螺栓疲劳强度计算.

合集下载

螺栓疲劳寿命计算

螺栓疲劳寿命计算

螺栓疲劳寿命计算
螺栓的疲劳寿命计算主要包括以下几个步骤:
1. 确定螺栓的工作载荷:根据螺栓所使用的应力、载荷和工作环境等因素来确定螺栓的工作载荷,一般通过结构分析和实验等方法来获取。

2. 确定螺栓的应力集中系数:螺栓的应力集中系数是指螺栓在工作载荷下的应力集中程度,一般通过经验公式或者有限元分析方法进行计算。

3. 确定螺栓的疲劳强度:螺栓的疲劳强度是指螺栓在工作载荷下承受疲劳应力的能力。

通常可以采用疲劳曲线或者S-N曲线来确定螺栓的疲劳强度。

4. 进行疲劳寿命计算:根据螺栓的工作载荷、应力集中系数和疲劳强度等参数,利用疲劳寿命计算公式计算出螺栓的疲劳寿命。

一般来说,螺栓的疲劳寿命计算是一个复杂的过程,需要考虑到各种因素的综合影响。

最好在专业机械设计师或相关专家的指导下进行计算。

螺栓疲劳寿命计算

螺栓疲劳寿命计算

螺栓疲劳寿命计算螺栓作为工程中广泛应用的一种连接件,其疲劳寿命的计算在工程设计和应用中具有重要意义。

疲劳寿命是指螺栓在反复加载和卸载过程中,直至发生断裂的时间。

为了保证工程安全,了解和掌握螺栓的疲劳寿命至关重要。

本文将介绍螺栓疲劳寿命的计算方法及其影响因素,并提出一些提高螺栓疲劳寿命的措施。

一、螺栓疲劳寿命的影响因素1.应力集中:应力集中是导致螺栓疲劳寿命缩短的主要原因之一。

在螺栓的尾部、螺纹根部等部位,应力集中现象较为严重,容易产生疲劳损伤。

2.载荷频率:载荷频率对螺栓的疲劳寿命有显著影响。

在高频载荷下,螺栓的疲劳寿命较短。

3.载荷幅度:载荷幅度越大,螺栓的疲劳寿命越短。

当载荷幅度超过一定值时,螺栓容易发生断裂。

4.环境因素:环境中的温度、湿度、腐蚀性气体等都会影响螺栓的疲劳寿命。

5.螺栓材料和几何参数:材料强度、硬度、韧性以及几何参数(如直径、长度、螺纹等)都会影响螺栓的疲劳寿命。

二、螺栓疲劳寿命计算方法目前,常用的螺栓疲劳寿命计算方法有基于名义应力的方法、基于局部应力的方法、基于断裂力学的方法等。

具体计算公式如下:1.基于名义应力的方法:= σ√(πD)其中,N为疲劳寿命,σ为应力幅值,D为螺栓直径。

2.基于局部应力的方法:= σ√(πd)其中,N为疲劳寿命,σ为应力幅值,d为应力集中系数。

3.基于断裂力学的方法:= √(πσ^2(Kσ)^3)其中,N为疲劳寿命,σ为应力幅值,Kσ为应力集中系数。

三、提高螺栓疲劳寿命的措施1.合理设计:优化螺栓的结构和几何参数,降低应力集中效应,提高材料的疲劳性能。

2.选用优质材料:选用高强度、高韧性、高耐磨性的材料,提高螺栓的疲劳寿命。

3.表面处理:采用喷涂、镀层等表面处理方法,提高螺栓的耐磨性和抗腐蚀性。

4.合理安装:避免螺栓在安装过程中受到冲击和扭曲等不良影响。

5.定期检查与维护:对使用中的螺栓进行定期检查,发现疲劳损伤及时更换,确保工程安全。

总之,了解螺栓疲劳寿命的计算方法及影响因素,采取相应的措施提高其疲劳寿命,对保障工程安全具有重要意义。

螺栓组受力分析与计算..

螺栓组受力分析与计算..
①拉伸强度条件为:
式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。

螺栓强度计算

螺栓强度计算
――制造工艺因数,切制螺纹 =1,滚制、搓制螺纹, =1.25;
――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。

螺栓拉力计算

螺栓拉力计算

2 受预紧力F0和工作拉力F紧螺栓联接强度
紧螺栓 {
拧紧——预紧拉 力
总拉力F2 ≠F0 +F= ?
加载——工作拉

螺栓
被联接件
拧紧 伸长 λb F0
缩短 λm F0
受载 再伸长 △λ
放松 △λ
变形协调条件: △λ相同
螺栓的总拉力:

F2= F0 +△F =F +F1 被联接件所受的压力:
F △F F2
F0
F1
残余预紧力 F1= F0
△F=
Cb Cb Cm
F
- △F ′
Cb = F0 / λb Cm = F0/ λm
△λ
螺栓刚度
被联接件刚度
变形
C b ——螺栓的相对刚度
Cb Cm
※:1)要降低F2,只有减少螺栓的相对刚度, 即↑Cm ↓Cb
2)为保证联接的紧密性, 应保证F1 >0
(1)静强度公式:F不变
二 紧螺栓联接强度计算 (有F0 )
只有预紧力,无工作拉力 紧螺栓联接{
有预紧力,还有工作拉力
紧螺栓{ 拧紧—拧紧力矩—剪应力τ
拧紧—预紧拉力—拉应力σ
M10~M64的螺栓:τ≈0.5σ
预紧状态的应力:σca= 232 1.3
1.只有预紧力紧螺栓联接
ca
1.3F0
4
d12
F0的大小与横 向载荷有关
螺纹联接件材料的力学性能——螺栓、螺钉、螺柱的性能等 级——共十级——见表5—8和表5—9
如:4.8 表示:σB=400Mpa ,σs=320Mpa
二 螺纹联接件的许用应力
s
S
s
S
p
s

螺栓强度计算.doc

螺栓强度计算.doc

15.2.1 单个螺栓连接的强度计算螺纹连接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓连接,其失效形式主要为螺栓杆剪断,栓杆或被连接件孔接触表面挤压破坏;如果螺纹精度低或连接时常装拆,很可能发生滑扣现象。

螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。

采用标准件时,这些部,然后按照标准选定螺纹公称直分都不需要进行强度计算。

所以,螺栓连接的计算主要是确定螺纹小径d1径(大径)d,以及螺母和垫圈等连接零件的尺寸。

1. 受拉松螺栓连接强度计算松螺栓连接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。

)外,连接并不受力。

图15.3所示吊钩尾部的连接是其应用实例。

当螺栓承受轴向工作载荷 F (N)时,其强度条件为(15-6)(15-7)或——螺纹小径,mm;式中: d1[σ]——松连接螺栓的许用拉应力,Mpa。

见表15.6。

图15.32.受拉紧螺栓连接的强度计算根所受拉力不同,紧螺栓连接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三。

①只受预紧力的紧螺栓连接右图为靠摩擦传递横向力F 的受拉螺栓连接,拧紧螺母后,这时栓杆除受预紧力F`引起的拉应力σ=4 F` /π2 d1外,还受到螺纹力矩T1引起的扭转切应力:对于螺栓故螺栓或式②受预紧力和工作载荷的紧螺栓连接。

图15.5所示压力容器螺栓连接是受预紧力和轴向工作载荷的典型实例。

这种连接拧紧后螺栓受预紧力F`,工作时还受到。

单个螺栓连接的强度计算

单个螺栓连接的强度计算


1.3 4 20000 200
=12.86mm
查标准:
M16
d1=13.835mm
2、受预紧力和工作拉力的紧螺栓连接 强度计算
预紧力FP
FP
F
工作拉力
D / 4 F p z
2
螺栓承受的总拉力
FQ F p F
D

FQ F p F
气缸螺栓连接图
FQ ?
Fp
Fp
b
螺栓受力与变形
变形
m
变形
被连接件受力与变形
单个紧螺栓连接受力变形图
力 F
FQ
Q
F F
' p
Cb
Fp
Fp
F
F tanb Cb
b
tan b C m
Fp
m
tan m
F
F F Cm
Cb F F Cb Cm
b
b
m
F p
F p
未拧紧
已拧紧,未受工作载荷 螺栓拉伸;被连接件压缩
b
m
F p
'
m
F p
1
2
F
FP
F p
残 余 预 紧 力
未拧紧
已拧紧,未受工作载荷
再受工作载荷F
螺栓继续拉伸;被连接件要恢复变形,压缩量减小
螺栓所受的总拉力 F
Q
F F
' p
FQ F p F
d
2 1
[ ]
4
铰制 螺栓
4

F
d 0 / 4
2

F p p d 0 Lmin

螺栓强度计算

螺栓强度计算

15.2.1 单个螺栓连接的强度计算螺纹连接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓连接,其失效形式主要为螺栓杆剪断,栓杆或被连接件孔接触表面挤压破坏;如果螺纹精度低或连接时常装拆,很可能发生滑扣现象。

螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。

采用标准件时,这些部分都不需要进行强度计算。

所以,螺栓连接的计算主要是确定螺纹小径d1,然后按照标准选定螺纹公称直径(大径)d,以及螺母和垫圈等连接零件的尺寸。

1. 受拉松螺栓连接强度计算松螺栓连接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。

)外,连接并不受力。

图15.3所示吊钩尾部的连接是其应用实例。

当螺栓承受轴向工作载荷 F (N)时,其强度条件为(15-6)或(15-7)式中: d1——螺纹小径,mm;[σ]——松连接螺栓的许用拉应力,Mpa。

见表15.6。

图15.32. 受拉紧螺栓连接的强度计算根据所受拉力不同,紧螺栓连接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三类。

①只受预紧力的紧螺栓连接右图为靠摩擦传递横向力F的受拉螺栓连接,拧紧螺母后,这时螺栓杆除受预紧力F`引起的拉应力σ=4F`/πd12外,还受到螺纹力矩T1引起的扭转切应力:对于M10~M68的普通螺纹,取d1、d2和λ的平均值,并取φV=arctan0.15,得τ≈0.5σ。

由于螺栓材料是塑性材料,按照第四强度理论,当量应力σe为(15-8)故螺栓螺纹部分的强度条件为:(15-9)或(15-10)式中[σ]为静载紧连接螺栓的许用拉应力,其值由表15.6查得。

② 受预紧力和工作载荷的紧螺栓连接。

图15.5所示压力容器的螺栓连接是受预紧力和轴向工作载荷的典型实例。

这种连接拧紧后螺栓受预紧力F`,工作时还受到工作载荷F 。

螺栓强度计算

螺栓强度计算
9)螺纹接触高度 ——内外螺纹旋合后的接触面的径向高度。
二、螺纹联接的类型
螺纹联接的主要类型有:
1、螺栓联接
常见的普通螺栓联接如图3-2a所示。这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。图3-2b是铰制孔用螺栓联接。这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。
结构简单、使用方便,但由于垫圈的弹力不均在冲击、振动的工作条件下,其防松效果较差,一般用于不甚重要的联接
自锁螺母
螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。
结构简单,防松可靠,可多次装拆而不降低防松性能




开口销与六角开槽螺母
六角开槽螺母拧紧后,将开口销穿入螺栓尾部小孔和螺母的槽内,并将开口销尾部掰开与螺母侧面紧贴。也可用普通螺母代替六角开槽螺母,但需拧紧螺母后再配钻销孔。
适用于螺钉组联接,防松可靠,但装拆不便。
还有一些特殊的防松方法,例如在旋合螺纹间涂以液体胶粘剂或在螺母末端镶嵌尼龙环等。
此外,还可以采用铆冲方法防松。螺母拧紧后把螺栓末端伸出部分铆死,或利用冲头在螺栓末端与螺母的旋合缝处打冲,利用冲点防松。这种防松方法可靠,但拆卸后联接件不能重复使用。
五、螺纹联接的强度计算
5)螺距 ——螺纹相邻两个牙型上对应点间的轴向距离。
6)导程 ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。单线螺纹 = ,多线螺纹 = 。
7)螺纹升角 ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。在螺纹的不同直径处,螺纹升角各不相同。通常按螺纹中径 处计算,即
(3-1)
8)牙型角 ——螺纹轴向截面内,螺纹牙型两侧边的夹角。螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角 = /2。

水轮机主轴联轴螺栓疲劳强度计算

水轮机主轴联轴螺栓疲劳强度计算

[键入文字]水轮机主轴联轴螺栓疲劳强度计算1 基本数据螺栓所受的最大拉力: Q1=3721t螺栓个数: n=20螺栓伸长量: Δl=1.6~1.75mm螺栓和轴材料的弹性模量:E=2.06e5MPa螺栓材料的抗拉强度极限:MPa b 1050~900=σ螺栓材料的屈服极限: MPa s 735=σd1=95mmd2=110mmd3=20mmd0=116mmL1=545mmL2=25mm螺栓具体结构尺寸见下图:图1 螺栓连接的具体结构图2 螺栓疲劳强度分析螺栓伸长量: mm EAl P l 75.10==∆ 螺栓的预紧力:()N l d d lE l lEA P 3644848423210=-∆=∆=π(此时l 取670mm 为设计值)。

螺栓的刚度应该满足:⎪⎪⎭⎫ ⎝⎛-+-=32231111A A l A A l E C s s m 2476718N/m =s C考虑压力影响区的等效圆柱体直径:mm al d D 2225701.01105.15.10=⨯+⨯=+≈(钢,a 取0.1)。

被连接件的等效受压面积: ()()222202025.2813911622244mm d D A f =-=-=ππ 被连接件的刚度应满足: ⎪⎪⎭⎫ ⎝⎛+=d d f f f f E l E l A C 11,因为没有垫片,因此0=d l 。

mm N E l EA C f f /10169622570506.225.28139=⨯== 每个螺栓所受的最大拉力为: t n Q Q 05.1862037211=== 螺栓所受的最大拉力: N C C C Q P P f s s3.40022940max =⎪⎪⎭⎫⎝⎛++= 螺栓中的最大应力σmax 及最小应力σmin 为: MPa A P 64.5641max max ==σ MPa A P 51410min ==σ MPa a 21.252minmax =-=σσσMPa m 43.5392minmax =+=σσσ由表5.2查得螺栓连接的有效应力集中系数6.4=σK ,由图4.23查得合金钢直径140mm 的螺栓的尺寸系数67.0=ε,由图4.31查精车螺纹的表面加工系数89.0=β。

第三节单个螺栓连接的强度计算ppt课件

第三节单个螺栓连接的强度计算ppt课件
5-5螺栓组连接设计与受力分析
Ks为防滑系数,设计中可取Ks =1.1~1.3。
2)铰制孔螺栓连接
假设每个螺栓的受力相等,则单个螺栓所受的横向工作剪力F为:
二、螺栓组连接的受力分析
1、受横向载荷的螺栓组连接
5-5螺栓组连接设计与受力分析
2、受横向扭矩螺栓组连接
1)普通螺栓连接
二、螺栓组连接的受力分析
根据底板的力矩平衡条件得:
2、受横向扭矩螺栓组连接
二、螺栓组连接的受力分析
5-5螺栓组连接设计与受力分析
3、受轴向载荷的螺栓组连接
求每个螺栓的工作载荷
求单个螺栓所受总载荷
强度校核
二、螺栓组连接的受力分析
5-5螺栓组连接设计与受力分析
4、受翻转力矩的螺栓组连接
特点:M在铅直平面内,绕O-O回转,只能用普通螺栓。
F1
F 2
螺栓所受的总拉力:
F2 = F0+ F
?
×
此时,连接中各零件的受力关系属静不定问题
未知力有两个:
F2 — 总拉力
F1 — 残余预紧力
须根据静力平衡方程和变形协调条件求解
三、紧螺栓连接
螺栓预紧时的受力分析
未承受工作载荷时:
F0
F0
F0
F0
F
F
F 2
F″
F″
F 2
δ2
δ1
△δ1
△δ2
T
变形协调条件: △δ1 = △δ2 = △δ
挤压强度条件为:
Lmin——螺栓杆与孔壁接触表面的最小长度
设计时,按上述公式分别计算出d 0 ,取大值
三、紧螺栓连接
3、螺栓承受剪切力(采用铰制孔用螺栓)

螺栓设计和计算

螺栓设计和计算

第 6 页 共 12 页
在横向总载荷 F∑的作用下,各螺栓所承担的工作载荷是均等的。因此,对于铰制孔用螺栓 联接,每个螺栓所受的横向工作剪力为
(5-23) 式中 z 为螺栓联接数目。 对于普通螺栓联接,应保证联接预紧后,接合面间所产生的最大摩擦力必须大于或等于横向 载荷。 假设各螺栓所需要的预紧力均为 Qp,螺栓数目为 z,则其平衡条件为

(5-24)
图:受横向载荷的螺栓组联接 式中: f——接合面间的摩擦系数,见下表; i——接合面数(图中,i=2);
Ks——防滑系数,Ks=1.1~1.3。 由式(5-24)求得预紧力 Qp,然后按式(5-14)校核螺栓的强度。
联接接合面间的摩擦系数 被联接件 钢或铸铁零件 接合面的表面状态 干燥的加工表面 摩擦系数 f 0.10-0.16 0.06-0.10 0.30-0.35 0.35-0.40 0.45-0.55 0.40-0.45
d0
——螺栓剪切面的直径(可取为螺栓孔的直径),mm; Lmin ——螺栓杆与孔壁挤压面的最小高度,mm,设计时应使 Lmin [σ]p——螺栓或孔壁材料的许用挤压应力,MPa ; [τ] ——螺栓材料的许用切应力,MPa 。
1.25d0;
承受工作剪力的紧螺栓联接
第 3 页 共 12 页
有效应力集中系数 材料的 400 3.0 尺寸系数 直径 d(mm) 600 3.9 800 4.8 1000 5.2
10.9 1040 940 312
12.9 1220 1100 365
推荐材料
低碳钢
低碳钢或中碳钢
中碳钢, 低、 中碳合金 中碳钢,淬火 钢,淬火并 合金钢 并回火 回火,合金 钢
第 4 页 共 12 页

螺纹连接强度计算

螺纹连接强度计算

磨损失效
总结词
磨损失效是指螺纹连接在长期使用过程中,由于摩擦和磨损导致连接性能下降的现象。
详细描述
磨损失效通常是由于螺栓或螺柱与螺母之间的摩擦引起的,随着使用时间的增加,连接表面的磨损会 逐渐加重,导致连接松动或卡滞。为了防止磨损失效,应选择耐磨性好的材料、进行有效的润滑和定 期维护,及时更换磨损严重的连接件。
在化工管道中,螺纹连接被广泛用于连接管 道和阀门,确保流体介质的安全传输。
航空航天应用实例
飞机结构中的螺栓连接
在飞机制造中,螺纹连接被用于固定和连接飞机结构 中的各个部件,确保飞机的安全性和稳定性。
航天器中的紧固件
在航天器中,螺纹连接作为重要的紧固件,用于固定 和连接各个部件,确保航天器的可靠性和安全性。
紧定螺钉连接
通过紧定螺钉将两个零件固定 在一起。
螺旋副
用于传递旋转运动或扭矩,如 蜗轮蜗杆传动。
螺纹连接的材料
金属材料
钢铁、铜、铝等。
非金属材料
塑料、尼龙、陶瓷等。
螺纹连接的预紧和拧紧
预紧
在装配过程中,通过拧紧螺母或螺栓, 使连接件之间产生ห้องสมุดไป่ตู้定的预紧力。
拧紧
在装配过程中,通过旋转螺母或螺栓, 使连接件之间产生摩擦力,以固定或 传递扭矩。
总结词
表面处理对螺纹连接的强度和稳定性也 有重要影响,适当的表面处理可以显著 提高连接的抗腐蚀和耐磨性能。
VS
详细描述
常见的表面处理方法包括镀锌、镀铬、喷 塑等。这些处理方法可以改变螺纹表面的 物理和化学性质,提高其耐腐蚀和耐磨性 能。此外,表面处理还可以增加螺纹间的 摩擦力,从而提高连接的稳定性。
螺纹连接强度计算
目录 CONTENT

螺栓疲劳强度计算.

螺栓疲劳强度计算.

螺栓疲劳强度计算分析摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,以汽缸盖紧螺栓连接为研究对象,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。

进行本课题的研究。

进行本课题的研究。

假设汽假设汽缸的工作压力为0~1N/mm2=0~1N/mm2=之间变化,气缸直径之间变化,气缸直径D2=400mm D2=400mm,螺栓材料为,螺栓材料为5.6级的35钢,螺栓个数为1414,在,在F 〞=1.5F =1.5F,工作温度低于,工作温度低于1515℃这一具体实例进行计算分析。

℃这一具体实例进行计算分析。

利用ProE 建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。

先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS 有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。

经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。

然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。

关键词:螺栓疲劳强度,计算分析,强度理论,螺栓疲劳强度,计算分析,强度理论,ANSYS ANSYS ANSYS 有限元分析。

有限元分析。

Bolt fatigue strength analysisAbstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel℃,,bolt number for 14,in F "= 1.5 F below 15 the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis. 目 录1绪论绪论 ............................................................. ............................................................. . (55)1.1绪论 ....................................................... . (55)1.2 1.2 疲劳强度的概念及常见的疲劳损伤类型疲劳强度的概念及常见的疲劳损伤类型疲劳强度的概念及常见的疲劳损伤类型 ......................... ......................... . (55)1.3影响疲劳强度的因素影响疲劳强度的因素 .......................................... (55)1.4前景展望前景展望 .................................................... . (66)1.5研究的目的意义研究的目的意义 .............................................. .............................................. 66 2相关背景知识相关背景知识 ..................................................... ..................................................... .. (77)2.1背景知识 .................................................... . (77)2.1.1强度理论及疲劳强度的计算主要有三种方法:强度理论及疲劳强度的计算主要有三种方法: .............. .. (77)2.4螺栓连接的结构设计的原则螺栓连接的结构设计的原则 ................................... ................................... 1313 3 Pro/E 三维造型三维造型 .................................................. .................................................. .. (1414)3.1 ProE 简介 .................................................. .. (1414)3.2螺栓连接零件图 ............................................. ............................................. 1414 4实例分析实例分析 ........................................................ ........................................................ .. (1818)4.1理论分析 ................................................... (1818)4.1.1计算各力的大小计算各力的大小 ....................................... (1818)4.2理论分析总结 ............................................... ............................................... 2020 5 ANSYS 有限元分析有限元分析 ................................................ ................................................ (2121)5.1ANSYS 有限元分析 ............................................ .. (2121)5.1.1分析软件及工作原理介绍分析软件及工作原理介绍 ............................... . (2121)5.1.2 ANSYS 分析求解步骤分析求解步骤 ................................... .. (2222)5.2 ANSYS 分析 ................................................. . (2222)5.3ANSYS 分析总结 .............................................. . (2626)总 结 ............................................................ (2727)[参考文献参考文献] ] ........................................................ .. (2828)致 谢 ............................................................ (3030)1绪论本章主要介绍疲劳强度的基本概念及疲劳损伤的类型,影响疲劳强度的因素,以及作此设计的前景、目的和意义。

螺栓高周疲劳计算

螺栓高周疲劳计算

螺栓高周疲劳计算
螺栓高周疲劳强度计算公式为:σa=Sqrt((KfKcKaσm)^2+(KfKcKbσb)^2)^0.5,其中:
σa:螺栓的疲劳应力幅值,单位为MPa。

Kf:载荷类型系数,根据载荷类型选择相应的系数。

Kc:应力集中系数,根据连接部分的几何形状和载荷情况选择相应的系数。

Ka:材料强度系数,一般为1。

σm:平均应力,一般为选定载荷时的静态强度。

Kb:表面加工系数,根据表面处理情况选择相应的系数。

σb:螺栓的基本强度,一般为公称强度×系数,系数根据所选用的螺栓类别和尺寸确定。

影响螺栓高周疲劳强度的因素有载荷类型、应力集中、材料强度、表面加工等。

螺栓连接的强度计算

螺栓连接的强度计算

强度条件验算公式:
设计公式:
分析:由上式可知,当f=0.2,i=1,KS=1则QP=5R,说明这种联接螺栓直径大,且在冲击振动变载下工作极不可靠
为增加可靠性,减小直径,简化结构,提高承载能力
可采用如下减载装置: 减载销 减载套筒 减载键
2、铰制孔螺栓联接——防滑动
特点:螺杆与孔间紧密配合,无间隙,由光杆直接承受挤压和剪切来传递外载荷R进行工作
1、防松目的
01
开槽螺母与开口销,圆螺母与止动垫圈,弹簧垫片,轴用带翅垫片,止动垫片,串联钢丝等
2)机械防松:
自锁螺母——螺母一端做成非圆形收口或开峰后径面收口,螺母拧紧后收口涨开,利用收口的弹力使旋合螺纹间压紧
弹簧垫圈
01
02
开槽螺母
与开口销
永久防松:端铆、冲点、点焊
化学防松——粘合 圆螺母 与止动垫圈 串联钢丝
扳手拧紧力矩——T=FH·L,
拧紧时螺母:T=T1+T2 T——拧紧力矩 T1——螺纹摩擦阻力矩 T2——螺母端环形面与被联接件间的摩擦力矩
FH—作用于手柄上的力,L——力臂
一般 K=0.1~0.3
——拧紧力矩系数
由于直径过小的螺栓,容易在拧紧时过载拉断,所以对于重要的联接不宜小于M10~M14
材料 螺栓级别: 点后数字为 螺母级别:
螺母、螺栓强度级别:
1)根据机械性能,把栓母分级并以数字表示,此乃强度级别
带点数字表示 , 点前数字为 注意:选择对螺母的强度级别应低于螺栓材料的强度级别,螺母的硬度稍低于螺栓的硬度(均低于20~40HB)
2)所依据机械性能为抗拉强度极限σBmin和屈服极限σSmin
作图,为了更明确以简化计算(受力变形图) 设:材料变形在弹性极限内,力与变形成正比

(经典)螺栓疲劳强度计算方法的对比与选择

(经典)螺栓疲劳强度计算方法的对比与选择

(@ #
(
$$ 材料对称循环拉压疲劳极限 ! !+, $ 具体值可由下式计算得出
疲劳强度的计算 !其计算公式为!."
!13 - !!3" !!!3" !3
式中
#
". %
!+, - *&’.(!1 / !0#
$$ 材料的抗拉强度极限 ! 具体值 !0 $ 可查机械设计手册
凿岩机械气动工具 !!""! "" #
%
简介
按照最小应力保持不变计算疲劳强度 由图 ! 可以看出 ! 螺栓承受拉力最小值
即 !012 " " 对螺栓进行疲劳强度计算 ) 其疲 劳强度计算的强度公式为
)*& " %!3# $ *+! 3 "!#!012 ! -). *+! $ "!#*%!& $ !012#
!"# !
其中
"
" $#
%
!’&!&
&!"
(
$$ 循环基数 ! 对钢材拉压疲劳 ! $# $ $# ! ""!"# % " "#$ $$ 材 料 常 数 ! 对 钢 材 拉 压 疲 劳 ! ($ ( ! $!%# $$ 第 & 个变应力的应力幅值 !& $ $$ 变应力 !& 的循环次数 ’& $ $$ 许用安全系数 ! 对螺栓联接 ! ’’( $
#
有所长 & 实际进行疲劳强度计算时 ! 应根据
凿岩机械气动工具 !!""!""#

(整理)联接螺栓强度计算方法

(整理)联接螺栓强度计算方法

联接螺栓的强度计算方法一.连接螺栓的选用及预紧力:1、已知条件:螺栓的 s=730MPa 螺栓的拧紧力矩T=49N.m2、拧紧力矩:为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。

其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。

装配时可用力矩扳手法控制力矩。

公式:T=T1+T2=K*F* d拧紧扳手力矩T=49N.m其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm取K=0.28,则预紧力F=T/0.28*10*10-3=17500N3、承受预紧力螺栓的强度计算:螺栓公称应力截面面积As(mm)=58mm2外螺纹小径d1=8.38mm外螺纹中径d2=9.03mm计算直径d3=8.16mm螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。

螺栓的最大拉伸应力σ1(MPa)。

1sF A σ==17500N/58*10-6m 2=302MPa 剪切应力:=0.51σ=151 MPa根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa强度条件:=392.6≤730*0.8=584预紧力的确定原则:拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。

4、 倾覆力矩倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。

作用在底板两侧的合力矩与倾覆力矩M 平衡。

()2031tan 216v Td F T W dϕρτπ+== 1.31ca σσ≈[]0211.34F ca d σσπ=≤已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定,电机及支架、叶轮组重心到机壳左侧结合面L=194mm. 考虑冲击载荷,倾翻力矩M 为:M=W1*(1+6.7)*0.22-W2*(1+6.7)*0.118=190*7.7*0.22-36*7.7*0.118=319.64N.m L1=0.258m L2=0.238m L3=0.166 L4=0.099m螺栓最大工作载荷:12222112233442222ML Fa i L i L i L i L =+++ 2222319.64x0.2582x1x0.2582x2x0.2382x2x0.1662x2x0.099Fa =+++ =167.26N式中:M ……螺栓组承受的总倾覆力矩(N.m ) i ……每行螺栓数量L ……螺栓到接合面对称轴到距离(m); z ……螺栓数量;5、 承受预紧力和工作载荷联合作用螺栓的强度计算: 螺栓的最大拉力F=0F (1/12)c c c Fa ++=17500+0.3*167.26=17550N螺栓的最大拉伸应力σ2(MPa)。

螺纹连接强度计算

螺纹连接强度计算

螺纹连接强度计算螺纹连接是一种常用的机械连接方式,用于连接螺栓和螺母。

在实际应用中,螺纹连接的强度是一个重要的设计指标,需要进行计算和验证。

螺纹连接的强度计算主要涉及以下方面:拉伸强度、剪切强度、挤压强度、疲劳强度。

1.拉伸强度计算:螺纹连接在受拉载荷时,主要承受拉应力作用。

计算拉伸强度时,需要考虑螺纹区域和螺栓截面的受拉承载能力。

从抗拉强度和拉伸面积两方面进行。

拉伸强度=抗拉强度x拉伸面积拉伸面积=(π/4)x(d2-d3)xl其中,d2为螺纹有效直径,d3为螺纹小径,l为螺栓长度。

2.剪切强度计算:螺纹连接在受剪载荷时,主要承受剪应力作用。

计算剪切强度时,需要考虑螺纹区域和螺栓截面的受剪承载能力。

剪切强度=抗剪强度x剪切面积剪切面积=(π/4)x(d2-d3)xl3.挤压强度计算:螺纹连接在受压载荷时,主要承受挤压应力作用。

计算挤压强度时,需要考虑螺栓所受的挤压承载能力。

挤压强度=挤压应力x挤压面积挤压面积=πxd1xl其中,d1为螺纹内径。

4.疲劳强度计算:螺纹连接在受循环载荷时,会产生疲劳破坏。

计算疲劳强度时,需要通过疲劳试验或经验公式来获得。

以上计算公式只是螺纹连接强度计算的基本方法,具体的计算过程需要根据实际情况来确定。

在进行计算时,还需要考虑材料的强度和工作环境的影响等因素。

此外,还需要注意螺纹连接的预紧力,以保证连接的密封性和抗松动能力。

预紧力的大小应根据应用要求进行确定,在设计和使用过程中需要注意预紧力的控制和维护。

综上所述,螺纹连接强度计算是一个复杂的过程,需要综合考虑多个因素。

在实际应用中,应根据具体要求和材料性能,结合上述计算方法进行强度计算和验证,以确保螺纹连接的安全可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺栓疲劳强度计算分析摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。

假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。

利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。

先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。

经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。

然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。

关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysisAbstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel,bolt number for 14,in F "= 1.5 F below 15 ℃,the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis.目录1绪论 (5)1.1绪论 (5)1.2 疲劳强度的概念及常见的疲劳损伤类型 (5)1.3影响疲劳强度的因素 (5)1.4前景展望 (6)1.5研究的目的意义 (6)2相关背景知识 (7)2.1背景知识 (7)2.1.1强度理论及疲劳强度的计算主要有三种方法: (7)2.4螺栓连接的结构设计的原则 (13)3 Pro/E三维造型 (14)3.1 ProE简介 (14)3.2螺栓连接零件图 (14)4实例分析 (18)4.1理论分析 (18)4.1.1计算各力的大小 (18)4.2理论分析总结 (20)5 ANSYS有限元分析 (21)5.1ANSYS有限元分析 (21)5.1.1分析软件及工作原理介绍 (21)5.1.2 ANSYS分析求解步骤 (22)5.2 ANSYS分析 (22)5.3ANSYS分析总结 (26)总结 (27)[参考文献] (28)致谢 (30)1绪论本章主要介绍疲劳强度的基本概念及疲劳损伤的类型,影响疲劳强度的因素,以及作此设计的前景、目的和意义。

1.1绪论本次毕业论文研究的主要问题是—在强度理论基础之上就螺栓的疲劳强度计算及分析进行研究。

为了便于机器的制造、安装、运输、维修以及提高其劳动生产率等,广泛地应用各种连接。

螺栓连接、键连接、销连接、铆连接、焊接、胶接、过盈连接,其中螺栓连接因为其经济性,方便性,可靠性,最常用,用的最广,因而研究其在不同工作情况下的疲劳强度对于提高连接的可靠性,安全性,机械整体的性能,整个机械行业乃至整个国民经济的增长具有重要的意义。

本论文侧重研究其在交变应力情况下的强度计算机分析。

在冶金,矿山,工程,运输等机械设备中,承受变载荷的螺栓连接广泛地应用着,因而研究螺栓连接疲劳强度计算分析是十分必要和有实用价值的。

本论文有两方面的任务一是疲劳强度的计,二是对影响疲劳强度的因素进行分析,就螺栓的疲劳强度计算展开,以汽缸螺栓连接实例把理论分析和有限元分析相结合,然后就此得出螺栓连接疲劳计算分析的一般规律。

1.2 疲劳强度的概念及常见的疲劳损伤类型如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。

在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。

疲劳破坏是机械零件失效的主要原因之一。

据统计,在机械零件失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。

1.3影响疲劳强度的因素金属疲劳在交变应力作用下,金属材料发生的破坏现象。

机械零件在交变压力作用下,经过一段时间后,在局部高应力区形成微小裂纹,再由微小裂纹逐渐扩展以致断裂。

疲劳破坏具有在时间上的突发性,在位置上的局部性及对环境和缺陷的敏感性等特点,故疲劳破坏常不易被及时发现且易于造成事故。

应力幅值、平均应力大小循环次数是影响金属疲劳的三个主要因素。

1.4前景展望伴随着计算机技术的发展和各种分析软件的成熟,ANSYS、ABAQUS、NASTRAN、MARK、ALGOR以及ADINA等为代表的一系列分析软件的不断完善,运动仿真技术的发展使其理论分析有了更加坚实可靠的手段和依据,使得其更加接近真实情况,各种仿真软件和分析系统的日趋完善使得对螺栓疲劳强度的分析计算更加科学,可信。

1.5研究的目的意义螺栓连接的在各种设备及机械中广泛应用,连接的可靠性,安全性事关生命及整个国民经济的发展,可靠,严密的而强度理论研究是生产高强度,高质量的零部件的前提,可靠的连接是机械设备及其零部件正常,安全,高效工作的必然要求,所以进行螺栓疲劳强度的设计计算分析是发展生产的必然要求具有重大的理论和现实意义。

2相关背景知识本章主要讲解进行螺栓疲劳强度计算分析所需要的理论基础,包括强度理论及疲劳强度计算的三种公式;螺栓连接的设计计算公式;螺栓连接的设计原则;强度计算公式选择的原则。

2.1背景知识2.1.1强度理论及疲劳强度的计算主要有三种方法:①若γ=常数,则也有α=1-γ/1+γ=常数,即α=常数,在图2.1中设M 点为一工作点,这样过原点的射线OM 就代表简单就代表简单加载情况。

M 点(假设在AB 线上,一下均同假设)为工作应力点M 按γ=C 变化得到极限应力点。

联解OM ,AB 两条直可得图 2.1 γ=常数时的极限应力´´1´´a m a a m m σσσκσψσσσσσ-⎧⎪⎨⎪⎩=+= 2-1则可求出点M ′点坐标对于点M 点的应力极限为11max ´´´max ()m a km m a a m a m σσσσσσσσσσσσσκσψσκσψσ--+==+==++ 2-2 则根据最大应力求得的最大应力安全系数计算值及强度条件为][1max max n m a k a n ≥+-='=σσϕσσσσσ 2-3②按应力幅计算;σmin=C 若man =C 则有σmin =m a σσ-=C ,故在图2中,过工作点M 作与横坐标夹角为45°的直线MM ′,则这条直线上任一点的应力最小值相同,即复合σmin=m a σσ-=C 的加载条件。

M ′所代表的应力就是此情况下计算时应采用的疲劳极限应力。

图 2-2σmin=C 时的极限应力联解直线MM ′,AB 方程1a ma m a mσσσσσσσκσψσ-⎧⎪⎨⎪⎩-=-=+´´´´2-4 代入min m a C σσσ=-= ,可解得M ′的坐标(σ′m ,σ′a )则根据最大应力求得的最大应力安全系数计算值及强度条件为1minmax max min 2()[]()(2)am a a m a n n σσσσσκψσσσσσσσκψσσ-+-+===+++´´´≥2-5③按应力的循环特性保持不变(即γ=C )的应力变化规律计算即σm=C 在图3中,过工作点M ,作纵轴的平行线MM ′,则此直线上任一点的应力,其平均应力相同,即符合σm=σ的加载条件。

M ′点所代表的应力就是此情况下计算时所采取的疲劳强度极限应力。

相关文档
最新文档