河南省洛阳市2019年中招模拟考试数学试卷(一)及答案

合集下载

2019年河南省洛阳市中考数学一模试卷

2019年河南省洛阳市中考数学一模试卷

一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)下面几个数中,最小的数是()A.-3 B・・n C.2V2 D.0I解答】解:-nV・3V0V2克,・.・所给的几个数中,最小的数是・n.故选:B.2.(3分)目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳米,已知1纳米=109米,用科学记数法将12纳米表示为()米.A.12X109B. 1.2X1010C. 1.2X108D.0.12X108【解答】解:.・.1纳米=109米,•.•12纳米表示为:12X109米=1.2X108米.故选:C.3.(3分)如图的几何体是由五个小正方体组合而成的.则这个几何体的主视图是()□【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形,如图所示:4.(3分)下列运算正确的是()A.(x+y)2=J+y2B.(—^xy2)5=—*C.ESx2D.J(_2)2=±2【解答】解:A、(x+y)2=a2+2a?+v2.故错误:8.(-扣,2)3=-pA正确:C、故错误;D、V(-2)2=2.故错误,故选:B.5.(3分)如图是成都市某周内日最高气温的折线统计图.关于这7天的日最高气温的说法C.中位数是24C【解答】解:由留可得,B.众数是28C D.平均数是26C极差是:3O・2O=1OC,故选项A错误,众数是28C,故选项8正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26。

,故选项C错误,f—20+22+24+26+28+28+303』平均数是:-------------------------=25-°C.故选项D错误,故选:B.6.(3分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的而积为x万平方米,则下面所列方程中正确的是() 60606060x~(l+25%)x—30 B.(1+25%)X-x ~3060x(1+25%)6060 60X(1+25%)C.---------------=30D.—-------------=30X X X X【解答】解:设原计划每天绿化的面积为X万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,60 60依题意得—击布=3。

2019年河南省洛阳市中考数学模拟试卷

2019年河南省洛阳市中考数学模拟试卷

2019年河南省洛阳市中考数学模拟试卷一、选择题(每小题3分,共24分)(下列各小题均有四个答案,其中只有一个是正确的)1.下列各数中,最小的数是 A. B .32 C .2p D .23- 2.据报道,中国工商银行2015年实现净利润2 777亿元.数据2 777亿用科学计数法表示为A .2.777×1010B .2.777×1011C .2.777×1012D .0.2777×1013 3.下列计算正确的是 A=B .2(3)-=6 C .3a 4-2a 2=a 2 D .32()a -=a54.如图所示的几何体的俯视图是5.某班50名同学的年龄统计如下:15该班同学年龄的众数和中位数分别是 A .6 ,13B.13,13.5 C .13,14 D .14,16.如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =3,则BC 的长为 A . 6 B .9 C .12 D .15A B CD(第4题)OABC7.如图所示,点D是弦AB的中点,点C在⊙O上,CD经过圆心O,则下列结论中不一定...正确的是A.CD⊥AB B.∠OAD =2∠CBD C.∠AOD =2∠BCD D.弧AC =弧BC8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是A.1 B.45C.34D.12二、填空题(每题3分,共21分)9.计算:2﹣2﹣=______.10.若关于x的方程3x2﹣kx+k=0有两个相等的实数根,则常数k的值为______.11.已知△ABC,按如下步骤作图:①以A为圆心,AC长为半径画弧;②以B为圆心,BC长为半径画弧,与前一条弧相交于点D,连接CD.若AC=5,BC=CD=8,则AB的长为______.12.一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个球为蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为______.13.如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则M2016顶点的坐标为______.14.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为______.15.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在点A′处,当△A′BC是等腰三角形时,AP的长为______.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(a﹣)÷,其中a=+1,b=﹣1.17.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.18.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.19.如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.20.如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)21.“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y 元.(1)求在甲商店购物时y与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=______;(2)数学思考:①如图2,若点E在线段AC上,则=______(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=x﹣2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx﹣2经过A,B,C,点B坐标为(﹣1,0).(1)求抛物线的解析式;(2)若点D是线段AC上一个动点,DE⊥AC,交直线AC下方的抛物线于点E,EG⊥x轴于点G,交AC于点F,请求出DF长的最大值;(3)设抛物线对称轴与x轴相交于点H,点P是射线CH上的一个动点,当△ABP是直角三角形时,请直接写出点P的坐标.2019年河南省洛阳市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)(下列各小题均有四个答案,其中只有一二、填空题(每题3分,共21分)9.计算:2﹣2﹣=﹣.【考点】实数的运算.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可得到结果.【解答】解:原式=﹣=﹣,故答案为:﹣10.若关于x的方程3x2﹣kx+k=0有两个相等的实数根,则常数k的值为0或12.【考点】根的判别式;一元二次方程的解.【分析】由方程有两个相等的实数根结合根的判别式可得出关于k的一元二次方程,解方程即可得出结论.【解答】解:∵关于x的方程3x2﹣kx+k=0有两个相等的实数根,∴△=0,即(﹣k)2﹣4×3k=k2﹣12k=0,解得:k1=0,k2=12.故答案为:0或12.11.已知△ABC,按如下步骤作图:①以A为圆心,AC长为半径画弧;②以B为圆心,BC长为半径画弧,与前一条弧相交于点D,连接CD.若AC=5,BC=CD=8,则AB的长为3+4.【考点】作图—基本作图;勾股定理.【分析】连接BD,根据题意得到△BCD是等边三角形,根据等边三角形的性质求出BE,根据勾股定理求出AE,计算即可.【解答】解:连接BD,由题意得,BC=BD,又BC=CD=8,∴BD=BC=CD=8,∴BE==4,由勾股定理得,AE==3,则AB=3+4,故答案为:3+4.12.一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个球为蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.【考点】概率公式.【分析】首先设袋子中篮球x个,由概率公式即可求得方程:=,继而求得篮球的个数,然后利用概率公式求解即可求得答案.【解答】解:设袋子中篮球x个,根据题意得:=,解得:x=9,经检验:x=9是原分式方程的解;∴随机摸出一个为红色玻璃球的概率为:=.故答案为:.13.如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则M2016顶点的坐标为.【考点】二次函数图象与几何变换.【分析】根据抛物线y=x2与抛物线y n=(x﹣a n)2+a n相交于A n,可发现规律,根据规律,可得答案.【解答】解:M1(a1,a1)是抛物线y1=(x﹣a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x﹣a1)2+a1相交于A1,得x2=(x﹣a1)2+a1,即2a1x=a12+a1,x=(a1+1).∵x为整数点∴a1=1,M1(1,1);M2(a2,a2)是抛物线y2=(x﹣a2)2+a2=x2﹣2a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x2﹣2a2x+a22+a2,∴2a2x=a22+a2,x=(a2+1).∵x为整数点,∴a2=3,M2(3,3),M3(a3,a3)是抛物线y2=(x﹣a3)2+a3=x2﹣2a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x2﹣2a3x+a32+a3,∴2a3x=a32+a3,x=(a3+1).∵x为整数点∴a3=5,M3(5,5),∴点M2016的坐标为:2016×2﹣1=4031,∴M2016,故答案是:.14.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【考点】扇形面积的计算;旋转的性质.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,﹣S△CDE=﹣×2×2=,∴阴影部分的面积是S=S扇形CEB′故答案为:.15.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在点A′处,当△A′BC是等腰三角形时,AP的长为或.【考点】菱形的性质;翻折变换(折叠问题).【分析】首先证明四边形AEA′F是菱形,分两种情形:①CA′=CB,②A′C=A′B 分别计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∠DAC=∠BAC,∵EF⊥AA′,∴∠EPA=∠FPA=90°,∴∠EAP+∠AEP=90°,∠FAP+∠AFP=90°,∴∠AEP=∠AFP,∴AE=AF,∵△A′EF是由△AEF翻折,∴AE=EA′,AF=FA′,∴AE=EA′=A′F=FA,∴四边形AEA′F是菱形,∴AP=PA′①当CB=CA′时,∵AA′=AC﹣CA′=3,∴AP=AA′=.②当A′C=A′B时,∵∠A′CB=∠A′BC=∠BAC,∴△A′CB∽△BAC,∴=,∴A′C=,∴AA=8﹣=,∴AP=AA′=.故答案为或.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(a﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=•=,当a=+1,b=﹣1时,原式=.17.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其余四个部分所占百分比得到“科技类”所占百分比,再乘以360°即可;(2)由折线统计图得出该市2012年抽取的学生一共有300+200=500人,再乘以体育类与理财类所占百分比的和即可;(3)先求出该市2014年参加社团的学生所占百分比,再乘以该市2014年学生总数即可.【解答】解:(1)“科技类”所占百分比是:1﹣30%﹣10%﹣15%﹣25%=20%,α=360°×20%=72°;(2)该市2012年抽取的学生一共有300+200=500人,参加体育类与理财类社团的学生共有500×(30%+10%)=200人;(3)50000×=28750.即估计该市2014年参加社团的学生有28750人.18.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.【考点】反比例函数综合题.【分析】(1)先证明四边形AEBD是平行四边形,再由矩形的性质得出DA=DB,即可证出四边形AEBD是菱形;(2)连接DE,交AB于F,由菱形的性质得出AB与DE互相垂直平分,求出EF、AF,得出点E的坐标;设经过点E的反比例函数解析式为:y=,把点E坐标代入求出k的值即可.【解答】(1)证明:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形,∵四边形OABC是矩形,∴DA=AC,DB=OB,AC=OB,AB=OC=2,∴DA=DB,∴四边形AEBD是菱形;(2)解:连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=OA=,AF=AB=1,3+=,∴点E坐标为:(,1),设经过点E的反比例函数解析式为:y=,把点E(,1)代入得:k=,∴经过点E的反比例函数解析式为:y=.19.如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.【考点】切线的判定;圆周角定理;解直角三角形.【分析】(1)首先连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线;(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.【解答】(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥AP,∴AP是⊙O的切线,(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC•tan30°=3×=,∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°,∴∠P=∠PAD,∴PD=AD=.20.如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长PQ交直线AB于点E,连接AQ,设PM的长为x米,先由三角函数得出方程求出PM,再由三角函数求出QM,得出PQ的长度即可.【解答】解:延长PQ交直线AB于点M,连接AQ,如图所示:则∠PMA=90°,设PM的长为x米,在Rt△PAM中,∠PAM=45°,∴AM=PM=x米,∴BM=x﹣100(米),在Rt△PBM中,∵tan∠PBM=,∴tan68°=≈2.48,解得:x≈167.57,在Rt△QAM中,∵tan∠QAM=,∴QM=AM•tan∠QAM=167.57×tan31°≈167.57×0.60≈100.54(米),∴PQ=PM﹣QM=167.57﹣100.54≈67.0(米);答:信号塔PQ的高度约为67.0米.21.“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y 元.(1)求在甲商店购物时y与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.【考点】一次函数的应用.【分析】(1)根据题意分当0≤x≤200时,当x>200时两种情形分别求出y1即可.(2)求出直线BC,列方程组即可解决问题.(3)利用图象即可解决问题.【解答】解:(1)当0≤x≤200时,y1=x,当x>200时,y1=0.7(x﹣200)+200=0.7x+60.(2)直线BC解析式为y=0.5(x﹣500)+500=0.5X+250,由解得,∴点C坐标.(3)由图象可知,0≤x≤200或x=950时,选择甲、乙两家费用一样.200<x<950时,选择甲费用优惠,x>950时,选择乙费用优惠.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【考点】三角形综合题.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=AE,在RtDEF中,DE=2,DF=4,∴EF=2,①在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)②在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),即:CE=2或CE=.23.如图,直线y=x﹣2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx﹣2经过A,B,C,点B坐标为(﹣1,0).(1)求抛物线的解析式;(2)若点D是线段AC上一个动点,DE⊥AC,交直线AC下方的抛物线于点E,EG⊥x轴于点G,交AC于点F,请求出DF长的最大值;(3)设抛物线对称轴与x轴相交于点H,点P是射线CH上的一个动点,当△ABP是直角三角形时,请直接写出点P的坐标.【考点】二次函数综合题.【分析】(1)先利用一次函数解析式求出A和C点坐标,再设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a的值即可得到抛物线解析式;(2)设E(x,x2﹣x﹣2),则F(x,x﹣2),则可表示出EF=﹣x2+2x=﹣(x﹣2)2+2,再证明Rt△DEF∽Rt△OAC,利用相似比得到DF=EF=﹣(x﹣2)2+,然后利用二次函数的性质解决问题;(3)先利用对称性确定H(,0),再利用待定系数法求出射线CH的解析式为y=x﹣2(x≥0),接着分类讨论:当∠BPA=90°时,如图2,设P(t,t ﹣2),利用两点间的距离公式表示出PB2=(t+1)2+(t﹣2)2,PA2=(t﹣4)2+(t﹣2)2,则根据勾股定理得到(t+1)2+(t﹣2)2+(t﹣4)2+(t﹣2)2=52,然后解方程求出t即可得到此时P点坐标;当∠BAP′=90°时,如图2,易得P′(4,).【解答】解:(1)∵当y=0时,x﹣2=0,解得x=4,∴A(4,0),∵当x=0时,y=x﹣2=﹣2,∴C(0,﹣2),设抛物线解析式为y=a(x+1)(x﹣4),把C(0,﹣2)代入得a•1•(﹣4)=﹣2,解得a=,∴抛物线解析式为y=(x+1)(x﹣4),即y=x2﹣x﹣2;(2)在Rt△AOC中,AC===2,设E(x,x2﹣x﹣2),则F(x,x﹣2),∴EF=x﹣2﹣(x2﹣x﹣2)=﹣x2+2x=﹣(x﹣2)2+2,∵DE⊥AC,EG⊥AB,∴∠FDE=∠AGE=90°,而∠AFG=∠EFD,∴∠GAF=∠DEF,∴Rt△DEF∽Rt△OAC,∴DF:OC=EF:AC,即DF:2=EF:2,∴DF=EF=﹣(x﹣2)2+,当x=2时,DF有最大值,最大值为;(3)∵A(4,0),B(﹣1,0),∴H(,0),设直线CP的解析式为y=mx+n,把C(0,﹣2),H(,0)代入得,解得,∴射线CH的解析式为y=x﹣2(x≥0),当∠BPA=90°时,如图2,设P(t,t﹣2),则PB2=(t+1)2+(t﹣2)2,PA2=(t﹣4)2+(t﹣2)2,∵PB2+PA2=AB2,∴(t+1)2+(t﹣2)2+(t﹣4)2+(t﹣2)2=52,整理得t2﹣3t=0,解得t1=0,t2=3,此时P点坐标为(0,﹣2)或(3,2);当∠BAP′=90°时,如图2,则P′A⊥x轴,P′点的横坐标为4,当x=4时,y=x ﹣2=,则P′(4,),综上所述,满足条件的P点坐标为(0,﹣2)或(3,2)或(4,).第21页(共21页)。

河南省2019年中考模拟考试试卷数学试卷(河南中招命题研究组编)(含答案)

河南省2019年中考模拟考试试卷数学试卷(河南中招命题研究组编)(含答案)

绝密★启用前2019年河南中招命题研究组2019年河南省普通高中招生考试模拟试卷数学试卷(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(-3)-2的平方根是()A.±B.±C.D.±32.据对全国规模以上文化及相关产业5.9万家企业调查,2018年上半年,上述企业实现营业收入42 227亿元,比上年同期增长9.9%,继续保持较快增长.其中42 227亿用科学记数法可表示为()A. 4.2227×10¹ºB. 4.2227×10¹¹C. 4.222 7×10¹²D. 4.22 27×10¹³3.下列分解因式正确的是()A.-x+4x=-x(x+4)B.x²+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)²D.x²-4x+4=(x+2)(x-2)4.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A B C D 5.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°6.2019年河南中考某市实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试.小华和小强都抽到物理学科的概率是()A. B. C. D.7.如图,在△ABC中,AD平分∠BAC,按如下步骤作图.第一步:分别以点A,D为圆心,大于AD的长为半径画弧,交于M,N两点;第二步:作直线MN分别交AB,AD,AC于点E,O,F;第三步:连接DE,DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.88.如图,在☉O中,AB是直径,CD是弦,AB⊥CD,垂足为点E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OBB.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD9.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM长度的最大值是()A.1B.2C.3D.410.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x 的函数关系的图象大致是()第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:--(1-)º+sin 45°+()▔³=__________.12.关于x的一元二次方程x(x+1)+ax=0(a≠-1)的根的情况是为__________.13.如图,在▱ABCD中,BC=20cm,CD=20 cm,∠A=45°,动点P从点B出发,沿BC向点C运动,同时动点Q从点D出发,沿DB向点B运动,点P和点Q的运动速度分别为3cm/s和2 cm/s,其中一点到达终点时,另一点也随之停止运动.设运动时间为t s,当△BPQ是直角三角形时,t的__________.14.如图所示的图形是由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1,S2,S3,…,S20,则S1+S2+S3+…+S20=.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A'EF,则A'C的长的最小值是.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:-÷(m+2-),其中m是方程x²+2x-3=0的根.17.(本小题满分9分)适当的午休可以使下午学习时精力充沛.思源学校(非寄宿制)对该校学生周一到周五平均每天午休时间x(单位:min)进行抽样调查后分组整理,并绘制了如下不完整的统计图表.根据图中提供的信息,解答下列问题:(1)本次调查共抽取名学生;(2)统计表中,a=,b=;(3)将频数分布直方图补充完整;(4)若全校共有1 800名学生,请估计周一到周五平均每天午休时间不少于45 min的有多少人.18.(本小题满分9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB 垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D的坐标为(-4,n),且AD=3.(1)求反比例函数的解析式;(2)求经过C,D两点的直线的解析式;(3)设点E是线段CD上的动点(不与点C,D重合),过点E且平行于y轴的直线l 与反比例函数的图象交于点F,求△OEF面积的最大值.19.(本小题满分9分)如图,AB是☉O的直径,且AB=6,点M为☉O外一点,且MA,MC分别切☉O于点A,C.点D是直线BC与AM延长线的交点.(1)求证:DM=AM;(2)填空:①当CM=时,四边形AOCM是正方形;②当CM=时,△CDM为等边三角形.20.(本小题满分9分)图(1)是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好.假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直).请完成以下计算:如图(2),AB⊥BC,垂足为点B,CD∥AB,FG⊥DE,垂足为点G.若θ=37°50',FG=30 cm,CD=10 cm,求CF的长.(结果取整数,参考数据:sin37°50'≈0. 1,cos 37°50'≈0.79,tan37°50'≈0.78)图(1)图(2) 21.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内面积为1 000 m²的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m²),种草所需费用y₁(元)与x(m²)的函数关系式为y₁=其图象如图所示;栽花所需费用y₂(元)与x(m²)的函数关系式为y₂=-0.01x²-20x+30 000(0≤x≤1 000).(1)请直接写出k₁,k₂和b的值;(2)设这块1 000 m²空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m²,栽花部分的面积不少于100 m²,请求出绿化总费用W的最小值.22.(本小题满分10分))已知,在菱形ABCD中,∠ADC=120°,点P是直线CD上一动点(不与点C,D重合),连接AP,平移△ADP,使点D移动到点C处,得到△BCQ,点H是直线BD上一点,且∠QHD=60°,连接PH.(1)探索发现:如图(1),若点P在线段CD上,试判断∠APH的度数及P A,PH的数量关系,并说明理由.(2)问题拓展如图(2),若点P在线段CD的延长线上,其他条件不变,填空:①∠APH=°;②P A,PH的数量关系为.(3)解决问题如图(3),点P在线段DC的延长线上,连接AH,若△APH的面积为16,菱形ABCD 的边长为4,求DP的长.图(1)图(2) 图(3)解:(1)∠APH=60°,P A=PH.(2分)理由:连接AH,∵四边形ABCD是菱形,∠ADC=120°,∴AD=AB,∠DAB=60°,∴△ABD是等边三角形,∴∠ABD=60°,∴∠ABH=120°=∠ADP.∵∠QHD=∠CBD=60°,∴BC∥HQ,∴∠HQD=∠BCD=60°,∴△DHQ是等边三角形,∴DH=DQ, 又DB=DC,∴BH=CQ.由平移的性质可知CQ=DP,∴DP=BH,∴△ADP≌△ABH,∴AP=AH,∠DAP=∠BAH,∴∠P AH=∠P AB+∠BAH=∠P AB+∠DAP=60°, ∴△APH是等边三角形,∴P A=PH,∠APH=60°.(4分)(2)①60(5分)②P A=PH(6分)(3)同(1)可证△APH是等边三角形.由等边三角形的面积公式可得AP2=16, 解得AP=8(负值不合题意,已舍去).由平移的性质知:BQ=AP=8.过点B作BG⊥DQ于点G,∵△BDC是等边三角形,∴DG=GC=×4=2,∴BG=-==2,∴GQ=-==2,∴CQ=GQ-GC=2-2,∴DP=CQ=2-2.(10分)23.(本小题满分11分)如图,已知抛物线y=ax2+bx+3经过点A(1,0),与x轴负半轴交于点B,与y轴交于点C,且OC=O B.(1)求抛物线的解析式;(2)点P是直线BC上方的抛物线上的一个动点,过点P作直线l⊥x轴,交直线BC 于点D,当PD的值最大时,求点P的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点C,B,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.∴OC=3.∵OC=OB,∴OB=3,∴B(-3,0).把A(1,0),B(-3,0)分别代入y=ax2+bx+3中,得解得故抛物线的解析式为y=-x2-2x+3.(3分)(2)设直线BC的解析式为y=kx+b',-3+' 0,解得将B(-3,0),C(0,3)代入,得故直线AB的解析式为y=x+3.(5分)设P(m,-m2-2m+3),则D(m,m+3),∴PD=(-m2-2m+3)-(m+3)=-m2-3m=-(+)+,∴当m=-时,PD有最大值,此时点P的坐标为(-,).(8分)(3)存在.点M的坐标为(-2,3),(2,-5)或(-4,-5).(11分)。

2019年洛阳市中招数学模拟试卷(一)附答案

2019年洛阳市中招数学模拟试卷(一)附答案

洛阳市2019年中招模拟试卷(一)一、选择题(每小题3分,共30分)1.在实数0,-1.5,1,-5中,比-2小的数是()A. 0B. -1.5C. 1D. - 52.据统计,2019年,我国国内生产总值达到82.7万亿元,数据“82.7万亿”用科学计数法表示为()A. 82.7×1012B. 8.27×1013C. 8.27×1012D. 82.7×10133.下列运算正确的是()A.8 -2= 2B.(-3)2=6C.3a4-2a2=a2D.(-a3)2=a54.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.5.把不等式组⎩⎪⎨⎪⎧x>-1x+2≤3的解集表示在数轴上,下列选项正确的是()A.B. C. D.6.某校九年级(1)班全体学生进行体育测试的成绩(满分70分)统计如表:根据表中的信A.B.该班学生这次测试成绩的众数是55分C.该班学生这次测试成绩的中位数是60分D.该班学生这次测试成绩的平均数是59分7.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则DE等于()A. 2B.103C.158D.1528.关于x的一元二次方程(a-5)x2-4x-1=0有实数根,则a满足()A.a≥1且a≠5B. a>1且a≠5C. a≥1D. a>19.如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=-3x(x<0)的图像交与点C,若BA ∶AC =2∶1,则a 的值为( ) A . -3 B . -2 C . 3 D . 210.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过点P 作垂直于AC 的直线交菱形ABCD 的边于M 、N 两点设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 与x 的函数图像的大致形状是( ) A . B .C. D .二、填空题(每小题3分,共15分) 11.计算:x +1x 2-1 +11-x=.12.如图,把一块等腰直角三角形的三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2是 度.13.如图是两个质地均匀的转盘,现转动转盘①和转盘②各一次,则两个转盘指针都指向红的部分的概率为.14.如图,在圆心角为90°的扇形OAB 中,半径OA =2cm ,C 为弧AB 的中点,D 是OA 的中点,则图中阴影部分的面积为 cm 2.15.如图在菱形ABCD 中,∠A =60°,AD =3,点P 是对角线AC 上的一个动点,过点P 作EF ⊥AC 交CD 于点E ,交AB 于点F ,将△AEF 沿EF 折叠点A 落在G 处,当△CGB 为等腰三角形时,则AP 的长为 .三、解答题(本大题共8小题,共75分)16.(8分)先化简再求值 (a +2b )(a -2b )-(a -b )2+5b (a +b ),其中a =2-3,b =2+ 3.17.(9分)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分。

2019河南省洛阳市中考数学一模试卷解析版语文

2019河南省洛阳市中考数学一模试卷解析版语文

2019年河南省洛阳市中考数学一模试卷一、选择题(每小题3分,共30分)1.在实数0,﹣1.5,1,﹣中,比﹣2小的数是()C.1DA.0.﹣B.﹣1.5【分析】先根据实数的大小比较法则比较数的大小,再判断即可.【解答】解:﹣<﹣2<﹣1.5<0<1,,即比﹣2小的数是﹣故选:D.【点评】本题考查了估算无理数的大小和实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.2.据统计,2019年,我国国内生产总值达到82.7万亿元,数据“82.7万亿”用科学记数法表示为()A.82.7×10B.8.27×10C.8.27×10D.82.7×1013131212【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确n定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数据“82.7万亿”用科学记数法表示为8.27×10,13故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形n式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()页 1 第A.B.(﹣3)=6C.3a﹣2a=aD.(﹣a)=a5223422【分析】根据实数的运算法则以及整式的运算法则即可判断【解答】解:(A)原式=2﹣=,故A正确,错误;,故B(B)原式=9错误;C与2a不是同类项,故)(C3a24错误;=a,故D(D)原式6.故选:A本题属于解题的关键是熟练运用运算法则,本题考查学生的运算能力,【点评】基础题型.个完全相同的小正方体组成的几何体,则该几何体的左视图是84.如图所示是)(..AB.CD.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力..把不等式组的解集表示在数轴上,下列选项正确的是(5).BA.页 2 第.D.C【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选:B.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.某校九年级(1)班全体学生上周末进行体育测试的成绩(满分70分)统计如表:根据表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次测试成绩的众数是55分C.该班学生这次测试成绩的中位数是60分D.该班学生这次测试成绩的平均数是59分【分析】结合表格根据众数、中位数、平均数的概念求解.【解答】解:该班人数为:2+6+10+7+6+5+4=40,页 3 第得55分的人数最多,众数为55,第20和21名同学的成绩的平均值为中位数,中位数为:(60+60)÷2=60,平均数为:(45×2+50×6+55×10+60×7+65×6+68×5+70×4)÷40=59.25.故错误的为D.故选:D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则DE等于().CDA.2B..【分析】连接AE,根据勾股定理求出AB,根据线段垂直平分线的性质得到AE=BE,根据勾股定理求出AE,再根据勾股定理计算即可.【解答】解:连接AE,∵∠ACB=90°,AB==5,∴由题意得,MN是线段AB的垂直平分线,∴AE=BE,在Rt△ACE中,AE=AC+CE,即AE=3+(4﹣AE),222222AE=,解得,DE=由勾股定理得,=,故选:C.页 4 第:]来源掌握线段的垂直平分线上的点【点评】本题考查的是线段的垂直平分线的性质,到线段的两个端点的距离相等是解题的关键.网+学+科来源)有实数根,则a满足()x﹣4x﹣1=0x8.关于的方程(a﹣525≠D.aC.a≥1>a≠5B.a1且a≠5且A.a≥1a时,原方程变形一元一次方程,有一个实数解;当分类讨论:当a=5【分析】时,方程有两个实数根,然后综5a≠时,根据判别式的意义得到a≥1且≠5的范围.a合两种情况即可得到满足条件的;x=﹣4x﹣1=0,解得【解答】解:当a=5时,原方程变形为﹣5≠且≥1a0,解得a≥1,即a(时,△a≠5=(﹣4)﹣4a﹣5)×(﹣1)≥当2时,方程有两个实数根,.1的取值范围为a≥所以a.C故选::4ac=b﹣≠0)的根的判别式△a【点评】本题考查了一元二次方程ax+bx+c=0(22,方程有两个相等的实数根;,方程有两个不相等的实数根;当△=0当△>0,方程没有实数根.也考查了一元二次方程的定义.当△<0B轴的正半轴分别交于点x、y与9.如图,平面直角坐标系中,直线y=﹣x+a的值,则a:BAAC=2:1,与反比例函数和点Ay=的图象交于点﹣C,若)为(3D.3.﹣C2B2A..﹣页 5 第﹣即可.a表示出来,然后代入y=点坐标用【分析】想办法把C 【解答】解:作CE⊥x轴于E,∵AO∥CE,BA:AC=2:1,AO=OB=a,CE=,EB=,∴坐标(﹣∴点C,a),﹣上,在y=又∵点C∴﹣=﹣3,∵a>0,∴a=2.故选:A.【点评】本题考查反比例函数与一次函数的有关知识,学会用转化的思想解决,把问题变成方程是解题的关键,属于中考常考题型.10.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是().B.A..CD=CP×MN,通过题干已知条件,用x△CMN的面积分别表示出CP、【分析】MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2.【解答】解:(1)当0<x≤1时,如图1,页 6 第在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,即,∴MN=x,MN=(0<x≤∴CPy=×1),∵﹣<0,∴函数图象开口向下;(2)当1<x<2,如图2,同理证得,△CDB∽△CNM,即,∴MN=2﹣x,=,)2﹣x×(MN=2﹣x)×(∴CPy=,>0∵∴函数图象开口向上;的图象大致符合;A综上,答案.A故选:考查了学生从图象中读取信息的数形结合【点评】本题考查了二次函数的图象,能力,体现了分类讨论的思想.分)分,共153二、填空题(每小题0 .计算:+ = 11【分析】根据分式的运算法则即可求出答案.页 7 第﹣【解答】解:原式==00故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2是70 度.【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵直尺的对边平行,∴∠3=∠1=115°,∴∠2=∠3﹣45°=115°﹣45°=70°.故答案为:70.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并理清图中各角度之间的关系是解题的关键.13.如图是两个质地均匀的转盘,现转动转盘①和转盘②各一次,则两个转盘指.针都指向红的部分的概率为【分析】将转盘①中红色部分等分成3部分,画出树状图列出所有等可能结果,从中找到两个转盘指针都指向红的部分的结果数,利用概率公式计算可得.【解答】解:将转盘①中红色部分等分成3部分,画树状图如下:由树状图可知共有16种结果,其中两个转盘指针都指向红的部分的有6种结果,页 8 第,=所以两个转盘指针都指向红的部分的概率为.故答案为:利用列表法和树状图法展示所有可能的本题考查了列表法与树状图法:【点评】,求出概率.m或B的结果数目结果求出n,再从中选出符合事件A的中点,AB,C为弧14.如图,在圆心角为90°的扇形OAB中,半径OA=2cm.cm D是OA的中点,则图中阴影部分的面积为2,根据扇形面积CEE,根据正弦的概念求出,作CE⊥OA于【分析】连接OC 公式、三角形面积公式计算.,EOA于OC,作CE⊥【解答】解:连接的中点,为弧ABC∵∠AOB=90°,∴∠COE=45°,,∠COE=∴CE=OC×sin)﹣S﹣(S∴图中阴影部分的面积=S﹣S CODBOD△扇形AOB扇形AOC△×1+1×2×﹣=﹣×.故答案为:本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式【点评】是解题的关键.S=AD=ABCD中,∠A=60°,AC上的一个动15.如图在菱形P,点是对角线折叠点EFAEF沿,将△于点E,交AB于点F交作点,过点PEF⊥ACAD.1或的长为处,当△A落在GCGB为等腰三角形时,则AP,分别求解即可解决问题;,②CG=CBGC=GB【分析】分两种情形①,AD=解:在菱形ABCD中,∵∠A=60°,【解答】页 9 第∴AC=3,①当CG=BC=时,AG=AC=CG=3﹣,.AP=∴AG=②当GC=GB时,易知GC=1,AG=2,AP=AG=1∴,或.故答案为1【点评】本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共8小题,共75分)16.(8分)先化简再求值(a+2b)(a﹣2b)﹣(a﹣b)+5b(a+b).其中a=2﹣2,b=2+.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:原式=a﹣4b﹣(a﹣2ab+b)+5ab+5b22222=a﹣4b﹣a+2ab﹣b+5ab+5b22222=7ab,当a=2﹣,b=2+时,)原式=7×(2﹣)×(2+)3×(=74﹣.=7【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.页 10 第17.(9分)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率0.05601050≤x<0.1020x<70 60≤b30x≤<80 700.30a<≤x90 800.40 100≤80x90≤请根据所给信息,解答下列问题:(1)a= 60 ,b= 0.15 ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90 分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?网科||来源学页 11 第【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.18.(9分)如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的切线;sinF=,求DF的长.,的半径为)若⊙(2O5页 12 第【分析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC∵∠AEO=90°,∴∠FDO=90°∴FD是⊙O的切线;(2)∵AE∥FD,AO=BO=5,ACB=sin∠sinF=∴AB=10,AC=8,∵DO⊥AC,∴AE=EC=4,AO=5∴EO=3∵AE∥DF,∴△AEO∽△FDO,FD=.∴【点评】此题主要考查了相似三角形的判定与性质以及切线的判定等知识,得出△AEO∽△FDO是解题关键.19.(9分)如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们页 13 第在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)【分析】延长PQ交直线AB于点E,连接AQ,设PM的长为x米,先由三角函数得出方程求出PM,再由三角函数求出QM,得出PQ的长度即可.【解答】解:延长PQ交直线AB于点M,连接AQ,如图所示:则∠PMA=90°,设PM的长为x米,在Rt△PAM中,∠PAM=45°,∴AM=PM=x米,∴BM=x﹣100(米),PBM=,tan∠Rt△PBM中,∵在,∴tan68°=≈2.48解得:x≈167.57,QAM=,中,∵tan∠Rt在△QAM∴QM=AM?tan∠QAM=167.57×tan31°≈167.57×0.60≈100.54(米),∴PQ=PM﹣QM=167.57﹣100.54≈67.0(米);答:信号塔PQ的高度约为67.0米.【点评】本题考查解直角三角形的应用、三角函数;由三角函数得出方程是解决问题的关键,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.页 14 第20.(9分)如图,在平面直角坐标系中,A点的坐标是(3,3),AB⊥x轴于点y=的图象中的一支经过线段OA上一点M,交B,反比例函数AB于点N,已知OM=2AM.(1)求反比例函数的解析式;(2)若直线MN交y轴于点C,求△OMC的面积.【分析】(1)过点M作MH⊥x轴于点H.得出MH∥AB,那么△OMH∽△OAB,根据相似三角形对应边成比例求出点M的坐标,再利用待定系数法即可求出反比例函数的解析式;y=代入,求.再把N点横坐标为3x=3x轴,A(3,3),得出2()先由AB⊥==2∥AN,即可得到,得出出N点坐标,得到AN的值,根据OC2=的面积= OC?OH=.,进而得到△OMC××OC=2AN=【解答】解:(1)过点M作MH⊥x轴于点H,∵AB⊥x轴于点B,∴MH∥AB,∴△OMH∽△OAB,=,∴=∵A点的坐标是(3,3),OM=2AM,= ,,∴OB=3AB=3,,MH=2OH=2,∴,)(∴M2,2的图象上,N∵点在反比例函数y=,×∴k=22=4页 15 第y=;∴反比例函数的解析式为(2)∵AB⊥x轴,A(3,3),∴N点的横坐标为3y=,y=把x=3代入,得,),∴N点的坐标为(3=﹣∴AN=3,∵OC∥AN,==2,∴来源:]OC=2AN=,∴×OC?O∴△OMC的面积H==×.2=【点评】本题考查了反比例函数与一次函数的交点问题,相似三角形的判定与性质,待定系数法求反比例函数的解析式,三角形的面积等知识,正确求出函数解析式是解题的关键.21.(10分)某通讯运营商的手机上网流量资费标准推出了三种优惠方案:方案A:按流量计费,0.1元/M;方案B:20元流量套餐包月,包含500M流量,如果超过500M,超过部分另外计费(见图象),如果用到1000M时,超过1000M的流量不再收费;方案C:120元包月,无限制使用.用x表示每月上网流量(单位:M),y表示每月的流量费用(单位:元),方案B和方案C对应的y关于x的函数图象如图所示,请解决以下问题:(1)写出方案A的函数解析式,并在图中画出其图象;(2)直接写出方案B的函数解析式;页 16 第(3)若甲乙两人每月使用流量分别在300﹣600M,800﹣1200M之间,请你分别给出甲乙二人经济合理的选择方案.【分析】(1)根据题意,可以直接写出方案A对应的函数解析式,并画出相应的函数图象;(2)根据图象中的数据可以写出方案B对应的函数解析式;(3)根据图象可以分别求得方案A、B、C的交点,再根据图象即可解答本题.【解答】解:(1)由题意可得,方案A的函数解析式为y=0.1x,图象如右图所示;(2)设500≤x≤1000时,y=kx+b,解得,,∴500≤x≤1000时,y=0.22x﹣90,y=;∴方案B对应的函数解析式是3)令0.1x=20,得x=200,0.1x=0.22x﹣90,得x=750,当0.1x=120时,x=1200,故甲选用方案B,乙选用方案A.(上网流量在200M以下的选用方案A,上网流量在200M和750M之间的选用方案B,上网流量在750M和1200M之间的选用方案A,上网流量在1200M以上的选用方案C,上网流量在200M或750M的选用方案A或B费用一样,上网流量是1200M的选用方案A或C费用一样.)【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题页 17 第需要的条件,利用数形结合的思想解答.22.(10分)在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM 与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点D顺时针旋转角度α(0°<α<45°).如图2,在旋转过程中,当∠MDC=15°时,连接MN,若AC=BC=2,请求出写出线段MN的长;(3)图3,旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE时,线段EM与EN的数量关系是EN=2EM ;当AB=m?AE 时,线段EM与EN的数量关系是EN=(m﹣1)EM .【分析】(1)由等腰直角三角形的性质,得出结论进而判断出△CDM≌△BDN,即可得出结论;(2)先求出CP=DP=AP=1,再求出∠MDP=30°,即可得出结论;(3)先判断出BE=2PE,再判断出△PME∽△BNE即可得出结论.【解答】解:(1)EM=EN;理由:∵∠ACB=90°,AC=BC,D是AB边上的中点∴DC=DB,∠ACD=∠B=45°,∠CDB=90°∴∠CDF+∠FDB=90°∵∠GDF=90°,页 18 第∴∠GDC+∠CDF=90°,∴∠CDM=∠BDN中,和△BDN在△CDM,≌△BDN∴△CDMDM=DN∴;即EM=EN,P⊥AC于)如图(22,作DPCP=DP=AP=1则∠CDP=45°,∵∠CDG=15°,∴∠MDP=30°MDP=cos∠∵DM= =DM=DN∴∵△MND为等腰直角三角形=×∴;MN=(3)NE=2ME,EN=(m﹣1)ME.证明:如图3,过点E作EP⊥AB交AC于点P则△AEP为等腰直角三角形,∠PEB=90°∴AE=PE,∵AB=3AE,∴BE=2AE,∴BE=2PE页 19 第又∵∠MEP+∠PEN=90°,∠PEN+∠NEB=90°∴∠MEP=∠NEB又∵∠MPE=∠B=45°∴△PME∽△BNE即EN=2EM由此规律可知,当AB=m?AE时,EN=(m﹣1)?ME故答案为:EN=2EM;EN=(m﹣1)EM.【点评】此题是相似形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,判断出△PME∽△BNE 是解本题的关键.﹣x+2的图象与分)如图,在平面直角坐标系中,一次函数y=x轴交23.(11x=对称,且经过A.C轴交于点C,抛物线y=ax+bx+c关于直线与于点A,y2两点,与x轴交于另一点为B.(1)求抛物线的解析式;(2)若点P为直线AC上方的抛物线上的一点,过点P作PQ⊥x轴于M,交AC于Q,求PQ的最大值,并求此时△APC的面积;(3)在抛物线的对称轴上找出使△ADC为直角三角形的点D,直接写出点D的坐标.x=对称B关于直线A,可得出点的坐标,由A、A【分析】(1)由直线过点可找出B点的坐标.由直线经过点C可求出点C的坐标,利用待定系数法即可求出抛物线的解析式;,即x+y﹣2=0,设点Qx+2的解析式为)直线(2ACy=﹣的坐标为(m,﹣页20 第)﹣2PQ=m﹣,﹣m(+m+2),由此得到Pm+2);则点坐标为(m2=S,由分割法求得:S2,3)+2,由二次函数最值的求法得到:点P(2梯形PAC △;﹣S+S OCPM△AOC△PMA为直角三角形分三种情况:点坐标,△ADC(3)假设存在,设出D,可得:CM=3M∽△ACODM⊥y轴于M由△CD①当点C为直角顶点时:作1;5(,所以OM=5,即D)1;,﹣5②同理当点A为直角顶点时可求D)(2﹣nDNA可得:y轴.由△CDM∽△③当点D为直角顶点时:过D作MN⊥2333.﹣(,.易得D1(,,1+)D)2n=43,,解得:y=x=4﹣x+2=0)令【解答】解:(1.0)A的坐标为(4,即点对称,x=、B关于直线∵A.)0的坐标为(﹣1,∴点B,y=2令x=0,则,)0,2∴点C的坐标为(,CB、∵抛物线y=ax2+bx+c经过点A、∴有.,﹣,c=2解得:a=b=;x+2﹣x故抛物线解析式为y=+2,﹣2=0﹣x+2,即x+y)直线(2AC的解析式为y=,m+2+)m点坐标为(;则m+2的坐标为(设点Qm,﹣)Pm,﹣2页 21 第)﹣(﹣m+2)+m+2PQ=∴,(﹣m2﹣(m﹣2)=+2﹣m+2m=22∴当m=2时,PQ=2,最大此时点P(2,3)S=S+S﹣S=5+3﹣4=4;AOCPMAOCPM△△△PAC梯形﹣)1,1+.(5),,(,5),(,3()D)点的坐标为(,﹣)m点的坐标(,解法如下:假设存在,设D为直角三角形分三种情况:ADC△M⊥y轴于①当点C为直角顶点时:作DM=M∽△ACO可得:由△CD1(=,5OM=5即D),∴CM=3∴1(,﹣5为直角顶点时可求D)②同理当点A2③当点D为直角顶点时:过D作MN⊥y轴3= 可得:NA由△CDM∽△D332n=﹣,可得:∴n=2±解得:n=1﹣)(,(,D1+),1D431+,5,),(,5D故),),(1﹣.点的坐标为(,﹣)(【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.页 22 第。

2019届河南省中考模拟(一)数学试卷【含答案及解析】

2019届河南省中考模拟(一)数学试卷【含答案及解析】

2019届河南省中考模拟(一)数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. ﹣3的绝对值是()A. ﹣3B. 3C. ﹣3﹣1D. 3﹣1二、选择题2. 如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C. D.3. 地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109 B.5.1×109 C.5.1×108 D.0.51×1074. 如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50° D.40°5. 分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=26. 下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查7. 如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE8. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,)C.(4n+1,) D.(2n+1,)三、填空题9. 在实数﹣2、0、﹣1、2、﹣中,最小的是_______________.10. 如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于_______cm.11. 如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为______________.12. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:13. x…﹣10123…y…105212…t d14. 一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=____________.15. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为_____________.16. 如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为____________.四、解答题17. 先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=0.18. (1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE 剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为________.A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.19. “热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20. 已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.21. 如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离;(2)求线段CD的长度.22. 某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:23. 印制x(张)…100200300…收费y(元)…153045…td24. 问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足________________关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)25. 如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。

(汇总3份试卷)2019年洛阳市中考数学模拟卷

(汇总3份试卷)2019年洛阳市中考数学模拟卷

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,平行于BC 的直线DE 把△ABC分成面积相等的两部分,则BD AD 的值为( ) A .1 B.22 C .2-1 D .2+1【答案】C 【解析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED ,可得出22AD AB =,结合BD=AB ﹣AD 即可求出BD AD的值. 【详解】∵DE ∥BC , ∴∠ADE=∠B ,∠AED=∠C ,∴△ADE ∽△ABC ,∴2ADEABC S AD AB S ⎛⎫= ⎪⎝⎭,∵S △ADE =S 四边形BCED ,S △ABC =S △ADE +S 四边形BCED ,∴22AD AB =, ∴22212BD AB AD AD AD --===-, 故选C .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.2.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A .AC=EFB .BC=DFC .AB=DED .∠B=∠E【答案】C 【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED,得∠B=∠D,因为CD BF=,若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.3.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上【答案】C【解析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx=的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.4.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A .3cmB .6 cmC .2.5cmD .5 cm【答案】D 【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可.详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt △EBC 中,22224845BE EC +=+= ∵OF ⊥BC ,∴∠OFC=∠CEB=90°. ∵∠C=∠C ,∴△OFC ∽△BEC , ∴OFOCBE BC =,即445OF=解得:5故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长.6.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A .国B .厉C .害D .了【答案】A 【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.7.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H【答案】C 【解析】根据被开方数越大算术平方根越大,可得答案.【详解】解:∵91016 ∴310<4,∵10,∴3<a <4,故选:C . 【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出310<4是解题关键.8.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是() A .3y x =B .3y x =C .1y x =-D .2y x【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误;y=3x 的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x 的图象在二、四象限,故选项C 错误; y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;故选B.9.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A 【解析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=(2+3)a ,∴tan ∠DAC=2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.10.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D .【答案】B【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A 、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误; B 、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C 、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.二、填空题(本题包括8个小题)11.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.【答案】7【解析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.12.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.33【解析】试题分析:当点B的移动距离为33时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为3时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.试题解析:如图:当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=113tan603B C==︒,当点B的移动距离为3时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=113tan303B C==︒,当点B的移动距离为3时,四边形ABC1D1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.13.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.【答案】62n+【解析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,……∴组成n 个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.14.计算()22133x y xy ⎛⎫-⋅=⎪⎝⎭_______. 【答案】33x y - 【解析】根据同底数幂的乘法法则计算即可.【详解】()22133x y xy ⎛⎫-⋅ ⎪⎝⎭22133x y xy =-⨯⋅ 33x y =-故答案是:33x y -【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.15.若正六边形的内切圆半径为2,则其外接圆半径为__________.【答案】43 【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形,∴OAB 是等边三角形,∴60OAB ∠=︒,∴43sin 60332OG OA ===︒,∴正六边形的内切圆半径为2,则其外接圆半径为433.故答案为433.【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.16.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.【答案】32°【解析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.17.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.【答案】73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.18.在平面直角坐标系中,点A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.【答案】(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1, -6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题(本题包括8个小题)19.孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?【答案】(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;(3)5610815102020301660⨯+⨯+⨯+⨯+⨯⨯2000=38000(元),∴估算全校学生共捐款38000元.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.【答案】(1)证明略(2)等腰三角形,理由略【解析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.21.如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.【答案】(1)详见解析;(2)2【解析】(1)连接CD,证明90ODC ADC∠+∠=︒即可得到结论;(2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.【详解】(1)证明:连接CD,∵OD OC =∴ODC OCD ∠=∠∵AD AC = ∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB ∠+∠=︒∴∠+∠=∴⊥.(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=, 设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴==.【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.22.如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF 平分∠DCE .求证:CF ⊥DE 于点F .【答案】证明见解析.【解析】根据平行线性质得出∠A=∠B ,根据SAS 证△ACD ≌△BEC ,推出DC=CE ,根据等腰三角形的三线合一定理推出即可.【详解】∵AD ∥BE ,∴∠A =∠B .在△ACD 和△BEC 中∵,∴△ACD ≌△BEC (SAS ),∴DC =CE . ∵CF 平分∠DCE ,∴CF ⊥DE (三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE ,主要考查了学生运用定理进行推理的能力.23.如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x 的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积;【答案】(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1.【解析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+-∵()0,3C 在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,∴二次函数的对称轴为直线1x =-;∵点C 、D 是二次函数图象上的一对对称点;()0,3C∴()2,3D -;∴使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E (0,1),∴OE =1,又∵AB =1,∴S △ADE =12×1×3−12×1×1=1. 【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.24.如图,已知点D 在△ABC 的外部,AD ∥BC ,点E 在边AB 上,AB•AD =BC•AE .求证:∠BAC =∠AED ;在边AC 取一点F ,如果∠AFE =∠D ,求证:AD AF BC AC=.【答案】见解析【解析】(1)欲证明∠BAC =∠AED ,只要证明△CBA ∽△DAE 即可;(2)由△DAE ∽△CBA ,可得AD DE BC AC=,再证明四边形ADEF 是平行四边形,推出DE =AF ,即可解决问题;【详解】证明(1)∵AD ∥BC ,∴∠B =∠DAE ,∵AB·AD =BC·AE ,∴AB BC AE AD =, ∴△CBA ∽△DAE ,∴∠BAC =∠AED .(2)由(1)得△DAE ∽△CBA∴∠D =∠C ,AD DE BC AC=, ∵∠AFE =∠D ,∴∠AFE =∠C ,∴EF ∥BC ,∵AD ∥BC ,∴EF ∥AD ,∵∠BAC =∠AED ,∴DE ∥AC ,∴四边形ADEF 是平行四边形,∴DE =AF ,∴AD AF BC AC=. 【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,河的两岸MN 与PQ 相互平行,点A ,B 是PQ 上的两点,C 是MN 上的点,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据2≈1.414,3≈1.732)【答案】17.3米.【解析】分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度.详解:过点C 作CD PQ ⊥于D ,∵3060CAB CBD ∠=︒∠=︒,∴30,ACB ∠=︒∴20AB BC ==米,在Rt △CDB 中,∵90BDC ,∠=︒ sin ,CD CBD BC ∠=∴sin60,CD BC ︒=∴3,20CD = ∴103CD =米,∴17.3CD ≈米.答:这条河的宽是17.3米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.26.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2,根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5【答案】B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B.2.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.3.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.6【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sin ACBAB=,∴935AB=,解得AB=1.故选A4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21.126故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.7.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.8.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( )A .m≠±2B .m=2C .m=–2D .m≠2 【答案】D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D9.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120° 【答案】C【解析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即532在Rt△AOD中,OA=5,53 2∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.10.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2【答案】A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.二、填空题(本题包括8个小题)11.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.【答案】【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,已知一次函数y=ax+b和反比例函数kyx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________【答案】﹣2<x<0或x>1【解析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.14.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).【答案】>【解析】分析:首先求得抛物线y=﹣x 2+2x 的对称轴是x=1,利用二次函数的性质,点M 、N 在对称轴的右侧,y 随着x 的增大而减小,得出答案即可.详解:抛物线y=﹣x 2+2x 的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y 1>y 2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.15.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.【答案】32 k=-【解析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=212k+∴k=−32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答16.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.【答案】1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.17.比较大小:(填入“>”或“<”号)【答案】>【解析】试题解析:∵∴4考点:实数的大小比较.【详解】请在此输入详解!18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB+=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.三、解答题(本题包括8个小题)19.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,。

河南省洛阳市2019年中考数学模拟试卷

河南省洛阳市2019年中考数学模拟试卷

河南省洛阳市2019年中考数学模拟试卷一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.下列图形既是轴对称图形,又是中心对称图形的是()A.B. C.D.2.下列计算中,正确的是()A.x2+x3=x5B.(x2)5=(﹣x5)2C.(x3y2)3=x6y5D.x2•x3=x63.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.134.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=90°,若OA=4,则图中圆环的面积大小为()A.2πB.4πC.6πD.8π6.某景点门票价格:成人票每张40元,儿童票每张25元,某旅行团一行30人,门票共花了1080元,设其中有x张成人票,t张儿童票,根据题意,下列方程组正确的是()A.B.C. D.7.如图,直线y=x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A逆时针旋转90°后得到△ACD,则点D的坐标是()A.(4,3)B.(﹣3,4)C.(﹣7,4)D.(﹣7,3)8.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共21分) 9.___________.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=__________.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显 示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务 输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为 _________.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别 标有1,-1,-2,-3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一 个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为 _________. 13.反比例函数经过点A (-3,1),设是该函数图象上的两点,且,那么与的大小关系是___________(填, 或).14.如图,在△ABC 中,∠C =90°,AC =BC ,斜边AB =4,O 是AB 的中点,以O 为圆心, 线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的 面积为__________平方单位.21G FED CBAky x =1122()()B x y C x y ,,,120x x <<1y 2y 12y y >“”12y y =“”12y y <“”第14题图 第15题图15.已知一个矩形纸片OACB ,OB =6,OA =11,点P 为BC 边上的动点(点P 不与点B , C 重合),经过点O 折叠该纸片,得折痕OP 和点B ′,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得折痕PQ 和点C ′,当点C ′恰好落在边OA 上时BP 的长为 ____________.三、解答题(共75分)16.(8分)先化简,再求值.a 为整数且-2≤a ≤2,请你从中选取一个合适的数代入求值.17.(9分)今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:Q C'B'P C B AO211()242a a a a a -+÷+-+(1)参加植树的学生共有_______人,植树的众数是_______棵; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树多少棵?(保留整数)18.(9分)如图,已知A 的半径为4,EC 是圆的直径,点B 是A 的切线CB 上的一个动点,连接AB 交A 于点D ,弦EF 平行于AB ,连接DF ,AF .(1)求证:△ABC ≌△ABF ;(2)当∠CAB =______时,四边形ADFE 为菱形; (3)当AB =_______时,四边形ACBF 为正方形.19.(9分)已知:关于x 的一元二次方程有两个不相等的实数根.学生植树人数百分比统计图学生植树棵树统计图(单位:棵)ADEF220x x k ++=(1)求k 的取值范围;(2)当k 取最大整数值时,用合适的方法求该方程的解.20.(9分)图1是小明在健身器材上进行仰卧起坐锻炼时的情景.图2是小明锻炼时上半身由EN 位置运动到与地面垂直的EM 位置时的示意图.已知BC =0.64米,AD =0.24米,α=18°(). (1)求AB 的长(精确到0.01米);(2)若测得EN =0.8米,计算小明头顶由N 点运动到M 点的路径的长度(结果保留π).图221.(10分)某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示: 其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x (件),付给推销员的月报酬为y (元).sin180.31cos180.95tan180.32︒≈︒≈︒≈,,αN MEDCB A(1)分别求两种方案中y 关于x 的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元? (3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m 元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m 至少增加多少元?22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°, DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出的值(用含β的式子表示).y (PMQN PMQN F 2图2图1GFED C BA23.(11分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(-1,0),B(3,0)、点C三点.(1)求抛物线的表达式.(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由.(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,直接写出S与t之间的函数关系式.河南省洛阳市2019年中考数学模拟试卷【参考答案】一、选择题1.下列图形既是轴对称图形,又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形,故此选项正确.故选:D.2.下列计算中,正确的是()A.x2+x3=x5B.(x2)5=(﹣x5)2C.(x3y2)3=x6y5D.x2•x3=x6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、合并同类项等运算,然后选择正确选项.【解答】解:A、x2和x3不是同类项,不能合并,故本选项错误;B、(x2)5=(﹣x5)2=x10,计算正确,故本选项正确;C、(x3y2)3=x9y6,计算错误,故本选项错误;D、x2•x3=x5,计算错误,故本选项错误.故选B.3.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可;【解答】解:由题意可得,,解得,11<x<15,所以,x为12、13、14;故选B.4.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<1【考点】一次函数与一元一次不等式;解一元一次不等式;一次函数的性质;一次函数图象上点的坐标特征.【分析】根据一次函数y=ax+b的图象过第一、二、四象限,得到b>0,a<0,把(2,0)代入解析式y=ax+b求出=﹣2,解a(x﹣1)﹣b>0,得x﹣1<,代入即可求出答案.【解答】解:∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A.5.如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=90°,若OA=4,则图中圆环的面积大小为()A.2πB.4πC.6πD.8π【考点】切线的性质.【分析】先判断出等腰直角三角形,从而求出OC=AC=2,最后用圆环的面积公式即可.【解答】解:如图,连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∵OA=OB=4,∠AOB=90°,∴OC=AC=2,∴圆环的面积=πOA2﹣πOC2=16π﹣8π=8π,故选D,6.某景点门票价格:成人票每张40元,儿童票每张25元,某旅行团一行30人,门票共花了1080元,设其中有x张成人票,t张儿童票,根据题意,下列方程组正确的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据某旅行团一行30人,门票共花了1080元,列出方程组解答即可.【解答】解:设其中有x张成人票,y张儿童票,可得:,故选C7.如图,直线y=x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A逆时针旋转90°后得到△ACD,则点D的坐标是()A.(4,3)B.(﹣3,4)C.(﹣7,4)D.(﹣7,3)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【分析】先利用坐标轴上点的坐标特征求出A、B两点的坐标,再利用旋转的性质得到AC=OA=4,CD=OB=3,∠OAC=90°,∠ACD=∠AOB=90°,则可判断AC⊥x 轴,CD∥x轴,然后根据第二象限点的坐标特征写出D点坐标.【解答】解:当y=0时,x+3=0,解得x=﹣4,则A(﹣4,0),所以OA=4,当x=0时,y=x+3=3,则B(0,3),所以OB=3,因为△AOB绕点A逆时针旋转90°后得到△ACD,所以AC=OA=4,CD=OB=3,∠OAC=90°,∠ACD=∠AOB=90°,即AC⊥x轴,CD∥x轴,所以点D的坐标为(﹣7,4).故选C.8.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF=S△APF.正确的个数沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;翻折变换(折叠问题).【分析】①正确.作EM∥AB交AC于M.设CM=CE=a,则ME=AM=a,根据tan∠CAE=即可判断.②正确.根据△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF 即可判断.③正确.由△PEC≌△PEF得到∠PFA=∠PFE=45°,由此即可判断.④正确.只要证明∠CPE=∠CEP=67.5°,⑤错误.假设结论成立,推出矛盾即可.【解答】解:①正确.作EM∥AB交AC于M.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CAB=22.5°,∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM,设CM=CE=a,则ME=AM=a,∴tan∠CAE===﹣1,故①正确,②正确.△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF,故②正确,③正确.∵△PEC≌△PEF,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF沿PF翻折,则点E一定落在AB上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP,∴CP=CE,故④正确,⑤错误.∵△APC≌△APF,∴S△APC=S△APF,假设S△APF=S四边形DFPE,则S△APC=S四边形DFPE,∴S△ACD=S△AEF,∵S△ACD=S△ABC,S△AEF=S△AEC≠S△ABC,∴矛盾,假设不成立.故⑤错误.二、填空题9.2 10.140° 11. 12. 13. 14. 15.三、解答题16.原式,当时,原式=(答案不唯一).17.(1)50,2;(2)统计图略;(3)3.18.(1)证明略;(2)60°;(3).19.(1)k <1 (2)x 1=2,x 2=-220.(1)AB =1.29 (2)0.48π21.(1); (2)50(3)40 22.(1)30° (2) (3)(2)存在, 23.(1)(3)63.1310⨯3821y y >(2)π-12a a -=-1a =-23213y x =2501200y x =+31tan β223y x x =-++211()39-,2253024692303t t t S t t t t ⎧-+⎪⎪=-+<⎨⎪>⎪⎩≤≤≤()()()。

〖汇总3套试卷〗洛阳市2019年中考数学六校联考模拟试题及答案

〖汇总3套试卷〗洛阳市2019年中考数学六校联考模拟试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.2【答案】A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.2.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.【答案】A【解析】根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k 图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,∴-b>1,∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b <1,一次函数y=kx+b图象过原点⇔b=1.3.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【答案】D【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.4.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.5.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.AB ED,得∠B=∠D,【详解】由//,因为CD BF若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.7.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.8.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.35B.125)C5 1 D.1251)【答案】C【解析】根据黄金分割点的定义,知BC为较长线段;则51-AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则51-5.5.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的35倍,较长的线段=原线段的512倍.9.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°【答案】D【解析】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D10.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【答案】B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax 2+bx+c 与反比例函数y=b x的图象在第一象限有一个公共点, ∴b >0,∵交点横坐标为1,∴a+b+c=b , ∴a+c=0,∴ac <0, ∴一次函数y=bx+ac 的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac <0. 二、填空题(本题包括8个小题)11.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=1.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】2【解析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+2)2﹣(x+2)(x ﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.12.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.【答案】1:4【解析】由S △BDE :S △CDE =1:3,得到BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.13.因式分解:223x 6xy 3y -+- =【答案】﹣3(x ﹣y )1【解析】解:﹣3x 1+6xy ﹣3y 1=﹣3(x 1+y 1﹣1xy )=﹣3(x ﹣y )1.故答案为:﹣3(x ﹣y )1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E ,连接BE ,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为_____.【答案】53【解析】设CE=x ,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x ,DE=CD-CE=3-x .在Rt △ABF 中利用勾股定理求出AF 的长度,进而求出DF 的长度;然后在Rt △DEF 根据勾股定理列出关于x 的方程即可解决问题.【详解】设CE=x .∵四边形ABCD 是矩形, ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,∴BF=BC=5,EF=CE=x ,DE=CD-CE=3-x .在Rt △ABF 中,由勾股定理得:AF 2=52-32=16,∴AF=4,DF=5-4=1.在Rt △DEF 中,由勾股定理得:EF 2=DE 2+DF 2,即x 2=(3-x )2+12,解得:x=53, 故答案为53. 15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果【答案】43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可. 解:如图所示,在RtABC 中,tan ∠ACB=AB BC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴3故答案为3.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.16.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .【答案】y=﹣1x+1.【解析】由对称得到P′(1,﹣2),再代入解析式得到k 的值,再根据平移得到新解析式.【详解】∵点P (1,2)关于x 轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.17.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(本题包括8个小题)19.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.【答案】(1)答案见解析;(2)1 3 .【解析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×14=1(人),八年级获一等奖人数:4×14=1(人),∴九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.20.某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.【答案】(1)①30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.21.在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.【答案】(1)14;(2)16.【解析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x ,y )位于第二象限的概率=212=16. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.22.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西55°方向行驶4千米至B 地,再沿北偏东35°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B 、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,si n55°≈0.8)【答案】B 、C 两地的距离大约是6千米.【解析】过B 作BD ⊥AC 于点D ,在直角△ABD 中利用三角函数求得BD 的长,然后在直角△BCD 中利用三角函数求得BC 的长.【详解】解:过B 作BD AC ⊥于点D .在Rt ABD 中,BD AB sin BAD 40.8 3.2(∠=⋅=⨯=千米),BCD 中,CBD 903555∠=-=,CD BD tan CBD 4.48(∠∴=⋅=千米),BC CD sin CBD 6(∠∴=÷≈千米).答:B 、C 两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.23.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【答案】(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或47【解析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:930 423b cb c-++=⎧⎨-++=⎩解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:0 23k ak a-+=⎧⎨+=⎩解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a >-1时,显然F 应在x 轴下方,EF ∥AD 且EF=AD ,设F (a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=4综上所述,满足条件的a 的值为-3或4【点睛】本题考查抛物线与x 轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.24.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【答案】(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m+30(20-m )≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.25.为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.【答案】(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.26.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y 关于x 的函数关系式?自变量x 的取值范围是什么?药物燃烧后y 与x 的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg 时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【答案】(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1 ∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x 4=,得:x=4把y=3代入48yx,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°【答案】B【解析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.2.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C .【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.3.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14B .7C .﹣2D .2 【答案】D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6,x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集4.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(3233)B .(233)C .3332)D .(32,333【答案】A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=3333=1.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,33).故选A.5.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】A【解析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.6.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.【答案】C【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【答案】D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.8.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.如图,已知O的周长等于6cmπ,则它的内接正六边形ABCDEF的面积是()A 93B273C273D.3【答案】C【解析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,22OA AH-33cm,。

河南省洛阳市2019届九年级中考第一次模拟测试数学试题及答案

河南省洛阳市2019届九年级中考第一次模拟测试数学试题及答案

洛阳市2019年中招模拟考试(一)数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号写在答题卡第一面的指定位置上.一、选择题:本大题共10个小题,每小题3分,共30分.1.下面几个数中,最小的数是( )A .3-B .-πC ..02.目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳米,已知1纳米910-=米,用科学记数法将12纳米表示为( )米A .91210-⨯B .101.210-⨯C .81.210-⨯D .80.1210-⨯3.如图的几何体是由五个小正方体组合而成的,则这个几何体的主视图是( )A .B .C .D .4.下列运算正确的是( )A .222()x y x y +=+ B .32361128xy x y ⎛⎫-=- ⎪⎝⎭C. 632x x x ÷= D 2=±5.如图是洛阳市某周内日最高气温的折线统计图,关于这7天的日最高气温说法正确的是( )A .众数是28B .中位数是24 C.平均数是26 D .方差是86.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C.60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 7.关于x 的一元二次方程240x x k -+=有两个根,则k 的取值范围是( )A .4k <-B .4k ≤- C.4k < D .4k ≤8.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A .29B .13 C.49 D .599.如图,点B 时直线l 外一点,在l 的另一侧任取一点K ,以B 为圆心,BK 为半径作弧,交直线l 与点M 、N ;再分别以M 、N 为圆心,以大于12MN 为半径作弧,两弧相交于点P ;连接BP 交直线l 于点A ;点C 时直线l 上一点,点D 、E 分别是线段AB 、BC 的中点;F 在CA 的延长线上,,8,6FDA B AC AB ∠=∠==则四边形AEDF 的周长为( )A .8B .10 C. 16 D .1810.ABCD 周长为8厘米,点Q 是边AB 上一点,且1AQ =厘米,动点P 从点A 出发,沿折线A D C --运动.设动点P 运动的长度为x 厘米,线段AP 、AQ 、PQ 所围成图形的面积为y 平方厘米,作出y 与x 之间的函数图像如图所示.根据图像可以判定点P 运动所在的图形是( )A .B . C. D .第Ⅱ卷(共90分)二、填空题(本大题共5小题,每题3分,满分15分)11.0( 3.14)π-= .12.如图,矩形ABCD 、半圆O 与直角三角形EOF 分别是学生常用的直尺、量角器与三角板的示意图.已知图中点M 处的读数是145o,则FND ∠的读数为 .13.点()()()1122331,,3,,5,P y P y P y -均在二次函数22(0)y ax ax c a =-+<的图像上,则123,,y y y 的大小关系是 .14.如图,边长为2的正方形ABCD 以A 为中心顺时针旋转045到图中正方形'''AB C D 位置,则图中阴影部分的面积为 .15.如图,在Rt ABC ∆中,90ACB ︒∠=,且8,6AC BC ==.点P 是边AC 上一动点,以直线BP 为轴把ABP ∆折叠,使得点A 落在图中点'A 处,当'AA C ∆时直角三角形时,则线段CP 的长是 .三、解答题 (本大题共8小题,满分共75分.)16. 先化简,再求值:2443111x x x x x -+⎛⎫÷+- ⎪--⎝⎭,其中x 的值是不等式组3215x x -<⎧⎨+≤⎩的一个整数解.17. 某城市响应“绿水青山就是金山银山”的号召,准备在全市宣传开展“垃圾分类”活动,先对随机抽取的1000名公民的年龄段分布情况和对“垃圾分类”所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)补全条形图;(2)扇形图中态度为“一般”所对应的扇形的圆心角的度数是 ;(3)这次随机调查中,年龄段是“25岁一下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是 ;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,这个城市总人口大约500万人,则对开展“垃圾分类”持“支持”态度的估计有多少万人?图1图2 18. 如图,一次函数21y =x -与反比例函数k y x=在第一象限相交于点A ,与x 轴相交于点B ,与y 轴相交于点C ,且3AB BC =.(1)求点A 的坐标及反比例函数的解析式; (2)现以点A 为中心,把线段AC 逆时针旋转90o得到'AC ;①请在图中作出线段'AC ;②请直接写出'C 的坐标,并判断'C 是否在已知得双曲线上.19. 如图,ABC ∆为O 的内接三角形,AB 为O 的直径,过A 作AB 的垂线,交BC 的延长线于点D ,O 的切线CE 交AD 于点E .(1)求证:12CE AD =; (2)若2AB=,连接EO 并延长,交O 于点F .填空:①当EF = 时,四边形AOCE 为正方形;②当EF = 时, 四边形AECF 为菱形;20. 如图,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图,已知1BC =米,37MBC ︒∠=.从水平地面店D 处看点C ,仰角45ADC ︒∠=,从点E 处看点B ,仰角53AEB ︒∠=.且 2.2DE =米,求匾额悬挂的高度AB 的长. (参考数据:343sin 37,cos37,tan 37554︒︒︒≈≈≈)图1 图221.(1)该公司每套A 类产品或B 类产品的售价分别是多少万元?(2)公司为了生产的方便,只安排生产某一类电子产品且销售顺利,设生产销售某类电子产品x 套;①公司销售x 套A 类产品的利润表达式是1y = ;公司销售x 套B 类产品的利润表达式是2y = ;②怎样安排生产,才能使公司总利润最高.22.(1)问题发现如图1,在R t A B C∆和Rt CDE ∆中,90ACB DCE ︒∠=∠=,45CAB CDE ︒∠=∠=,点D 时线段AB 上一动点,连接BE . 图1填空: ①BE AD的值为 , ②DBE ∠的度数为 ; (2)类比探究如图2,在R t A B C ∆和Rt CDE ∆中,90ACB DCE ︒∠=∠=,60CAB CDE ︒∠=∠=,点D 是线段AB 上一动点,连接BE .请判断BE AD的值及DBE ∠的度数,并说明理由; 图2(3)拓展延伸 如图3,在(2)的条件下,将点D 改为直线AB 上以动点,其余条件不变,曲线段DE 的中点M ,连接BM 、CM ,若2AC =,则当CBM ∆是直角三角形时,线段BE 的长是多少?请直接写出答案.23.如图1,抛物线2154y ax x c =-+交x 轴于A B 、两点,交y 轴于点C .直线334y x =-+经过点B C 、. (1)求抛物线的解析式;(2)若点P 为直线BC 下方的抛物线上一动点(不与点B C 、重合),则PBC ∆的面积能够等于BOC ∆的面积吗?若能,求出相应的点P 的坐标;若不能,请说明理由;(3)如图2,现把BOC ∆平移至如图所示的位置,此时三角形水平方向一边的两个端点点'O 与点'B 都在抛物线上,称点'O 和点'B 为BOC ∆在抛物线上的一“卡点对”;如果把BOC ∆旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的“卡点对”.请直接写出BOC ∆在已知抛物线上所有“卡点对”的坐标.洛阳市2019年中招模拟考试(一)数学试卷参考答案一、选择题1-5:BCCBA 6-10: ADCDB二、填空题11.1- 12.o 55 13.123y =y >y 14.12π+ 15.3或4 三、解答题 16.2443111x x x x x -+⎛⎫÷+- ⎪--⎝⎭22(2)13111x x x x x ⎛⎫--=÷- ⎪---⎝⎭2(2)(2)(2)11x x x x x -+-=÷--2(2)11(2)(2)x x x x x --=⨯-+-22x x -=+解不等式组3215x x -<⎧⎨+≤⎩得32x -<≤,其整数解:21012212x --≠-、、 、 、 、、 、 x 可以等于10-、当1x =-时,原式=3-;当0x =时,原式=1-17.(1)条形图如下:(2)036(3)5%(4)72500=360⨯18.(1)分别把0x =,0y =代入21y x =-可得:(0,1), (0.5,0)C -B 过A 作AD x ⊥轴于D , 则BOC BDA ∆∆,3AD BD AB OC OB BC===, 1,0.5,=3, 1.5,2OC OB AD BD OD ==∴=∴=,(2,3)A ∴6y x∴= (2)①作图如下:②'6,1C (),点在双曲线上.19.(1),AB AD OA ⊥是O 的半径EA ∴与O 相切,又EC ∴与O 相切,12EA=EC ∴∴∠=∠ 又AB ∴与O 的直径,90ACB ACD ︒∴∠=∠=,2390,190D ︒︒∴∠+∠=∠+∠=3D ∴∠=∠DE CE ∴=又EA=ECDE EA EC ∴== 即12CE AD =(21,②320.过C 作CF AM ⊥于F ,过C 作CH AD ⊥于H ,则四边形AHCF 是矩形,所以AF =CH,CF =AH .在Rt BCF ∆中,1BC =,037CBF ∠=.BF BCcos370.8,CF BCsin 370.6︒︒====在Rt BAE ∆中,053BEA ∠=,所以34AE AB =在Rt CDH ∆中,CDH 45︒∠=, 0.8CH DH FA AB ===+,0.60.8 1.4AD AH DH AB AB =+=++=+,3 2.24AD AE DE AB =+=+, 31.4 2.24AB AB +=+, 3.2AB =即匾额悬挂的高度是3.2米21.(1)设每套A 类产品的售价是a 万元,每套B 类产品的售价是b 万元,32242326a b a b +=⎧⎨+=⎩解得:46a b =⎧⎨=⎩即每套A 类产品的售价是4万元,每套B 类产品的售价是6万元.(2)①每套A 类产品的利润1.5x 万元,公司生产x 套B 类产品的利润为6(44)24x x x -+=-(万元)②若1.5248x x x =-=即如果总套数是8套,生产A 类与B 类产品利润相同;若1.5248x x x >-<即如果总套数小于8套,生产A 类产品利润大;若1.5248x x x <-<即总套数大于8套,生产B 类产品利润大.22.(1)1,090(2)90BE DBE AD︒==,理由如下: 在Rt ABC ∆和Rt CDE ∆中,90,60ACB DCE CAB CDE ︒︒∠=∠=∠=∠=Rt ABCRt DEC ∴∆ CA CB CD CE∴= 又12∠=∠ACD BCE ∴∆∆360BE CB A AD CA︒∴∠=∠===,90DBE ︒∴∠=(3)3+或323.(1)分别把0x =,0y =代入334y x =-+可得:()0,3C 、(4,0)B 把C (0,3),(4,0)B 两点的坐标代入2154y ax x c =-+得161503a c c -+=⎧⎨=⎩, 解得343a c ⎧=⎪⎨⎪=⎩∴抛物线的解析式2315344y x x =-+ (2)直线34y x =-和BC 平行,直线34y x =-和抛物线2315344y x x =-+的交点就是满足条件的点P , 233444153y x y x x ⎧⎪⎪⎨=+=-⎪-⎪⎩ 解得232x y =⎧⎪⎨=-⎪⎩ 即当3(2,)2P -时,两个三角形面积相同. (3)①(1,0)与(4,0) ②121(,)216与921216(,) ③(0,3)与(5,3)。

河南省洛阳市2019-2020学年中考数学一模考试卷含解析

河南省洛阳市2019-2020学年中考数学一模考试卷含解析

河南省洛阳市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算(x -2)(x+5)的结果是A .x 2+3x+7B .x 2+3x+10C .x 2+3x -10D .x 2-3x -102.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <03.如图,在半径为5的⊙O 中,弦AB=6,点C 是优弧»AB 上一点(不与A ,B 重合),则cosC 的值为( )A .43B .34C .35D .454.下列四个实数中,比5小的是( )A .30-1B .27C .37-1D .17+15.如图,两个反比例函数y 1=1k x(其中k 1>0)和y 2=3x 在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .3:1B .2:3C .2:1D .29:146.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .437.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=59.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+10.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°11.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )A.6个B.7个C.8个D.9个12.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.144______.15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)16.分解因式x2﹣x=_______________________17.分解因式:4a3b﹣ab=_____.18.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.19.(6分)小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图(A :0<t≤10,B :10<t≤20,C :20<t≤30,D :t >30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A 组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D 组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.20.(6分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.21.(6分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.22.(8分)某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在求出点O到BC的距离.参考数据:sin73.7°≈24 25,cos73.7°≈725,tan73.7°≈24723.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)18 12备注(1)用不超过16800元购进两类图书共1000本;(2)科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?24.(10分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25.(10分)如图,66⨯网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知Rt ABCV(1)以点O 为旋转中心,分别画出把11BB C V 顺时针旋转90︒,180︒后的221B B C △,23B AC △; (2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形123CC C C ,四边形12ABB B 的形状;②直接写出12123ABB B CC C C S S 四边形四边形的值;③设Rt ABC V 的三边BC a =,AC b =,AB c =,请证明勾股定理.26.(12分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.27.(12分)如图,在▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:△ADE ≌△CBF ;求证:四边形BFDE 为矩形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【解析】【分析】根据多项式乘以多项式的法则进行计算即可.【详解】故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.2.D【解析】【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax 2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a 与b 的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax 2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0∵y=ax 2+bx ﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-2b a<0. ∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t <0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.3.D∴BD=22106-=8,∴cosD=BDAD=810=45.∵∠C=∠D,∴cosC=45.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.4.A【解析】【分析】首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.【详解】解:A、∵5306,∴5﹣1301<6﹣1,301<5,故此选项正确;B、∵272825.=>∴275>,故此选项错误;C、∵637<7,∴537﹣1<6,故此选项错误;D、∵4175,∴51716<<,故此选项错误;故选A.【点睛】考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.5.A【解析】试题分析:首先根据反比例函数y2=3x的解析式可得到ODB OACS S=V V=12×3=32,再由阴影部分面积为66△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=3.故选A.考点:反比例函数系数k的几何意义6.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.7.A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.8.B【解析】【分析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.A【解析】【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.11.A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴,.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14【解析】【分析】=2,再求2的算术平方根即可.【详解】=2,【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.15.下降【解析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.16.x(x-1)【解析】x 2﹣x= x(x-1).故答案是:x(x-1).17.ab(2a+1)(2a-1)【解析】【分析】先提取公因式再用公式法进行因式分解即可.【详解】4a 3b- ab= ab(4a 2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.18.19【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是19,故答案为19.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.(1)y=2x;(255【解析】【分析】(1)根据题意得出2232m nm n⎧=⎪⎨⎪=-⎩,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,23),∴AB=BD=2,∴m=n﹣2,∴2232m nm n⎧=⎪⎨⎪=-⎩,解得13mn=⎧⎨=⎩,∴D(1,2),∴k=2,∴反比例函数的表达式为y=2x;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=54,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴DG CDFD FH=,即5142FD=,∴FD=52,∴4==.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.21.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点. 22.点O 到BC 的距离为480m .【解析】【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【详解】作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.23.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B类图书购进400本,利润最大.【解析】【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得54054010 1.5x x-=, 化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A 类图书的标价为:1.5x=1.5×18=27(元),答:A 类图书的标价为27元,B 类图书的标价为18元;(2)设购进A 类图书t 本,总利润为w 元,A 类图书的标价为(27-a )元(0<a <5),由题意得,()1812100016800600t t t +-≤⎧≥⎨⎩, 解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t )=(9-a )t+6(1000-t )=6000+(3-a )t ,故当0<a <3时,3-a >0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t 值如何变化,总利润均为6000元;当3<a <5时,3-a <0,t=600时,总利润最大,且小于6000元;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.24.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32.【解析】【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论.【详解】(1)①如图1,4 m= Q,∴反比例函数为4 yx =,当4x=时,1y=,()4,1B∴,当2y=时,42x∴=,2x∴=,()2,2A∴,设直线AB的解析式为y kx b=+,∴2241k bk b+=⎧⎨+=⎩,∴123kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为132y x=-+;②四边形ABCD是菱形,理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =, 48433PA ∴=-=,208433PC =-=, PA PC ∴=,PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =Q ,∴ 8844n m n m m n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.25.(1)见解析;(2)①正方形;②59;③见解析. 【解析】【分析】(1)根据旋转作图的方法进行作图即可;(2)①根据旋转的性质可证AC=BC 1=B 1C 2=B 2C 3,从而证出四边形CC 1C 2C 3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB 1B 2是正方形;②根据相似图形的面积之比等相似比的平方即可得到结果;③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.【详解】(1)如图,(2)①四边形CC 1C 2C 3和四边形ABB 1B 2是正方形.理由如下:∵△ABC ≌△BB 1C 1,∴AC=BC 1,BC==B 1C 1,AB=BB 1.再根据旋转的性质可得:BC 1=B 1C 2=B 2C 3,B 2C 1=B 2C 2=AC 3,BB 1=B 1B 2=AB 2.∴CC 1=C 1C 2=C 2C 3=CC 3AB=BB 1=B 1B 2=AB 2∴四边形CC 1C 2C 3和四边形ABB 1B 2是菱形.∵∠C=∠ABB 1=90°,∴四边形CC 1C 2C 3和四边形ABB 1B 2是正方形.②∵四边形CC 1C 2C 3和四边形ABB 1B 2是正方形,∴四边形CC 1C 2C 3∽四边形ABB 1B 2. ∴12123ABB B CC C C S S 四边形四边形=2(1)AB C C∵,CC 1=, ∴12123ABB B CC C C S S 四边形四边形=2=59. ③ 四边形CC 1C 2C 3的面积=221()a b C C =+ =222ab a b ++ , 四边形CC 1C 2C 3的面积=4△ABC 的面积+四边形ABB 1B 2的面积=4⨯12ab +2c =22ab c + ∴222ab a b ++ =22ab c +, 化简得:22a b + =2c . 【点睛】本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键. 26.吉普车的速度为30千米/时.【解析】【分析】先设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时,列出方程求出x 的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. 由题意得:1515151.560x x -=. 解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.27.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由DE 与AB 垂直,BF 与CD 垂直,得到一对直角相等,再由ABCD 为平行四边形得到AD=BC ,对角相等,利用AAS 即可的值;(2)由平行四边形的对边平行得到DC 与AB 平行,得到∠CDE 为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.。

【附5套中考模拟试卷】河南省洛阳市2019-2020学年中考第一次质量检测数学试题含解析

【附5套中考模拟试卷】河南省洛阳市2019-2020学年中考第一次质量检测数学试题含解析

河南省洛阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中,俯视图为三角形的是( )A .B .C .D .2.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π3.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°4.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠35.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( )A .平均数B .标准差C .中位数D .众数6.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah .例如:三点坐标分别为A (1,2),B (﹣3,1),C (2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D (1,2)、E (﹣2,1)、F (0,t )三点的“矩面积”为18,则t 的值为( )A .﹣3或7B .﹣4或6C .﹣4或7D .﹣3或67.下列几何体中,其三视图都是全等图形的是( )A .圆柱B .圆锥C .三棱锥D .球8.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 9.对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )A .8×107B .880×108C .8.8×109D .8.8×101012.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( )A .9B .4C .43D .33二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x 元(10≤x≤20且x 为整数)出售,可卖出(20﹣x )件,若使利润最大,则每件商品的售价应为_____元.14.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+.其中正确的序号是 (把你认为正确的都填上).15.方程1223x x =+的解为__________.16.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).17.如图,直线x=2与反比例函数2y x=和1y x =-的图象分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是_____.18.关于x 的一元二次方程x 2-2x +m -1=0有两个相等的实数根,则m 的值为_________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求AC 和AB 的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)20.(6分)如图,在正方形ABCD 中,点P 是对角线AC 上一个动点(不与点,A C 重合),连接PB 过点P 作PF PB ⊥,交直线DC 于点F .作PE AC ⊥交直线DC 于点E ,连接,AE BF .(1)由题意易知,ADC ABC ∆∆≌,观察图,请猜想另外两组全等的三角形∆ ∆≌ ;∆ ∆≌ ;(2)求证:四边形AEFB 是平行四边形;(3)已知22AB =PFB ∆的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.21.(6分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.22.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.23.(8分)解不等式组223252x xx x≤+⎧⎨-≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.24.(10分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.25.(10分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.26.(12分)直线y1=kx+b与反比例函数28 (0)y xx=>的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣8x≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.27.(12分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.2.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,∴∠AOC =90°,∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A .【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.3.C【解析】分析:由点I 是△ABC 的内心知∠BAC=2∠IAC 、∠ACB=2∠ICA ,从而求得∠B=180°﹣(∠BAC+∠ACB )=180°﹣2(180°﹣∠AIC ),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I 是△ABC 的内心,∴∠BAC=2∠IAC 、∠ACB=2∠ICA ,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB )=180°﹣2(∠IAC+∠ICA )=180°﹣2(180°﹣∠AIC )=68°,又四边形ABCD 内接于⊙O ,∴∠CDE=∠B=68°,故选C .点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.4.B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.5.B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.6.C【解析】【分析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.7.D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.8.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =1. 故选B .9.C【解析】判断一元二次方程的根的情况,只要看根的判别式2b 4ac ∆=-的值的符号即可:∵a=1,b=()2k 1-+,c=2k 2k 1-+-,∴()()2222b 4ac 2k 141k 2k 188k 0⎡⎤∆=-=-+-⨯⨯-+-=+>⎣⎦. ∴此方程有两个不相等的实数根.故选C .10.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,33∴△ABC 的面积为12BC•AD=1232⨯3 S 扇形BAC =2602360π⨯=23π, ∴莱洛三角形的面积S=3×23π﹣2×3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=880 0000 0000=8.8×1010,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D【解析】【分析】【详解】解:设方程的另一个根为a a=解得a=故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.14.①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。

【精选3份合集】河南省洛阳市2019年中考一模数学试卷有答案含解析

【精选3份合集】河南省洛阳市2019年中考一模数学试卷有答案含解析

为明文,已知某种加密规则为,明文 a,b 对应的密文为 a+2b,2a-b,例如:明文 1,2 对应的密文是
5,0,当接收方收到的密文是 1,7 时,解密得到的明文是( )
A.3,-1
B.1,-3
C.-3,1
D.-1,3
解析:A
【解析】
【分析】
根据题意可得方程组
a 2b 2a b
1 7
,再解方程组即可.
一、选择题 1.如图,将△ABC 沿 BC 边上的中线 AD 平移到△A'B'C'的位置,已知△ABC 的面积为 9,阴影部分三角 形的面积为 1.若 AA'=1,则 A'D 等于( )
A.2 解析:A
B.3
C、S△A′EF=1 且 AD 为 BC 边的中线知 S = △A′DE 1 S△A′EF=2,S△ABD= 1 S△ABC= 9 ,根据
∴A′E∥AB,
∴△DA′E∽△DAB,
则( AD )2 AD
S S
A DE ABD

,即
AD AD
)2 1
2 9 2

解得 A′D=2 或 A′D=- 2 (舍), 5
故选 A.
点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形
的判定与性质等知识点.
2.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原
【详解】
由题意得:
a 2b 2a b
1 7

a 3
解得:
b

1
故选 A. 3.如图,抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=1,与 x 轴的一个交点坐标为(-1,0),其部 分图象如图所示,下列结论:①4ac<b2;②方程 ax2+bx+c=0 的两个根是 x1=-1,x2=3;③3a+c> 0;④当 y>0 时,x 的取值范围是-1≤x<3;⑤当 x<0 时,y 随 x 增大而增大.其中结论正确的个数是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛阳市2019年中招模拟考试(一)数学试卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标为)4ab ac 42(2--,a b .一、选择题(每小题3分,共24分)1.下面的数中,与-2的和为O 的是 (A) 2 (B) -2 (C)12 (D)-122.下列图形中,既是轴对称图形又是中心对称图形的是3.下列运算,正确的是 (A)4a-2a=2 (B)a 6÷a 3=a 2 (C)(-a 3b )2=a 6b 2 (D)(a-b )2=a 2-b 24.洛阳某中学足球队的1 8名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是(A)15, 15 (B)15, 15.5 (C)15,16(D )16,155.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为6.不等式组13x+1>0的解集在数轴上可表示为 2-x ≥07.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D=30,下列四个结论:①OA 上BC;②BC= cm ;③sin ∠ABOC是菱形.其中正确结论的序号是(A)①③ (B)①②③④ (C)②⑨④ (D)①③④8.已知点A为某封闭图形边界上一定点,设点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时问为x,线段AP的长为y.表示y与x的函数关系的图象大致如下图所示,则该封闭图形可能是二、填空题(每小题3分,共21分)9.a,b是两个连续整数,若<b+_____________1 0.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为_______________11.玩具店进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_____________.12.如图,直线∥m//n,等边△ABC的顶点B、C份别在直线n和m上,边BC与直线n 所夹的角为25,则∠α的度数为____________13.如图,在扇形AOB中,∠AOB=90,半径OA=6.将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的而积__________.14.如图,平行于x轴的直线AC分别交抛物线y1 =X2 (x≥0)与y2=24x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=_________.15. 如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC 边的A'处,折痕所在直线同时经过边AB、AD(包括端点),设BA'=x,则x的取值范围是______________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(a+12a+)÷(a-2+32a+笔)其中a满足a2-a-2=0.17.(9分)老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有_________名,D类男生有__________名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或面树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图,在Rt△ABC中,∠ACB=90,以AC为直径的⊙○的切线,交BC于E.(1)求证:点E是边BC的中点;(2)当∠B=___________ o时,四边形ODEC是正方形.19. (9分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学们在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP行走了26米,在坡顶A处又测得该塔的塔顶B的仰角为76.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到l米).(参考数据:sin76︒≈0.97,cos76≈0.24,tan 76≈4.00)20.(9分)如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图像经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标。

21.(10分)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元。

(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购期中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱。

22.(10分)【操作探究】如图1,四边形ABCD是正方形,E是CD边的中点,把△ADE沿AE折叠后AD的延长线交边BC于M,请判断线段AM、AD、MC之间的数量关系:_______________;【拓展延伸】若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2上一题中的结论是否成立?若成立,请给予证明,若不成立,请说明理由;【解决问题】如图3,四边形ABCD中,AB⊥BC,DC⊥BC,垂足分别是B、C,AB=2CD,M是线段BC上一点,且∠AMB=2∠MAD,已知图中两个三角形的面积S△ADM=S1,S△CDM=S2,请用S1、S2表示S△ABM23.(11分)抛物线y=ax2+bx+c(a 0)的顶点坐标为(2,-1),并且与y轴交于点C (0,3),与x轴交于两点A、B.(1)求抛物线的解析式;(2)设点P 是位于直线BC 下方的抛物线上一动点。

○1如图1,过点P 做PD ⊥BC ,垂足为D ,求垂线段PD 的最大值并求出此时点P 的坐标; ○2如图2,抛物线的对称轴与直线BC 交于点M ,过点P 做y 轴的平行线PQ ,与直线BC 交于点Q ,问是否以存在点P ,使得M 、P 、Q 为顶点的三角形与△BCO 相似,若存在,直线写出点P 的坐标;若不存在,请说明理由。

洛阳市2019年中招模拟考试(一)数学试卷参考答案 一、选择题:1.A,2.C,3.C,4.B,5.B,6.A,7.B,8.B 二、填空题:9.3, 10.3.5×108, 11.2100,12.35°,13.3129-π,14.2,15.2≤x≤8 三、解答题: 16.原式= = ………………2分= …………………………4分 a 2-a -2=0,a =2或a =-1,………………………………6分当a =-1时,原式无意义 当a =2时,原式=3.…………………………………8分17.(1)(6+4)÷50%=20.所以李老师一共调查了20名学生.…………………2分(2)C 类女生有3名,D 类男生有1名;补充条形统计图………………6分 (3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=0.5.………………9分 18.(1)∵AC 为直径,∠ACB=90°∴BC 为切线 ∠ADC =90°∵DE 为切线,∴DE=EC……………………………3分∴∠EDC =∠ECD ,()234212a a 2++-÷+++a a a ()()()1a 1a 2a 2a 1a 2-++∙++1a 1a -+从A 类中选取 从D 类中选取 男 男女 女1 男女 女2女男∵∠BDE +∠EDC =90°,∠B +∠ECD =90°,∴∠B =∠BDE ,∴ED =E B .…………………………………6分∴EB =EC ,即点E 为边BC 的中点;…………………………………7分 (2)45………………………………………………………………9分 答:古塔BC 的高度约为19米.……………9分20.(1)由题意,得2OA BC ==,将2y =代入132y x =-+,解得2x =,(22)M ∴,…………………………………2分反比例函数ky x=的图象经过点(22)M ,,22k∴=,4k ∴=.∴反比例函数的解析式4y x=…………………4分(2)4424=-⨯=--=∴∆∆NOC AOM OABC BMON S S S S 矩形四边形. 由题意,得12OP ·MA =4,MA =2, 4OP ∴=,∴点P 的坐标为(0,4)或(0,4-)…………………………………………9分21.(1)设每件甲种玩具的进价是a 元,每件乙种玩具的进价是b 元,由题意得解得, ……………………….4分答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元; (2)当0<x≤20时,y=30x ;当x >20时,y=20×30+(x -20)×30×0.7=21x+180;………………………7分 (3)设购进玩具x 件(x >20),则乙种玩具花费27x 元;19. 解:(1)过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1∶2.4,∴125=PH AH 设AH =5k ,则PH =12k ,由勾股定理得AP =13k . ∴13k =26.解得k =2.∴AH =10.答:坡顶A 到地面PQ 的距离为10米.………3分 (2)延长BC 交PQ 于点D . ∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ .∴四边形AHDC 是矩形,CD =AH =10,AC =DH ……4分 ∵∠BPD =45°,∴PD =BD .设BC =x ,则x +10=24+DH .∴AC =DH =x -14.……………6分在Rt △ABC 中, ACBC =︒76tan 即01.414≈-x x 解得356=x ∴19≈x {2313514132=+=+b a b a {3027==a b当27x=21x +180,则x=30所以当购进玩具正好30件时,选择购其中任何一种均可; 当27x >21x+180,则x >30所以当购进玩具超过30件时,选择购甲种玩具省钱; 当27x <21x+180,则x <30所以当购进玩具少于30件,选择购乙种玩具省钱.………………………10分 22.(1)AM=AD+MC…………………………………………………………..2分 (2)结论AM=AD+MC 仍然成立.……………………………..4分 证明:延长AE 、BC 交于点P ,如图2(1),∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE=∠EPC . ∵AE 平分∠DAM , ∴∠DAE=∠MAE .∴∠EPC=∠MAE . ∴MA=MP .在△ADE 和△PCE 中, ∠DAE=∠CPE∠AED=∠PEC 图2(1) DE=CE∴△ADE ≌△PCE (AAS ).∴AD=PC .∴MA=MP=PC+MC=AD+MC .………………………………..7分(3)S △ABM =2 S 1-4 S 2…………………………………………………10分23.(1)由题意可设抛物线的表达式为()122--=x a y . ∵点C ()3,0在抛物线上,∴()31202=--a ,解得1=a .∴342+-=x x y ………………………………3分 (2)①过P 作y 轴的平行线交BC 与Q , 直线BC 的解析式为:y=-x+3 则PQ=x x x x x 334322+-=+--+-)()(………5分 PD=)3(22222x x PQ +-=, 当x=1.5时有最大值829…………………………………………7分 对应点P(43-,23)………………………………………..9分 ②(1,0) ()122,-………………………11分。

相关文档
最新文档