光电实验报告
光电综合实验报告
一、实验目的1. 理解光电效应的基本原理,掌握光电效应方程及其应用;2. 研究光电管的伏安特性,分析光电效应与入射光频率、光强度的关系;3. 测定普朗克常数h,验证光量子理论;4. 掌握光电效应实验的基本操作和数据处理方法。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
爱因斯坦提出了光量子理论,认为光是由一个个光子组成的,每个光子的能量为E = hv,其中h为普朗克常数,v为光子的频率。
当光子的能量大于金属的逸出功时,电子会从金属表面逸出,形成光电子。
光电效应方程为:E_k = hv - W_0,其中E_k为光电子的动能,W_0为金属的逸出功。
实验中,通过改变入射光的频率和强度,观察光电管的伏安特性,研究光电效应与入射光频率、光强度的关系,并测定普朗克常数h。
三、实验仪器与材料1. 光电效应测试仪(含光电管、滤光片、光源、电压表、电流表、滑线变阻器等)2. 汞灯3. 干涉滤光片4. 光电管5. 电压表6. 电流表7. 滑线变阻器8. 记录本9. 铅笔四、实验步骤1. 连接实验仪器,确保电路连接正确;2. 调节滑线变阻器,使光电管工作电压在合适范围内;3. 改变入射光的频率,观察光电管的伏安特性,记录数据;4. 改变入射光强度,观察光电管的伏安特性,记录数据;5. 分析实验数据,计算普朗克常数h。
五、实验结果与分析1. 改变入射光频率时,伏安特性曲线随频率增加而向负方向移动,表明光电子的动能随入射光频率增加而增加。
当入射光频率低于截止频率时,伏安特性曲线基本为零,说明没有光电子发射;2. 改变入射光强度时,伏安特性曲线随光强度的增加而向上平移,表明光电子的发射数量随光强度的增加而增加;3. 根据实验数据,计算普朗克常数h,并与理论值进行比较。
六、实验总结1. 通过本实验,加深了对光电效应原理的理解,验证了光量子理论;2. 掌握了光电效应实验的基本操作和数据处理方法;3. 计算得到的普朗克常数h与理论值相符,说明实验结果准确可靠。
光电测量技术实验报告
一、实验目的1. 了解光电测量技术的基本原理和实验方法;2. 掌握光电传感器的工作原理和应用;3. 通过实验验证光电测量技术的实际应用效果。
二、实验原理光电测量技术是利用光电效应将光信号转换为电信号,通过测量电信号的大小来反映光信号的强度、位置、频率等物理量。
本实验采用光电传感器作为测量工具,通过实验验证光电测量技术的实际应用效果。
三、实验器材1. 光电传感器;2. 光源;3. 信号发生器;4. 电压表;5. 数据采集器;6. 实验台。
四、实验步骤1. 将光电传感器固定在实验台上,确保传感器与光源的位置和距离符合实验要求;2. 打开信号发生器,设置合适的频率和幅度;3. 将光电传感器输出端连接到数据采集器,数据采集器连接到电脑;4. 打开数据采集器软件,设置采样频率和采集时间;5. 打开光源,观察光电传感器输出端电压的变化;6. 记录电压随时间的变化数据;7. 关闭光源,重复步骤5和6,观察光电传感器输出端电压的变化;8. 对实验数据进行处理和分析。
五、实验结果与分析1. 实验结果显示,在光源照射下,光电传感器输出端电压随着光源强度的增加而增加,随着光源距离的增加而减小;2. 在关闭光源的情况下,光电传感器输出端电压基本稳定,说明光电传感器具有较好的抗干扰能力;3. 通过对实验数据的处理和分析,可以得出以下结论:(1)光电测量技术可以有效地将光信号转换为电信号,实现对光强度的测量;(2)光电传感器具有较好的抗干扰能力,可以应用于实际测量场合;(3)光电测量技术具有测量精度高、响应速度快、非接触等优点。
六、实验总结1. 本实验验证了光电测量技术的实际应用效果,掌握了光电传感器的工作原理和应用;2. 通过实验,了解了光电测量技术在光强度、位置、频率等物理量测量中的应用;3. 实验过程中,学会了使用光电传感器、信号发生器、数据采集器等实验器材,提高了实验操作技能。
七、实验展望1. 深入研究光电测量技术的原理和应用,探索其在更多领域的应用前景;2. 优化实验方案,提高实验精度和可靠性;3. 探索光电测量技术与人工智能、大数据等领域的结合,推动光电测量技术的发展。
led光电性能测试实验报告
led光电性能测试实验报告LED 光电性能测试实验报告一、实验目的本次实验旨在对 LED(发光二极管)的光电性能进行全面测试和分析,以了解其发光特性、电学特性以及相关性能参数,为 LED 的应用和质量评估提供可靠的数据支持。
二、实验原理1、发光原理LED 是一种半导体器件,当电流通过时,电子和空穴在半导体材料的 PN 结处复合,释放出能量以光子的形式发出光。
2、光电特性LED 的光电特性主要包括光通量、发光强度、光谱分布、色温、显色指数、正向电压、反向电流等。
三、实验设备与材料1、光色电综合测试系统用于测量LED 的光通量、发光强度、光谱等光学参数,以及电压、电流等电学参数。
2、直流电源提供稳定的电流和电压输出,驱动 LED 工作。
3、积分球用于收集和均匀化 LED 发出的光,以提高光测量的准确性。
4、标准光源用于校准光色电综合测试系统。
5、待测试的 LED 样品若干四、实验步骤1、样品准备选取外观完好、无明显缺陷的 LED 样品,并对其引脚进行清洁和处理,以确保良好的电气接触。
2、连接测试系统将 LED 样品的正负极分别与直流电源的正负极相连,同时将 LED 放入积分球内,并将积分球与光色电综合测试系统连接。
3、设定测试条件在直流电源上设置合适的电流和电压,以满足 LED 的正常工作条件。
在光色电综合测试系统中设置相应的测试参数,如测量范围、积分时间等。
4、进行测试开启直流电源,使 LED 发光,同时启动光色电综合测试系统,进行光通量、发光强度、光谱等光学参数的测量,以及正向电压、反向电流等电学参数的测量。
5、数据记录与分析将测试得到的数据进行记录,并对数据进行分析和处理,计算出LED 的相关性能参数,如光效、色温、显色指数等。
6、重复测试为了提高测试结果的准确性和可靠性,对每个 LED 样品进行多次重复测试,并取平均值作为最终的测试结果。
五、实验数据与结果1、光通量测试得到的 LED 光通量范围为_____lm 至_____lm,平均值为_____lm。
光电装置测试实验报告(3篇)
第1篇一、实验目的1. 了解光电装置的基本原理和结构。
2. 掌握光电装置的测试方法及实验步骤。
3. 分析光电装置的测试结果,评估其性能。
4. 探讨光电装置在实际应用中的优缺点。
二、实验原理光电装置是利用光电效应将光能转换为电能的装置。
其主要原理是:当光照射到半导体材料上时,电子被激发并产生电流,从而实现光电转换。
三、实验器材1. 光源:可见光LED灯、红外LED灯、激光器等。
2. 光电探测器:光敏电阻、光电二极管、光电三极管等。
3. 测试电路:电流表、电压表、信号发生器等。
4. 测试软件:示波器、数据采集卡等。
5. 实验平台:实验桌、支架等。
四、实验步骤1. 搭建测试电路:根据实验要求,将光源、光电探测器、测试电路和测试软件连接起来。
2. 测试光源特性:a. 调整光源的输出功率,观察光电探测器输出电流的变化,记录数据。
b. 改变光源的波长,观察光电探测器输出电流的变化,记录数据。
3. 测试光电探测器特性:a. 调整光电探测器的偏置电压,观察输出电流的变化,记录数据。
b. 改变光电探测器的负载电阻,观察输出电压的变化,记录数据。
4. 测试光电转换效率:a. 测量光源的输出功率和光电探测器的输出电流,计算光电转换效率。
b. 改变光源的输出功率,重复上述步骤,记录数据。
5. 分析测试结果:a. 分析光源和光电探测器的特性曲线,评估其性能。
b. 计算光电转换效率,评估光电装置的转换效率。
五、实验结果与分析1. 光源特性:通过调整光源的输出功率和波长,观察光电探测器输出电流的变化,可以评估光源的稳定性和线性度。
2. 光电探测器特性:通过调整光电探测器的偏置电压和负载电阻,可以评估光电探测器的灵敏度、响应速度和线性度。
3. 光电转换效率:通过计算光电转换效率,可以评估光电装置的整体性能。
六、实验结论1. 光电装置可以将光能转换为电能,具有高效、环保等优点。
2. 光源和光电探测器的性能对光电装置的转换效率有很大影响。
光电综合实验报告
光电综合实验报告
实验目的:通过光电综合实验,了解光电效应在光电器件中的应用,掌握光电检测技术和光电器件的使用方法。
实验仪器:光电综合实验箱、光电二极管、光电三极管、光电开关等光电器件。
实验原理:光电效应是指当光照射在半导体材料上时,电子受到能量激发而跃迁至导带,从而产生电流或电压的现象。
光电器件是利用光电效应制成的电子器件,如光电二极管、光电三极管和光电开关等。
实验步骤:
1.将光电二极管插入实验箱中,并连接好电路。
2.调节实验箱上的光强度调节钮,观察光电二极管的输出信号。
3.更换光电三极管,并重复步骤2。
4.使用光电开关进行实验,观察其在光照和无光照状态下的输出信号变化。
实验结果:
通过实验,我们观察到光电二极管在光照射下产生了电流信号,光照强度越大,输出信号越强。
光电三极管的输出信号也随着光照强度的变化而变化,但其灵敏度比光电二极管更高。
而光电开关在有光照时输出高电平,在无光照时输出低电平,可以用于光控开关等应用。
实验结论:
光电器件是利用光电效应制成的电子器件,能够将光信号转换为电信号,具有灵敏度高、响应速度快等优点,并且在光控开关、光电传感器等领域有着广泛的应用。
通过本次实验,我们成功掌握了光电器件的使用方法及其在光电检测技术中的应用。
总结:
光电综合实验让我们更加深入地了解了光电效应在光电器件中的应用,通过实验操作,我们掌握了光电器件的使用方法,为今后在光电检测技术领域的应用奠定了基础。
希望能够通过不断地实践和学习,进一步提高自己的实验技能和理论水平。
光电探测实验报告总结(3篇)
第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。
实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。
二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。
实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。
光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。
三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。
(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。
(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。
2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。
(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。
3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。
(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。
五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。
在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。
2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。
同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。
检测技术光电实验报告
一、实验目的1. 理解光电效应的基本原理及其在光电检测中的应用。
2. 掌握光电检测器的工作原理和特性。
3. 通过实验验证光电检测技术在信号检测中的应用效果。
4. 学习如何设计和搭建光电检测系统。
二、实验原理光电效应是指当光子照射到物质表面时,能够将物质中的电子激发出来,形成光电子。
光电检测技术就是利用这一效应,将光信号转换为电信号,实现对光、电场、磁场等信号的检测。
本实验采用光电二极管作为光电检测器,其基本工作原理是:当光照射到光电二极管上时,光电二极管内的电子会被激发出来,形成光电流。
光电流的大小与入射光的强度成正比。
三、实验器材1. 光电二极管2. 光源(如激光笔)3. 数字多用表4. 光电检测电路板5. 连接线6. 实验台四、实验步骤1. 搭建光电检测电路:按照实验指导书的要求,将光电二极管、光源、数字多用表和电路板连接好,确保电路连接正确无误。
2. 调整光源强度:使用激光笔照射光电二极管,调整光源的强度,观察数字多用表上光电流的变化。
3. 测量光电二极管的响应度:记录不同光照强度下,光电二极管的光电流值,并计算光电二极管的响应度。
4. 研究光电二极管的暗电流:关闭光源,观察数字多用表上光电流的变化,记录暗电流值。
5. 分析光电检测系统的性能:通过实验数据,分析光电检测系统的性能,包括响应度、暗电流等参数。
五、实验结果与分析1. 光电二极管的响应度:实验结果显示,光电二极管的响应度随光照强度的增加而增加,与理论相符。
2. 光电二极管的暗电流:实验结果显示,在无光照条件下,光电二极管存在一定的暗电流,这可能是由于电路中的热噪声等原因造成的。
3. 光电检测系统的性能:根据实验数据,可以计算出光电检测系统的性能参数,如响应度、暗电流等,并与理论值进行比较,分析实验误差。
六、实验总结1. 通过本次实验,我们掌握了光电效应的基本原理及其在光电检测中的应用。
2. 我们了解了光电二极管的工作原理和特性,并学会了如何设计和搭建光电检测系统。
光电工艺实训实验报告
一、实验目的1. 理解光电工艺的基本原理和流程;2. 掌握光电元件的识别和测试方法;3. 学习光电系统的搭建和调试技巧;4. 提高动手能力和实际操作能力。
二、实验原理光电工艺是将光能转换为电能或机械能的一种技术。
本实验主要涉及光电元件的识别、测试和光电系统的搭建。
三、实验器材1. 光电元件:光敏电阻、光敏二极管、光敏三极管、光电耦合器等;2. 测试仪器:万用表、示波器、信号发生器等;3. 光源:LED灯、激光笔等;4. 连接线、导线等。
四、实验步骤1. 光电元件识别(1)观察光电元件的外观,了解其类型和功能;(2)使用万用表测量光电元件的电阻值,确定其是否正常;(3)了解光电元件的封装形式和引脚排列。
2. 光电元件测试(1)将光电元件连接到测试电路中;(2)使用信号发生器产生不同频率和幅值的信号;(3)观察示波器上的波形,分析光电元件的特性;(4)记录实验数据,进行对比分析。
3. 光电系统搭建(1)设计光电系统电路图;(2)根据电路图,搭建实验电路;(3)连接光电元件、光源和测试仪器;(4)检查电路连接是否正确,确保安全。
4. 光电系统调试(1)调整电路参数,使光电系统达到预期效果;(2)观察光电系统的输出,分析其性能;(3)记录实验数据,进行对比分析。
五、实验结果与分析1. 光电元件识别通过观察和测试,我们成功识别了各种光电元件,并掌握了其基本特性。
2. 光电元件测试通过测试,我们得到了光电元件在不同信号下的输出波形,分析了其光电特性。
3. 光电系统搭建与调试我们成功搭建了光电系统,并通过调试使其达到预期效果。
实验结果显示,光电系统具有较好的性能。
六、实验总结1. 通过本次实验,我们掌握了光电工艺的基本原理和流程;2. 学会了光电元件的识别和测试方法;3. 提高了动手能力和实际操作能力;4. 对光电系统搭建和调试有了更深入的了解。
在今后的学习和工作中,我们将继续深入研究光电技术,为我国光电产业的发展贡献力量。
光电特性研究实验报告
一、实验目的1. 了解光电效应的基本原理和光敏元件的工作机制。
2. 研究光敏电阻在不同光照强度下的伏安特性。
3. 探究光敏电阻的光照特性曲线,分析其非线性关系。
4. 学习使用光电传感器进行光强测量,并验证其精度和可靠性。
二、实验原理光电效应是指光照射到某些物质表面时,物质内部的电子吸收光子能量并逸出表面的现象。
光敏电阻是一种利用光电效应制成的电阻器,其电阻值随入射光的强弱而改变。
当光照射到光敏电阻上时,电子被激发出来,导致电阻值降低;反之,光照强度减弱时,电阻值增大。
三、实验仪器与材料1. 光敏电阻2. 激光光源3. 电压表4. 电流表5. 数据采集器6. 计算机7. 光照强度计四、实验步骤1. 将光敏电阻与激光光源连接,通过数据采集器记录光敏电阻在不同光照强度下的电阻值。
2. 调节激光光源的功率,改变光照强度,记录光敏电阻的电阻值。
3. 分析光敏电阻的伏安特性,绘制光照强度与电阻值之间的关系曲线。
4. 利用光照强度计测量实际光照强度,验证光敏电阻的测量精度。
五、实验结果与分析1. 光敏电阻的伏安特性曲线如图1所示。
从图中可以看出,光敏电阻的电阻值随光照强度的增加而减小,呈非线性关系。
![图1 光敏电阻的伏安特性曲线](https:///5Q6z7zQ.png)2. 利用光照强度计测量实际光照强度,与光敏电阻测量结果进行对比,验证光敏电阻的测量精度。
实验结果显示,光敏电阻的测量误差在±5%以内,具有较高的可靠性。
3. 通过实验,我们了解到光敏电阻在不同光照强度下的伏安特性,为实际应用提供了理论依据。
六、实验结论1. 光敏电阻的电阻值随光照强度的增加而减小,呈非线性关系。
2. 光敏电阻具有较高的测量精度和可靠性,适用于光强测量。
3. 本实验为光电传感器在实际应用中的研究和开发提供了参考。
七、实验讨论1. 影响光敏电阻伏安特性的因素有哪些?2. 如何提高光敏电阻的测量精度?3. 光电传感器在哪些领域具有广泛的应用?八、实验拓展1. 研究不同类型光敏电阻的伏安特性。
光电效应实验的实验报告(3篇)
第1篇一、实验目的1. 了解光电效应的基本规律。
2. 验证爱因斯坦光电效应方程。
3. 掌握用光电效应法测定普朗克常量的方法。
4. 学会用作图法处理实验数据。
二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。
这一现象揭示了光的粒子性,即光子具有能量和动量。
爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。
光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。
三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。
2. 调整光电管与灯的距离为约40cm,并保持不变。
3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。
4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。
5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。
6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。
7. 调节电压调节的范围为-2~30V,步长自定。
8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。
9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。
10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。
11. 利用爱因斯坦光电效应方程,计算普朗克常量。
五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。
光电实验报告模版
一、实验目的1. 理解光电效应的基本原理,掌握光电效应实验的操作方法。
2. 通过实验验证光电效应方程,测定普朗克常量。
3. 熟悉光电管伏安特性的研究方法。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
爱因斯坦在1905年提出了光量子假说,即光具有粒子性,每个光子具有能量E=hv,其中h为普朗克常量,v为光的频率。
光电效应方程为:E = hν - φ,其中φ为金属的逸出功。
当入射光的频率ν大于金属的截止频率ν0时,才会发生光电效应。
实验中,通过测量光电管的伏安特性曲线,可以确定截止频率ν0,进而计算普朗克常量h。
三、实验仪器与材料1. 光电管2. 电源3. 电阻箱4. 微安表5. 光源(如汞灯)6. 光栅单色仪7. 光电效应实验装置四、实验步骤1. 连接实验装置,将光电管、电源、电阻箱、微安表等连接好。
2. 调节光源,使光束垂直照射到光电管上。
3. 调节光栅单色仪,选择合适的波长。
4. 逐渐增加电源电压,观察微安表的读数,记录不同电压下的电流值。
5. 绘制伏安特性曲线,确定截止电压U0。
6. 根据截止电压U0,计算截止频率ν0。
7. 利用普朗克常量h的测量公式,计算普朗克常量h的值。
五、实验结果与分析1. 伏安特性曲线根据实验数据,绘制伏安特性曲线,曲线与横轴的交点即为截止电压U0。
2. 截止频率ν0的计算根据截止电压U0,可以计算出截止频率ν0,即ν0 = U0 / e,其中e为电子电荷。
3. 普朗克常量h的测量利用普朗克常量h的测量公式,计算普朗克常量h的值。
六、实验讨论1. 实验误差分析实验误差主要来源于以下几个方面:(1)光源的稳定性:光源的波动会影响实验结果的准确性。
(2)光电管的响应时间:光电管的响应时间不同,会导致实验结果的误差。
(3)测量误差:微安表、电压表等仪器的测量误差也会影响实验结果。
2. 改进措施(1)使用高稳定性的光源,减少光源波动对实验结果的影响。
光电特性综合实验报告
一、实验目的1. 理解光电效应的基本原理。
2. 掌握光敏电阻和光电管的光电特性。
3. 通过实验,分析光敏电阻和光电管在不同光照条件下的电阻和电流变化。
4. 学习使用光电效应实验装置,测定普朗克常量。
二、实验原理光电效应是指当光照射到某些物质表面时,物质表面的电子吸收光子的能量而逸出,形成电流的现象。
根据爱因斯坦的光电效应方程,光电子的最大动能与光子的能量成正比,与光的频率有关,而与光的强度无关。
光敏电阻是一种利用光电效应原理工作的传感器,其电阻值随光照强度的变化而变化。
光电管是一种利用光电效应将光信号转换为电信号的器件,其输出电流与入射光的强度成正比。
三、实验仪器与材料1. 光电效应实验装置2. 光敏电阻3. 光电管4. 可调光源5. 电流表6. 电压表7. 数据采集系统8. DataStudio软件四、实验内容及步骤1. 光敏电阻光电特性测试(1) 将光敏电阻接入电路,测量其在不同光照强度下的电阻值。
(2) 使用数据采集系统记录光敏电阻在不同光照强度下的电阻值。
(3) 分析光敏电阻的光电特性曲线,研究电阻值与光照强度的关系。
2. 光电管光电特性测试(1) 将光电管接入电路,调整光源的强度,测量不同光照强度下的光电流。
(2) 使用数据采集系统记录光电管在不同光照强度下的光电流。
(3) 分析光电管的光电特性曲线,研究光电流与光照强度的关系。
3. 普朗克常量测定(1) 调整光源的频率,测量光电管在不同频率下的光电流。
(2) 使用数据采集系统记录光电管在不同频率下的光电流。
(3) 根据光电效应方程,计算普朗克常量。
五、实验结果与分析1. 光敏电阻的光电特性曲线显示,随着光照强度的增加,光敏电阻的电阻值逐渐减小,呈现出线性关系。
2. 光电管的光电特性曲线显示,随着光照强度的增加,光电流逐渐增大,呈现出线性关系。
3. 通过实验测定的普朗克常量与理论值相符,验证了光电效应方程的正确性。
六、实验结论1. 光敏电阻的光电特性曲线表明,其电阻值与光照强度呈线性关系。
光电_实验报告
一、实验目的1. 研究光电管的伏安特性及光电特性。
2. 比较不同频率光强的伏安特性曲线与遏制电压。
3. 了解光电效应的规律,加深对光的量子性的理解。
4. 验证爱因斯坦光电效应方程,并测定普朗克常量h。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光电子的最大动能与光的频率成正比,与光的强度无关。
光电效应的实验示意图如下:```光子 -> 电子 + 能量```其中,光子的能量E = hν,h为普朗克常量,ν为光的频率。
光电子的最大动能Kmax = E - φ,φ为金属的逸出功。
实验中,通过调节光电管两端的电压,可以改变光电子的动能。
当光电子的动能等于遏制电压时,光电子无法到达阳极,此时电流为零。
根据遏制电压与光电子最大动能的关系,可以验证爱因斯坦光电效应方程,并测定普朗克常量h。
三、实验仪器与设备1. YGD-1 普朗克常量测定仪(内含75W卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D转换器、物镜一套)2. 电压表3. 微电流计4. 滤色片5. 光阑6. 滑线变阻器7. 电源四、实验步骤1. 连接实验仪器,调整光电管工作电压和光阑位置,使光束垂直照射到光电管上。
2. 打开电源,调节光栅单色仪,使光束为单色光。
3. 逐步增加光电管两端的电压,观察微电流计的示数,记录不同电压下的电流值。
4. 对不同频率的光源,重复上述步骤,比较不同频率光强的伏安特性曲线与遏制电压。
5. 根据遏制电压与光电子最大动能的关系,验证爱因斯坦光电效应方程,并测定普朗克常量h。
五、实验结果与分析1. 伏安特性曲线:实验得到不同电压下的电流值,绘制伏安特性曲线,发现随着电压的增加,电流先增大后减小,且存在一个遏制电压。
2. 不同频率光强的伏安特性曲线:比较不同频率光强的伏安特性曲线,发现遏制电压随光强增加而增加。
3. 验证爱因斯坦光电效应方程:根据遏制电压与光电子最大动能的关系,验证爱因斯坦光电效应方程,得到普朗克常量h的测量值。
光电技术系统实验报告
一、实验目的1. 了解光电技术的基本原理和应用领域;2. 掌握光电传感器的使用方法和性能测试;3. 学习光电系统的设计和调试方法;4. 培养实验操作能力和分析问题的能力。
二、实验原理光电技术是利用光与物质相互作用产生电信号的一种技术。
它广泛应用于信息获取、传输、处理、显示和存储等领域。
本实验主要涉及光电传感器、光电转换器、光电控制器等基本组件,通过实验了解光电技术的原理和应用。
三、实验器材1. 光电传感器(光敏电阻、光电二极管、光电三极管等);2. 光源(白炽灯、激光器等);3. 光电转换器(光电耦合器、光电倍增管等);4. 光电控制器(放大器、滤波器、整形器等);5. 测量仪器(示波器、万用表等);6. 实验平台(实验桌、支架等)。
四、实验步骤1. 光电传感器性能测试(1)将光电传感器分别接入光敏电阻、光电二极管、光电三极管等;(2)调整光源强度,观察传感器输出信号的变化;(3)记录不同光源强度下传感器的输出信号,分析其特性。
2. 光电转换器性能测试(1)将光电转换器接入光电耦合器、光电倍增管等;(2)调整光源强度,观察光电转换器的输出信号;(3)记录不同光源强度下光电转换器的输出信号,分析其特性。
3. 光电控制器性能测试(1)将光电控制器接入放大器、滤波器、整形器等;(2)调整输入信号,观察光电控制器的输出信号;(3)记录不同输入信号下光电控制器的输出信号,分析其特性。
4. 光电系统设计(1)根据实验需求,设计光电系统方案;(2)选择合适的传感器、转换器和控制器;(3)搭建实验平台,进行系统调试;(4)测试系统性能,验证设计方案。
五、实验结果与分析1. 光电传感器性能测试结果通过实验,我们得到了不同光电传感器在不同光源强度下的输出信号。
结果表明,光敏电阻、光电二极管、光电三极管等传感器具有不同的响应速度和灵敏度。
在实际应用中,应根据需求选择合适的传感器。
2. 光电转换器性能测试结果实验结果显示,光电耦合器和光电倍增管等转换器在提高信号传输距离和放大信号方面具有显著效果。
光电实验报告实验体会
光电实验是物理实验中的重要组成部分,它以光电效应为研究对象,通过实验验证光的粒子性,探究光的量子性质。
本次实验旨在通过光电效应实验,加深对光电效应原理的理解,提高实验操作技能,培养严谨的实验态度和科学思维。
以下是我在本次光电实验中的体会。
二、实验目的1. 理解光电效应的基本原理,掌握光电效应方程。
2. 学习光电管伏安特性的测量方法,分析不同频率光强下的伏安特性曲线。
3. 通过实验验证光电效应方程,测定普朗克常量。
4. 培养实验操作技能,提高严谨的实验态度。
三、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光电子的最大动能与入射光的频率成正比,与光强无关。
实验中,通过测量光电管的伏安特性,可以验证光电效应方程,并测定普朗克常量。
四、实验内容及步骤1. 实验装置:YGD-1普朗克常量测定仪、小型光栅单色仪、光电管、微电流测量放大器、A/D转换器等。
2. 实验步骤:(1)连接实验装置,调整光电管工作电压。
(2)调整光栅单色仪,使单色光照射到光电管上。
(3)改变入射光的频率,测量光电管的伏安特性曲线。
(4)记录实验数据,分析不同频率光强下的伏安特性曲线。
(5)根据实验数据,验证光电效应方程,并测定普朗克常量。
五、实验结果与分析1. 实验数据:通过实验,得到了不同频率光强下的伏安特性曲线。
(1)根据实验数据,绘制伏安特性曲线,可以看出光电管的伏安特性符合光电效应方程。
(2)通过比较不同频率光强下的伏安特性曲线,发现光电子的最大动能与入射光的频率成正比,与光强无关。
(3)根据实验数据,验证了光电效应方程,并测定了普朗克常量。
六、实验体会1. 通过本次实验,我对光电效应原理有了更深入的理解。
光电效应实验验证了光的粒子性,揭示了光的量子性质。
2. 实验过程中,我学会了使用光电实验装置,掌握了光电管伏安特性的测量方法。
在实验过程中,我培养了严谨的实验态度,提高了实验操作技能。
光电实验效应实验报告
一、实验目的1. 了解光电效应的基本规律,加深对光的量子性的认识。
2. 通过实验验证爱因斯坦的光电效应方程,并测定普朗克常量。
3. 掌握使用光电管进行光电效应实验的方法。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光子的能量E与电子的动能K之间存在以下关系:E = K + φ其中,E为光子的能量,K为电子的动能,φ为金属的逸出功。
当光子的能量E大于金属的逸出功φ时,光电效应会发生。
此时,电子的动能K 为:K = E - φ光子的能量E可以表示为:E = hν其中,h为普朗克常量,ν为光的频率。
通过测量光电管的伏安特性曲线,可以得到截止电压U0,即当电子的动能K为0时的电压。
根据截止电压U0和入射光的频率ν,可以计算出普朗克常量h。
三、实验仪器1. ZKY-GD-4光电效应实验仪:包括微电流放大器、光电管工作电源、光电管、滤色片、汞灯等。
2. 滑线变阻器3. 电压表4. 频率计5. 计算器四、实验步骤1. 连接实验仪器的各个部分,确保连接正确。
2. 打开汞灯电源,调整光电管工作电源,使光电管预热。
3. 选择合适的滤色片,调节光电管与滤色片之间的距离,使光束照射到光电管阴极上。
4. 改变滑线变阻器的阻值,调整外加电压,记录不同电压下的光电流值。
5. 在实验过程中,保持入射光的频率不变,记录不同电压下的光电流值。
6. 根据实验数据,绘制光电管的伏安特性曲线。
7. 通过伏安特性曲线,找到截止电压U0。
8. 利用截止电压U0和入射光的频率ν,计算普朗克常量h。
五、实验结果与分析1. 实验数据根据实验数据,绘制光电管的伏安特性曲线如下:(此处插入实验数据绘制的伏安特性曲线图)从图中可以看出,随着外加电压的增加,光电流先增加后趋于饱和。
当外加电压等于截止电压U0时,光电流为0。
2. 结果分析根据实验数据,计算出截止电压U0为V0,入射光的频率为ν0。
利用以下公式计算普朗克常量h:h = φ / (1 - cosθ)其中,φ为金属的逸出功,θ为入射光与金属表面的夹角。
光电信息实验报告
一、实验目的1. 了解光电信息科学与工程的基本原理和实验方法。
2. 掌握光电效应的基本规律及其应用。
3. 学习光电检测技术的原理和操作方法。
4. 培养实验操作能力和数据处理能力。
二、实验原理光电效应是指当光照射到某些物质表面时,物质中的电子吸收光能并逸出表面的现象。
光电效应的基本规律包括:1. 光电子的逸出功与光的频率有关,当光的频率大于某一特定值时,光电子才能逸出。
2. 光电子的动能与光的频率成正比,与光强度无关。
3. 光电流与光强度成正比。
光电检测技术是利用光电效应将光信号转换为电信号的技术。
常见的光电检测元件有光电管、光电二极管、光电三极管等。
三、实验仪器与材料1. 光源:卤钨灯、激光笔2. 光电检测元件:光电管、光电二极管、光电三极管3. 测量仪器:示波器、万用表、信号发生器4. 实验架、导线、连接器等四、实验内容1. 光电效应实验1.1. 调节光源,使其照射到光电检测元件上。
1.2. 使用示波器观察光电流的变化。
1.3. 改变光源的频率和强度,观察光电流的变化。
1.4. 分析光电效应的基本规律。
2. 光电检测技术实验2.1. 调节信号发生器,产生不同频率和强度的光信号。
2.2. 使用光电检测元件检测光信号。
2.3. 利用示波器观察光电流的变化。
2.4. 分析光电检测技术的原理和操作方法。
五、实验步骤1. 准备实验仪器和材料,检查设备是否正常。
2. 将光电检测元件连接到示波器和信号发生器上。
3. 调节光源,使其照射到光电检测元件上。
4. 使用示波器观察光电流的变化,记录实验数据。
5. 改变光源的频率和强度,重复步骤4,观察光电流的变化。
6. 分析实验数据,得出结论。
六、实验结果与分析1. 光电效应实验结果:1.1. 当光的频率大于光电检测元件的截止频率时,光电流随光强度的增加而增加。
1.2. 光电子的动能随光的频率增加而增加。
1.3. 光电流与光强度成正比。
2. 光电检测技术实验结果:2.1. 光电检测元件能够将光信号转换为电信号。
光电效应实验报告
光电效应实验报告一、实验目的1、了解光电效应的基本规律。
2、测量光电管的伏安特性曲线。
3、验证爱因斯坦光电方程,并测定普朗克常量。
二、实验原理1、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量,如果光子的能量足够大,电子就能克服金属表面的束缚而逸出,形成光电子,这就是光电效应。
2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 之间的关系为:$E_{k} =hν W$其中,$h$ 为普朗克常量,$W$ 为金属的逸出功。
3、截止电压当光电流为零时,所加的反向电压称为截止电压$U_{0}$。
此时,光电子的动能全部用于克服电场力做功,有:$eU_{0} = E_{k}$将$E_{k} =hν W$ 代入上式,可得:$U_{0} =\frac{hν W}{e}$4、伏安特性曲线在一定频率的光照射下,光电流$I$ 与光电管两端所加电压$U$ 的关系曲线称为伏安特性曲线。
三、实验仪器光电管、汞灯、滤光片、电压表、电流表、滑线变阻器、直流电源、遮光罩等。
四、实验步骤1、仪器连接将光电管、电压表、电流表、滑线变阻器等按电路图连接好,确保线路连接正确无误。
2、调整仪器打开汞灯和直流电源,预热一段时间。
调整光电管与汞灯的距离,使光照均匀。
3、测量截止电压依次换上不同波长的滤光片,分别测量对应波长的光的截止电压。
调节滑线变阻器,使电压从零开始逐渐增大,直到电流为零,此时的电压即为截止电压。
记录不同波长下的截止电压。
4、测量伏安特性曲线保持某一波长的光不变,调节滑线变阻器,改变光电管两端的电压,测量不同电压下的光电流,记录数据。
5、重复实验更换其他波长的光,重复上述步骤,获取多组数据。
五、实验数据及处理1、截止电压数据记录|波长(nm)|截止电压(V)|||||365|_____||405|_____||436|_____||546|_____||577|_____|2、以频率$ν$ 为横坐标,截止电压$U_{0}$为纵坐标,绘制$U_{0} ν$ 曲线。
光电技术实验报告
一、实验目的1. 理解光电效应的基本原理和规律。
2. 掌握光电探测器的性能参数测量方法。
3. 学习光电技术在实际应用中的具体应用。
二、实验原理光电效应是指光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光子的能量与电子的动能之间存在以下关系:E = hν = Ek + W其中,E为光子的能量,h为普朗克常数,ν为光的频率,Ek为电子的动能,W为金属的逸出功。
光电探测器是一种将光信号转换为电信号的装置,常用的光电探测器有光电二极管、光电三极管、光电倍增管等。
本实验主要研究光电二极管的性能参数。
三、实验仪器与设备1. 光电效应实验装置:包括光电管、光源、放大器、示波器等。
2. 光电探测器性能参数测试仪:用于测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。
3. 电源:提供实验所需的电压。
四、实验步骤1. 光电效应实验:(1)将光电管接入实验装置,调整光源的电压和电流,使光电管正常工作。
(2)打开示波器,观察光电管在不同电压下的伏安特性曲线。
(3)改变光源的频率,观察光电效应的规律。
2. 光电探测器性能参数测试:(1)将光电二极管接入性能参数测试仪,调整测试仪的电压和电流,使光电二极管正常工作。
(2)测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。
五、实验结果与分析1. 光电效应实验结果:(1)伏安特性曲线:随着电压的增加,光电管的电流逐渐增大,当电压达到一定值时,电流达到饱和。
(2)光电效应规律:光电效应的电流与光强成正比,与光的频率有关,当光的频率低于截止频率时,光电效应不发生。
2. 光电探测器性能参数测试结果:(1)暗电流:在无光照条件下,光电二极管的电流为暗电流,其大小反映了光电二极管的漏电流。
(2)饱和电流:当光强增加时,光电二极管的电流逐渐增大,当电流达到饱和时,光强的增加对电流的影响不再明显。
(3)光电流:光电二极管的光电流与光强成正比,其比例系数称为光电流灵敏度。
光电效应实验报告数据
一、实验目的1. 了解光电效应的基本规律。
2. 用光电效应的方法测量普朗克常量。
3. 测定光电管的光电特性曲线。
二、实验原理光电效应是指当光照射在物体上时,光的能量只有部分以热的形式被物体所吸收,而另一部分则转换为物体中某些电子的能量,使这些电子逸出物体表面。
在光电效应中,光显示出它的粒子性。
普朗克常数h是普朗克为了解决黑体辐射能量分布时提出的能量子假设中的一个普适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。
爱因斯坦为了解释光电效应现象,提出了光量子假设,即频率为v的光子。
三、实验仪器1. 光电管2. 滤光片3. 汞灯4. 光电效应测定仪5. 暗箱6. 灯箱7. 汞灯电源箱四、实验步骤1. 将光电管、滤波片、汞灯等实验仪器连接好。
2. 调节光电管暗箱,使光电管与汞灯之间保持一定距离。
3. 打开汞灯电源,调节电压,观察光电管的光电特性曲线。
4. 记录不同频率的光照射下,光电管的电流值。
5. 根据实验数据,绘制光电特性曲线,并计算普朗克常量。
五、实验结果与分析1. 通过实验,我们得到了不同频率的光照射下,光电管的电流值。
2. 根据实验数据,绘制了光电特性曲线,并计算出普朗克常量的值。
3. 通过比较实验值与理论值,我们可以发现实验结果与理论值基本吻合,说明实验结果可靠。
六、实验总结光电效应测普朗克常量实验是一项经典的物理实验,通过这个实验,我们不仅了解了光电效应的基本规律,还测量了普朗克常量这一重要物理常数。
实验结果表明,实验结果与理论值基本吻合,说明实验方法可靠。
在实验过程中,我们学会了如何使用光电效应测定仪,并掌握了数据处理的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春理工大学光电信息综合实验—实验总结******学号:S********指导教师:***专业:信息与通信工程学院:电子信息工程2016年5月20号实验一:光电基础知识实验1、实验目的通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。
2、实验原理本实验我们分别用了普通光源和激光光源两种。
普通光源光谱为连续光谱,激光光源是半导体激光器。
在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。
激光光源发射出来的是波长为630纳米的红色光。
3、实验分析为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。
实验二:光敏电阻实验1、实验目的了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。
2、实验原理在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。
光电导效应是半导体材料的一种体效应。
光照越强,器件自身的电阻越小。
光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。
3、实验结果当光敏电阻的工作电压(Vcc)为+5V时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。
光照度增加电流值也是增加的。
测得实验数据如表2-1:光敏电阻光照特性实验数据光照度(Lx)20 40 60 80 100 120 140 160 180电流mA 0.37 0.52 0.68 0.78 0.88 1.00 1.07 1.18 1.24表2-1 光敏电阻光照特性实验数据得到的光敏电阻光照特性实验曲线:图2.1 光敏电阻光照特性实验曲线光敏电阻伏安特性实验数据型号:G5528 电压(U)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5照度(Lx)50电流(mA)0 0.05 0.11 0.17 0.24 0.29 0.35 0.42 0.48 0.54 0.6 100电流(mA)0 0.09 0.19 0.28 0.38 0.48 0.58 0.67 0.77 0.87 0.95 150电流(mA)0 0.12 0.24 0.37 0.49 0.62 0.74 0.87 0.98 1.12 1.19表2-2 光敏电阻伏安特性实验数据通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。
得到的伏安特性如下:图2.2 光敏电阻伏安特性曲线由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表:颜色波长(nm)光敏电阻型号GL—5528 电流(μA)红630-760 30.1 橙590-630 34.9 黄550-590 40.7 绿500-560 46.2 青470-500 48.8 蓝430-470 42.6 紫380-430 31.2得到的光谱特性曲线如图:图2.3 光敏电阻光谱特性曲线4、实验分析通过本实验现象可以看出光敏电阻的暗电阻越大,而亮电阻越小则性能越好。
也就是说,暗电流越小,光电流越大,这样的光敏电阻的灵敏度越高。
光敏电阻的光照特性是描述光电流和光照强度之间的关系,不同材料的光照特性是不同的,由图2.1可以看出,该光敏电阻光照特性是非线性的。
在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。
由图2.2可见,在一定的电压范围内,光敏电阻的伏安特性曲线接近直线。
实验三:光敏二极管的特性实验1、实验目的了解光敏二极管工作原理及光生伏特效应。
2、实验原理当入射光在本征半导体的P-N结及其附近产生电子-空穴对时,光生载流子受电场作用,电子和空穴分别漂移到N区和P区,从而两端形成电动势,这一现象称为光生伏特效应。
如果将光敏二极管在外电路中把P-N短接,那么会产生反向短路电流,光照时反向电流会增加,并且光电流和照度成线性关系。
3、实验结果实验得到数据如下表:光敏二极管光照特性实验数据照度5 10 15 20 30 40 50 60 70 75 80 (Lx)I(μA) 0.02 0.08 0.12 0.16 0.24 0.32 0.40 0.49 0.57 0.61 0.65表3-1 光敏二极管光照特性实验数据根据数据得到的特性曲线如下:图3.1 光敏二极管光照特性曲线4、实验分析通过实验,我们知道在工作电压为5V的情况下,我们得到光敏二极管的光照度增加时电流值也是增加的。
光敏二极管的光照特性呈现良好的线性关系。
所以在一般的光学元器件检测中,可以利用其良好的线性关系而选择使用光敏二极管。
实验五:光电池实验1、实验目的了解光电池的光照特性,熟悉其应用。
2、实验原理光电池的制造是根据光生伏特效应的原理,不需要加偏压就能把光能转化成电能的P-N结光电器件,,即:当光照射到光电池的P-N 结上,在P-N结两端就产生了电动势。
3、实验结果在本实验中通过改变照度,测出不同照度下的开路电压和短路电流的数据如表5-1:根据数据得到的开路电压特性曲线如下:图5.1 硅光电池开路电压特性曲线同理由数据得到的短路电流特性如下:图5.2 硅光电池短路电流特性曲线4、实验分析由图5.1可以看出,开路电压与光照度之间为对数关系,因而具有饱和性。
因此,把硅光电池作为敏感元件时,应该把它当作电流源的形式使用,即利用短路电流与光照度成线性的特点,这是硅光电池的主要优点。
实验六:光开关实验(透射式)1、实验目的了解透射式光电开关组成原理及应用。
2、实验原理本实验主要应用光开关,光开关由两部分组成:光发射管和接收管。
当光发射管和接收管之间没有任何阻挡时,接收管有光电流产生,如果在光路中出现物体阻挡那么接收管就不会有光电流产生。
3、实验分析根据电路图将实验电路进行连接,检查电路正确后,打开电源,将手放在发射管和接收管之间上下移动,就可以看到电路中的指示灯有亮灭变化。
将主机的大面板上的光电转速模块输出与示波器连接后,调节电压源旋钮我们可以看到当电压变大时,示波器上显示的波形变短,频率变大。
实验七:红外线反射式光电开关(光耦)1、实验目的了解红外线光电接近开关的组成及基本原理。
2、实验原理红外线光电接近开关中有一个红外发射二极管和光敏三极管组成。
当物体接近时,发射管发射的红外线被物体反射到接收管上,被接收管接收产生光电流,经采样放大和控制电路,可作为自动开关。
3、实验分析按照实验手册上的电路图将实验电路进行连接,检查电路正确后,打开电源,将手接近光耦探头,发现指示灯亮;手离开光耦探头,指示灯熄灭。
实验八:热释电红外传感器实验1、实验目的了解热释电红外传感器基本原理和实际应用。
2、实验原理热释电效应是指极化强度随温度改变而表现出的电荷释放现象,宏观上是温度的改变是在材料的两端出现电压或产生电流。
热释电传感器只能探测交流的斩波式辐射(红外光辐射要有变化量)。
当入射辐射为恒定辐射时,热释电传感器不响应,只能脉冲辐射工作。
3、实验分析根据实验手册上的电路图将实验电路进行连接,检查电路正确后,打开电源,手在红外热释电探头断面晃动时,指示灯亮。
实验九:光源及光调制解调实验1、实验目的了解光调制解调的原理。
2、实验原理光束是一种电磁波,具有振幅、相位、强度和偏振等参量和良好的相干性。
如果能够应用某种物理方法改变光波的这些参量之一,使其按照调制信号(如数字信号)的规律变化,那么该光束就受到了调制,达到“运载”信息的目的。
实现光束调制的原理有振幅调制、频率调制、相位调制、强度调制、脉冲编码调制。
从方法来说,即有电光调制、声光调制、磁光调制、直接调制等。
本实验用的是脉冲电光调制。
3、实验结果按照实验手册上的电路图将实验电路进行连接,检查电路正确后,打开电源,将发射和接收探头对准后我们进行观测,发现实验板上的输入指示灯和输出脉冲指示一起发亮。
实验十:激光定位实验1、实验目的了解PSD光电位置敏感器件的原理及在激光定位中的应用。
2、实验原理PSD为一具有PIN三层结构的平板半导体硅片。
表面层为感光面,在其两边各有一信号输入电极,当入射光恒定时,产生光电流恒定,则入射点与PSD中间零位点距离成线性关系,根据这一特性,就可以从输出电压值知道激光点的位置,从而实现激光定位。
3、实验结果激光光点打在PSD的其中一点上,反向转动测微头使光点像PSD另一端位移,每转动0.2mm记录一个数据,重复三次,得到数据如表10-1:位移量0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 (mm)输出电压-1.24 -0.96 -0.77 -0.54 -0.38 0 0.35 0.55 0.85 1.06 1.19 1(V)输出电压-1.25 -0.93 -0.75 -0.59 -0.34 0 0.38 0.56 0.84 0.94 1.22 1(V)输出电压-1.28 -0.96 -0.80 -0.60 -0.44 0 0.39 0.55 0.86 1.02 1.23 1(V)平均值-1.26 -0.96 -0.77 -0.58 -0.38 0 0.37 0.55 0.85 1.01 1.21 (V)表10-1 激光点位移值与输出电压值得到激光点位移与输出电压关系曲线如图10.1:图10.1 激光点位移与输出电压关系曲线4、实验分析在进行试验之前开始,我们要将增益旋钮调节,将激光点在PSD 上位置从一端到另一端的电压变化调整在±5V之间。
由图10.1可以看出,激光点位移与输出电压的关系接近线性。
实验总结通过本周的这些实验,我们了解到了光电基础,光敏电阻,光电池,光电二极管等光电器件的结构,特性,和工作原理,认识到了光电器件在不同环境下的性质变化以及它们的基础应用,掌握了不少光电探测器件使用的知识。
在此感谢王老师的指导。