
vO1 1R R32V2R R32VZ
电子系统综合设计
浙江大学 蔡忠法
若VΘ2>0,则三角波上移; 若VΘ2<0,则三角波下移。
其上幅度为:
1
R2 R3
V2
R2 R3
VZ
其下幅度为:
1
R2 R3
V2
R2 R3
VZ
而三角波的峰峰值为:
VO1(PP)
2 R2 R3
VZ
电子系统综合设计
浙江大学 蔡忠法


这种电路在一定的频率范围内,具有良好 的三角波和方波信号。而正弦波信号的波形质 量,与函数转换电路的形式有关,这将在后面 的单元电路分析中详细介绍。
该电路方式是本实验信号产生部分的推 荐方案。
浙江大学 蔡忠法
电子系统综合设计
根据实验任务中对输出电压、输出电流及 输出功率的要求,原则上在输出级只需采用不 同的负反馈方式便可。即要求电压输出时,采 用电压负反馈;要求电流输出时,采用电流负 反馈。这将在单元电路分析中进行详细介绍。
元 电
路路
元器件
浙江大学 蔡忠法
电子系统综合设计
电子系统设计过程:
方案论证 总体设计 软硬件设计 组装调试 产品定型

低频信号发生器的使用说明

低频信号发生器的使用说明

附录一低频信号发生器的使用说明一.概述AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。

输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。

面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。

中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。

振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。

电路中还加入输出保护、TTL输出、方波占空比可调电路等。

二.技术特性1.频率范围:2Hz~2MHz,共分五个频段第一频段:2Hz~30Hz第二频段:30Hz~450Hz第三频段:450Hz~7kHz第四频段:7kHz~100kHz第五频段:100kHz~2MHz2.正弦波输出特性(1)输出电压幅度(有效值):0.5mV~5V(2)幅频率特性:≤±0.3dB(3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB3.方波输出特性⑴最大输出电压(空截,中心电平为0):14Vp-p⑵占空比(连续可调):20%~80%⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns4.输出电抗:600Ω5.频率显示准确度:1×10-4±1个字6.正常工作条件⑴环境温度:0~40℃⑵相对湿度:<90%(40℃)⑶大气压:86~106kpa⑷电源电压:220±22V,50±2.5Hz7.消耗功率:<10W三.面板及操作说明1.整机电源开关(POWER)按下此键,接通电源,同时面板上指示灯亮。

单相正弦交流电路的分析及测试 低频信号发生器交流毫伏表的使用

单相正弦交流电路的分析及测试 低频信号发生器交流毫伏表的使用
2
一、晶体管毫伏表的使用
• 4) 要测量难以估计大小的被测信号,应 先将量程选择开关置于最大值,然后在测量 中逐步减小量程。这样可以避免指针的过度 摆动。
• 5) 只有在保证被测信号是标准正弦波时 ,才不需要示波器并联检测。否则,一定要 用示波器监视被测波形,以保证其是正弦波 。这样,测量的结果才有意义。
7
一、晶体管毫伏表的使用
交流毫伏表使用注意事项
• 1.测量前应短路调零。 打开电源开关,将测试线(也称开路电缆)
的红黑夹子夹在一起,将量程旋钮旋到1mv 量程,指针应指在零位(有的毫伏表可通 过面板上的调零电位器进行调零,凡面板 无调零电位器的,内部设置的调零电位器 已调好)。若指针不指在零位,应检查测 试线是否断路或接触不良,应更换测试线 。
1
一、晶体管毫伏表的使用
• 3. 晶体管毫伏表使用注意 • 1) 在使用晶体管毫伏表测量较高电压时,一定
要注意安全。尽量避免接触可能产生漏电的地方。 • 2) 超过毫伏表最大量程的输入电压,可能会造
成毫伏表的损坏。 • 3) 晶体管毫伏表具有较高的输入阻抗,容易受
到外界电磁干扰的影响。特别在低电压量程下,当 输入端悬空,可能造成指针大幅度的摆动,甚至指 针持续满偏。这样很容易造成指针损坏。因此,在 长期不使用晶体管毫伏表时,应将电源关闭,在短 期不使用时,应将量程置于较高电压档。
3
一、晶体管毫伏表的使用 结合面板学会使用DA—16型晶体管毫伏表
2
4
6
0.5 1
1. 5
2
mV-V
db
8
2.5
10
3
机械零位调整
调零 输入
0.3V
0.1V
1V

低频信号发生器的使用说明

低频信号发生器的使用说明

附录一低频信号发生器的使用说明一.概述AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。

输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。

面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。

中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。

振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。

电路中还加入输出保护、TTL输出、方波占空比可调电路等。

二.技术特性1.频率范围:2Hz~2MHz,共分五个频段第一频段:2Hz~30Hz第二频段:30Hz~450Hz第三频段:450Hz~7kHz第四频段:7kHz~100kHz第五频段:100kHz~2MHz2.正弦波输出特性(1)输出电压幅度(有效值):0.5mV~5V(2)幅频率特性:≤±0.3dB(3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB3.方波输出特性⑴最大输出电压(空截,中心电平为0):14Vp-p⑵占空比(连续可调):20%~80%⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns4.输出电抗:600Ω5.频率显示准确度:1×10-4±1个字6.正常工作条件⑴环境温度:0~40℃⑵相对湿度:<90%(40℃)⑶大气压:86~106kpa⑷电源电压:220±22V,50±2.5Hz7.消耗功率:<10W三.面板及操作说明1.整机电源开关(POWER)按下此键,接通电源,同时面板上指示灯亮。

低频信号发生器电路图

低频信号发生器电路图

低频信号发生器电路图
低频信号发生器电路图
低频信号发生器于测量放大电路的灵敏度、频率响应、频率补偿、音调控制,也于低频放大器的修理,是十分有用的测量仪器。

它还作数字钟的信号源。

根据
使用
,信号发生器输出八个固定的频率,开关任意选择,电压输出幅度分0~0.1V,0~1V两挡连续可调。

本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

电路原理如图。

集成电路CD4060是带有振荡器的十四级分频器。

晶体SJT产生30720Hz的微弱信号频率,与Cl及CD4060内部反相器构成晶体振荡。

Rl用以提供反馈回路,仅在晶体的基频上产生振荡,振荡中心频率为30720Hz。

微调电容Cl可使频率精确调谐在中心频率上。

SA置于CD4060的13脚。

30720Hz经CD4060九级(512次)分频后,由13脚输出高精度60Hz信号频率,经电容C3耦合到运放器741的2脚进行信号放大,然后从741的6脚输出。

调节电位器RP 时,XSl插口输出0~1V,XS2插口输出0~0.1V的低频信号。

其中,C2、C5为电源滤波电容。

C3、C6为741的输入、输出耦合电容。

R5、C4为高频补偿电路。

R2、R4构成分压衰减电路。

R6为反馈电阻用以提高电路的稳定度。

CD4060各脚的输出频率:3脚为2Hz,2脚为4Hz,13脚为60Hz,14脚为l20Hz,6脚为240Hz,4脚为480Hz,5脚为960Hz,7脚为l920Hz。

本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

低频函数信号发生器

低频函数信号发生器

一、设计内容:设计一个低频函数信号发生 器 二、性能与技术指标 1. 同时输出三种波形:方波、三角波、正弦 波 2. 频率范围:10Hz ~10kHz 3 3. 频率稳定度: f f0 10 日

这种电路在一定的频率范围内,具有良好的三 角波和方波信号。而正弦波信号的波形质量,与 函数转换电路的形式有关,这将在后面的单元电 路分析中详细介绍。
滞回比较器又称施密特触发器迟滞比较器。 这种比较器的特点是当输入信号ui逐渐增大或 逐渐减小时,它有两个阈值,且不相等,其 传输特性具有“滞回”曲线的形状。滞回比 较器也有反相输入和同相输入两种方式作三角波使用。使iC 恒定的办法有多种,其实质都是利用恒流源电 路取代图中的R,便可获得较为理想的三角波波 形。
总结
这一次的实验,应该说任务,的确是很难,因为函数信号 发生器这东西真的不是仅仅靠学生一个月左右就能完成的作品,
虽然任务艰巨,但是我们也学到了很多。对于电路,放大器还
有一些其他元件的工作原理都有了很深的理解。我们也自学了 很多软件,ad软件都是自己自学,大家都很努力也都很充实。
虽然最后没有什么实际的成果也没有做出实物,但是毕竟尽了
运算法的转换原理是,把展开成幂级数形
式:
x x x sin x x 3! 5! 7!
由上述关系容易看出,取幂级数的前几项 (根据转换精度的要求),可以通过对线性 (三角波)变化量x的运算来近似表示成 sinx, 但要求三角波的幅度<π/2。
3
5
7

因为我们并没有很准确的能够把所有元器件 都搞齐,所以我们只能把搞出一个大致的电 路板,并不能显示实物。这也是局限所 在。。。
通过之前的原理说明,我们大概知道

低频信号发生器设计论文

低频信号发生器设计论文

基于单片机的低频信号发生器设计论文要摘单片机为核心设计了一个低频函数信号发生器。

本文以STC89C52可输出正弦波、方波、信号发生器通过硬件电路和软件程序相结合,波形和三角波、三角波、梯形波,波形的频率在一定范围内可改变.硬件电路和软件频率的改变通过软件控制。

介绍了波形的生成原理、该信号发1440HZ的波形。

部分的设计原理。

本系统可以产生最高频率生器具有体积小、价格低、性能稳定、功能齐全的优点。

;D /A单片机转换; 关键词:低频信号发生器;Abstracta of microcontroller as the core design This paper takes STC89C52 frequency function generator.The signal generator through a combination of hardware circuit and software program.Can output sine wave, square of frequency triangle wave, trapezoidal wave,The wave, triangle wave, and 。

The waveform certain waveform can be changed in a rangethe frequency are changed by software control,This paper introduces design of software part generating principle, hardware circuit and of principlewaveforms,This system can produce the maximum frequency of 1440HZ waveform,The signal generator has the advantages of small volume, low price, stable performance, complete functions.microcomputer low-frequency Keywords: chipsignalgeneratorD /A conversion一、设计选题及任务设计题目:基于单片机的信号发生器的设计与实现.任务与要求:设计一个由单片机控制的信号发生器。

信号发生器的分类

信号发生器的分类

信号发生器的分类信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。

所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。

信号发生器的分类1、正弦信号发生器正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。

按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。

2、低频信号发生器包括音频(200~20000赫)和视频(1赫~10兆赫)范围的正弦波发生器。

主振级一般用RC式振荡器,也可用差频振荡器。

为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。

3、高频信号发生器频率为100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器,一般采用LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出,主要用途是测量各种接收机的技术指标,输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下,高频信号发生器的输出信号电平能准确读数,所加的调幅度或频偏也能用电表读出。

此外,仪器还有防止信号泄漏的良好屏蔽。

4、微波信号发生器从分米波直到毫米波波段的信号发生器,信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势,仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上,简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。

低频信号发生器实训报告

低频信号发生器实训报告

一、实训目的1. 熟悉低频信号发生器的基本原理和结构;2. 掌握低频信号发生器的使用方法和调试技巧;3. 学会使用低频信号发生器进行实验,并分析实验结果;4. 培养学生动手操作能力和实验分析能力。

二、实训内容1. 低频信号发生器的基本原理和结构;2. 低频信号发生器的使用方法;3. 低频信号发生器的调试技巧;4. 使用低频信号发生器进行实验,并分析实验结果。

三、实训设备1. 低频信号发生器一台;2. 示波器一台;3. 数字多用表一台;4. 实验电路板一块;5. 连接线若干。

四、实训步骤1. 观察低频信号发生器的结构,了解其基本组成部分;2. 学习低频信号发生器的工作原理,包括振荡器、放大器、滤波器等;3. 学习低频信号发生器的使用方法,包括如何设置频率、幅度、波形等;4. 学习低频信号发生器的调试技巧,如如何调整频率、幅度、波形等;5. 使用低频信号发生器进行实验,包括:(1)产生正弦波、方波、三角波等基本波形;(2)调整频率、幅度、相位等参数;(3)测量信号波形,分析实验结果;6. 根据实验结果,撰写实训报告。

五、实验结果与分析1. 实验一:产生正弦波、方波、三角波等基本波形实验步骤:(1)打开低频信号发生器,设置频率为1kHz,幅度为1V;(2)观察示波器,调整低频信号发生器的输出波形为正弦波;(3)重复步骤(1)和(2),产生方波、三角波等波形。

实验结果:成功产生正弦波、方波、三角波等基本波形。

2. 实验二:调整频率、幅度、相位等参数实验步骤:(1)打开低频信号发生器,设置频率为1kHz,幅度为1V;(2)调整低频信号发生器的频率、幅度、相位等参数;(3)观察示波器,分析调整结果。

实验结果:成功调整频率、幅度、相位等参数,观察到的波形符合预期。

3. 实验三:测量信号波形,分析实验结果实验步骤:(1)打开低频信号发生器,设置频率为1kHz,幅度为1V;(2)将低频信号发生器的输出信号接入示波器;(3)观察示波器,分析信号波形。

低频信号发生器的工作原理

低频信号发生器的工作原理

低频信号发生器的工作原理低频信号发生器是一种用于产生低频信号的设备,其工作原理主要基于振荡电路的原理。

振荡电路是一种能够产生连续变化的正弦波信号的电路,低频信号发生器就是利用振荡电路来产生低频信号的设备。

低频信号发生器的工作原理可以分为以下几个方面来解释:1. 振荡电路的概念在低频信号发生器中,振荡电路是其核心部件。

振荡电路是一种能够产生周期性变化的电压或电流的电路,其主要由一个放大元件(如三极管、场效应管等)、反馈网络和一个能量储存元件(如电感、电容)组成。

当电压或电流在振荡电路中被反馈并且增强时,能够产生连续变化的正弦波信号。

2. 负反馈原理低频信号发生器的振荡电路采用了负反馈原理。

负反馈是指将一部分输出信号反馈到输入端,以抑制电路中的非线性失真和稳定输出信号的变化。

在低频信号发生器中,通过正确设计反馈网络,能够使得振荡电路产生稳定、纯净的低频正弦波信号。

3. 控制元件低频信号发生器中的振荡电路通常会加入控制元件,如可变电阻、可变电容等。

这些控制元件能够通过调节电阻值或电容值来改变振荡电路的频率、幅度等参数,从而实现对低频信号的精确调节和控制。

4. 输出驱动电路除了振荡电路外,低频信号发生器还需要配备输出驱动电路。

输出驱动电路可以将振荡电路产生的低频信号放大并输出到外部设备,如示波器、扬声器、其他测量设备等。

输出驱动电路通常包括放大器、隔直电路等部分,以保证低频信号的准确输出。

低频信号发生器的工作原理主要是依托振荡电路的原理,并结合负反馈、控制元件和输出驱动电路等部分共同实现对低频信号的产生和输出。

这些原理的相互作用使得低频信号发生器能够产生稳定、精确的低频信号,广泛应用于各种仪器仪表、声音设备、通信设备等领域。

低频信号发生器

低频信号发生器

粗调和细调。 ① 频率选择 粗调和细调。 ② 电压输出 接通内负载。 接通内负载。 用电缆直接从功率输出插口引出。 ③ 功率输出 用电缆直接从功率输出插口引出。应将面板右 侧“内负载”键按下,接通内负载。 内负载”键按下,接通内负载。 ④ 过载保护 入工作状态。 入工作状态。 过载保护指示灯亮, 后熄灭, 过载保护指示灯亮,约5 ~ 6 s后熄灭,表示进 后熄灭 用电缆直接从“电压输出”插口引出。 用电缆直接从“电压输出” 插口引出 。调节 输出衰减开关和输出细调旋钮。应将板右侧“内负载”键按下, 输出衰减开关和输出细调旋钮。应将板右侧“内负载”:监测振荡器输出电压的大小,监测输出功率。 作用:监测振荡器输出电压的大小,监测输出功率。
3.XD1 型低频信号发生器 . XD1 型低频信号发生器产生从 1 Hz ~ 1 MHz 非线性失真很小的正弦波信号,有电压输 出和功率输出两档。 使用方法 XD1 型 低频信号发生器面板装 置如图。
• 频率:5KHZ • 幅度:10 • 衰减:-40
频率:4KHZ 幅度:6 衰减:0
频率:4.2KHZ 频率:600HZ 幅度:3 幅度:4 衰减:0 衰减:-10
• 频率:7.8KHZ 频率:2.4KHZ • 幅度:10 幅度:9 • 衰减:-40 衰减:-30
频率:10KHZ 频率:1.8KHZ 幅度:11 幅度:6 衰减:-40 衰减:-20
测量开关拨向“外测” ⑤ 交流电压表 测量开关拨向“外测”时,它作为一般交流 电压表测量外部电压;当开关拨向“内测” 电压表测量外部电压;当开关拨向“内测”时,它作为信号发生 器输出指示。 器输出指示。
频率:972HZ 频率:6.2KHZ 幅度:8 幅度:6 衰减:-60 衰减:-40 频率:783HZ 频率:851HZ 幅度:4 幅度:5 衰减:-80 衰减:0

低频函数信号发生器

低频函数信号发生器
低频信号发生器低失真的正弦波电压,可用于校验频率继电器, 同步继电器等,也可作为低频变频电源使用。信号发生器采用 数字波形合成技术,通过硬件电路和软件程序相结合,可输出自 定义波形,如正弦波、方波、三角波及其他任意波形。波形的 频率和幅度在一定范围内可任意改变。该信号发生器具有体积 小、价格低、性能稳定、功能齐全的优点
滞回比较器又称施密特触发器迟滞比较器。
这种比较器的特点是当输入信号ui逐渐增大或 逐渐减小时,它有两个阈值,且不相等,其 传输特性具有“滞回”曲线的形状。滞回比 较器也有反相输入和同相输入两种方式。
线性度非常差,显然不能当作三角波使用。使iC
恒定的办法有多种,其实质都是利用恒流源电
路取代图中的R,便可获得较为理想的三角波波
2
R2 R3

VZ
由上可知,当R2/R3的比值调好后,三角波 的峰峰值已经确定,调节VΘ2的大小可使三角波 上下平移。
因此,当由于失调等原因引起三角波零 位偏移(上下不对称)时,可通过改变VΘ2的大 小进行调整。
函数转换是指:把某种函数关系转换成另 一种函数关系,能完成这种转换功能的电子电 路就称为函数转换电路。常用的函数转换电路, 如半波、全波整流电路,就是把正弦波形转换 成半波和全波波形的函数转换电路。本实验需 要讨论的是,把三角电压波形转换成正弦电压 波形的正弦函数转换电路。
3! 5! 7!
由上述关系容易看出,取幂级数的前几项 (根据转换精度的要求),可以通过对线性 (三角波)变化量x的运算来近似表示成 sinx, 但要求三角波的幅度<π/2。
因为我们并没有很准确的能够把所有元器件 都搞齐,所以我们只能把搞出一个大致的电 路板,并不能显示实物。这也是局限所 在。。。
通过之前的原理说明,我们大概知道 了波形的发生电路还有转换电路,所 以根据电路图我们用multisim进行了 仿真,并且运用ad(altium designer)进行了pcb板的制作

低频信号发生器的使用说明

低频信号发生器的使用说明

低频信号发生器的使用说明一、器件介绍二、连接器件1.将发生器的电源线插入电源插座,并确保电压稳定;2.将发生器的输出端口与所需连接的设备的输入端口连接。

通常可通过BNC连接器将信号发生器与外部设备连接。

三、设置参数1.打开电源开关,启动发生器。

在显示屏上将会显示基本参数,如频率、幅度等;2.利用旋钮或按键设置所需的信号频率。

一般情况下,可以通过旋钮一步步地调整频率,也可以通过输入具体数值来直接设置频率;3.设置输出幅度。

通过旋钮或按键可以调整信号的幅度,选择合适的幅度范围,并通过输入具体数值来直接设置幅度值;4.如果需要,还可以设置其他参数,比如波形类型、相位、频率调制等。

四、使用功能1.正弦波:低频信号发生器可以产生各种波形,其中最常用的是正弦波。

可以通过设置频率、幅度来调整正弦波的特点;2.方波:方波是一种平坦的波形,通常用于测试数字电路,可以通过设置频率、幅度来调整方波的特点;3.脉冲波:脉冲波是一种带有高峰值的波形,通常用于测试计时电路等;4.三角波:三角波是一种连续的波形,通常用于测试滤波器频率响应等;5.调频信号:低频信号发生器还可以产生调频(FM)信号,可以通过设置调频范围和调频深度来调整调频信号的特点。

五、注意事项1.在使用低频信号发生器之前,需要确保电源接地良好,以避免电击等意外;2.调节信号幅度时,需要避免过高的输出幅度,以免损坏连接设备;3.当需要连接低频信号发生器与其他设备时,要确保连接器件与线缆质量良好,并避免松动接触导致信号失真;4.在进行精密测量时,可以考虑使用外部校准装置进行校准,以提高测量准确性;5.在长时间使用低频信号发生器时,要注意发生器的散热问题,避免过热。

总结:低频信号发生器是一种功能强大的信号产生仪器,通过设置频率、幅度等参数,可以产生各种波形的信号。

在使用低频信号发生器时,需要连接合适的设备,并注意设置参数和注意事项。

正确使用低频信号发生器,可以实现科研、测试、教学等领域的需求。

低频信号发生器原理

低频信号发生器原理

低频信号发生器的设计摘要:直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快优点,在雷达及通信等领域有着广泛的应用前景。

文中介绍了一种高性能DDS芯片AD9850的基本原理和工作特点,阐述了如何利用此芯片设计一种频率在0—50kHz内变化、相位正交的信号源,给出了AD9850芯片和MCS51单片机的硬件接口和软件流程。

关键词:直接数字频率合成信号源AD9850芯片概述:随着数字技术的飞速发展,高精度大动态范围数字/模拟(D,A)转换器的出现和广泛应用,用数字控制方法从一个标准参考频率源产生多个频率信号的技术,即直接数字合成(DDS)异军突起。

其主要优点有:(1)频率转换快:DDS频率转换时间短,一般在纳秒级;(2)分辨率高:大多数DDS可提供的频率分辨率在1 Hz 数量级,许多可达0.001 Hz;(3)频率合成范围宽;(4)相位噪声低,信号纯度高;(5)可控制相位:DDS 可方便地控制输出信号的相位,在频率变换时也能保持相位联系;(6)生成的正弦/余弦信号正交特性好等。

因此,利用DDS技术特别容易产生频率快速转换、分辨率高、相位可控的信号,这在电子测量、雷达系统、调频通信、电子对抗等领域具有十分广泛的应用前景。

1. 低频信号发生器的组成图2.7为低频信号发生器组成框图。

它主要包括主振器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表等。

(1)主振器RC文氏桥式振荡器具有输出波形失真小、振幅稳定、频率调节方便和频率可调范围宽等特点,故被普遍应用于低频信号发生器主振器中。

主振器产生与低频信号发生器频率一致的低频正弦信号。

文氏桥式振荡器每个波段的频率覆盖系数(即最高频率与最低频率之比)为10,因此,要覆盖1Hz~1MHz的频率范围,至少需要五个波段。

为了在不分波段的情况下得到很宽的频率覆盖范围,有时采用差频式低频振荡器,图2.8为其组成框图。

假设f2=3.4MHz,f1可调范围为3.3997MHz~5.1MHz,则振荡器输出差频信号频率范围为300Hz (3.4MHz-3.3997MHz)~1.7MHz(5.1 MHz-3.4 MHz)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 测量与常用仪表
2.4低频信号发生器
XD-1型低频信号发生器能输出频率为1Hz~1MHz 的正弦信号。

它有电压输出和功率输出两种,最大输出功率为4W 左右。

功率输出可配接50Ω、75Ω、150Ω、600Ω、5k Ω五种负载,最大衰减量为90dB 。

1.面板上各主要旋钮的作用
(1)电压表输入 外加待测电压输入端。

(2)电压测量开关 当开关置于“内”时,电压表直接接到电压输出端,用来测量输出电压;当开关置于“外”时,供测量外电路的输入电压。

(3)阻尼开关 通常置于“快”,当表针摆动较快时,再放到慢的位置,以减少指针的摆动。

(4)电压量程旋钮 根据待测电压的大小,选择合适的量程。

量程分为5V 、15V 、50V 、150V 四档。

(5)频段按键开关与频率细调旋钮 频段开关用于选择所需频段,频段细调旋钮按十进制排列,用于调准所需频率值。

XD-1型低频信号发生器的频率范围在1Hz~1MHz 之间分为6个频段:1~10Hz 、10~100Hz 、100Hz~1kHz 、1~10kHz 、10~100kHz 、100kHz~1MHz 。

(6)负载匹配旋钮 可选择不同阻值的输出阻抗,与负载匹配。

(7)输出衰减旋钮 用于电压输出的衰减,每档衰减10dB 。

注意:在同一
1.了解低频信号发生器的面板构成。

2.熟练掌握低频信号发生器的使用方法。

3.在实际应用中理解其使用注意事项。

1. 低频信号发生器的输出频率调节方法。

2. 低频信号发生器的输出电压调节方法。

衰减位置上,电压与功率的衰减分贝数不同,面板上用不同颜色加以区别。

(8)输出细调旋钮用来控制电压输出与功率输出端的大小,与输出衰减钮配合使用,可得到所需的输出值。

(9)功率开关按下此钮时,可获得功率输出。

(10)过载指示与内负载按键过载保护指示灯点亮时,表示功率输出过载。

按下内负载按钮时,表示功率级的内部电阻已接通,以获得较高的输出幅度。

2.使用方法
(1)频率选择
根据所需的频率,选择相应频段,按下相应的频段按键,然后再利用频率细调的三个旋钮,按照十进制的原则细调到所需的频率。

(2)输出调整
仪器有电压输出和功率输出,这两种输出共用一个输出衰减旋钮,每档衰减10dB。

注意:在同一衰减位置上,电压与功率的衰减分贝数不同,面板上用不同颜色加以区别。

输出细调旋钮与输出衰减旋钮配合使用,可在输出端获得所需电压值。

(3)电压输出
从电压输出端可获得非线性失真系数较小(<0.1%)的电压,通过衰减可输出200μV的小信号。

电压输出端最大可输出5V,其输出阻抗随输出衰减量的变化而变化。

为保证衰减的准确性及输出波形的失真不超过一定值(主要是在电压衰减0dB时),电压输出的负载应大于5kΩ以上。

(4)功率输出
使用功率输出时,首先要按下“功率开关”。

①阻抗匹配功率级设有75Ω、150Ω、600Ω、5kΩ输出阻抗,欲得到最大输出功率,应使负载与输出阻抗匹配,若做不到,一般应使实际使用的负载值大于所选用的数值,否则将造成波形的失真。

当负载为高阻抗时,应将内负载按键按下,以免工作频段的两端输出电压下降,当功率输出衰减为0dB时,输出阻抗将小于旋钮所指示的阻抗值。

②保护电路当开机时或改变频率换档时,由于瞬间过电流的冲击,功放过载指示发光二极管可能闪亮一下后立即熄灭,这是正常现象。

若在使用过程中,
该指示灯一直点亮,说明使用有问题,可能是由于负载短路、过载或输出功率过大等,应及时排除。

③对称输出功率级输出可以不接地,但当这样使用时,只需将功率输出接线端与地的连接片取下即可。

④工作频段功率级在10Hz~700kHz范围的输出符合技术条件的规定,在5~10Hz、700kHz~1MHz范围内仍有输出,但功率减小。

当输出阻抗为5kΩ时,在10Hz~200kHz范围内,输出功率符合技术条件的规定,在200kHz~1MHz范围内,输出功率减小。

功率级在5Hz以下时,输入自动切断,无输出。

相关文档
最新文档