浅谈电磁场屏蔽

合集下载

浅谈电磁场屏蔽

浅谈电磁场屏蔽

SCIENCE &TECHNOLOGY VISION 科技视界2012年05月第15期科技视界Science &Technology Vision 0引言随着电子技术的发展,越来越多的电子电气设备进入人们的生活,电磁污染日益严重。

另一方面,由于电子电气设备小型化的要求,极易受外界电磁干扰而使其产生误动作,从而带来严重后果。

因此人们越来越重视电子产品的电磁兼容性(EMC),电磁场的屏蔽就是电磁兼容技术的主要措施之一。

根据条件的不同,电磁场的屏蔽一般可以分为三类:静电屏蔽、静磁屏蔽和高频电磁场的屏蔽。

三种屏蔽的共同点是防止外界的电磁场进入到某个需要保护的区域中去。

但是由于所要屏蔽的场的特性不同,因而对屏蔽材料的要求也就不一样。

1静电屏蔽静电屏蔽的目的是防止外界的静电场进入到某个区域。

实际上对于变化很慢的交流电而言,它周围的电场几乎和静电场一样,只是电荷的分布周期性地变化而已。

因此防止低频交流电的电场,也可以归结为静电屏蔽一类。

静电屏蔽对导体壳的厚度和电导率无特别要求,但对于低频交流电场,屏蔽壳要选电导率高一点的材料。

图1空腔导体屏蔽外电场静电屏蔽分为外屏蔽和全屏蔽。

空腔导体内无电荷,在外电场中处于静电平衡时,其内部的场强总等于零(图1),因此外电场不可能对其内部空间发生任何影响。

若空腔导体内有带电体,在静电平衡时,它的内表面将产生等量异号的感应电荷,外表面会产生等量同号的感应电荷(图2),此时感应电荷的电场将对外界产生影响。

这时空腔导体只能屏蔽外电场,却不能屏蔽内部带电体对外界的影响,所以叫外屏蔽。

如果外壳接地,即使内部有带电体存在,内表面感应的电荷与带电体所带的电荷的代数和为零,而外表面产生的感应电荷通过接地线流入大地(图3)。

此时外界无法影响壳内空间,内部带电体对外界的影响也随之消除,所以这种屏蔽叫做全屏蔽。

实际使用中一般均采用接地的屏蔽方法,且金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果。

什么是电磁屏蔽,原理目的是什么,作用及重要性是什么?

什么是电磁屏蔽,原理目的是什么,作用及重要性是什么?

什么是电磁屏蔽?所谓电磁屏蔽就是利用屏蔽体对电磁波产生衰减的作用。

这种作用的大小用屏蔽效能来度量。

用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。

1在通信方面屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。

常选择有较高的电导率和磁导率的导体作为屏蔽物的材料。

因为高导电性材料在电磁波的作用下将产生较大的感应电流。

这些电流按照楞次定律将削弱电磁波的透入。

采用的金属网孔愈密,直到采用整体的金属壳,屏蔽的效果愈好,但所费材料愈多。

高导磁性的材料可以引导磁力线较多地通过这些材料,而减少被屏蔽区域中的磁力线。

屏蔽物通常是接地的,以免积累电荷的影响。

电磁波向大块金属透入时将不断衰减,直到衰减为零。

衰减的程度随着材料的电导率、磁导率及电磁波频率的增加而加大。

屏蔽的要求较高时往往采用多层屏蔽。

2例如有时采用铸铁、坡莫合金、电解铜3种材料制成多层屏蔽,以满足导电、导磁等要求。

但是实现完全的屏蔽是很难办到的,因为被屏蔽的区域与其余区域之间往往仍需要有电路的连接,引线与引线、引线与外壳之间总存在着绝缘间隙,仍然为电磁波提供通道。

即使对于完全封闭的金属壳,在频率极低的外部电磁场作用下,理论上内部的磁通密度并不为零。

电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减。

从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小。

导体表面的场量最大,愈深入导体内部,场量愈小。

这种现象也称为趋肤效应。

利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置。

它比静电、静磁屏蔽更具有普遍意义。

电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段。

合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备。

浅谈电磁场屏蔽

浅谈电磁场屏蔽

浅谈电磁场屏蔽【摘要】阐述了三种电磁场屏蔽的屏蔽原理,在屏蔽材料的选取、屏蔽效果、应用范围等方面对三者进行了比较。

【关键词】电磁场屏蔽;屏蔽原理;屏蔽材料;屏蔽效果0引言随着电子技术的发展,越来越多的电子电气设备进入人们的生活,电磁污染日益严重。

另一方面,由于电子电气设备小型化的要求,极易受外界电磁干扰而使其产生误动作,从而带来严重后果。

因此人们越来越重视电子产品的电磁兼容性(EMC),电磁场的屏蔽就是电磁兼容技术的主要措施之一。

根据条件的不同,电磁场的屏蔽一般可以分为三类:静电屏蔽、静磁屏蔽和高频电磁场的屏蔽。

三种屏蔽的共同点是防止外界的电磁场进入到某个需要保护的区域中去。

但是由于所要屏蔽的场的特性不同,因而对屏蔽材料的要求也就不一样。

1静电屏蔽静电屏蔽的目的是防止外界的静电场进入到某个区域。

实际上对于变化很慢的交流电而言,它周围的电场几乎和静电场一样,只是电荷的分布周期性地变化而已。

因此防止低频交流电的电场,也可以归结为静电屏蔽一类。

静电屏蔽对导体壳的厚度和电导率无特别要求,但对于低频交流电场,屏蔽壳要选电导率高一点的材料。

图1空腔导体屏蔽外电场静电屏蔽分为外屏蔽和全屏蔽。

空腔导体内无电荷,在外电场中处于静电平衡时,其内部的场强总等于零(图1),因此外电场不可能对其内部空间发生任何影响。

若空腔导体内有带电体,在静电平衡时,它的内表面将产生等量异号的感应电荷,外表面会产生等量同号的感应电荷(图2),此时感应电荷的电场将对外界产生影响。

这时空腔导体只能屏蔽外电场,却不能屏蔽内部带电体对外界的影响,所以叫外屏蔽。

如果外壳接地,即使内部有带电体存在,内表面感应的电荷与带电体所带的电荷的代数和为零,而外表面产生的感应电荷通过接地线流入大地(图3)。

此时外界无法影响壳内空间,内部带电体对外界的影响也随之消除,所以这种屏蔽叫做全屏蔽。

实际使用中一般均采用接地的屏蔽方法,且金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果。

电磁屏蔽的概念是什么

电磁屏蔽的概念是什么

电磁屏蔽的概念是什么电磁屏蔽是指采取一定的措施,阻止电磁波在电子设备或电路之间的干扰和传播,以保证设备和电路的正常运行。

电磁屏蔽是现代电子技术中的一个重要问题,因为各种电子设备的广泛使用以及电磁辐射的增加,电磁干扰成为一个不可忽视的问题。

电磁波属于一种电磁场的传播形式,它包括电场和磁场的变化。

电磁波可以通过电磁辐射的方式传播,不受物质的限制。

然而,当电磁波遇到物体时,它们可能被吸收、反射或传播。

一些电磁波的频率或能量可能会干扰或损害电子设备或电路的正常工作,因此需要采取一些方法来控制和屏蔽这种干扰。

电磁屏蔽可以分为外部屏蔽和内部屏蔽两种类型。

外部屏蔽主要是通过在设备或电路周围放置屏蔽材料来阻挡外来电磁波的干扰。

这些屏蔽材料通常是一些导电或磁性材料,可以吸收或反射电磁波,从而保护设备或电路免受干扰。

内部屏蔽是指在设备或电路内部采取一些措施,如使用屏蔽罩、屏蔽板、屏蔽接地等,来阻挡或隔离电磁波的传播和干扰,以保证设备或电路的正常运行。

在电磁屏蔽中,最常见的屏蔽材料是金属。

金属可以有效地反射电磁波,对高频电磁波的反射效果尤为显著。

金属屏蔽材料通常有金属网、金属膜、金属箔等形式。

这些金属屏蔽材料可以被制成屏蔽罩、屏蔽板等形式,用于包围设备或电路,并且要与地面接地,以实现有效的屏蔽效果。

除了金属,其他材料,如导电纤维、导电涂层等也可以用于电磁屏蔽。

电磁屏蔽可以在各种不同的应用中起到重要的作用。

在电子设备制造中,电磁屏蔽可以防止设备之间的相互干扰,提高设备的可靠性和稳定性。

在电磁兼容性测试中,电磁屏蔽可以确保测试结果的准确性和可靠性。

在电磁波辐射控制中,电磁屏蔽可以减少对周围环境和人体的不良影响。

在实际的电磁屏蔽中,需要根据具体的需求和条件选择合适的屏蔽解决方案。

最常见的方法是采用多层屏蔽结构,利用多层屏蔽材料的叠加效果来提高屏蔽效果。

此外,也可以根据具体情况采用不同的屏蔽技术,如屏蔽接地、屏蔽隔离、屏蔽滤波等,来满足不同的屏蔽要求。

浅谈电磁场的屏蔽及其应用

浅谈电磁场的屏蔽及其应用

浅谈电磁场的屏蔽及其应用屏蔽就是对感应源和受感器两者之间进行金属的隔离,以控制电场、磁场和电磁波由感应源对受感器的感应和辐射。

具体地说,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。

因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。

屏蔽按机理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽,本文主要就电磁屏蔽及其应用作一阐述。

电磁场屏蔽是利用屏蔽体削弱电磁波在空间的传播,电磁场屏蔽的原理是,(1)当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射,由于交界面上的不连续;(2)未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减,也就是通过材料对电磁波的吸收而产生损耗;(3)在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属——空气阻抗不连续的交界面,又会形成再次反射,并重新返回屏蔽体内,进一步产生损耗,这种反射在两个金属的交界面之间可能进行多次,通过多次反射、吸收和衰减最终达到屏蔽的目的。

一.电磁场屏蔽的概念及其原理电磁场的屏蔽即电磁屏蔽,它是利用屏蔽体阻止电磁场在空间的传播。

当同时存在的交变电场和交变磁场频率提高时,电场和磁场辐射的能力就会增强,就会又辐射出同频率的电磁场。

由于电场分量和磁场分量同时出现且相互垂直,所以对电磁场进行屏蔽效果的好坏关键就取决于对电场和磁场同时屏蔽效果的好坏。

金属板内的电磁波反射、吸收过程,并不是只进行一次就完结了。

而是在金属板的两个界面之间往复多次直到消耗尽。

在金属板足够厚的情况下,第二次传入右边空间的场强与第一次的传入的场强相比小的很多,可忽略不记。

什么是电磁屏蔽?原理是什么?

什么是电磁屏蔽?原理是什么?

什么是电磁屏蔽?原理是什么?什么是电磁屏蔽呢?简单的来说,电磁屏蔽就是屏蔽信号的,用金属材料做成一个密封的箱子,全方位的包裹,防止外面的信号进入空间,同时也保证里面的信号传播出去。

我们的屏蔽体不仅仅只有金属材料,还有很多其他的材料,屏蔽体就是由这些材料构成的,用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。

屏蔽一般分为两种类型:一类是静电屏蔽,主要用于防治静电场和恒定磁场的影响,另一类是电磁屏蔽,主要用于防止交变电场、交变磁场以及交变电磁场的影响。

其中静电屏蔽应该注意两点:完善的屏蔽体和良好的接地。

电磁屏蔽不但要求有良好的接地,而且要求屏蔽体具有良好的导电连续性,对屏蔽体的导电性要求要比静电屏蔽高得多。

因此电磁屏蔽的常见材料有:铜板、铜箔、铝板、铝箔、钢板或金属镀层、导电涂层。

一、电磁屏蔽的原理很多人对于电磁屏蔽的理解都是觉得被一个金属的盒子罩住并且接地就能够达到屏蔽的功能,其实这种结论是错误的。

因为我们的电磁屏蔽是需要在保证良好的接地前提下将干扰信号终止于由良导体制成的屏蔽体。

电磁屏蔽的原理就是有金属屏蔽体通过反射或者是吸收来进行干扰信号源,由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素。

二、被动屏蔽和主动屏蔽:我们的电磁屏蔽还分为主动屏蔽和被动屏蔽。

被动屏蔽可以简单的理解为有人攻击我们进行反抗,被动屏蔽主要是屏蔽外来的信号;主动屏蔽就是内部问题了,主要是防止内部的信号泄露出去而进行的屏蔽。

被动屏蔽体多用于屏蔽对象与干扰源相距较远的场合,如屏蔽室等。

什么是电磁屏蔽?原理是什么?上述就是小编的总结于分析,希望能够对您有所帮助,欢迎大家留言讨论。

磁场屏蔽原理

磁场屏蔽原理

磁场屏蔽原理
磁场屏蔽原理是指通过使用特定的材料或结构,减弱或阻挡外部磁场对特定区域内的影响。

磁场屏蔽常用于电子设备、实验室、医疗设备等场合,以确保其正常工作或保护人体安全。

磁场屏蔽的基本原理是利用特定材料的磁导率和导磁性来吸收或改变磁场的路径,从而减弱或消除磁场的影响。

磁导率是材料对磁场的响应能力,而导磁性是材料能够吸收和分散磁场的能力。

常见的磁场屏蔽材料包括铁、钢、镍、铜、铝等金属,以及铁氧体、磁性合金等特殊材料。

这些材料能够吸收磁场的能量,将其转化为热能或其他形式的能量,从而减弱磁场的强度。

除了材料的选择,磁场屏蔽还需要考虑材料的形状和结构。

常用的磁场屏蔽结构有磁屏蔽箱、磁屏蔽屏幕、磁屏蔽罩等。

这些结构可以将磁场隔离在特定的空间内,防止其泄漏到周围环境中。

在设计磁场屏蔽结构时,还需要考虑磁场的频率和方向。

因为不同频率的磁场对材料的影响不同,需要选择合适的材料和结构。

此外,磁场的方向也会影响磁场屏蔽效果,需要合理设计材料的布局和结构。

总之,磁场屏蔽通过使用特定的材料和结构,可以减弱或阻挡外部磁场对特定区域的影响。

这在一些特殊场合中具有重要意
义,但需要根据具体情况选择合适的材料和结构,以实现有效的磁场屏蔽效果。

关于电磁场的屏蔽问题,如何屏蔽

关于电磁场的屏蔽问题,如何屏蔽

关于电磁场的屏蔽问题,如何屏蔽电磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题。

根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆。

静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础。

因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论。

(一)封闭导体壳内部电场不受壳外电荷或电场影响。

如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1)。

静电平衡时壳内无电场。

这不是说壳外电荷不在壳内产生电场,根据场强迭加原理,任何点电荷都要按点电荷场强公式E=(Q/r2)r0在空间任何点激发电场。

由于壳外壁感应出异号电荷,它们与q 在壳内空间任一点激发的合场强为零。

因而导体壳内部不会受到壳外电荷q或其他电场的影响。

壳外壁的感应电荷起了自动调节作用。

如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下。

静电平衡后空腔导体与大地等势,空腔内场强仍然为零。

如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场。

这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3)。

此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响。

由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响。

(二)接地封闭导体壳外部电场不受壳内电荷的影响。

如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生。

也可以说是由壳外感应电荷直接产生的。

但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5)。

可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地。

这与第一种情况不。

电磁屏蔽原理

电磁屏蔽原理

电磁屏蔽原理电磁屏蔽(Electromagneticshielding)作为一种重要的物理和工程技术,在当今世界具有重要的意义。

它具有极高的研究价值,也非常重要的应用实用价值。

本文深入研究电磁屏蔽原理,并介绍电磁屏蔽的具体应用。

1.磁屏蔽的概念电磁屏蔽是一种在科学中用于阻隔、消除、减少或绝缘一个物体对外界电磁波的影响的方法。

它通过相反的电磁波来抵消外部的电磁波,从而达到消除电磁干扰的效果。

它可以有效地阻止电磁波及其传输和分布,减少或者抑制外界电磁场的干扰,从而有效保护设备或系统遭到外部电磁干扰的影响。

2.磁屏蔽的原理电磁屏蔽的原理是通过一个覆盖物,它能够有效吸收入射的电磁波,以致于降低外部电磁波对内部设备的影响。

它的原理是:当电磁波碰到屏蔽介质时,通过磁力线的改变和电荷蓄积,形成一种反射电磁波,使其与原始电磁波抵消,从而形成电磁屏蔽效应。

3.磁屏蔽的具体应用电磁屏蔽可以应用于电子产品,电子系统或部件中,以避免外部电磁波的干扰。

它可以用于电子设备的绝缘层,以及电子操作台的绝缘层,以及高科技设备如测控仪器系统的敏感性部件的屏蔽层,以便阻止外部电磁波干扰。

此外,电磁屏蔽还可以用于汽车车辆、发电机组、电网设施等重要场所,以有效防止电磁干扰、保护电力系统和其他重要设备的正常工作。

4.结电磁屏蔽是一种具有重要实际意义的物理技术,它可以有效阻止电磁波及其传输和分布,减少或者抑制外界电磁场的干扰,从而有效保护设备或系统遭到外部电磁干扰的影响,以及用于汽车车辆、发电机组、电网设施等重要场所,保护电网的正常工作。

此外,还有些电磁屏蔽的发展前景,由此可见,当今社会技术的发展与电磁屏蔽紧密联系在一起,但我们还需要对其原理进行更为深入的研究,在实践应用中把握其作用并发挥最大效果,以满足社会技术发展的需求。

电磁屏蔽的原理

电磁屏蔽的原理

电磁屏蔽的原理
电磁屏蔽是一种减少或阻挡电磁波传播的技术。

其原理主要是利用导电性材料的导电性能和绝缘性材料的绝缘性能,以及电磁波的反射、吸收和衰减特性。

电磁波的传播是以电场和磁场的变化传递的。

当电磁波遇到导电材料时,会发生电磁波吸收和反射。

导电材料可以吸收电磁波的能量,并将其转化为热能,从而减少电磁波的传播。

此外,导电材料表面的自由电子会对电磁波产生反射作用,将电磁波反射回去,减少其传播。

绝缘材料内部存在弱的电流漏泄现象,这使得绝缘材料具有抑制电磁辐射的能力。

当电磁波遇到绝缘材料时,电荷在材料中移动的过程中会发生电荷和电场的重分布,从而使电磁波能量被损耗和分散,降低电磁波的穿透性。

为了提高电磁屏蔽的效果,可以采取多种手段,如增加导电材料的厚度、使用多层屏蔽结构、在导电材料之间加入绝缘层等。

这些手段能够增加电磁波与导电材料的相互作用,提高屏蔽效果。

总的来说,电磁屏蔽的原理是通过导电材料和绝缘材料相结合,利用反射、吸收和分散等特性来减少电磁波的传播和辐射,达到屏蔽电磁波的目的。

电磁屏蔽技术和电磁场屏蔽分析-电场屏蔽-磁场屏蔽

电磁屏蔽技术和电磁场屏蔽分析-电场屏蔽-磁场屏蔽

电磁屏蔽技术和电磁场屏蔽分析-电场屏蔽-磁场屏蔽电磁屏蔽是解决电磁兼容问题的重要手段之一.大部分电磁兼容问题都可以通过电磁屏蔽来解决.用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改.1 选择屏蔽材料屏蔽体的有效性用屏蔽效能来度量.屏蔽效能是没有屏蔽时空间某个位臵的场强E1与有屏蔽时该位臵的场强E2的比值,它表征了屏蔽体对电磁波的衰减程度.用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一至百万分之一,因此通常用分贝来表述屏蔽效能,这时屏蔽效能的定义公式为:SE = 20 lg ( E1/ E2 ) (dB)用这个定义式只能测试屏蔽材料的屏蔽效能,而无法确定应该使用什么材料做屏蔽体.要确定使用什么材料制造屏蔽体,需要知道材料的屏蔽效能与材料的什么特性参数有关.工程中实用的表征材料屏蔽效能的公式为:SE = A + R (dB)式中的A称为屏蔽材料的吸收损耗,是电磁波在屏蔽材料中传播时发生的,计算公式为: A=3.34t(fμrσr) (dB)t = 材料的厚度,μr = 材料的磁导率,σr = 材料的电导率,对于特定的材料,这些都是已知的.f = 被屏蔽电磁波的频率.式中的R称为屏蔽材料的反射损耗,是当电磁波入射到不同媒质的分界面时发生的,计算公式为:R=20lg(ZW/ZS)(dB)式中,Zw=电磁波的波阻抗,Zs=屏蔽材料的特性阻抗.电磁波的波阻抗定义为电场分量与磁场分量的比值:Zw = E / H.在距离辐射源较近(<λ/2π,称为近场区)时,波阻抗的值取决于辐射源的性质、观测点到源的距离、介质特性等.若辐射源为大电流、低电压(辐射源电路的阻抗较低),则产生的电磁波的波阻抗小于377,称为低阻抗波,或磁场波.若辐射源为高电压,小电流(辐射源电路的阻抗较高),则波阻抗大于377,称为高阻抗波或电场波.关于近场区内波阻抗的具体计算公式本文不予论述,以免冲淡主题,感兴趣的读者可以参考有关电磁场方面的参考书.当距离辐射源较远(>λ/2π,称为远场区)时,波波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω.屏蔽材料的阻抗计算方法为:|ZS|=3.68×10-7(fμr/σr) (Ω)f=入射电磁波的频率(Hz),μr=相对磁导率,σr=相对电导率从上面几个公式,就可以计算出各种屏蔽材料的屏蔽效能了,为了方便设计,下面给出一些定性的结论.●在近场区设计屏蔽时,要分别考虑电场波和磁场波的情况;●屏蔽电场波时,使用导电性好的材料,屏蔽磁场波时,使用导磁性好的材料;●同一种屏蔽材料,对于不同的电磁波,屏蔽效能使不同的,对电场波的屏蔽效能最高,对磁场波的屏蔽效能最低,也就是说,电场波最容易屏蔽,磁场波最难屏蔽;●一般情况下,材料的导电性和导磁性越好,屏蔽效能越高;●屏蔽电场波时,屏蔽体尽量靠近辐射源,屏蔽磁场源时,屏蔽体尽量远离磁场源;有一种情况需要特别注意,这就是1kHz以下的磁场波.这种磁场波一般由大电流辐射源产生,例如,传输大电流的电力线,大功率的变压器等.对于这种频率很低的磁场,只能采用高导磁率的材料进行屏蔽,常用的材料是含镍80%左右的坡莫合金.2 孔洞和缝隙的电磁泄漏与对策一般除了低频磁场外,大部分金属材料可以提供100dB以上的屏蔽效能.但在实际中,常见的情况是金属做成的屏蔽体,并没有这么高的屏蔽效能,甚至几乎没有屏蔽效能.这是因为许多设计人员没有了解电磁屏蔽的关键.首先,需要了解的是电磁屏蔽与屏蔽体接地与否并没有关系.这与静电场的屏蔽不同,在静电中,只要将屏蔽体接地,就能够有效地屏蔽静电场.而电磁屏蔽却与屏蔽体接地与否无关,这是必须明确的.电磁屏蔽的关键点有两个,一个是保证屏蔽体的导电连续性,即整个屏蔽体必须是一个完整的、连续的导电体.另一点是不能有穿过机箱的导体.对于一个实际的机箱,这两点实现起来都非常困难.首先,一个实用的机箱上会有很多孔洞和孔缝:通风口、显示口、安装各种调节杆的开口、不同部分结合的缝隙等.屏蔽设计的主要内容就是如何妥善处理这些孔缝,同时不会影响机箱的其他性能(美观、可维性、可靠性).其次,机箱上总是会有电缆穿出(入),至少会有一条电源电缆.这些电缆会极大地危害屏蔽体,使屏蔽体的屏蔽效能降低数十分贝.妥善处理这些电缆是屏蔽设计中的重要内容之一(穿过屏蔽体的导体的危害有时比孔缝的危害更大).当电磁波入射到一个孔洞时,其作用相当于一个偶极天线(图1),当孔洞的长度达到λ/2时,其辐射效率最高(与孔洞的宽度无关),也就是说,它可以将激励孔洞的全部能量辐射出去.对于一个厚度为0材料上的孔洞,在远场区中,最坏情况下(造成最大泄漏的极化方向)的屏蔽效能(实际情况下屏蔽效能可能会更大一些)计算公式为:SE=100 - 20lgL - 20lg f + 20lg [1 + 2.3lg(L/H)] (dB)若 L ≥λ/2,SE = 0 (dB)式中各量:L = 缝隙的长度(mm),H = 缝隙的宽度(mm),f = 入射电磁波的频率(MHz).在近场区,孔洞的泄漏还与辐射源的特性有关.当辐射源是电场源时,孔洞的泄漏比远场时小(屏蔽效能高),而当辐射源是磁场源时,孔洞的泄漏比远场时要大(屏蔽效能低).近场区,孔洞的电磁屏蔽计算公式为:若ZC >(7.9/D·f):SE = 48 + 20lg ZC - 20lgL·f+ 20lg [1 + 2.3lg (L/H) ]若Zc<(7.9/D·f):SE = 20lg [ (D/L) + 20lg (1 + 2.3lg (L/H) ]式中:Zc=辐射源电路的阻抗(Ω),D = 孔洞到辐射源的距离(m),L、H = 孔洞长、宽(mm),f = 电磁波的频率(MHz)说明:●在第二个公式中,屏蔽效能与电磁波的频率没有关系.●大多数情况下,电路满足第一个公式的条件,这时的屏蔽效能大于第二中条件下的屏蔽效能.●第二个条件中,假设辐射源是纯磁场源,因此可以认为是一种在最坏条件下,对屏蔽效能的保守计算.●对于磁场源,屏蔽效能与孔洞到辐射源的距离有关,距离越近,则泄漏越大.这点在设计时一定要注意,磁场辐射源一定要尽量远离孔洞.多个孔洞的情况当N个尺寸相同的孔洞排列在一起,并且相距很近(距离小于λ/2)时,造成的屏蔽效能下降为20lgN1/2.在不同面上的孔洞不会增加泄漏,因为其辐射方向不同,这个特点可以在设计中用来避免某一个面的辐射过强.除了使孔洞的尺寸远小于电磁波的波长,用辐射源尽量远离孔洞等方法减小孔洞泄漏以外,增加孔洞的深度也可以减小孔洞的泄漏,这就是截止波导的原理.一般情况下,屏蔽机箱上不同部分的结合处不可能完全接触,只能在某些点接触上,这构成了一个孔洞阵列.缝隙是造成屏蔽机箱屏蔽效能降级的主要原因之一.减小缝隙泄漏的方法有:●增加导电接触点、减小缝隙的宽度,例如使用机械加工的手段(如用铣床加工接触表面)来增加接触面的平整度,增加紧固件(螺钉、铆钉)的密度;●加大两块金属板之间的重叠面积;●使用电磁密封衬垫,电磁密封衬垫是一种弹性的导电材料.如果在缝隙处安装上连续的电磁密封衬垫,那么,对于电磁波而言,就如同在液体容器的盖子上使用了橡胶密封衬垫后不会发生液体泄漏一样,不会发生电磁波的泄漏.3 穿过屏蔽体的导体的处理造成屏蔽体失效的另一个主要原因是穿过屏蔽体的导体.在实际中,很多结构上很严密的屏蔽机箱(机柜)就是由于有导体直接穿过屏蔽箱而导致电磁兼容试验失败,这是缺乏电磁兼容经验的设计师感到困惑的典型问题之一.判断这种问题的方法是将设备上在试验中没有必要连接的电缆拔下,如果电磁兼容问题消失,说明电缆是导致问题的因素.解决这个问题有两个方法:●对于传输频率较低的信号的电缆,在电缆的端口处使用低通滤波器,滤除电缆上不必要的高频频率成分,减小电缆产生的电磁辐射(因为高频电流最容易辐射).这同样也能防止电缆上感应到的环境噪声传进设备内的电路.●对于传输频率较高的信号的电缆,低通滤波器可能会导致信号失真,这时只能采用屏蔽的方法.但要注意屏蔽电缆的屏蔽层要360°搭接,这往往是很难的.在电缆端口安装低通滤波器有两个方法●安装在线路板上,这种方法的优点是经济,缺点是高频滤波效果欠佳.显然,这个缺点对于这种用途的滤波器是十分致命的,因为,我们使用滤波器的目的就是滤除容易导致辐射的高频信号,或者空间的高频电磁波在电缆上感应的电流.●安装在面板上,这种滤波器直接安装在屏蔽机箱的金属面板上,如馈通滤波器、滤波阵列板、滤波连接器等.由于直接安装在金属面板上,滤波器的输入、输出之间完全隔离,接地良好,导线上的干扰在机箱端口上被滤除,因此滤波效果十分理想.缺点是安装需要一定的结构配合,这必须在设计初期进行考虑.由于现代电子设备的工作频率越来越高,对付的电磁干扰频率也越来越高,因此在面板上安装干扰滤波器成为一种趋势.一种使用十分方便、性能十分优越的器件就是滤波连接器.滤波连接器的外形与普通连接器的外形完全相同,可以直接替换.它的每根插针或孔上有一个低通滤波器.低通滤波器可以是简单的单电容电路,也可以是较复杂的电路.解决电缆上干扰的一个十分简单的方法是在电缆上套一个铁氧体磁环,这个方法虽然往往有效,但是有一些条件.许多人对铁氧体寄予了过高期望,只要一遇到电缆辐射的问题,就在电缆上套铁氧体,往往会失望.铁氧体磁环的效果预测公式为:共模辐射改善 =20lg(加磁环后的共模环路阻抗/加磁环前的共模环路阻抗)例如,如果没加铁氧体时的共模环路阻抗为100Ω,加了铁氧体以后为1000Ω,则共模辐射改善为20DB.说明:有时套上铁氧体后,电磁辐射并没有明显的改善,这并不一定是铁氧体没有起作用,而可能是除了这根电缆以外,还有其他辐射源.在电缆上使用铁氧体磁环时,要注意下列一些问题:●磁环的内径尽量小●磁环的壁尽量厚●磁环尽量长●磁环尽量安装在电缆的端头处。

电磁屏蔽的原理

电磁屏蔽的原理

电磁屏蔽的原理
随着电子产品的普及,人们越来越依赖于电子设备,但同时也面临着电磁辐射的问题。

电磁辐射不仅会对人体健康造成影响,还会对电子设备的性能产生负面影响。

为了解决这个问题,人们研究出了电磁屏蔽技术。

电磁屏蔽是指将电子设备内部的电磁场隔离开来,以防止外部电磁场对设备产生干扰。

电磁屏蔽的原理主要有以下几个方面:
1. 电磁波的反射和吸收
电磁波可以被金属等导体反射和吸收。

在电子设备内部,通过加装金属屏蔽罩或使用金属覆盖物等方法,可以将电磁波反射回去或者吸收掉,从而达到屏蔽的效果。

2. 电磁波的衰减
电磁波在传播过程中会发生衰减。

在电子设备内部,可以通过采用屏蔽材料、加装滤波器等方法,使电磁波在传播过程中发生衰减,从而达到屏蔽的效果。

3. 防止电磁泄漏
电子设备内部的电磁波如果泄漏出去,就会对周围环境产生干扰。

因此,在设计电子设备时,需要采用合适的屏蔽措施,防止电磁泄
漏。

4. 接地的作用
在电子设备内部,正确的接地是保证屏蔽效果的必要条件。

通过将设备内部的金属屏蔽罩接地,可以将电磁波引导到地面上,从而达到屏蔽的效果。

除了上述原理之外,电磁屏蔽还需要考虑屏蔽的频率范围、屏蔽的材料选择、屏蔽的结构设计等因素。

因此,在实际应用中,需要根据具体情况选择合适的屏蔽措施。

电磁屏蔽技术的应用,可以有效地减少电磁辐射对人体和设备的危害,保障人们的健康和电子设备的正常运作。

电磁屏蔽的基本概念和原理

电磁屏蔽的基本概念和原理

电磁屏蔽是指采取一系列措施来减弱或阻止电磁辐射对设备、系统或人体的干扰或损害。

它是在电磁环境中保护敏感元件、防止电磁泄露或限制电磁辐射的重要技术手段。

以下是电磁屏蔽的基本概念和原理:
基本概念:
电磁波:电磁波是由电场和磁场通过空间传播的能量。

它包括各种频率和波长的电磁辐射,如无线电波、微波、红外线、可见光、紫外线和X射线等。

电磁辐射:电磁辐射是指电磁波通过空间传播,向周围环境辐射能量的过程。

电磁辐射可能会对设备、系统或人体产生干扰或损害。

电磁屏蔽:电磁屏蔽是指采取一系列措施,以降低或消除电磁波对设备、系统或人体的干扰或损害。

原理:
电磁屏蔽的原理基于电磁波的特性和物质的相互作用。

以下是一些常见的电磁屏蔽原理:
反射:通过使用具有良好导电性的材料,电磁波可以被反射回源头,从而减少外部电磁辐射对设备的影响。

吸收:使用吸波材料(如电磁波吸收材料)来吸收电磁波的能量,将其转化为热能或其他形式的能量,从而减少电磁波的传播和干扰。

屏蔽:使用具有良好导电性的材料制作屏蔽结构,将电磁波隔离在屏蔽区域内,防止其对周围设备或人体的干扰。

地线接地:通过良好的接地系统,将电磁波的能量引导到地面,减少电磁辐射对设备的干扰。

滤波:使用滤波器来过滤特定频率范围的电磁波,阻止它们进入设备或系统。

屏蔽箱或屏蔽室:使用金属屏蔽箱或建造电磁屏蔽室,有效隔离电磁波,阻止其对内部设备或系统的干扰。

电磁屏蔽理论简单分析

电磁屏蔽理论简单分析

电磁屏蔽理论分析随着现代科学技术的发展,各种电子电气设备为人们的日常生活及社会建设提供了很大帮助,同时由此产生的电磁辐射与干扰问题又制约着人们的生产和生活,它不仅影响通讯甚至直接威胁到人类的健康及我们赖以生存的自然环境,因此有关电磁屏蔽问题受到人们的极大关注。

所谓电磁屏蔽就是利用导电或导磁材料将电磁辐射限制在某一规定的空间X围内,按其原理可以分为电场屏蔽、磁场屏蔽和电磁屏蔽。

一、静电屏蔽1、外电场屏蔽下图1为利用导体空腔屏蔽外部静电场的原理示意图。

A 为需要屏蔽的物体,S为导体屏蔽空腔,在静电平衡条件下空腔外表面两侧感应出等量异号的电荷,电力线终止于导体外表面上,整个腔为等位体,腔内无电力线,因而实现腔内物体不受外电场影响的目的。

图12、内电场的屏蔽当屏蔽带电体的电场时,除了要用导体空腔将带电体屏蔽起来外,还必须将屏蔽空腔接地。

图2为屏蔽腔不接地状态下的电力线分布情况,屏蔽腔的内表面感应出于带电体等量的负电荷,外表面感应出等量的正电荷。

若将屏蔽腔接地,如图3所示屏蔽空腔外表面所感应的电荷将通过接地线流入大地,外部电场消失,电力线被限制在屏蔽空腔内部起到屏蔽作用。

图2 图3二、稳横磁场的屏蔽静磁屏蔽的目的是防止外界的静磁场和低频电流的磁场进入到某个需要保护的区域,其依据的原理是利用高导磁材料所具有的低磁阻特性,使磁感线大部分从磁性介质中穿过,从而导致磁场在磁性介质中明显加强, 而在磁性介质所包围的区域内则明显减弱,起到屏蔽作用。

如图4所示。

图4定量分析如下图n为界面法线单位矢量,从介质1指向介质2,由边界条件12u u>>(1)()21n B B⋅-=(2)其中sJ为面电流密度,对于稳恒磁场,sJ=0()12n H H⨯-=(3)由(2)(3),得2211sin sinH Hθθ=(4)分界面n2u1u22H B2θ1θ11H B2211cos cos B B θθ=(5)又BH u=,得 212121sin sin B Bu u θθ= (6) 由(5)(6)得1122tan tan u u θθ= (7) 由(7)可知当12u u >>时,得12θθ>>,从而由1221cos cos B B θθ=得12B B >>。

电磁屏蔽的三种不同屏蔽效果分析及原理详解

电磁屏蔽的三种不同屏蔽效果分析及原理详解

电磁屏蔽的三种不同屏蔽效果分析及原理详解电磁屏蔽⼀般可分为三种:静电屏蔽、静磁屏蔽和⾼频电磁场屏蔽。

三种屏蔽的⽬的都是防⽌外界的电磁场进⼊到某个需要保护的区域中,原理都是利⽤屏蔽对外场的感应产⽣的效应来抵消外场的影响。

但是由于所要屏蔽的场的特性不同,因⽽对屏蔽壳材料的要求和屏蔽效果也就不相同。

⼀、静电屏蔽静电屏蔽的⽬的是防⽌外界的静电场进⼊需要保护的某个区域。

静电屏蔽依据的原理是:在外界静电场的作⽤下导体表⾯电荷将重新分布,直到导体内部总场强处处为零为⽌。

接地的封闭⾦属壳是⼀种良好的静电屏蔽装置。

如图所⽰,接地的封闭⾦属壳把空间分割成壳内和壳外两个区域,⾦属壳维持在零电位。

根据静电场的唯⼀性定理,可以证明:⾦属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布⽆关。

当壳外电荷分布变化时,壳层外表⾯上的电荷分布随之变化,以保证壳内电场分布不变。

因此,⾦属壳对内部区域具有屏蔽作⽤。

壳外的电场仅由壳外的带电体和⾦属壳的电位以及⽆限远处的电位所确定,与壳内电荷分布⽆关。

当壳内电荷分布改变时,壳层内表⾯的电荷分布随之变化,以保证壳外电场分布不变。

因此,接地的⾦属壳对外部区域也具有屏蔽作⽤。

在静电屏蔽中,⾦属壳接地是⼗分重要的。

当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表⾯和⼤地之间重新分布,以保证壳层电势恒定。

从物理图像上看,因为在静电平衡时,⾦属内部不存在电场,壳内外的电场线被⾦属隔断,彼此⽆联系,因此,导体壳有隔离壳内外静电相互作⽤的效应。

如果⾦属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作⽤。

在许多实际应⽤中,静电屏蔽装置常常是⽤⾦属丝编织成的⾦属⽹代替闭合的⾦属壳,即使⼀块⾦属板,⼀根⾦属线,亦有⼀定的静电屏蔽作⽤,只是屏蔽的效果不如⾦属壳。

在外电场的作⽤下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有⾜够长的时间来保证内部场强为零.所以静电屏蔽装置对缓慢变化的电场也有屏蔽作⽤。

电磁屏蔽的原理

电磁屏蔽的原理

电磁屏蔽的原理
电磁屏蔽是一种减少电磁干扰的技术,它利用一系列的电磁屏蔽材料来隔离电磁波的传播和接收,用于保护电子设备的正常运作和减少对人体的影响。

电磁屏蔽的原理主要涉及电磁波的传播和反射、电磁波的辐射以及材料的导电性等因素。

在电磁场中,电磁波会在介质中传播,并被介质表面反射、透射、衍射等。

电磁屏蔽的主要原理是通过使用一系列的屏蔽材料,将电磁波的传播路径限制在材料的界面上。

电磁波传播时会相互干扰和干扰其他设备。

通过使用电磁屏蔽材料,可以减少电磁波的传播和干扰,从而有效保护设备的正常运作。

电磁波的辐射是电磁屏蔽的另一个重要原理。

通过采用各种屏蔽材料来减少电磁波的辐射,这些材料能够将电磁波吸收并将其转化为热能或者其他形式的能量。

这些材料能够有效地限制电磁辐射的范围,从而减少对其他设备的干扰和对人体的影响。

材料的导电性也是电磁屏蔽的基本原理之一。

通过使用导电材料,可以将电磁波的能量导入材料中,并将其吸收周围的环境中。

这些导电材料可以有效地吸收电磁波的能量,从而消除干扰和辐射。

综上所述,电磁屏蔽的原理主要包括电磁波的传播和反射、电磁波的辐射以及材料的导电性等因素。

通过使用一系列不同的电磁屏蔽材料,可以有效地减少电磁
干扰和辐射,从而保护电子设备的正常运作和减少对人体的影响。

电磁屏蔽的原理是啥

电磁屏蔽的原理是啥

电磁屏蔽的原理是啥电磁屏蔽是一种通过阻挡或吸收电磁辐射来保护电子设备免受外部电磁干扰的技术。

它基于电磁波的特性,采取一系列措施来限制电磁波的传播,从而达到屏蔽的效果。

电磁波是由电场和磁场相互作用而产生的能量波动,并以光速传播。

频率和振幅的不同决定了电磁波的特性,同时也决定了电磁波对电子设备的影响程度。

对于电子设备来说,如果受到外部电磁波的干扰,可能会导致电路故障、数据丢失或其他不正常运行的现象。

电磁屏蔽的原理是通过选择合适的屏蔽材料和结构来限制电磁波的传播和入侵。

以下是电磁屏蔽的一些主要原理和方法:1. 反射:电磁波在遇到屏蔽材料时,会发生反射。

屏蔽材料通常具有良好的导电性或磁导率,使电磁波无法穿透材料表面,从而反射回去。

2. 吸收:电磁波在遇到屏蔽材料时,会发生吸收。

屏蔽材料通常具有高度吸收电磁波的特性,通过将电磁波转化为热能或其他形式的能量,来消耗电磁波的能量。

3. 散射:电磁波在遇到屏蔽材料时,会发生散射。

散射是指电磁波在材料表面或内部遇到不同介质或结构时改变方向或传播路径的现象。

4. 圈地:通过将电子设备放置在一个屏蔽的金属盒子或金属外壳中,形成一个封闭的空间,称为Faraday囚笼。

这个金属外壳可以有效地屏蔽外部电磁波的入侵。

5. 导向:通过采用合适的导向形状和布局,使电磁波沿特定的路径传导,从而避免对电子设备的干扰。

通过以上的原理和方法,可以实现电磁屏蔽的效果,保护电子设备免受外部电磁干扰的影响。

采取不同的屏蔽措施,可以根据具体的应用环境和需求来选择合适的电磁屏蔽方案。

电磁屏蔽技术在现代电子设备中起着重要的作用。

电子设备通常都会产生和接收不同频率的电磁波,而周围环境也充满了各种电磁辐射源。

如果没有电磁屏蔽的保护,电子设备可能会受到各种干扰,甚至可能无法正常工作。

电磁屏蔽广泛应用于通信设备、航天装备、医疗仪器和工业自动化等领域。

在通信设备方面,电磁屏蔽能够减少设备之间的互相干扰,并提高信号传输的质量和可靠性。

电磁场屏蔽的原理

电磁场屏蔽的原理

电磁场屏蔽的原理电磁场屏蔽是通过采取一系列方法来减弱或阻挡电磁场的干扰。

电磁场是由电荷运动产生的,具有电场和磁场两个成分。

电磁场屏蔽的原理主要涉及阻挡电磁辐射的传播途径、减弱电磁辐射的强度和改变电磁场分布的方式。

下面将详细介绍电磁场屏蔽的原理。

首先,电磁场屏蔽阻挡电磁辐射的传播途径。

电磁辐射可以通过空气、介质和导体等媒介传播。

其中,电磁辐射通过空气传播的主要方式是辐射波,辐射波的传播速度与真空中的光速相同。

因此,可以采用屏蔽材料制作屏蔽结构,如金属网格、金属薄膜等。

这些屏蔽材料可以反射或吸收电磁辐射,使其无法穿过屏蔽结构传播。

此外,还可以利用屏蔽结构的辐射波阻抗不匹配原理,将电磁波的能量反射回去,从而阻碍电磁辐射的传播。

其次,电磁场屏蔽减弱电磁辐射的强度。

电磁辐射的强度与电场和磁场的振幅有关。

电磁波在通过介质时,会与介质中的电荷相互作用,导致电磁波的衰减。

因此,可以通过选择合适的屏蔽材料和结构,使电磁辐射经过屏蔽结构后发生衰减。

例如,金属是一种常用的屏蔽材料,其导电性能可以产生电流,形成反电动势和阻碍电磁辐射传播。

此外,可以利用静电屏蔽的原理,利用屏蔽器在电磁波作用下形成的电荷分布使电磁辐射受到衰减。

第三,电磁场屏蔽可以改变电磁场的分布方式。

电磁辐射的分布受到空间中的介质和边界条件的影响。

通过合理设计和布置屏蔽结构,可以改变电磁场的分布方式,从而达到屏蔽的目的。

例如,在电磁辐射源旁设置屏蔽结构,可以将电磁辐射的传播方向引导到其他区域,减小对敏感器件的影响。

总之,电磁场屏蔽的原理主要包括阻挡电磁辐射的传播途径、减弱电磁辐射的强度和改变电磁场分布的方式。

通过合理选择屏蔽材料和设计屏蔽结构,可以有效减弱或阻挡电磁辐射的干扰,保障设备和人员的安全。

电磁场屏蔽技术在电子设备、无线通信、汽车电子等领域具有重要应用价值,并正在不断发展和完善。

电磁屏蔽原理与应用

电磁屏蔽原理与应用

电磁屏蔽原理与应用电磁屏蔽是指采用一定的材料或结构,将电磁场的影响降低到可以接受的程度,以保护设备或系统不受外界电磁干扰的影响。

电磁屏蔽技术在电子产品、通信设备、航空航天等领域有着广泛的应用,其原理和方法对于提高设备的抗干扰能力和提高系统的可靠性具有重要意义。

首先,我们来了解一下电磁屏蔽的原理。

电磁屏蔽的原理主要是通过屏蔽材料的吸收、反射和衰减来削弱电磁波的传播和穿透能力。

屏蔽材料通常是具有良好导电性能的金属材料,如铝、铜、镍等,其导电性能可以有效地吸收和反射电磁波。

此外,屏蔽材料的厚度和结构也会影响其屏蔽效果,一般来说,层厚度越大、结构越复杂,屏蔽效果越好。

其次,电磁屏蔽的应用范围非常广泛。

在电子产品中,电磁屏蔽可以有效地减少设备之间的电磁干扰,提高设备的稳定性和可靠性。

在通信设备中,电磁屏蔽可以保护设备免受外界电磁波的干扰,确保通信质量和稳定性。

在航空航天领域,电磁屏蔽可以保护飞行器内部设备不受外界电磁辐射的影响,确保飞行器的正常运行和飞行安全。

此外,电磁屏蔽技术的发展也面临着一些挑战和问题。

首先是屏蔽材料的选择和设计,不同的应用场景需要不同类型的屏蔽材料,如何选择合适的屏蔽材料并设计合理的屏蔽结构是一个关键问题。

其次是屏蔽材料的成本和加工工艺,高性能的屏蔽材料往往价格昂贵,而且加工工艺复杂,如何降低成本并提高生产效率也是一个需要解决的问题。

总的来说,电磁屏蔽技术在现代电子通信领域有着重要的应用意义,其原理和方法对于提高设备的抗干扰能力和提高系统的可靠性具有重要意义。

随着科技的不断发展,电磁屏蔽技术也在不断创新和完善,相信在未来的发展中,电磁屏蔽技术将会发挥更加重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈电磁场屏蔽
作者:窦超
来源:《科技视界》2012年第15期
【摘要】阐述了三种电磁场屏蔽的屏蔽原理,在屏蔽材料的选取、屏蔽效果、应用范围等方面对三者进行了比较。

【关键词】电磁场屏蔽;屏蔽原理;屏蔽材料;屏蔽效果
0引言
随着电子技术的发展,越来越多的电子电气设备进入人们的生活,电磁污染日益严重。

另一方面,由于电子电气设备小型化的要求,极易受外界电磁干扰而使其产生误动作,从而带来严重后果。

因此人们越来越重视电子产品的电磁兼容性(EMC),电磁场的屏蔽就是电磁兼容技术的主要措施之一。

根据条件的不同,电磁场的屏蔽一般可以分为三类:静电屏蔽、静磁屏蔽和高频电磁场的屏蔽。

三种屏蔽的共同点是防止外界的电磁场进入到某个需要保护的区域中去。

但是由于所要屏蔽的场的特性不同,因而对屏蔽材料的要求也就不一样。

1静电屏蔽
静电屏蔽的目的是防止外界的静电场进入到某个区域。

实际上对于变化很慢的交流电而言,它周围的电场几乎和静电场一样,只是电荷的分布周期性地变化而已。

因此防止低频交流电的电场,也可以归结为静电屏蔽一类。

静电屏蔽对导体壳的厚度和电导率无特别要求,但对于低频交流电场,屏蔽壳要选电导率高一点的材料。

图1空腔导体屏蔽外电场
静电屏蔽分为外屏蔽和全屏蔽。

空腔导体内无电荷,在外电场中处于静电平衡时,其内部的场强总等于零(图1),因此外电场不可能对其内部空间发生任何影响。

若空腔导体内有带电体,在静电平衡时,它的内表面将产生等量异号的感应电荷,外表面会产生等量同号的感应电荷(图2),此时感应电荷的电场将对外界产生影响。

这时空腔导体只能屏蔽外电场,却不能屏蔽内部带电体对外界的影响,所以叫外屏蔽。

如果外壳接地,即使内部有带电体存在,内表面感应的电荷与带电体所带的电荷的代数和为零,而外表面产生的感应电荷通过接地线流入大地(图3)。

此时外界无法影响壳内空间,内部带电体对外界的影响也随之消除,所以这种屏蔽叫做全屏蔽。

实际使用中一般均采用接地的屏蔽方法,且金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果。

例如高压电力设备安装接地金属网,电子仪器的整体及某些部分使用接地金属外壳等。

2静磁屏蔽
图4
静磁屏蔽的目的是屏蔽外界静磁场和低频电流的磁场,这时必须用磁性介质作外壳。

如图4,用磁导率为的铁磁材料制成屏蔽壳,壳与空腔则可看作两个并联的磁阻。

由于,空腔磁阻远大于屏蔽壳磁阻,所以外界的磁感线绝大部分穿过屏蔽壳而不进入空腔。

要想获得更好的屏蔽效果,可使用较厚的屏蔽壳或采用多重屏蔽壳。

因此效果良好的铁磁屏蔽壳一般都比较笨重。

在重量和体积受到限制的情况下,常常采用磁导率高达数万的坡莫合金来做屏蔽壳,壳的各个部分要尽量结合紧密,使磁路畅通。

磁屏蔽不同于电屏蔽,壳体是否接地不会影响屏蔽效果,但是要求金属材料磁导率要高。

为了防止外界磁场的干扰,常在示波器、显像管中电子束聚焦部分加上磁屏蔽壳,就可以起到磁屏蔽的作用。

3高频电磁场的屏蔽
从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此必须考虑电磁波在导体中透入的深度。

电磁波透入的深度与其频率及导体的电导率、磁导率都有关系。

频率越高、电导率越大、磁导率越大,透入的深度就越小。

当电磁场的频率很高时(例如上百万赫兹或更高),高频电磁波只能透入导体表面薄层内,并在导体表面这一薄层内形成高频交变电流(涡流),这种现象称为趋肤效应。

图5
利用金属材料在高频电磁场中产生的涡流可以起到屏蔽作用。

如图5所示,假设A处有高频电磁场(图中只画了磁场),为减少它对B处的干扰,在A、B间加入金属板。

此板垂直于交变磁场方向,使金属板感应出涡流。

当原交变磁场增强时,感应出的涡流会产生与原磁场方向相反的反磁场。

金属板电阻越小、涡流越大,反磁场越强。

由于反磁场抵消了原磁场,大大削弱了B处的合磁场,金属板就这样起到了屏蔽作用。

若把金属板制成壳体容器,把A处或B处的电路包起来,屏蔽效果会更好。

虽然这是从屏蔽交变磁场角度来说明的,但高频电磁场的电场、磁场相互感应,所以削弱磁场就是屏蔽电磁辐射。

我们并未要求屏蔽物接地,因为涡流在金属板上流通与是否接地无关。

如果把屏蔽物接地,那就兼有电屏蔽作用,所以高频电路的屏蔽壳体总是接地的。

在实际应用中我们常常建立电磁屏蔽室:学生坐在里面考试,防止他们利用电子设备作弊;一些加密信号的传输在里面测试,可以将发射信号衰减的很微弱,而且场强十分准确;高抗干扰的通信设备,也要在这种电磁“真空”环境里调试,才能工作在电子对抗的战场。

综上所述,静电屏蔽、静磁屏蔽、高频电磁场屏蔽的屏蔽原理、应用条件、屏蔽作用是不同的,所用材料也要从具体情况出发,但它们的目的都是屏蔽电磁场,有本质联系。

4结束语
在电子技术日新月异的今天,电磁信号的相互干扰必不可免。

如果我们合理地利用屏蔽,就能有效的抑制外来电磁场的干扰,或避免自身作为干扰源,去影响其它电器和工业电子设备工作。

【参考文献】
[1]赵凯华,陈熙谋.电磁学:下册[M].北京:人民教育出版社,1978:319,347-354.
[2]马文蔚,改编.物理学:上册[M].北京:高等教育出版社,2006:200,286.。

相关文档
最新文档