基于Matlab的牛顿迭代法解非线性方程组

合集下载

牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。

(1) 求ln(sin )x x +的根。

初值0x 分别取0.1,1,1.5,2,4进行计算。

(2) 求sin =0x 的根。

初值0x 分别取1,1.4,1.6,1.8,3进行计算。

分析其中遇到的现象与问题。

(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。

将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。

第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。

同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。

如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。

计算结果见附录1表F.1-1所示。

初值取1.5,2,4进行计算时结果不收敛。

表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。

非线性方程求解

非线性方程求解

⾮线性⽅程求解基于MATLAB的⾮线性⽅程的五种解法探讨摘要:本⽂利⽤matlab软件对⾮线性⽅程解法中的⼆分法、简单迭代法、⽜顿法、割线法以及Steffensen法的数值分析⽅法的算法原理及实现⽅法进⾏了探讨。

对f x x x=+-()2ln2的零点问题,分别运⽤以上五种不同的⽅法进⾏数值实验,⽐较⼏种解法的优缺点并进⾏初步分析评价。

关键词:⼆分法、简单迭代法、⽜顿法、割线法、Steffensen法1、引⾔在很多实际问题中,经常需要求⾮线性⽅程f(x) =0的根。

⽅程f(x) =0的根叫做函数f(x)的零点。

由连续函数的特性知:若f(x)在闭区间[a,b ]上连续,且()()0f a f b<.则f(x) =0在开区间(a,b)内⾄少有⼀个实根。

这时称[a,b]为⽅程f(x) =0的根的存在区间。

本⽂主要对⾮线性⽅程的数值解法进⾏分析,并介绍了⾮线性⽅程数值解法的五种⽅法。

并设=+-.f x x x()2ln2f x在[1,2]上的图形,如图1:. 显然,函数在[1,2]之间有⼀个零点。

⾸先画出()2、计算机配置操作系统Windows 7 旗舰版内存2GB处理器AMD 4核 A6-3400M APU 1.4GHz图.13、⼆分法⼆分法的基本思想是将⽅程根的区间平分为两个⼩区间,把有根的⼩区间再平分为两个更⼩的区间,进⼀步考察根在哪个更⼩的区间内。

如此继续下去,直到求出满⾜精度要求的近似值。

设函数()f x 在区间[a,b ]上连续,且f(a)·f(b) <0,则[a,b ]是⽅程f(x) =0的根的存在区间,设其内有⼀实根,记为x*。

取区间[a,b ]的中点()2k a b x +=并计算1()f x ,则必有下列三种情况之⼀成⽴: (1) 1()f x =0,x1就是⽅程的根x*;(2)()f a .1()f x <0,⽅程的根x*位于区间[a, 1x ]之中,此时令111,a a b x ==; (3)1()f x .()f b <0,⽅程的根x*位于区间[1x ,b ]之中,此时令11a x =,1b b =。

matlab fsolve 算法

matlab fsolve 算法

matlab fsolve 算法Matlab是一种常用的科学计算软件,其中的fsolve算法是用于求解非线性方程组的一种方法。

本文将介绍fsolve算法的原理和使用方法,并通过实例展示其在实际问题中的应用。

一、fsolve算法原理fsolve算法是一种数值方法,用于求解非线性方程组。

它基于牛顿迭代法,通过不断迭代逼近方程组的解。

具体原理如下:1. 假设要求解的方程组为F(x) = 0,其中x为未知向量,F为非线性函数。

2. 首先,我们需要对方程组进行线性化,即将其转化为形如J(x)Δx = -F(x)的线性方程组,其中J(x)为方程组F(x)的雅可比矩阵,Δx为x的增量。

3. 初始时,我们给定一个初始解x0。

4. 然后,利用初始解和雅可比矩阵,通过求解线性方程组J(x0)Δx = -F(x0),得到增量Δx。

5. 将增量Δx加到初始解x0上,得到新的解x1 = x0 + Δx。

6. 重复步骤4和步骤5,直到满足终止准则,即F(x)的范数小于某个给定的容差。

二、fsolve算法使用方法在Matlab中,可以使用fsolve函数调用fsolve算法来求解非线性方程组。

其基本语法如下:x = fsolve(fun,x0,options)其中,fun为一个函数句柄,表示要求解的方程组F(x) = 0,x0为初始解向量,options为求解选项。

三、fsolve算法应用实例下面通过一个实际问题来演示fsolve算法的应用。

假设有一个非线性方程组:sin(x) + cos(y) = 1exp(x) + y = 2我们的任务是求解方程组的解。

我们需要将方程组转化为函数形式。

在Matlab中,我们可以定义一个函数文件,例如:function F = equations(x)F(1) = sin(x(1)) + cos(x(2)) - 1;F(2) = exp(x(1)) + x(2) - 2;然后,我们可以使用fsolve函数来求解方程组:x0 = [0,0]; % 初始解向量options = optimoptions('fsolve','Display','iter'); % 设置求解选项x = fsolve(@equations,x0,options); % 调用fsolve算法求解方程组我们可以将求解的结果打印出来:disp(['x = ', num2str(x(1))]);disp(['y = ', num2str(x(2))]);通过运行上述代码,我们可以得到方程组的解x = 0.7854,y = 1.2146。

牛顿迭代法解非线性方程组(MATLAB版)

牛顿迭代法解非线性方程组(MATLAB版)

⽜顿迭代法解⾮线性⽅程组(MATLAB版)⽜顿迭代法,⼜名切线法,这⾥不详细介绍,简单说明每⼀次⽜顿迭代的运算:⾸先将各个⽅程式在⼀个根的估计值处线性化(泰勒展开式忽略⾼阶余项),然后求解线性化后的⽅程组,最后再更新根的估计值。

下⾯以求解最简单的⾮线性⼆元⽅程组为例(平⾯⼆维定位最基本原理),贴出源代码:1、新建函数fun.m,定义⽅程组1 function f=fun(x);2 %定义⾮线性⽅程组如下3 %变量x1 x24 %函数f1 f25 syms x1 x26 f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17);7 f2 = sqrt(x1^2 + (x2-4)^2)-5;8 f=[f1 f2];2、新建dfun.m,求出⼀阶微分⽅程1 function df=dfun(x);2 f=fun(x);3 df=[diff(f,'x1');diff(f,'x2')]; %雅克⽐矩阵3、建⽴newton.m,执⾏⽜顿迭代过程1 clear;clc2 format;3 x0=[0 0]; % 迭代初始值4 eps = 0.00001; % 定位精度要求5for i = 1:106 f = double(subs(fun(x0),{'x1''x2'},{x0(1) x0(2)}));7 df = double(subs(dfun(x0),{'x1''x2'},{x0(1) x0(2)})); % 得到雅克⽐矩阵8 x = x0 - f/df;9if(abs(x-x0) < eps)10break;11 end12 x0 = x; % 更新迭代结果13 end14 disp('定位坐标:');15 x16 disp('迭代次数:');17 i结果如下:定位坐标:x =0.0000 -1.0000迭代次数:i =4。

牛顿迭代法求解非线性方程组的解

牛顿迭代法求解非线性方程组的解

10 简化牛顿法 简化牛顿法又称平行弦法,其迭代公式为
xk1 xk Cf (xk ),C 0, k 0,1,
(4-7)
从不动点迭代法的角度看,简化牛顿法的迭代函数(x) x Cf (x) ,下面讨论简
化牛顿法的收敛性。
若| '(x) ||1 Cf '(x) | 1 ,即取 0 Cf ' (x) 2 .在根 x* 附近成立,则迭代法
x k 的点 Pk 引切线,并将该切线与 x 轴的交点的横坐标 x k1 作为 x* 的新的近似值。 注意到切线方程为
y f (xk ) f '(xk )(x xk )
(4-4)
这样求得的值 x k1 比满足 f (xk ) f '(xk )(x xk ) 0 ,从而就是牛顿公式
x
k 1
| f (xk1) || f (xk ) |
(4-8)
满足此要求的算法称为下山法。
将牛顿法和下山法一起使用时,即在下山法保证函数值稳定下降的前提下,
用牛顿法加快收敛速度。为此,为此将牛顿法的计算结果
xk 1
xk
f (xk ) f ' (xk )
(4-9)
与前一步的近似值 xk 的适当加权平均作为新的改进值
代法中所遇到的 jacobi 矩阵难求的问题。
关键词:非线性方程组、牛顿迭代法、MATLAB、 jacobi 矩阵
一、前言 非线性方程组在实际问题中经常出现,并且在科学与工程计算中的地位越来
越来重要,很多常见的线性模型都是在一定条件下由非线性问题简化得到的,为 得到更符合实际的解答,往往需要直接研究非线性模型,然而从线性到非线性是 一个质的飞跃,方程的性质的不同,所以求解方法也有很大差别。本文主要介绍 关于非线性方程及方程组的数值解法,先分析非线性方程的数值解法,然后再延 伸到方程组的解法。

matlab牛顿迭代法求方程

matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。

牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。

而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。

二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。

其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。

2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。

根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。

三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。

需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。

按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。

2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。

传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。

四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。

利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。

2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。

通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。

假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。

我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。

为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。

雅可比矩阵是由方程组的偏导数组成的矩阵。

对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。

在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。

以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。

下一步是实现牛顿迭代法。

牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。

在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。

MATLAB方程组的解的背景知识

MATLAB方程组的解的背景知识

一、Matlab 中多元方程组的表示方法例1、方程组 23sin ln 70321050y x y z x z x y z ++−=+−+= ++−=上面方程组的左边是三个函数()()()231,,sin ln 72,,3213,,5y F x y z x y z F x y z x z F x y z x y z =++− =+−+ =++− ,方程组的解,就是这三个函数的零点。

如令(),,X x y z =,则()1X 就是,x ()2X 就是y ,()3X 就是z 。

从而方程组也可以写为2(2)31sin((1))(2)ln (3)723(1)2(3)13(1)(2)(3)5X F X X X F X X F X X X =++− =+−+ =++−1、在matlab 中,上面方程组的对应求解函数应如下设计: function F=test(x) % F 和x 的记号可以随便。

F(1)=sin(x(1))+x(2)^2+log(x(3))-7; F(2)=3*x(1)+2^x(2)-x(3)^3+1; F(3)=x(1)+x(2)+x(3)-5; end2、也可以采用下面方式以符合平时的使用习惯 function F=test(s) x=s(1);y=s(2);z=s(3);F(1)=sin(x)+y^2+log(z)-7; F(2)=3*x+2^y-z^3+1; F(3)=x+y+z-5; End3、也可以用匿名函数设计>>f=@(x)[sin(x(1))+x(2)^2+log(x(3))-7;3*x(1)+2^x(2)-x(3).^3+1;x(1)+x(2)+x(3)-5] 二、求解单变量非线性方程方程()0f x =根的迭代法(一)、牛顿迭代法如果()f x 连续可导,对初始点0x ,函数的泰勒展开式为:()()()()()()200002f f x f x f x x x x x ξ′′′=+−+− 当某点1x 在0x 附近时10x x x ∆=−很小,如果()f x ′′还有界,则()()()()10010f x f x f x x x ′≈+−,如果()()()00100f x f x x x ′+−≈,那么()10f x ≈,此时1x 就是函数的近似零点。

牛顿法解非线性方程(MATLAB和C++)

牛顿法解非线性方程(MATLAB和C++)

41 end
42 time = toc;
43
44 fprintf('\nIterated times is %g.\n', times);
45 fprintf('Elapsed time is %g seconds.\n', time);
46
47 root = x_iter;
48
49 % subfunction
5
6 // 功能描述:求解非线性方程根,并输出最终解 7 // 迭代式:x(k+1) = x(k) - f(x(k))/df(x(k)). 8 // 使用:修改标出的“修改”部分即可自定义参数
9
10 // 输入:函数 fun,函数导数 dfun,初值 x0,
4
11 // 最大迭代次数 maxiter,停止精度 tol 12 // 输出:迭代数值解 x_iter2
2
Listing 1: MATLAB EXAMPLE 1 % 2013/11/20 15:14:38
2
3 f = @(x)x^2 − 2; 4 df = @(x)2*x; 5 x0 = 3; 6 root = newton(f, df, x0);
C++ 以 C++ 实现的方法并未编写成为一般可调用的方法,而作为一个独立的 文件(包含一个实例),修改部分即可求解对应的方程。具体参照 cpp 文件内 注释。
A 附录
A.1 MATLAB
Listing 2: MATLAB CODE 1 function root = newton(f, df, x0, maxiter, tol) 2 %NEWTON Newton's method for nonlinear equations. 3% 4 % NEWTON's method: x(k+1) = x(k) - f(x(k))/f'(x(k)). 5% 6 % Inputs 7 % f - nonlinear equation. 8 % df - derivative of f(x). 9 % x0 - initial value. 10 % maxiter - maximum iterated times. 11 % tol - precision. 12 % 13 % Outputs 14 % root - root of f(x) = 0.

matlab求解非线性方程组

matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。

非线性方程求解实验报告

非线性方程求解实验报告

数学实验报告非线性方程求解一、实验目的1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法,并对结果作初步分析;2.练习用非线性方程和方程组建立实际问题的模型并进行求解。

二、实验内容题目1【问题描述】(Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。

问贷款利率是多少?(Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20 年还清。

从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)?【分析与解】假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。

由题意可知:x1=x0(1+p)−xx2=x0(1+p)2−x(1+p)−xx3=x0(1+p)3−x(1+p)2−x(1+p)−x……x n=x0(1+p)n−x(1+p)n−1−⋯−x(1+p)−x=x0(1+p)n−x (1+p)n−1p=0因而有:x0(1+p)n=x (1+p)n−1p (1)则可以根据上述方程描述的函数关系求解相应的变量。

(Q1)根据公式(1),可以得到以下方程:150p(1+p)180−(1+p)180+1=0设 f(p)=150p(1+p)180−(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下:for i = 1:25t = 0.0001*i;p(i) = t;f(i) = 150*t*(1+t).^180-(1+t).^180+1;end;plot(p,f),hold on,grid on;运行以上代码得到如下图像:f(p)~p关系曲线图通过观察上图可知p∈[0.002,0.0022]。

Solution1:对于p∈[0.002,0.0022],采用二分法求解,在Matlab 中编程如下:clear;clc;x0=150000;n=180;x=1000;p0=0.002;p1=0.0022;while (abs(p1-p0)>1e-8)f0=x0*(1+p0).^n+x*(1-(1+p0).^n)/p0;f1=x0*(1+p1).^n+x*(1-(1+p1).^n)/p1;p2=(p0+p1)/2;f2=x0*(1+p2).^n+x*(1-(1+p2).^n)/p2;if (f0*f2>0 && f1*f2<0)p0=p2;elsep1=p2;end;end;p0结果得到p0=0.00208116455078125=0.2081%.所以贷款利率是0.2081%。

matlab牛顿迭代法

matlab牛顿迭代法

matlab牛顿迭代法牛顿迭代法是用来解非线性方程的一种数值计算方法,它属于迭代求解算法,通常也有函数最优化的应用。

牛顿迭代法的概念可以进一步被拆解成牛顿迭代法和牛顿切线法,牛顿切线法是牛顿迭代法的函数优化算法。

下面先给出牛顿迭代法和牛顿切线法的主要公式。

(1)牛顿迭代法公式:牛顿迭代法主要面对的是非线性方程,以xx为未知量,即f(x)=0,那么在运用牛顿迭代法求解的时候,就可以表示为:①x1= x0 - (f(x0))/f'(x0) 其中f'(x0)为函数f(x)在x0点的导数②x2=x1 - (f(x1))/f'(x1)依次类推,求出满足函数f(x)的未知量x的值。

当求出的结果满足特定的停止条件后,牛顿迭代法也就停止了。

牛顿切线法是用来求解函数最值问题,如果要求f(x)函数在某一点x0处的最值,则把函数f(x)关于x的切线方程表示成L(x)=f(x0)+f '(x0) ( x - x0),将L(x)与f(x)相比,可以得出x1 = x0 - f(x0)/f'(x0)公式,用x1更新x0,可以得出x2。

类推,可以更新出符合最优值的x3 = x2 - f(x2)/f'(x2)。

牛顿迭代法和牛顿切线法是两种完全不同的数值求解方法,当函数非线性时,可用牛顿迭代法来求解;在函数最优化问题中,则可用牛顿切线法。

从这里也可以看到,牛顿迭代法和牛顿切线法都是基于牛顿切线思想而推导出来的。

在matlab中,要使用牛顿迭代法和牛顿切线法,就需要用到四个步骤:(1)确定起始点;(2)根据函数求解其一阶导数和二阶导数;(3)根据牛顿迭代法或牛顿切线法的公式来求解每次迭代的新点;(4)根据设定的停止条件决定是否要继续迭代或停止。

牛顿迭代法和牛顿切线法主要有可以收敛更快,比较稳定等优点,他们有很多的数学应用,应用的领域包括:线性规划,最优序列搜索,图像分割,投影计算,多项式拟合,分类与识别,混合应用模型,机器学习,控制算法等。

matlab隐函数求解程序

matlab隐函数求解程序

matlab隐函数求解程序隐函数是指将两个或多个变量之间的关系以方程的形式表示,并无法通过简单的代数方法解出其中一个变量的函数。

在MATLAB中,我们可以使用多种方法来求解隐函数,包括牛顿迭代法、区间二分法、割线法等。

下面将介绍一种常用的方法——牛顿迭代法,以及MATLAB中的相关函数和用法。

一、牛顿迭代法求解隐函数牛顿迭代法是一种基于导数计算的求解非线性方程的方法,通过不断迭代逼近方程的根。

对于求解隐函数方程F(x, y) = 0,可以使用以下迭代公式进行计算:```x(k+1) = x(k) - F(x(k), y(k))/F'(x(k), y(k))y(k+1) = y(k) - F(x(k), y(k))/F'(x(k), y(k))```其中,k为迭代次数,F'(x(k), y(k))为F关于x和y的偏导数。

二、MATLAB中的隐函数求解函数在MATLAB中,可以使用fzero函数和fsolve函数来求解隐函数。

下面分别介绍这两个函数的使用方法。

1. fzero函数fzero函数用于求解单变量的非线性方程,可以用于求解隐函数中的一个变量。

使用方法如下:```x = fzero(@fun, x0)```其中,@fun为自定义的函数句柄,表示隐函数F(x, y)=0中与变量x相关的表达式。

x0为迭代初始值。

2. fsolve函数fsolve函数用于求解多变量的非线性方程组,可以用于求解隐函数中多个变量。

使用方法如下:```[x, y] = fsolve(@fun, [x0, y0])```其中,@fun为自定义的函数句柄,表示隐函数F(x, y)=0中与变量x和y相关的表达式。

[x0, y0]为迭代初始值。

三、MATLAB中的隐函数求解示例假设我们需要求解隐函数方程sin(x) + cos(y) = 1,我们可以使用MATLAB的fzero函数和fsolve函数进行求解。

牛顿法解非线性方程组实验报告

牛顿法解非线性方程组实验报告

由f i ( x) 偏导数作成的矩阵记为 J(x)或 F ' ( x) 称为 F(x)的 Jacobi 矩阵
设 x* 为 F(x)=0 的解,且设 x( k )
数f i ( x) 在 x( k ) 点的泰勒公式有
f i ( x)
1 2

j
J( x ) F ' ( x ) x1 x2
(2) 求解一个线性方程组: J( x( k ) )x( k ) F( x( k ) )
(3) 计算 x( k 1) x( k ) x( k ) 。 2、流程图见附图 1
4 程序代码及注释
%牛顿法解非线性方程组 function [Z,P,k,e] = newton(P,e0) %用P输入初始猜想矩阵,不断迭代输出计算解 %Z为迭代结束后的F矩阵 %k为迭代次数,e为每次迭代后的无穷范数,e0为误差限 Z=F(P(1),P(2)); J=JF(P(1),P(2)); Q=P-J\Z; e=norm((Q-P),inf); P=Q; Z=F(P(1),P(2)); k=1; while e>=e0
00要求10算法原理与流程图1算法原理设有非线性方程组称为fx的jacobi矩阵的第k1次近似解记为求解非线性方程组fx0牛顿法或为程序代码及注释牛顿法解非线性方程组functionnewtonpe0用p输入初始猜想矩阵不断迭代输出计算解z为迭代结束后的f矩阵k为迭代次数e为每次迭代后的无穷范数e0为误差限qpjz
xi gi ( x1, x2, , xn ) ,(i 1, 2, n)
或者简记为 x=g(x),其中 gi : Rn R, g : Rn Rn
g( x)


g1(
g2(

解线性与非线性方程(组)Matlab代码

解线性与非线性方程(组)Matlab代码

线性方程组数值方法(1) % jacobi 迭代法计算线性方程组function [x,k]=Fjacobi(A,b,x0,tol)% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300 次给出警告D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=D\(L+U);f=D\b;x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tolx0=x;x=B*x0+f;k=k+1;if(k>=max1)disp('迭代超过300 次,方程组可能不收敛');return;end%[k x'] %如果想显示每一步迭代的结果可以把这行命令保留end(2) %高斯-塞德尔迭代法计算线性方程组function [x,k]=Fgseid(A,b,x0,tol)% tol 为误差容限max1= 300; %默认最高迭代300 次D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);G=(D-L)\U;f=(D-L)\b;x=G*x0+f;k=1;while norm(x-x0)>=tolx0=x;x=G*x0+f;k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛');return;end% [k,x'] %如果要显示每一步迭代结果,可以这行命令。

end(3) %超松弛迭代法计算线性function [x,k]=Fsor(A,b,x0,w,tol)%08 年/4 月/14 日%tol 需要的计算精度max = 300; %迭代最大次数%对松弛因子做出限制if(w<=0 || w>=2)error;return;endD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tolx0=x;x =B*x0+f;k=k+1;if(k>=max)disp('迭代次数太多,SOR方法可能不收敛');return;end% [k,x'] %如果要显示中间结果,可以保留这行语句end(4) % Gauss 消去法计算线性方程组function X=Fgauss(A,b)zengguang=[A b]; n=length(b);ra=rank(A);rz=rank(zengguang);temp1=rz-ra;if temp1>0,disp('无一般意义下的解,系数矩阵与增广矩阵的秩不同') returnendif ra==rzif ra==nX=zeros(n,1);C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= zengguang(k,p)/ zengguang(p,p);zengguang(k,p:n+1)= zengguang(k,p:n+1)-m* zengguang(p,p:n+1); endendb=zengguang(1:n,n+1);A=zengguang(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('方程为欠定方程。

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用CENTRAL SOUTH UNIVERSITY数值分析实验报告非线性方程组的牛顿迭代法的应用一、问题背景非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。

道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。

从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。

本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。

二、数学模型对于方程f x =0,如果f x湿陷性函数,则它的求根是容易的。

牛顿法实质上是一种线性化方法,其基本思想是将线性方程 f x =0逐步归结为某种线性方程来求解。

设已知方程f x =0有近似根X k (假定f X k - 0),将函数f x在点X k展开, 有f X : f X k f' X k X -X k ,于是方程f X = 0可近似地表示为f X k f' X k x - X k =0这是个线性方程,记其根为X ki,则X k 的计算公式f(Xk)k 01...X ki =X k ;,k=01,f区)这就是牛顿法。

三、算法及流程对于非线性方程飞仅鸡丄区)1 f2(X i,X2 丄,X n ) f =M」n(X i ,X2,L,X n )在x k处按照多元函数的泰勒展开,并取线性项得到fjx*),X2(k )丄,XnC ))1 -X1(“)_X1(k )〕 fzgt 以^)丄%$))十f'(x (k))X2(kT —X2(k)MM ' fn(x/k凡卜),L,Xn&))1 〕X 0L Xn ®这边是牛顿迭代法的算法过程,牛顿迭代法是工程上应用最多的一种非线性方 程组的计算方程法。

matlab非线性方程的解法(含牛拉解法)

matlab非线性方程的解法(含牛拉解法)

非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。

若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。

设函数)(x f 在],[b a 内连续,且0)()(<b f a f .根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。

即使能表示成解析式的,往往也很复杂,不便计算。

所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止.如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f .我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。

若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。

这种方法通常称为“定步长搜索法"。

另外,还是图解法、近似方程法和解析法。

2 迭代法2。

1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。

迭代法的基本思想是一种逐次逼近的方法。

首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。

对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。

这里,主要看看解方程迭代式的构造。

对方程(1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档