七年级数学有理数混合运算竞赛试卷

合集下载

初中数学七年级《有理数的混合运算练习题》

初中数学七年级《有理数的混合运算练习题》

有理数的混合运算练习题一.选择题1. 计算3(25)-⨯=()A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( ) A.0 B.-54 C.-72D.-18 3. 计算11(5)()555⨯-÷-⨯=()A.1B.25C.-5D.354. 下列式子中正确的是()A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是()A.4B.-4C.2D.-2 6. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2B.-3C.-4D.4 二.填空题1.有理数的运算顺序是先算____,再算___,最算___;如果有括号,那么先算____。

2.一个数的101次幂是负数,则这个数是___。

3.7.20.9 5.6 1.7---+= ___。

4.232(1)---= ___。

5.67()()51313-+--= ___。

6.211()1722---+-= ___。

7.737()()848-÷-= ___ 。

8.21(50)()510-⨯+= ___。

三.计算题有理数加法原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号(-23)+7+(-152)+65 (-8)+47+18+(-27)(-8)+(-10)+2+(-1)(-2)+0+(+41)+(-61)+(-21)3(-8)+47+18+(-27)(-5)+21+(-95)+29(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)6+(-7)+(-9)+2 原则二:凑整,0.25+0.75=11+43=1 0.25+43=1472+65+(-105)+(-28)(-23)+|-63|+|-37|+(-77)(-0.8)+(-1.2)+(-0.6)+(-2.4)(-8)+(-31)+2+(-21)+12253+(-532)+452+(-31)(-6.37)+(-343)+6.37+2.75 5原则二:凑整,0.25+0.75=11+43=1 0.25+43=1 抵消:和为零4有理数减法7-9 ―7―9 0-(-9) (-25)-(-13)8.2―(―6.3) (-31)-541(-12.5)-(-7.5)2(-26)―(-12)―12―18 ―1―(-1)―(+23) (-41)―(-85)―812(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) (+3)―(-74)―(-52)―710(-516)―3―(-3.2)―7 (+71)―(-72)―7310(-0.5)-(-31)+6.75-521(+6.1)―(-4.3)―(-2.1)―5.14(-2)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)3-83-597+461-392-443+61+(-32)―254原则三:结果的形式要与题目中数的形式保持一致。

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。

一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。

规定:先算高级运算再算低级运算同级运算从左到右依次进行。

(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。

当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。

1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。

人教版七年级上册数学有理数的加、减、乘、除混合运算测试题

人教版七年级上册数学有理数的加、减、乘、除混合运算测试题

人教版七年级数学测试卷(考试题)1.4 有理数的乘除法1.4.2 有理数的除法第2课时 有理数的加、减、乘、除混合运算1计算:1/5÷5等于( )A.1B.25C.1/25D.1/52、下列方程的解x 是正数的有( )(1)4x=-8; (2)-4x=12; (3)-4x=-36; (4)-1/5x=0.A.1个B.2个C.3个D.4个 3、一个非零的有理数和它的相反数之积( )A.符号必为正B.符号必为负C.一定不小于零D.一定不大于零4、当a <5时,|a-5|÷(5-a)=( ) (5题)A .4—2a ;B .0;C .1;D .—1.5、右图是一数值转换机,若输入的x 为-3,则输出的结果为( )A 、11B 、-11C 、-30D 、306、已知代数式x -5y 的值是100,则代数式2x -10y +5的值是( )A 、100B 、200C 、2005D 、不能确定7、已知a 、b 、c 都是非正数且∣x —a ∣+∣y —b ∣+∣z —c ∣=0,则(xyz )5的值是( )A 、负数B 、非负数C 、正数D 、非正数8、磁悬浮列车是一种科技含量很高的新型交通工具,它的速度快,爬坡能力强,能耗低等优点.它每个座位的平均能耗仅为飞机每个座位平均能耗的四分之一,汽车每个座位平均能耗的65%.那么,汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A 、1/65B 、1/13C 、5/13D 、13/59、下列运算正确的是( )A .236222⨯=B .22÷2=1C .(-2)3÷1/2=-16D .842222÷=10、 ( )A .—1 B.1 C. —25 D. —62511、若a <0,则|4a÷(—2a )|的结果是_____。

12、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,则(a+b )x 3+x 2-cdx =__。

七年级上数学有理数的加减混合运算试卷

七年级上数学有理数的加减混合运算试卷

《有理数的加减混合运算》测试卷一一、选择题1.比3小4的数是( )A.1- B.5- C.1 D.52.下列说法正确的是( )A 、 减去一个数,等于加上这个数的相反数B 、 被减数的绝对值大于减数的绝对值,其差必为正数C 、 零减去一个有理数,差一定是负数D 、 一个正数减去一个负数,差必小于零3.某地一天早晨的气温是-7℃,中午上升了11℃.午夜又下降了9℃,则午夜的气温为( )A.5 ℃B.-5℃C.-3℃D.-9℃4.三个数一15,一5,十10的和,比它们绝对值的和小( )A 、一20B 、20C 、一40D 、405.若1,3==b a 则a 一b 的值为( )A 、2或4B 、一4或一2C 、一3或一1D 2,4,一2或一46.计算()()()()317539----++--,所得结果正确的是( ) A .318 B.329- C.3223- D.3110- 7.把()()()()631543312++---++--写成省略加号的和的形式,正确的是( )A.631543312+-+--B.631543312+----C.631543312++-+-D.631543312++---8. 5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2014年8月8日20时应是( )A.伦敦时间2008年8月8日11时 B.巴黎时间2008年8月8日13时 C.纽约时间2008年8月8日5时 D.汉城时间2008年8月8日19时二、填空题9.冬季的某一天,我市的最高气温为7℃,最低气温为-2℃,那么这天我市的最高气温比最低气温高___℃. 10.1211-减去65的相反数,差是 11.某潜艇从海平面下30米处上升到海平面下15米处,此潜艇上升了_____米.北京 汉城 巴黎 伦敦 纽约图1三、解答题12. 计算(1)(+32)+(-16)-(-18)-(+5)(2)(-21)-(-61)+(-32)+(-54)13.计算:(1)-5+7-2+136-88(2)-431-521+73114. 计算:|-658+512|+(-1714)+|-9-314|.15.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接(单位:元)①星期二收盘时,该股票每股多少元?②周内该股票收盘时的最高价,最低价分别是多少?③已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?参考答案:一、1.A2.B3.B4.D5.D6. D7.D8. B二、9. 9 10.11211.15三、12.解:(1)(+32)+(-16)-(-18)-(+5)=(+32)+(-16)+(+18)+(-5)=[(+32)+(+18)]+[(-16)+(-5)]=50+(-21)=29(2)(-21)-(-61)+(-32)+(-54) =(-21)+(+61)+(-32)+(-54) =[(-21)+(-32)+(+61)]+(-54) =(-1)+(-54)=-154 13.解:(1)-5+7-2+136-88=-5-2-88+7+136=-95+143=48;(2)-431-521+731=-431+731-521=3-521=-221. 14.解法一:|-658+512|+(-1714)+|-9-314| =|-118|-1714|-1214| =118-1714+1214=1338-1714=-378.解法二:|-658+512|+(-1714)+|-9-314|= 658-512-1714+9+314=1778-2234=-378.15.解:(1)星期二收盘价为25+2-0.5=26.5(元/股)(2)收盘最高价为25+2-0.5+1.5=28(元/股)收盘最低价为25+2-0.5+1.5-1.8=26.2(元/股)(3)小王的收益为:27×1000(1-5‰)-25×1000(1+5‰)=27000-135-25000-125=1740(元)∴小王的本次收益为1740元.反思:股票的涨跌都是在前一天的基础上来变化的,解第(3)题的关键是搞清楚买进股票时所付钱和卖出股票所收入的钱。

(完整)七年级数学有理数乘方与混合运算测

(完整)七年级数学有理数乘方与混合运算测

七年级数学 有理数乘方与混合运算测试题一.选择题1.(2008年杭州市)北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为( )A.425.810×2mB. 525.810×2mC.52.5810×2mD. 62.5810×2m2、据2007年5月27日中央电视台“朝闻天下”报道,北京市目前汽车拥有量约为3 100 000辆.则3 100 000用科学记数法表示为( )A . 0.31×107B . 31×105C . 3.1×105D . 3.1×1063、(2007湖南株州)某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )A. 31B. 33C. 35D. 374.下列说法中,正确的是( )(A)相反数等于它本身的有理数只有0; (B)倒数等于它本身的有理数只有1(C)绝对值等于它本身的有理数只有0; (D)平方结果等于它本身的有理数只有15计算()()2000199922-+-所得结果为 ( ) (A) 19992 (B)()19992- (C)19992- (D)-26.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a <<C .a a a <<21D .aa a 12<< 7.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcd ba cd p 的值是 ( ).A .3B .2C .1D .08.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或29.在有理数32,23,-33,(-2)3,(-3-1)2,|1-32|中相等的是( )A.32与-32B.23与(-2)3C.(-3-1)2与|1-32|D.23与|1-32|10、下列各数2323,)3(,)3(),3(,3-------中,负数的个数为 ( )A .1个B .2个C .3个D .4个11、(2008湖北孝感)在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小() A.+ B.- C.× D.÷二.填空题12.04322=+-+-++)(||||z y x ,则.____=+z y x x13.若一个数的平方是25,则这个数的立方是________.14 已知2<a ,且4|2|=-a ,则3a 的倒数的相反数是___________15设有理数c b a ,,满足0,0>=++abc c b a ,则c b a ,,中正数的个数为________。

2有理数的混合运算 竞赛(含答案)

2有理数的混合运算 竞赛(含答案)

初一年级计算题能力竞赛 一、选择题1.计算:(-12)2-1=( )A .-54B .-34C .-14D .02.下列各式中,计算结果等于0的是( )A .(-2)2-(-22)B .-22-22C .-22+(-2)2D .-22-(-2)23.计算:4+(-2)2×5=( )A .-16B .16C .20D .244.下列运算结果最小的是( )A .(-3)×(-2)B .(-3)2÷(-2)2C .(-3)2×(-2)D .-(-3-2)25.计算12-7×(-4)+8÷(-2)2的结果是( )A .-24B .-20C .6D .426.有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①3a >;②0ab >;③0b c +<;④0b a ->. 上述结论中,所有正确结论的序号是A .①②B .②③C .②④D .③④7.计算-2×32-(3÷12)2的结果是( )A .0B .-54C .-18D .188.现定义一种新运算:a※b=b 2-ab ,如: 1※2=22-1×2=2,则(-1※2)※3等于( ) A .-9 B .-6 C .6 D .9 二、填空题9.计算-32+5-8×(-2)时,应该先算____,再算____,最后算____.正确的结果为____.10.计算(-9)2-2×(-9)+12的结果是____.11.按照如图的操作步骤,若输入x 的值为2,则输出的值是________________.输入x →平方→乘3→减去10→输出12.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是____________________________.(只写一种)13.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+25+…+22 021的末尾数字是____.14.按如图所示程序计算,若开始输入的x 值为6,我们第一次发现得到的结果为3,第二次得到的结果为10,第三次得到的结果为5,…请你探索第2019次得到的结果为 .15.观察下列单项式,0、﹣3x 2、8x 3、﹣15x 4、24x 5…按此规律写出第14个代数式是 .16. 某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中i ,j =1,2,3,4),如图1中第2行第1列的数字210a =;对第i行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.图2(1)图1代表的学生所在年级是__________年级,他的学号是__________;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.三、计算题(1) 4×(-3)2-5×(-2)3+6;(2) (-2)3+12×8;(3) -14-16×[2-(-3)2];(4) (-3)2-112×29-6÷|-23|2;(5) 2×[5+(-2)3]-(-|-4|÷12).(6) -22×14÷(-12)2×(-2)3.(7)(-2)3×8-8×(12)3+8×18;(8)(-3)2-16×5+16×(-32);(9) [1-(1-0.5×13)]×(-10+9);(10) -23-[-3+(-3)2÷(-15)];(11) -43÷(-32)-[(-23)3×(-32)+(-113)].(12).观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.参考答案 一、选择题1.计算:(-12)2-1=(B )A .-54B .-34C .-14D .02.下列各式中,计算结果等于0的是(C ) A .(-2)2-(-22) B .-22-22 C .-22+(-2)2D .-22-(-2)2 3.计算:4+(-2)2×5=(D ) A .-16 B .16C .20 D .24 4.下列运算结果最小的是(D ) A .(-3)×(-2) B .(-3)2÷(-2)2 C .(-3)2×(-2) D .-(-3-2)2 5.计算12-7×(-4)+8÷(-2)2的结果是(D ) A .-24 B .-20C .6 D .426.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为(C )1 5 3 14 3 7 5 32 5 9 7 58 …11 mA .180B .182C .184D .186 7.计算-2×32-(3÷12)2的结果是(B )A .0B .-54C .-18D .188.现定义一种新运算:a ※b =b 2-ab ,如:1※2=22-1×2=2,则(-1※2)※3等于(A) A .-9 B .-6 C .6 D .9 二、填空题9.计算-32+5-8×(-2)时,应该先算乘方,再算乘法,最后算加减.正确的结果为12. 10.计算(-9)2-2×(-9)+12的结果是100. 11.按照如图的操作步骤,若输入x 的值为2,则输出的值是2.(用科学计算器计算或笔算) 输入x →平方→乘3→减去10→输出12.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是答案不唯一,如:4×8+(-2)+(-6)=24.(只写一种)13.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+25+…+22 021的末尾数字是2. 三、解答题 14.计算:(1)4×(-3)2-5×(-2)3+6; 解:原式=4×9-5×(-8)+6 =36+40+6 =82.(2)(-2)3+12×8;解:原式=-8+4 =-4.(3)-14-16×[2-(-3)2];解:原式=-1-16×(2-9)=-1-16×(-7)=-1+76=16.(4)(-3)2-112×29-6÷|-23|2;解:原式=9-13-6÷49=9-13-272=-456.(5)2×[5+(-2)3]-(-|-4|÷12).解:原式=2×(5-8)-(-4×2) =2×(-3)-(-8) =2.(6)-22×14÷(-12)2×(-2)3.解:原式=-4×14÷14×(-8)=4×14×4×8=32.15.计算:(1)(-2)3×8-8×(12)3+8×18;解:原式=-8×8-8×18+8×18=-64.(2)(-3)2-16×5+16×(-32);解:原式=9-56+16×(-9)=9-56-96=203.(3)[1-(1-0.5×13)]×(-10+9);解:原式=[1-(1-12×13)]×(-10+9)=(1-56)×(-1)=-16.(4)-23-[-3+(-3)2÷(-15)];解:原式=-8-[-3+9÷(-15)]=-8-(-3-45)=-8-(-48)=40.(5)-43÷(-32)-[(-23)3×(-32)+(-113)].解:原式=-64÷(-32)-[-827×(-9)-113] =2-(83-113)=2-(-1) =3.16.观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系? (3)取每行数的第9个数,计算这三个数的和. 解:(1)第①行数的规律是21,-22,23,-24,25,…. (2)第②行每个数是第①行每个数除以-2得到的;第③行每个数是第①行每个数加1得到的. (3)29+29÷(-2)+29+1=2×(-2)8-(-2)8+2×(-2)8+1 =(2-1+2)×(-2)8+1 =3×28+1=3×256+1=768+1=769.。

初中七年级数学上学期《有理数的加减混合运算》练习试卷

初中七年级数学上学期《有理数的加减混合运算》练习试卷

初中七年级数学上学期《有理数的加减混合运算》练习试卷一.选择题(共36小题)1.点A从数轴的原点出发,沿数轴先向左(负方向)移动3个单位长度,再向右移动1个单位长度,用算式表示上述过程与结果,正确的是()A.﹣3+1=4B.﹣3﹣1=﹣2C.﹣3+1=﹣2D.﹣3﹣1=﹣42.下列交换加数的位置的变形中,正确的是()A.1﹣4+5﹣4=1﹣4+4﹣5B.C.1﹣2+3﹣4=2﹣1+4﹣3D.4.5﹣1.7﹣2.5+1.8=4.5﹣2.5+1.8﹣1.7 3.下面算法正确的是()A.(﹣4)+8=﹣(8﹣4)B.5﹣(﹣8)=5﹣8C.(﹣5)+0=﹣5D.(﹣3)+(﹣4)=3+44.一天早晨的气温是﹣7℃,中午上升了10℃,半夜又下降了8℃,半夜的气温是()A.﹣9℃B.﹣5℃C.5℃D.11℃5.某日我市的最高气温为零上3℃,记作(+3℃或3℃),最低气温为零下5℃,则可用于计算这天温差的算式是()A.3﹣5B.3﹣(﹣5)C.﹣5+3D.﹣5﹣36.下列运算错误的是()A.3﹣(﹣3)=0B.﹣5+5=0C.D.﹣(﹣4)=4 7.下列各式不成立的是()A.20+(﹣9)﹣7+(﹣10)=20﹣9﹣7﹣10B.﹣1+3+(﹣2)﹣11=﹣1+3﹣2﹣11C.﹣3.1+(﹣4.9)+(﹣2.6)﹣4=﹣3.1﹣4.9﹣2.6﹣4 D.﹣7+(﹣18)+(﹣21)=﹣7﹣(﹣18﹣21)8.下列计算正确的是()A.﹣(﹣5)=﹣5B.﹣5+(﹣8)=13C.﹣5+(﹣8)=﹣(5+8)D.﹣5﹣(﹣8)=5+8 9.﹣(﹣)的相反数是()A.﹣﹣B.﹣+C.﹣D.+10.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣﹣D.﹣(﹣2)=2 11.下面算式计算正确的是()A.[(﹣4)﹣(+7)]﹣(﹣1)=[(﹣4)﹣(+7)]﹣1B.3﹣[(﹣3)﹣10]=3+[(﹣3)﹣10] C.6﹣(7﹣8)=6﹣7﹣8D.(1﹣2)﹣(4﹣7)=(﹣1)﹣(﹣3)12.把﹣(﹣3)﹣4+(﹣5)写成省略括号的代数和的形式,正确的是()A.3﹣4﹣5B.﹣3﹣4﹣5C.3﹣4+5D.﹣3﹣4+513.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣(﹣)=1D.﹣(﹣2)=2 14.某地一天中午12时的气温是4℃,14时的气温升高了2℃,到晚上22时气温又降低了7℃,则22时的气温为()A.6℃B.﹣3℃C.﹣1℃D.13℃15.我国古代用算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,图①可列式计算为(+2)+(﹣1)=1,由此可推算图②可列的算式为()A.(+3)+(+4)=7B.(+3)﹣(﹣4)=7C.(﹣3)+(+4)=1 D.(+3)+(﹣4)=﹣116.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(﹣2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7+2D.﹣5+4+7﹣217.将(﹣2)﹣(+1)﹣(﹣5)+(﹣4)统一为加法运算,正确的是()A.(﹣2)+(+1)+(﹣5)+(﹣4)B.(﹣2)+(﹣1)+(+5)+(﹣4)C.(﹣2)+(+1)+(+5)+(+4)D.(﹣2)+(﹣1)+(﹣5)+(+4)18.下列算式中,运算结果为负数的是()A.|﹣1|B.(﹣5)+3C.(﹣4)﹣(﹣6)D.﹣(﹣10)19.若数轴上点A、B分别表示数3、﹣4,则A、B两点之间的距离可表示为()A.3+(﹣4)B.3﹣(﹣4)C.(﹣4)+3D.(﹣4)﹣320.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是()A.﹣9+3=﹣6B.﹣9﹣3=﹣12C.9﹣3=6D.9+3=12 21.若数轴上点A,B分别表示数3,﹣2,则A,B两点之间的距离可表示为()A.3﹣(﹣2)B.3+(﹣2)C.(﹣2)+3D.(﹣2)﹣322.有理数a、b的对应点在数轴上的位置如图所示,下列结论正确的是()A.a+b>0B.a﹣b>0C.﹣a+b<0D.﹣a﹣b>0 23.如图,在数轴上,点O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置(OA >OB),下面式子结果为正数的是()A.a+b B.a+c C.c+(﹣b)D.a+(﹣c)24.清晨蜗牛从树根沿着树干往上爬,树高12m,白天爬3m,夜间下滑2m,它从树根爬上树顶,需()A.9天B.10天C.11天D.12天25.某公司去年前三个月平均每月盈利﹣1.5万元,4、5、6月平均每月盈利2万元,7﹣10月平均每月盈利1.2万元,最后两个月平均每月盈利﹣3.3万元,则这个公司去年总盈利是()A.﹣0.3万元B.﹣1.3万元C.﹣1.8万元D.﹣2.8万元26.有三个数,它们的绝对值分别为1,2,4,其中绝对值最小的数最大,绝对值最大的数最小,这三个数的和是()A.﹣5B.﹣7C.﹣5或﹣7D.1二.填空题(共13小题)27.计算|﹣1|+(﹣3)+|﹣5|+(﹣7)+…+|﹣97|+(﹣99)=.28.计算:=.29.已知|a|=3,|b|=4,|c|=5,且a>b>c,则a+b﹣c的值是.30.若|x|=11,|y|=14,|z|=20,且|x+y|=x+y,|y+z|=﹣(y+z),则x+y﹣z=.31.某公交车上原有22人,经过3个站点时上、下车情况如下(上车记为正,下车记为负):(+3,﹣7),(+6,﹣4),(+2,﹣1),则车上还有人.32.某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.5元,则股票A这天的收盘价为元.33.若某次数学考试标准成绩定为100分,规定高于标准记为正,两位学生这次数学考试的成绩分别记作:+8,﹣5则两位学生的实际得分之和是.34.计算:1﹣2﹣3+4+5﹣6﹣7+8+9﹣2020+2021﹣2022﹣2023+2024=.三.解答题(共11小题)35..37..38.4﹣1.5﹣(﹣2.75).36..39.40.(1)31+(﹣28)+28+69;(2)﹣4+8.4﹣(﹣4.75)+3.41.(1)1.4+(﹣0.2)+0.6+(﹣1.8);(2)5+(﹣6)+3﹣(﹣4);(3)﹣20+(﹣14)﹣(﹣18)﹣13;(4).42.(1)(+)﹣(+)﹣(﹣)+(﹣).(2)(+4)﹣(﹣5)+(﹣4)﹣(+3).43.(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2);(3);(4).44.(1)﹣12﹣(+5)+(﹣14)﹣(﹣25);(2)3;(3);(4)2(﹣3)﹣|(﹣3)﹣(+0.25)|.。

专题2.6 有理数的混合运算专项训练(40题)-2024-2025学年七年级数学上册举一反三系列(华

专题2.6 有理数的混合运算专项训练(40题)-2024-2025学年七年级数学上册举一反三系列(华

专题2.6 有理数的混合运算专项训练(40题)【华东师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536)【答案】1【分析】先将除法变成乘法,再去括号运算即可.【详解】解:(512−59)÷(−536)=(512−59)×(−365) =512×(−365)−59×(−365) =−3+4=1.【点睛】本题主要考查有理数的混合运算,掌握有理数的混合运算的法则是解题的关键.2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2].【答案】−1022【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:原式=−1000+[16÷(−8)−(1+9)×2]=−1000+(−2−10×2)=−1000−2−20=−1022.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2) 【答案】−556【分析】先计算有理数的乘方,再计算括号内的减法、有理数的乘法,然后计算有理数的减法即可.【详解】解:原式=(1+12×13)+(−9+2)=(1+16)−7 =116−7 =−556【点睛】本题考查了含乘方的有理数混合运算,熟记有理数的运算法则是解题关键.4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|. 【答案】−27【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可.【详解】解:原式=−1−16×6×[−2−(−27)]−|8−9| =−1−25−1=−27.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) .【答案】−12022【分析】计算出每个括号内的减法运算,观察相邻两个因数的分子分母,第一项的分母可以与第二项的分子约分,第二项的分母可以与第三项的分子约分,以此类推,化简式子计算出最终结果.【详解】解:(12−1)×(13−1)×(14−1)×...×(12022−1),=(−12)×(−23)×(−34)×...×(−20212022),=−12022.【点睛】本题考查了有理数的复杂运算,解决此题的关键是观察式子的一般规律子再利用简便运算计算结果.6.(2023春·河南南阳·七年级统考期中)计算(1)(−15)×(18−13)÷(−124); (2)−12020×[4−(−3)2]+3÷|−34|;【答案】(1)−1(2)9【分析】(1)按照有理数四则混合运算法则计算即可;(2)先算乘方、然后按照有理数四则混合运算法则计算即可.【详解】(1)解:(−15)×(18−13)÷(−124) =−15×(324−824)×(−24) =−15×(−524)×(−24) =−1.(2)解:−12020×[4−(−3)2]+3÷|−34|=−1×(4−9)+3×43=5+4=9.【点睛】本题主要考查了有理数四则混合运算、含乘方有理数四则混合运算等知识点,灵活运用相关运算法则成为解答本题的关键.7.(2023春·黑龙江双鸭山·七年级统考期末)计算:(1)−12×(−16+34−512); (2)−1×[−32×(−23)2−2]×(−32). 【答案】(1)−2(2)−9【分析】(1)利用乘法分配律求解即可;(2)按照有理数的运算顺序,进行计算即可求解.【详解】(1)解:原式=(−12)×(−16)+(−12)×34+(−12)×(−512) =2+(−9)+5=−2;(2)解:原式=−1×(−9×49−2)×(−32)=−1×(−4−2)×(−32)=−1×(−6)×(−3 2 )=−9.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.8.(2023春·云南昭通·七年级统考期末)计算:(1)(−21)÷7+3×(−4)−(−12);(2)−12020+(−2)3×(−12)−|−1−5|.【答案】(1)−3(2)−3【分析】(1)先算乘除,再算加减;(2)先乘方,去绝对值,再乘除,最后算加减.【详解】(1)解:(−21)÷7+3×(−4)−(−12)=−3−12+12=−3;(2)−12020+(−2)3×(−12)−|−1−5|=−1−8×(−12)−6=−1+4−6=−3.【点睛】本题考查有理数的运算.熟练掌握有理数的运算法则,以及运算顺序,是解题的关键.9.(2023春·四川凉山·七年级统考期末)计算(1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)【答案】(1)−2(2)16【分析】(1)首先进行有理数的乘方计算,然后计算括号里面的数字,最后进行计算乘法和加法即可;(1)利用乘法分配律进行简便计算即可得出答案.【详解】(1)解:原式=−1+12×13×(−6)=−1−1=−2;(2)解:原式=−13×(−60)+15×(−60)−215×(−60)=20−12+8=16.【点睛】本题主要考查了有理数混合运算,熟练掌握相关运算法则和运算律是解题关键.10.(2023春·上海嘉定·六年级统考期末)计算:(1)3.2−23+35.(2)323×2215+523×1315−2×1315.【答案】(1)4715(2)11【分析】(1)首先把小数化为分数,再进行有理数的加减运算,即可求得结果;(2)利用有理数乘法分配律的逆用,进行运算,即可求得结果.【详解】(1)解:3.2−23+35=165−23+35=4815−1015+915=48−10+915=4715;(2)解:323×2215+523×1315−2×1315=323×2215+(523×1315−2×1315)=323×2215+1315×(523−2)=323×2215+1315×323=323×(2215+1315) =323×3 =11.【点睛】本题考查了有理数的混合运算及运算律,熟练掌握和运用有理数的运算律是解决本题的关键.11.(2023春·七年级课时练习)计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}. 【答案】(1)原式=514;(2)原式=3. 【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587 =(3.587-1.587)+(5+7)+(-512-314) =2+12-834=514.(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.12.(2023春·湖北武汉·七年级统考期末)计算:(1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4【答案】(1)−3;(2)-18【分析】(1)根据有理数的加减运算法则进行计算即可得到答案;(2)先进行乘方运算,再进行有理数乘除运算,最后进行有理数减法运算即可得到答案.【详解】(1)解:11+(−7)−12−(−5)=11−7−12+5=−3;(2)解:−22×5−(−2)3÷4=−4×5−(−8)÷4=−20−(−2)=−18.【点睛】本题考查了有理数的混合运算,乘方运算,熟练掌握相关运算法则是解题关键.13.(2023春·辽宁葫芦岛·七年级统考期末)计算(1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)2022【答案】(1)11(2)−6【分析】(1)根据乘法分配律计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.【详解】(1)(12−56−712)×(−12)=12×(−12)−56×(−12)−712×(−12)=−6+10+7=11(2)−32÷3+(12−23)×12−(−1)2022=−9÷3+12×12−23×12−1=−3+6−8−1=−6【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春·全国·七年级期末)计算:(1)(−34+156−78)×(−24) (2)−23+|5−8|+24÷(−3)【答案】(1)-5(2)-13【详解】试题分析:(1)根据乘法分配律先去括号,然后根据有理数的乘法计算即可;(2)根据乘方、绝对值、和有理数的除法计算即可.试题解析:(1)(1)(−34+156−78)×(−24) =(−34)×(−24)+116×(−24)+(−78)×(−24) =18-44+21=-5 (2)−23+|5−8|+24÷(−3)=-8+3-8=-1315.(2023春·辽宁大连·七年级统考期末)计算:(1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.【答案】(1)−25(2)−27【分析】(1)根据有理数四则混合运算法则计算即可.(2)先算乘方,后算乘除,最后算加减.【详解】(1)42×(−23)+(−34)÷(−0.25)=−28+3=−25;(2)2×(−3)3−4×(−3)+15=−54+12+15=−27.【点睛】此题考查了有理数的运算,解题的关键是熟悉有理数四则混合运算法则.16.(2023春·湖南湘潭·七年级校联考期中)计算.(1)(−12.5)×(+317)×(−45)×(−0.1);(2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777.【答案】(1)−317(2)−24(3)−1150(4)777700【分析】(1)先根据有理数的乘法法则确定符号,再结合乘法交换律即可计算结果;(2)根据有理数乘方法则,结合乘法分配律即可计算结果;(3)根据有理数乘除运算法则,结合乘法分配律即可计算结果;(4)根据有理数乘除运算法则,逆用乘法分配律即可计算结果.【详解】(1)解:(−12.5)×(+317)×(−45)×(−0.1)=−504×317×45×110=−(504×45×110)×317=−317;(2)解−12−(23−78+112−56)×(−24)=−1−[23×(−24)−78×(−24)+112×(−24)−56×(−24)]=−1−(−16+21−2+20)=−1+16−21+2−20=−24;(3)解:482425÷(−48)=(48+2425)×(−148) =48×(−148)+2425×(−148) =−1−150 =−1150; (4)解:7777×13879+29÷(−17777)−3859×7777=7777×13879+29×(−7777)−3859×7777 =7777×(13879−29−3859) =7777×100=777700.【点睛】本题考查了有理数的混合运算,乘法运算律,熟练掌握相关运算法则是解题关键.17.(2023春·辽宁抚顺·七年级统考期中)计算:(1)(−49)−(+91)−(−5)+(−9);(2)(14+38−712)÷124; (3)(−1)2021×|−112|−(0.5)÷(−13). (4)−23×(−8)−(−12)3×(−16)+49×(−3)2 【答案】(1)-144(2)1(3)0(4)66【分析】(1)统一成省略加号和括号的和的形式,再结合有理数加法法则解答;(2)先转化为乘法,再利用乘法分配律解答;(3)先乘方,再乘除,最后计算加减;(4)先乘方,再乘除,最后计算加减、注意负号的作用;【详解】(1)(−49)−(+91)−(−5)+(−9)=-49+5-91-9=-44-100=-144(2)(14+38−712)÷124 =14×24+38×24−712×24=6+9-14=1 (3)(−1)2021×|−112|−(0.5)÷(−13)=−1×32−12×(−3) =0(4)−23×(−8)−(−12)3×(−16)+49×(−3)2=64+18×(-16)+4 =64-2+4=66【点睛】本题考查含有乘方的有理数的混合运算,是重要考点,掌握相关知识是解题关键.18.(2023春·山东菏泽·七年级统考期中)计算:(1)(1−16+34)×(−48) (2)−14+(−2)÷(−13)−|−9|(3)(−1)2÷12×[6−(−2)3]【答案】(1)−76(2)−4(3)28【分析】(1)利用乘法分配律进行计算即可得到答案;(2)先分别计算出乘方、绝对值、商,最后再加减即可;(3)按照先乘方,再乘除,有括号的先算括号内的顺序进行计算即可得到答案,计算中注意符号.【详解】(1)(1−16+34)×(−48)=1×(−48)−16×(−48)+34×(−48)=−48+8−36=−76(2)−14+(−2)÷(−13)−|−9|=−1+(−2)×(−3)−9=−1+6−9=−4(3)(−1)2÷12×[6−(−2)3]=1×2×[6−(−8)]=1×2×14= 28【点睛】本题考查有理数的计算,熟练掌握有理数的计算法则和计算顺序,是解题的关键.19.(2023春·山东德州·七年级校联考期中)计算(1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;【答案】(1)−2(2)1(3)−41【分析】(1)根据有理数加减运算法则直接计算即可得到答案;(2)根据有理数乘除运算法则直接计算即可得到答案;(3)先算乘方运算,再按照运算顺序及相关运算法则计算即可得到答案.【详解】(1)解:(−0.5)−(−314)+2.75−(+712)=(−12)−(−314)+234−(+712) =(−12)+314+234−712=(−12−712)+(314+234)=−8+6(2)解:(−49)÷75×57÷(−25)=(−49)×57×57÷(−25)=(−25)÷(−25)=1;(3)解:−22÷43−[22−(1−12×13)]×12=−4÷43−[4−(1−12×13)]×12=−4×34−[4−(1−16)]×12=−3−(4−56)×12=−3−(246−56)×12=−3−196×12=−3−38=−41.【点睛】本题考查有理数混合运算,涉及乘方运算、有理数加减乘除运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.20.(2023春·甘肃酒泉·七年级统考期中)计算(1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28(3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5(6)(−3)÷34×43×(−15)【答案】(1)33(2)10(3)13(5)19(6)80【分析】(1)根据有理数加减运算法则即可解答;(2)先去括号,然后再利用加法结合律即可解答;(3)直接运用乘法分配律计算即可;(4)根据有理数四则混合运算法则计算即可;(5)先算乘方、然后根据有理数四则混合运算法则计算即可;(6)根据有理数乘除混合运算法则计算即可.【详解】(1)解:(−7)+(+15)−(−25)=−7+15+25=33.(2)解:7.54+(−5.72)−(−12.46)−4.28=7.54+(−5.72)+12.46−4.28=(7.54+12.46)+[(−5.72)−4.28]=20−10=10.(3)解:−24×(−56+38−112)=−56×(−24)+38×(−24)−112×(−24)=20−9+2=13.(4)解:−13×3+6×(−13)=−1−2=−3.(5)解:−22+3×(−1)4−(−4)×5=−4+3×1+20=−4+3+20(6)解:(−3)÷34×43×(−15)=(−3)×43×43×(−15)=(−4)×43×(−15)=−163×(−15)=80.【点睛】本题主要考查了有理数加减运算、有理数乘除运算、有理数乘方运算、有理数运算律等知识点,灵活应用相关运算法则成为解答本题的关键.21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算:(1)8+(−10)+(−2)−(−5)(2)(−0.5+13+16)÷124(3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]【答案】(1)1(2)0(3)43(4)−109【分析】(1)先将减法化成加法,再按加法法则计算即可;(2)先将除法转化成乘法,然后运用乘法分配律计算即可,最后计算加法;(3)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;(4)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;【详解】(1)解:原式=8+(−10)+(−2)+5=(8+5)+[(−10)+(−2)]=13−12=1;(2)解:原式=(−12+13+16)×24=−12×24+13×24+16×24=−12+8+4=0;(3)解:原式=53÷[4×916−1]=53÷[94−1]=53÷54=43;(4)解:原式=−1+27÷[−16−|14−13|]=−1+27÷[−16−112]=−1+27÷(−312)=−1−108=−109.【点睛】本题考查有理数的混合运算,绝对值,熟练掌握有理数混合运算法则是解题的关键.22.(2023春·河南南阳·七年级统考期中)计算:(1)−32−(+11)+(−9)−(−16);(2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.【答案】(1)−36(2)−5111(3)−12(4)2【分析】(1)减法转化为加法,再进一步计算即可;(2)原式变形为(−45−911)×19,再进一步计算即可; (3)先计算乘方、除法转化为乘法,再计算乘法,最后计算减法即可;(4)先计算乘方,再计算乘除,最后计算加法即可.【详解】(1)原式=−32−11−9+16,=−52+16,=−36;(2)原式=(−45−911)×19, =−45×19−911×19,=−5−111,=−5111;(3)原式=9−278×29−6×278, =9−34−814,=−12;(4)原式=14×(−8)+16÷2×12, =−2+8×12, =−2+4,=2;【点睛】本题主要考查含乘方的有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.(2023春·河南驻马店·七年级统考期中)计算:(1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5). 【答案】(1)2(2)5(3)6123【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减即可;(3)先算乘方和括号内的式子,然后再计算括号外的乘除法,最后算加减法即可.【详解】(1)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48) =−44+56+(−36)+26=2(2)−9+5×|−3|−(−2)2÷4=−9+5×3−4÷4=−9+15−1=5(3)−18+(−4)2÷14−(1−32)×(13−0.5)=−1+64−(−8)×(−16) =−1+64−43=6123【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.24.(2023春·福建漳州·七年级校考期中)计算:(1)−41−28+(−19)+(−22)(2)(−20)×(−115)+4÷(−23) (3)(12+56−712)×(−24) (4)−32−24÷(−4)×12+(−1)2022【答案】(1)−110(2)18(3)−18(4)−5【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从先乘除后加减计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方,然后乘除法,最后减法即可求出值.【详解】(1)解:−41−28+(−19)+(−22)=(−41−19)+(−28−22)=−60+(−50)=−110;(2)解:(−20)×(−115)+4÷(−23) =(−20)×(−65)+4×(−32) =24−6=18;(3)解:(12+56−712)×(−24)=12×(−24)+56×(−24)−712×(−24) =−12−20+14=−32+14=−18;(4)解:−32−24÷(−4)×12+(−1)2022=−9+6×12+1 =−8+3=−5.【点睛】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则及运算律是解本题的关键.25.(2023春·湖北襄阳·七年级统考期末)计算:(1)(−7)−(+5)+(−4)−(−10)(2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].【答案】(1)−6;(2)−225; (3)9992.【分析】(1)根据有理数的加减混合运算进行计算即可得到答案;(2)先计算括号内,再进行有理数乘除计算即可得到答案;(3)先计算乘方和括号内,再去括号进行加减计算即可得到答案.【详解】(1)解:(−7)−(+5)+(−4)−(−10)=−7−5−4+10=−6;(2)解:115×(13−12)×311÷54=115×(−16)×311×45=−115×16×311×45 =−225; (3)解:(−10)4+[(−4)2−(3+32)×2]=10000+(16−12×2)=10000+16−24=9992.【点睛】本题考查了有理数的四则运算,乘方运算,熟练掌握相关运算法则是解题关键.26.(2023春·海南海口·七年级统考期末)计算(1)5×(−3)+(−12)×(−34)−52(2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12)【答案】(1)−8.5(2)−14(3)75【详解】(1)解:5×(−3)+(−12)×(−34)−52=−15+9−52=−8.5;(2)(−48)×(56−1+712−18)=56×(−48)−1×(−48)+712×(−48)−18×(−48) =−40+48−28+6=−14;(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) =[−1+9×(−16)]×310÷(−0.01) =(−1−32)×310÷(−0.01) =(−52)×310÷(−0.01) =75.【点睛】此题考查了有理数的混合运算,正确掌握有理数的乘方运算法则,乘法分配律,及四则混合运算的计算法则是解题的关键.27.(2023春·河北唐山·七年级统考期中)计算:(1)35−3.7−(−25)−1.3(2)(−34+712−58)÷(−124) (3)−32+1÷4×14−|−114|×(−0.5)2 【答案】(1)−4(2)19(3)−914【分析】(1)减法转化为加法,再利用加法交换律和结合律计算即可;(2)将除法转化为乘法,再利用乘法分配律计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:35−3.7−(−25)−1.3 =35−3.7+25−1.3 =(35+25)+(−3.7−1.3) =1+(−5)=−4;(2)(−34+712−58)÷(−124)=(−34+712−58)×(−24) =−34×(−24)+712×(−24)−58×(−24) =18−14+15=19;(3)−32+1÷4×14−|−114|×(−0.5)2 =−9+1×14×14−54×14=−9+116−516 =−9+(116−516) =−9+(−14) =−914.【点睛】本题考查有理数的混合运算.解题的关键是掌握有理数混合运算顺序和运算法则.28.(2023春·山东滨州·七年级统考期末)计算:(1)(134−78−712)÷(−78);(2)−1100÷(−12)3−17×[2−(−4)2].【答案】(1)−13(2)10【分析】(1)根据除以一个数等于乘以这个数的倒数和乘法分配律计算即可.(2)先算乘方,再算括号里面的,再计算乘除,最后算加减.【详解】(1)解:原式=(74−78−712)×(−87) =74×(−87)−78×(−87)−712×(−87) =−2+1+23=−13 (2)解:原式=(−1)÷(−18)−17×(2−16) =8−17×(−14) =8+2=10【点睛】本题考查了含乘方的有理数混合运算,熟练掌握运算法则是解题的关键.29.(2023春·山东临沂·七年级统考期末)计算:(1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2]. 【答案】(1)22(2)16【分析】(1)根据绝对值性质,有理数四则混合运算法则直接运算即可得到答案;(2)先算乘方,再算乘除,最后算加减即可得到答案;【详解】(1)解:原式=23−5−(−4)=18+4=22;(2)解:原式=−1−12×13×(2−9)=−1−16×(−7) =−1+76=16.【点睛】本题考查含乘方有理数混合运算,解题的关键是注意符号选取及去绝对值.30.(2023春·云南昆明·七年级校考期中)计算:(1)13+(−56)+47+(−34)(2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12(4)−22+|6−10|−3×(−1)2023【答案】(1)−30(2)−26(3)−12(4)3【分析】(1)根据有理数的加减法即可得到答案;(2)根据乘法分配和有理数的加减法即可得到答案;(3)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;(4)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;【详解】(1)解:原式=13+47+(−56)+(−34)=60+(−90)=−30;(2)解:原式=16×(−42)−314×(−42)+23×(−42)=−7−(−9)+(−28)=−35+9=−26;(3)解:原式=−10+4−6=−12;(4)解:原式=−4+4−3×(−1) =−4+4+3=3.【点睛】本题主要考查有理数的混合运算,掌握有理数的运算性质是解题的关键.31.(2023·山东潍坊·七年级统考期中)计算下列各题:(1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136)(3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14)(6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].【答案】(1)﹣1912(2)26(3)204(4)﹣12(5)﹣63(6)214(7)﹣1512(8)﹣1715 【详解】试题分析:(1)直接利用有理数加减运算法则计算得出答案;(2)利用乘法分配律,用括号里的每一项分别乘以﹣36,再进行加减运算即可;(3)直接利用有理数混合运算法则计算得出答案;(4)直接利用有理数混合运算法则计算得出答案;(5)利用乘法分配律,用括号里的每一项分别乘以36,再进行混合运算即可;(6)直接利用有理数混合运算法则计算得出答案;(7)直接利用有理数混合运算法则计算得出答案;(8)直接利用有理数混合运算法则计算括号里面,进而得出答案.试题解析:(1)(﹣12)﹣(﹣)+(﹣8)﹣=﹣12+﹣8﹣=﹣20+=﹣19;(2)(﹣+﹣)÷(﹣)=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+20=26;(3)﹣3×22﹣(﹣3×2)3=﹣3×4+216=204;(4)﹣32+16÷(﹣2)×﹣(﹣1)2017=﹣9﹣4+1=﹣12;(5)(﹣﹣+)×62+(﹣2)2×(﹣14)=﹣×36﹣×36+×36﹣4×14=﹣9﹣30+32﹣56=﹣63;(6)14÷+0.25×﹣×14+×0.25=6+0.25×(+)﹣4=2+=2;(7)(﹣)2×÷|﹣3|+(﹣0.25)÷()6=××﹣×64=﹣16=﹣15;(8)(﹣2)3﹣[3×(﹣)2﹣14]+8[()3﹣(﹣)2﹣1] =﹣8﹣×(﹣1)+8×(﹣﹣1)=﹣8﹣+1﹣2﹣8=﹣17.点睛:此题主要考查了有理数的混合运算,关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.(2023·山东济宁·七年级校考期中)计算下列各题(1)−5.53+4.26+(−8.47)−(−2.38)(2)−0.125×(−47)×8×(−7)(3)(1112−76+34−1324)×(−48)(4)−12018+12+(−12)×[−2−(−3)]【答案】(1)-7.36;(2)-4;(3)2;(4)-1.【分析】分别根据有理数的加、减、乘、除法进行计算,有乘方的先算乘方,再算乘除,最后算加减法.【详解】(1)−5.53+4.26+(−8.47)−(−2.38)=−5.53+4.26−8.47+2.38=−5.53−8.47+4.26+2.38=−14+6.64=−7.36;(2)−0.125×(−47)×8×(−7)=−18×47×8×7=-4;(3)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48)=−44+56−36+26=2;(4)−12018+12+(−12)×[−2−(−3)]=−1+12+(−12)×(−2+3)=−1+12−12=-1.【点睛】此题考查有理数的加、减、乘、除、乘方运算,掌握正确的计算顺序是解题的关键.33.(2023春·山东聊城·七年级统考期中)计算(1)−449−(+556)+(−559)−(−56) (2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)【答案】(1)−15,(2)-49,(3)0,(4)8【分析】(1)利用减法法则把加减法统一成加法,相加即可得到结果;(2)运用加法交换律和结合律,把含有相同因数的两个式子相加;再用乘法分配律的逆运算,进行简便运算即可;(3)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)按照乘方、绝对值、乘法分配律进行运算即可.【详解】(1)−449−(+556)+(−559)−(−56) =−449−556−559+56 =(−449−559)+(−556+56) =−10−5=−15(2)2×(−137)−234×13+(−137)×5+14×(−13)=[2 ×(−137)+(−137)×5]+[− 234×13+14×(−13 )] =(−137)×(5+2)+13×(−234−14)=-10-39=-49(3)16÷(−2)3−(−12)3×(−4)+2.5=16÷(−8)−(−18)×(−4)+2.5=−2−12+2.5 =0(4)(−1)2019+|−22+4|−(12−14+18)×(−24) =−1+0−[12×(−24)−14×(−24)+18×(−24)]=−1+12−6+3=8【点睛】此题考查了有理数的混合运算,熟练掌握运算法则及恰当的运用运算律是解本题的关键.34.(2023春·七年级课时练习)计算:(1)(−323)−(−2.4)+(−13)−(+425) (2)[−23+(−35)]+[1+(−23)×(−35)] (3)(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]} (4)[(223+334)(223−334)+(223−334)2]÷(334−223)【答案】(1)−6(2)215(3)1336(4)−513【分析】(1)先算同分母分数,再计算加减法;(2)先算乘法,再去括号,再算同分母分数,再计算加减法;(3)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算;(4)根据乘法分配律简便计算.【详解】(1)解:(−323)−(−2.4)+(−13)−(+425)原式=(−323)+2.4−13−4.4=(−323−13)+(2.4−4.4)=−4−2=−6(2)解:[−23+(−35)]+[1+(−23)×(−35)]原式=−23−35+(1+25)=−23−35+1+25=(−23+1)+(−35+25)=13−15=215(3)解:(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]}原式=1−{35−[19+25×(−32)÷4]}=1−[35−(19−320)]=1−(35−19+320)=1−[(35+320)−19]=1−(34−19)=1−34+19=14+19=1336(4)解:[(223+334)(223−334)+(223−334)2]÷(334−223)原式=(223+334+223−334)(223−334)÷(334−223)=513×(223−334)÷(334−223)=513×(−1)=−513【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,简化运算过程.35.(2023春·七年级课时练习)计算(1)−33−(12+56−712)×(−24)(2)−212+12÷(−2)×|−83|【答案】(1)-15(2)−316【详解】试题分析:根据有理数的混合运算的法则和运算律计算即可,解题时注意运算符号,避免出错. 试题解析:(1)−33−(12+56−712)×(−24)=-33-12×(−24)-56×(−24)+712×(−24)=-33+12+20-14=-15(2)−212+12÷(−2)×|−83|=−212+12×(−12)×|−83| =−212--23 =-31636.(2023春·七年级课时练习)计算(1)−225−(+3411)+(−35)−(−1311) (2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)【答案】(1)−5111(2)18【详解】试题分析:根据有理数的混合运算的法则和运算律计算即可,解题时注意运算符号,避免出错. 试题解析:(1)−225−(+3411)+(−35)−(−1311)=−225−3411−35+1311 =-3-2111=-5111(2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)=-81×49×(−49)×18+2×4×2 =2+16=1837.(2023春·七年级课时练习)计算:(1)(−2878+1479)÷7;(2)(−1313)÷5−123÷5+13×15; (3)112×[3×(−23)−1]−13×(−8)−8;(4)−|−13|−|−34×23|−|12−13|;(5)(213−312+718)÷(−116)+(−116)÷(213−312+718).【答案】(1)-2172;(2)−25;(3)−596;(4)-1;(5)136. 【分析】(1)利用有理数的混合运算法则和乘法分配律、结合律计算即可完成;(2)根据有理数混合运算法则,结合乘法分配律计算即可得答案;(3)根据有理数混合运算法则计算即可得答案;(4)根据有理数混合运算法则计算即可得答案;(5)先根据有理数混合运算法则,结合乘法分配率求出第一个加数的值,进而根据第二个加数是第一个加数的倒数即可求出第二个加数的值,最后计算加法即可得答案.【详解】(1)(-2878+1479)÷7=(-28-78+14+79)×17=−28×17−78×17+14×17+79×17=-4-18+2+19 =-2172.(2)(-1313)÷5-123÷5+13×15=(-1313)×15-123×15+13×15=(-13-13-1-23+13)×15=-2×15 =-25.(3)112×[3×(-23)-1]-13×(-8)-8=32×(-2-1)+83-8=-92+83-8=-596.(4)-|-13|-|-34×23|-|12-13|=-13-12-(12-13)=-13-12-12+13=-1.(5)(213-312+718)÷(-116)+(-116)÷(213-312+718) ∵(213-312+718)÷(-116) =(73-72+718)×(-67)=73×(-67)-72×(-67)+718×(-67)=-2+3-13=23,∵(-116)÷(213-312+718)=32, ∵原式=23+32=136. 【点睛】本题考查有理数的混合运算和运算律的运用,熟练掌握有理数的运算法则以及运算律是解题关键.38.(2023春·七年级课时练习)计算:(1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1)(2) −0.5−314+(−2.75)+712(3) (−34−56+78)×(−24)(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137 (5)(-1)9×(-3)3-30(6)-︱-3︱×(-4)-6÷(-13)2【答案】(1)0;(2)1;(3)17;(4)0;(5)-3;(6)-42【分析】(1)先去括号,再根据有理数的加减混合运算法则计算;(2)将分数化为小数及去括号,再根据加减法计算法则计算;(3)利用乘法分配律计算;(4)利用乘法分配律计算法则计算;(5)先计算乘方,再计算乘法,最后计算减法;(6)先同时化简绝对值及乘方,再计算乘法和除法,最后计算减法.【详解】(1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1)=2.5+2.2-3.1-0.5-1.1=0;(2) −0.5−314+(−2.75)+712=-0.5-3.25-2.75+7.5=7-6=1;(3) (−34−56+78)×(−24)=−34×(−24)−56×(−24)+78×(−24)=18+20-21=17;(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137=[(−8)+(−7)+15]×1137=0;(5)(-1)9×(-3)3-30=-1×(-27)-30=27-30=-3;(6)-︱-3︱×(-4)-6÷(-13)2 =−3×(−4)−6÷19=12-54=-42.【点睛】此题考查计算,掌握有理数的加法法则、减法法则、乘方法则、混合计算法则,正确计算是解题的关键.39.(2023春·七年级课时练习)计算:6.91÷3+13×9100−0.3·18711+83100−9.42÷137311−7.12+41750. 【答案】4【分析】根据题意将小数和分数互相转化,将分数除法转变为分数乘法,然后根据分数的乘法运算法则和乘法分配律计算即可.【详解】原式=(6.91+0.09−1)×1318711+8.03−9.42×(37311−7.12+4.34) =220511−1.39×(41011−2.78) =220511−1.39×[(20511−1.39)×2] =2×2=4故答案为4.【点睛】本题考查了含小数的分数乘除混合运算,关键是掌握分数除法的运算法则,并且要将小数转化为分数或分数转化为小数.40.(2023春·全国·七年级期末)(1)计算:133+233+232+23; (2)计算:1310+2310+⋯+234+233+232+23; (3)计算:23n +⋯+234+233+232+23.【答案】(1)1;(2)1;(3)1−13n【分析】(1)根据同分母的分数相加,分母不变分子相加得出结论;(2)利用(1)中规律相加即可;(3)根据(1)规律加13n ,再减13n,然后作和即可.【详解】解:(1)133+233+232+23=333+232+23=132+232+23=332+23=13+23=1;(2)1310+2310+⋯+234+233+232+23=3310+239+...+234+233+232+23=139+239+...+234+233+232+23……=132+232+23 =332+23 =13+23=1;(3)23n +⋯+234+233+232+23=13n+23n+⋯+234+233+232+23−13n=13n−1+23n−1+...+234+233+232+23−13n……=132+232+23−13n =332+23−13n =13+23−13n=1−13n.【点睛】本题考查数字变化类,关键是找到式子中的规律进行求和.。

七年级数学有理数混合运算100题

七年级数学有理数混合运算100题

七年级数学有理数混合运算100题一、题目。

1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,−(−5)=5。

- 则原式变为−2 + 3+5。

- 按照从左到右的顺序计算,先算−2+3 = 1,再算1 + 5=6。

2. 计算:4 - 5×(-(1)/(2))^3- 解析:- 先计算指数运算,(-(1)/(2))^3=(-(1)/(2))×(-(1)/(2))×(-(1)/(2))=-(1)/(8)。

- 再算乘法,5×(-(1)/(8))=-(5)/(8)。

- 最后算减法,4-(-(5)/(8)) = 4+(5)/(8)=(32)/(8)+(5)/(8)=(37)/(8)。

3. 计算:(-3)×(-4)+(-2)^2-12÷(-3)- 解析:- 先分别计算各项。

- 乘法:(-3)×(-4)=12。

- 指数运算:(-2)^2=4。

- 除法:12÷(-3)= - 4。

- 然后将结果代入原式计算,12 + 4-(-4)=12 + 4 + 4=20。

4. 计算:(1)/(2)-<=ft(-(1)/(3))+<=ft(-(1)/(4))- 解析:- 去括号,-<=ft(-(1)/(3))=(1)/(3)。

- 然后通分计算,分母的最小公倍数是12。

- (1)/(2)=(6)/(12),(1)/(3)=(4)/(12),(1)/(4)=(3)/(12)。

- 原式变为(6)/(12)+(4)/(12)-(3)/(12)=(6 + 4-3)/(12)=(7)/(12)。

5. 计算:(-2)^3×(-(3)/(4))+(-1)^2023- 解析:- 先计算指数运算。

- (-2)^3=(-2)×(-2)×(-2)= - 8,(-1)^2023=-1。

- 再算乘法,-8×(-(3)/(4)) = 6。

七年级数学(上)有理数混合运算100题(含答案)

七年级数学(上)有理数混合运算100题(含答案)

七年级数学(上)有理数混合运算100题(含答案)1. 计算:(3) + 5 2答案:02. 计算:(4 7) × (2)答案:63. 计算:4 ÷ 2 + 3答案:14. 计算:5 (3) + 2答案:105. 计算:3 × (2) 4答案:26. 计算:7 ÷ (1) + 6答案:17. 计算:4 + 8 ÷ (2)答案:88. 计算:(5) × (3) + 2答案:179. 计算:9 6 ÷ 3答案:710. 计算:2 × (4) + 5答案:1311. 解决这个问题:如果你有8个苹果,然后又得到了6个,你现在有多少苹果?答案:2个苹果12. 小华做数学题,先减去了10,然后又加上了15,请计算小华的最终结果。

答案:513. 一个数加上3后再乘以2,结果是多少?如果这个数是5。

答案:414. 小明将4分成两个相同的部分,然后将每个部分都加上5,的结果是多少?答案:6答案:116. 小红有一堆糖果,如果她每天吃掉4颗,5天后她还剩下多少糖果?如果她一开始有25颗糖果。

答案:5颗糖果17. 一个数乘以2后再减去8,结果是12,这个数是多少?答案:218. 如果一个数的两倍减去4等于8,那么这个数是多少?答案:619. 计算下列表达式的值:(3) × (2) 5 + 7 ÷ (1)答案:120. 小李的分数先减去了10分,然后又增加了20分,他的最终分数是多少?如果他的原始分数是50分。

答案:60分(继续进行下一部分的题目,确保每个题目都有其独特性,帮助同学们从不同角度理解和掌握有理数的混合运算。

)21. 假设你的温度计显示温度下降了5度,然后又上升了3度,最终温度相比初始温度变化了多少?答案:下降了2度22. 如果你原本有20元,然后花了7元买了一个笔记本,接着又找到了3元,你现在有多少元?答案:16元23. 一个学生在考试中得到了3分,然后又因为表现好被加回了5分,他的最终得分是多少?答案:2分24. 一个数减去它自己的两倍,结果是多少?如果这个数是7。

七年级数学有理数专项训练(有理数混合运算)(北师版)(含答案)

七年级数学有理数专项训练(有理数混合运算)(北师版)(含答案)

学生做题前请先回答以下问题问题1:有理数混合运算的顺序为______________________________________.问题2:有理数混合运算的处理方法是什么?问题3:进行有理数混合运算,对每部分进行操作时,每次按照法则往前推进一点点.例如:问题4:计算时,观察结构划部分可以分为三部分,每一部分都有因数______,因此可以考虑逆用__________________简化运算.首先处理符号:,然后再进行计算.问题5:计算时,根据特征,,……,,因此计算时可以运用技巧_____________.有理数专项训练(有理数混合运算)(北师版)一、单选题(共10道,每道10分)1.计算的结果为( )A.-5B.5C.-7D.7答案:C解题思路:试题难度:三颗星知识点:有理数混合运算2.计算的结果为( )A.-21B.-24C.12D.-12答案:B解题思路:试题难度:三颗星知识点:有理数混合运算3.计算的结果为( )A. B.C. D.解题思路:试题难度:三颗星知识点:有理数混合运算4.计算的结果为( )A.34B.-38C.46D.-11答案:B解题思路:试题难度:三颗星知识点:有理数混合运算5.计算的结果为( )A.3B.-5C.-7D.-10解题思路:试题难度:三颗星知识点:有理数混合运算6.计算的结果为( )A.6B.0C.-4D.-6答案:A解题思路:试题难度:三颗星知识点:有理数混合运算7.计算的结果为( )A.-54B.-60C.-12D.-18答案:D解题思路:试题难度:三颗星知识点:有理数混合运算8.计算的结果为( )A. B.0C. D.答案:A解题思路:试题难度:三颗星知识点:绝对值法则9.计算的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:有理数运算技巧——裂项相消10.计算的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:有理数运算技巧——错位相减。

专项训练卷有理数的混合运算 (含答案)2024-2025学年数学北师大版(2024)七年级上册

专项训练卷有理数的混合运算 (含答案)2024-2025学年数学北师大版(2024)七年级上册

专项训练卷(一) 有理数的混合运算时间:60分钟 满分:100分考试范围:第二章题序一二三评卷人总分得分一、选择题(每小题4分,共32分)1.丁丁做了4道计算题:①(-1)2024=1;②0-(-1)=-1;③-1+13-12=-76;④12÷-12=1.请你帮他检查一下,他一共做对了( )A .1道B .2道C .3道D .4道2.要使得算式-1□0.5的值最小,则“□”中填入的运算符号是( )A .+B .-C .×D .÷3.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c=( )A .-1B .0C .1D .24.用2,0,2,2这四个数进行如下运算,计算结果最大的式子是( )A .2-0×2+2B .2-0+2×2C .2×0+2-2D .2+0-2×25.若m ,n 互为相反数,p ,q 互为倒数,t 的绝对值等于4,则m +n 2002024-(-pq )2023+t 3的值是( )A .-63B .65C .-63或65D .63或-656.如图,这是一个计算程序,若输入a 的值为-1,则输出的结果b 为( )A .-5B .-6C .5D .67.用“※”定义一种新运算:对于任何有理数a 和b ,规定a ※b=ab+b 2.如1※2=1×2+22=6,则(-4)※2的值为( )A .4B .-4C .8D .-88.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示.则第5个方框中最下面一行的数可能是( )A .1296B .2809C .3136D .4225二、填空题(每小题4分,共16分)9.按照下图所示的步骤,若输入x 的值为-7,则输出y 的值为 .10.某地气象观测用的测温气球,每上升1千米,气温大约降低6 ℃,若地面温度为21 ℃,高空某处的气温为-39 ℃,则此处的高度为 千米.11.现用四个数2,-6,5,8进行加、减、乘、除、乘方混合运算,每个数只能用一次,且每个数都用上,要使运算结果等于24,则可以列式为 . 12.已知|x|=3,|y|=5,且x>y ,则3x-y 2的值为 . 三、解答题(本大题6小题,共52分)13.(6分)计算:(1)(-36)×12-59+712;(2)-14-[1―(1―0.5×13)×6].14.(8分)已知a 的立方等于-8,b 的倒数为-12,c 的绝对值为2,求a+b+c 2的值.15.(8分)阅读下列材料:计算:124÷13-14+112.解法一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12=1124.解法二:原式=124÷212=124×6=14.解法三:原式的倒数=13-14+112÷124=13-14+112×24=13×24-14×24+112×24=4.所以原式=14.(1)上述得到的结果不同,其中,解法 是错误的. (2)计算:12-14+16×36= .(3)请你选择合适的解法计算:-1210÷37+215-310-521.16.(8分)小乌龟从点A 出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程(单位: cm)依次记为+5,-3,+10,-8,-6,+12,-10.(1)小乌龟最后是否回到出发点A ?(2)小乌龟在爬行过程中,若每爬行1 cm 奖励2粒芝麻,则小乌龟一共得到多少粒芝麻?17.(10分)已知四个数“-8,-2,1,3”及四种运算符号“+,-,×,÷”,请列算式解答下列问题:(1)求这四个数的和;(2)在这四个数中选出两个数,使得两数差的结果最小,并简单说明理由;(3)在这四个数中选出三个数,在这四种运算符号中选出两种,组成一个算式,可以带括号,使运算结果等于没选的那个数.18.(12分)规定一种新运算法则:a ※b=ab-2a+b 2.例如:1※2=1×2-2×1+22=4.请用上述运算法则回答下列问题:(1)求3※(-1)的值;(2)求(-4)※12※2的值;(3)若m※5的值为40,求m的值.参考答案一、选择题12345678BDCBCABB1.B 【解析】①(-1)2024=1,符合题意;②0-(-1)=0+1=1,不符合题意;③-1+13-12=-23-12=-76,符合题意;④12÷-12=-1,不符合题意.2.D 【解析】-1+0.5=-0.5;-1-0.5=-1.5;-1×0.5=-0.5;-1÷0.5=-2.所以使得算式-1□0.5的值最小时,“□”中填入的运算符号是÷.3.C 【解析】由题意,得a=0,b=-1,c=0,则a-b+c=1.4.B 【解析】2-0×2+2=2-0+2=4,2-0+2×2=2-0+4=6,2×0+2-2=0+2-2=0,2+0-2×2=2+0-4=-2,由上可得,2-0+2×2的结果最大.5.C 【解析】根据题意,得m+n=0,pq=1,t=4或t=-4,当t=4时,原式=02024-(-1)2023+43=0+1+64=65;当t=-4时,原式=02024-(-1)2023+(-4)3=1-64=-63.综上,m +n 2002024-(-pq )2023+t 3的值是65或-63.6.A 【解析】把a=-1代入得[(-1)2-(-2)]×(-3)+4=(1+2)×(-3)+4=3×(-3)+4=-9+4=-5.7.B 【解析】根据题中的新定义,得(-4)※2=-4×2+22=-8+4=-4.8.B 【解析】由图中信息可知,第一行从右向左分别为个位数字和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行前3个空是这个两位数的两个数字的乘积的2倍,然后相加即得到这个两位数的平方.第5个方框中第二行数是30,所以原数的十位数字和个位数字的乘积是30×12=15,那么这两个数就应该是3和5,所以这个两位数是35或53,352=1225,532=2809.二、填空题9.1 【解析】由题意可得,当x=-7时,(x+5)2-3=(-7+5)2-3=(-2)2-3=4-3=1.10.10 【解析】根据题意,得[21-(-39)]÷6×1=(21+39)÷6×1=60÷6×1=10(千米),则此处的高度为10千米.11.2×5-(-6)+8(答案不唯一)12.-16或-34 【解析】因为|x|=3,|y|=5,且x>y ,所以x=±3,y=-5,当x=3,y=-5时,3x-y 2=3×3-(-5)2=9-25=-16,当x=-3,y=-5时,3x-y 2=3×(-3)-(-5)2=-9-25=-34.三、解答题13.解:(1)原式=(-36)×12-(-36)×59+(-36)×712=(-18)+20+(-21)=-19;................................................(3分)(2)原式=-1-[1―(1―16)×6]=-1-(1-56×6)=-1-(1-5)=-1-(-4)=-1+4=3.......................................(6分)要点归纳 关于有理数的混合运算问题,运算顺序是:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的,若是同级运算,应按照从左到右的顺序进行.14.解:因为a 的立方等于-8,b 的倒数为-12,c 的绝对值为2,所以a 3=-8,1b =-12,|c|=2,所以a=-2,b=-2,c=±2,所以c 2=4.................................................................(4分)所以a+b+c 2=(-2)+(-2)+4=-4+4=0.....................................................................................................(8分)15.解:(1)一 .................................................................................................................................................(1分)提示:除法没有分配律,故解法一错误.(2)15 ..............................................................................................................................................................(4分)提示:12-14+16×36=12×36-14×36+16×36=18-9+6=15.(3)原式的倒数=37+215-310-521÷-1210=37+215-310-521×(-210)=37×(-210)+215×(-210)-310×(-210)-521×(-210)=-90-28+63+50=-5,所以-1210÷37+215-310-521=-15.............................................................................................................(8分)16.解:(1)+5-3+10-8-6+12-10=+5+10+12-3-8-6-10=27-27=0,所以小乌龟最后回到出发点A..............................................................................................................(4分)(2)小乌龟爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm),54×2=108(粒).所以小乌龟一共得到108粒芝麻.........................................................................................................(8分)17.解:(1)-8-2+1+3=-10+4=-6................................................................................................................(2分)(2)由题意可得,(-8)-3=(-8)+(-3)=-11....................................................................................................(4分)理由:要使得两数差的结果最小,则选择最小的负数与最大的正数作差..................................(6分)(3)答案不唯一,如(-8)÷(-2)-3=1或(-8)÷(-2)-1=3或(1+3)×(-2)=-8...........................................(10分)18.解:(1)3※(-1)=3×(-1)-2×3+(-1)2=(-3)-6+1=-8;...........................................................................(3分)(2)(-4)※12※2=(-4)※12×2-2×12+22=(-4)※(1-1+4)=(-4)※4=(-4)×4-2×(-4)+42=(-16)+8+16=8;.........................................................................................................................................................................(8分)(3)因为m ※5的值为40,所以5m-2m+52=40,解得m=5,即m 的值是5...........................................................................................................................................(12分)。

七年级上数学有理数的混合运算试卷含答案解析

七年级上数学有理数的混合运算试卷含答案解析

有理数的混合运算测试一1.计算:(1)()217513(35)-+-+---(2) ()()()58 3.6 2.512-⨯-⨯-⨯; (3)15515132277272⎛⎫⎛⎫⎛⎫⨯---⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ;(4)()4243439--÷⨯- ; (5)1111231132456⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭; (6)()()241110.5233⎡⎤---⨯⨯--⎣⎦ ; (7)()()241110.5233⎡⎤---⨯⨯--⎣⎦; (8)()()()()32422435126353+-⨯-++⨯-÷--; 2、小明是位好学上进的学生,刚升入七年级他就定下目标:每次数学测验都必须达到95分。

以95分为标准,他把超过的分数记为正,不足的分数记为负,记录了六次测验的成绩(单位:分):+5,-1,+3,+4,0,-2.⑵ 这六次测验中,小明有几次实现了自己的目标?⑵请你帮小明算一算,他这六次数学测验的平均成绩是多少?3.小白兔从点A 出发,在一条直线上来回行走,假定向右行走的路程记为正数,向左行走的路程记为负数,行走的各段路程依次为(单位:米):+5,-3,+10,-8,-6,+12,-8.⑴小白兔最后是否回到出发点A ?⑵ 小白兔离开出发点最远是多少米?(3)行走过程中,如果每行走2米就奖励一只蘑菇,则小白兔共得到多少只蘑菇?4.某检修小组乘坐一辆汽车沿南北向公路检修输电线路,规定向北为正方向,他们从A 地出发到收工时,行驶记录如下(单位:千米):+12,-5,+7,-1,+9,+3,+7,+10,-4,+8.(1)他们收工时距A 地多远?(2)如果汽车每千米耗油0.2升,从他们出发到返回A 地共耗油多少升?参考答案:1、(1)解:原式=-1(2)解:原式=-30(3)解:原式=55 14(4)解:原式=0(5)解:原式=59 105(6)解:原式=1 6(7)解:原式=1 6(8)解:原式=-57 152、解:⑴4次;⑵+5-1+3+4+0-2=995×6+9=579答略3、⑴5-3+10-8-6+12-8=2答:小白兔最后没有回到出发点A⑵小白兔离开出发点最远是12米⑶5+3+10+8+6+12+8=5252÷2=26答:小白兔共得到26只蘑菇4、解:⑴12-5+7-1+9+3+7+10-4+8=46 他们收工时距A地46千米⑵12+5+7+1+9+3+7+10+4+8=660.2×66=13.2他们出发到返回A地共耗油13.2升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档