九年级数学相似三角形基本模型专题训练
微专题16 相似三角形之五大模型++++课件+2025年九年级中考数学总复习人教版(山东)
过一个直角顶点向两边作垂线,得到△PGE∽△PHF
29
【针对训练】
14.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,在Rt△MPN中,∠MPN=90°,点P在AC
3
上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=_______.
30
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM,
微专题16
相似三角形
之五大模型
2
模型1
特点
A字型(公共顶角)
两个三角形有一个公共角∠BAC,或者有DE∥BC,或者DE与BC不平行,
有∠ABC=∠AED
示例
思路 △ADE∽△ABC或△AED∽△ABC.如果没有明确说明对应关系,就应分
结论 以上两种情况讨论
3
【针对训练】
1.如图,在Rt△ABC中,∠ABC=90°,E,F分别为AC,BC的中点,连接EF,H为AE的中点,
1
ON分别交CA,CB于点P,Q,∠MON绕点O任意旋转.当 = 时, 的值为______;当
2
1
= 时, 的值为______.(用含n的式子表示)
31
16.(2024·青岛市南区二模)如图,点F在四边形ABCD的边AB上,
(1)如图1,当四边形ABCD是正方形时,过点B作BE⊥CF,垂足为O,交AD于点E.则BE
∴∠PBG=180°-∠ABC=90°,
∴∠PBG=∠POC=90°,
∵∠BPG=∠OPC,
∴△BPG∽△OPC,
∴ = ,
专题27.35 相似三角形几何模型-一线三等角(培优篇)(专项练习)-2022-2023学年九年级数
专题27.35 相似三角形几何模型-一线三等角(培优篇)(专项练习)一、单选题1.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB 上取点P ,使得△PAD 与△PBC 相似,则这样的P 点共有( )A .1个B .2个C .3个D .4个2.如图,已知正方形ABCD 的边长为4,P 是BC 边上一动点(与B ,C 不重合)连接AP ,作PE ∠AP 交∠BCD 的外角平分线于E ,设BP =x ,∠PCE 的面积为y ,则y 与x 的函数关系式是( )A .24y x x =-+B .2122y x x =- C .2122y x x =-+D .24y x x =-3.如图,在平面直角坐标系中,直线12y x m =+不经过第四象限,且与x 轴,y 轴分别交于,A B 两点,点P 为OA 的中点,点C 在线段OB 上,其坐标为(0,2),连结BP ,CP ,若BPC BAO =∠∠,那么m 的值为( )A .B .4C .5D .64.将矩形OABC 如图放置,O 为坐标原点,若点A (﹣1,2),点B 的纵坐标是72,则点C 的坐标是( )A.(4,2)B.(3,32)C.(3,94)D.(2,32)二、填空题5.如图,将等边三角形ABC折叠,使得点C落在边AB上的点D处,折痕为EF,点E,F分别在AC和BC上.若AC=8,AD=2,则CECF=_______________.6.如图,矩形ABCD中,AD=5,AB=8,点E为DC上一个动点,把∠ADE沿AE折叠,若点D的对应点D′,连接D′B,以下结论中:∠D′B的最小值为3;∠当DE=52时,∠ABD′是等腰三角形;∠当DE=2是,∠ABD′是直角三角形;∠∠ABD′不可能是等腰直角三角形;其中正确的有_____.(填上你认为正确结论的序号)7.如图,在四边形ABCD中,∠A=∠B,点E为AB边的中点,∠DEC=∠A.有下列结论:∠DE平分∠AEC;∠CE平分∠DEB;∠DE平分∠ADC;∠EC平分∠BCD.其中正确的是_______________.(把所以正确结论的序号都填上)三、解答题8.如图,四边形ABCD 是正方形,点E 是BC 边上动点(不与,B C 重合).连接,AE 过点E 作,EF AE ⊥交DC 于点F .()1求证:ABE ECF ;()2连接AF ,试探究当点E 在BC 什么位置时,BAE EAF ∠=∠,请证明你的结论.9.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADEC ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.10.如图,已知∠ABC 是边长为12的正三角形,AD 是边BC 上的高线,CF 是外角ACE的平分线,点P是边BC上的一个动点(与点B,C不重合),∠APQ=60°,射线PQ分别与边AC,射线CF交于点N,Q.(1)求证:∠ABP∠∠PCN;(2)不管点P运动到何处,在不添辅助线的情况下,除第(1)小题中的一对相似三角形外,请写出图中其它的所有相似三角形;(3)当点P从BD的中点运动到DC的中点时,点N都随着点P的运动而运动.在此过程中,试探究:能否求出点N运动的路径长?若能,请求出这个长度;若不能,请说明理由.11.如图,已知直线y=-34x+b与y轴相交于点B(0,3),与x轴交于点A,将△AOB沿y轴折叠,使点A落在x轴上的点C.(1)求点C的坐标;(2)设点P为线段CA上的一个动点,点P与点A、C不重合.联结PB.以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC.∠求证:△PBC∽△MPA.∠是否存在点P,使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图∠,在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.【试题再现】如图∠,在∠ABC中,∠ACB=90°,直角顶点C在直线DE上,分别过点A,B作AD∠DE于点D,BE∠DE于点E.求证:∠ADC∠∠CEB.【问题探究】在图∠中,若∠A=∠B=∠DEC=40°,试判断点E是否是四边形ABCD的边AB 上的相似点,并说明理由.【深入探究】如图∠,AD∠BC,DP平分∠ADC,CP平分∠BCD交DP于点P,过点P作AB∠AD于点A,交BC于点B.(1)请证明点P是四边形ABCD的边AB上的一个强相似点.(2)若AD=3,BC=5,试求AB的长.13.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,4AB =.(1)求PEPB的值; (2)当PCE ∆是以PC 为底的等腰三角形时.请求出AP 的值;14.(1)【问题情境】八上《伴你学》第138页有这样一个问题:如图1,把一块三角板(,90AB BC ABC =∠=︒)放入一个“U ”形槽中,使三角形的三个顶点A 、B 、C 分别在槽的两壁及底边上滑动,已知90D E ∠=∠=︒,在滑动过程中,你发现线段AD 与BE 有什么关系?试说明你的结论;(2)【变式探究】小明在解决完这个问题后,将其命名为“一线三等角”模型;如图2,在ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,若B FDE C ∠=∠=∠,则这三个相等的角之间的联系又会使图形中出现其他的一些等角.请你写出其中的一组,并加以说理;(3)【拓展应用】如图3,在ABC ∆中,BA BC =,45B ∠=︒,点D 、F 分别是边BC 、AB 上的动点,且2AF BD =.以DF 为腰向右作等腰DEF ∆,使得DE DF =,45EDF ∠=︒,连接CE .∠试判断线段DC 、BD 、BF 之间的数量关系,并说明理由;∠如图4,已知2AC =,点G 是AC 的中点,连接EA 、EG ,直接写出EA EG +的最小值.15.感知∠(1)数学课上,老师给出了一个模型∠如图1,∠BAD =∠ACB =∠AED =90°,由∠1+∠+2+∠BAD =180°,∠2+∠D +∠AED =180°,可得∠1=∠D ;又因为∠ACB =∠AED =90°,可得∠ABC ∠∠DAE ,进而得到BCAC= .我们把这个数学模型称为“一线三等角”模型.应用∠(2)实战组受此模型的启发,将三等角变为非直角,如图2,在∠ABC 中,点D 在边BC 上,并且DA=DE ,∠B =∠ADE =∠C .若BC =a ,AB=b ,求CE 的长度(用含a ,b 的代数式表示).拓展∠(3)创新组突发奇想,将此模型迁移到平行四边形中,如图3,在平行四边形ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若∠DEF =∠B .求证∠AB ·FE =BE ·DE .16.[模型建立](一线三等角)(1)如图1,等腰Rt ABC 中,90,,ACB CB CA ∠=︒=直线ED 经过点C ,过点A 作AD ED ⊥于点,D 过点B 作BE ED ⊥于点,E 求证:BEC CDA ≌;[模型应用](2)如图2,直线14:43l y x =+与坐标轴交于点,A B 、直线2l 经过点A 与直线1l 垂直,求直线2l 的函数表达式.(3)如图3,平面直角坐标系内有一点()6,8,B -过点B 作BA x ⊥轴于点A BC y ⊥、轴于点,C 点P 是线段AB 上的动点,点D 是直线22y x =-+上的动点且在第四象限内.若CPD △成为等腰直角三角形,请直接写出点D 的坐标.参考答案1.C解:设AP=x ,则BP=7-x ,然后根据对应关系,分情况为:∠当∠ADP∠∠BCP 时,可得AD APBC BP =,即237x x =-,解得x=145,这时有一个P点;∠当∠ADP∠∠BPC 时,可得AD APBP BC =,即273x x =-,解得x=1或x=6,因此这样的点有两个;因此符合条件的P 点共有3个. 故选C【点拨】此题主要考查了相似三角形的性质,解题时,先根据相似三角形的性质,和相似三角形的对应关系,列出相应的比例式,求解即可.2.C解:过点E 作EH ∠BC 的延长线于点H ,因为∠APB+∠EPC=90°, ∠BAP+∠APB=90°,所以∠BAP=∠EPH ,因为∠B=∠H,所以∠ABP ∠∠PHE ,设EH =a ,因为∠ECH=45°,∠H=90°,所以CH =EH =a ,因为BP =x ,所以CP =4-x ,根据相似三角形的性质,可知AB PHBP EH=,即 44x ax a-+=,整理得:()()40x a x --=,解得()124,x x a ==不符合题意,所以y 与x 的函数关系式为:()211142222y PC EH x x x x =⨯⨯=⨯-⨯=-+,故选C.3.D 【分析】典型的“一线三等角”,构造相似三角形△AOB∠∠DPC,即可证明△PCD∠∠BPA ,由相似比求得边的相应关系,从而求解.解:在x 轴上找点D (4,0),连接CD.由12y x m =+可得A(-2m ,0 ),B(0,m ),直线12y x m =+不经过第四象限,所以m>0,所以OA=2m ,OB=m ;因为C 坐标为()0,2,点D (4,0)所以OC=2,OD=4, 因为12OB OC OA OD ==,∠AOB=∠DOC=90° ,所以△AOB∠∠DPC,所以∠CDO=∠BAO. 又因为BPC BAO ∠=∠,所以根据三角形内角和和平角定义可得:∠APB+∠1=∠APB+∠CPD所以∠1=∠CPD ,又因为∠CDO=∠BAO ,所以△PCD∠∠BPA ,所以AB APDP DC= , 因为点P 为OA 的中点,所以AP=OP=m ,PD=m+4,Rt △AOB 中,由勾股定理得m ,同理得AB APDP DC ==,解得m=6. 故选D.【点拨】本题考查一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,4.B 【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM =32=,MO =3,进而得出答案. 解:如图,过点A 作AE ∠x 轴于点E ,过点B 作BF ∠x 轴于点F ,过点A 作AN ∠BF 于点N ,过点C 作CM ∠x 轴于点M .∠∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∠∠EAO =∠COM , 又∠∠AEO =∠CMO =90°,∠∠AEO ∠∠OMC , ∠OE AE CM OM=, ∠∠BAN +∠OAN =90°,∠EAO +∠OAN =90°,∠∠BAN =∠EAO =∠COM ,在△ABN 和△OCM 中,BNA CMO BAN COM AB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABN ∠∠OCM (AAS ),∠BN =CM .∠点A (﹣1,2),点B 的纵坐标是72, ∠BN 32=, ∠CM 32=, ∠1232OM =,∠MO =3,∠点C 的坐标是:(3,32). 故选:B .【点拨】本题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM 的长是解题的关键.5.75解:∠∠ABC 是等边三角形,∠∠A =∠B =∠C =60°,AB =AC =BC =8,∠AD =2,∠DB =6,由折叠的性质可知,∠EDF =∠C =60°,EC =ED ,FC =FD ,∠∠AED +∠EDA =120°,∠EDA +∠BDF =120°,∠∠AED =∠BDF ,∠∠AED ∠∠BDF ,∠DF DE =BD DF BF AE AD DE ++++=BD BC AD AC ++=1410=75,∠CF CE =DF DE =75,故答案为75. 点睛:本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.6.∠∠∠【分析】当D′落在线段AB 上时,D′B 的值最小,此时D′B =AB ﹣AD =3,得出∠正确; 过D′作MN∠AB 交AB 于点N ,交CD 于点M ,设AN =x ,则EM =x ﹣2.5,证出∠ED′M =∠D′AN ,因此△EMD′∠∠D′NA ,得出对应边成比例ED EM AD D N =''',求出x =4,得出AN =BN ,因此AD′=D′B ,得出∠正确;当DE =2时,假设△ABD′是直角三角形,则E 、D′、B 在一条直线上,作EF∠AB 于点F ,由勾股定理求出D′B 、EB ,得出∠不正确;当AD′=D′B 时,由勾股定理的逆定理得出△ABD′不是直角三角形,当△ABD′是直角三角形时,由勾股定理求出D′B ,得出AD′≠D′B ,因此△ABD′不可能是等腰直角三角形,得出∠正确.解:当D′落在线段AB 上时,D′B 的值最小,如图1所示:此时D′B =AB ﹣AD =8﹣5=3,∠∠正确;过D′作MN∠AB 交AB 于点N ,交CD 于点M ,如图2所示:设AN =x ,则EM =x ﹣2.5,∠∠AD′N =∠DAD′,∠ED′M =180°﹣∠AD′E ﹣∠AD′N =180°﹣90°﹣∠AD′N =90°﹣∠AD′N ,∠∠ED′M =90°﹣∠DAD′,∠∠D′AN =90°﹣∠DAD′,∠∠ED′M =∠D′AN ,∠MN∠AB ,∠∠EMD′=∠AND′,∠∠EMD′∠∠D′NA , ∠ED EM AD D N=''', 即,2.55=解得:x =4,∠AN =BN ,∠AD′=D′B ,即△ABD′是等腰三角形,∠∠正确;当DE=2时,假设△ABD′是直角三角形,则E、D′、B在一条直线上,作EF∠AB于点F,如图3所示:D′B==∠2∠∠不正确;当AD′=D′B时,52+52≠82,∠∠ABD′不是直角三角形,当△ABD′是直角三角形时,D′B=∠AD′≠D′B,∠∠ABD′不可能是等腰直角三角形,∠∠正确;故答案为∠∠∠.【点拨】本题考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、勾股定理的逆定理、等腰直角三角形的判定等知识;本题综合性强,有一定难度,熟练掌握矩形的性质和翻折变换的性质是解决问题的关键.7.∠∠解:试题分析:在∠ADE中,∠ADE+∠AED+∠A=180°,又∠AED+∠DEC+∠BEC=180°,可得∠ADE+∠AED+∠A =∠AED+∠DEC+∠BEC,由∠A=∠DEC,可得∠ADE=∠BEC,又∠A=∠B,根据两角对应相等的两三角形相似,可得∠ADE∠∠BEC,可得DE AEEC BC=,又AE=BE,得到DE BEEC BC=,又∠DEC=∠B,根据两边对应成比例且夹角相等的两三角形相似,可知∠CDE∠∠CEB,然后根据相似三角形的对应角相等,可得∠DCE=∠BCE,因此EC平分∠BCD,即∠成立;同理∠ADE∠∠EDC,因此DE平分∠ADC;即∠成立;而∠DE平分∠AEC 不一定成立;∠CE平分∠DEB不一定成立.故答案为:∠∠.8.(1)证明见分析;(2)点E在BC中点位置时,BAE EAF∠=∠,证明见分析.【分析】(1)先根据正方形的性质可得90B C∠=∠=︒,再根据直角三角形的性质、角的和差可得BAE CEF∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),先根据正方形的性质、平行线的性质可得,B ECH BAE H∠=∠∠=∠,再根据三角形全等的判定定理与性质可得AE HE=,然后根据等腰三角形的判定与性质可得EAF H∠=∠,最后根据等量代换即可得.解:(1)四边形ABCD是正方形,90B C∴∠=∠=︒,90BAE BEA∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90BEA CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,在ABE △和ECF △中,B C BAE CEF ∠=∠⎧⎨∠=∠⎩, ABE ECF ∴;(2)点E 在BC 中点位置时,BAE EAF ∠=∠,证明如下:如图,连接AF ,延长AE 于DC 的延长线相交于点H , E 为BC 中点,BE CE ∴=,四边形ABCD 是正方形,//AB DH ∴,,B ECH BAE H ∴∠=∠∠=∠,在ABE △和HCE 中,BAE H B ECH BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE HCE AAS ∴≅,AE HE ∴=,EF AH ⊥,AFH ∴是等腰三角形,EAF H ∴∠=∠,BAE EAF ∴∠=∠,故当点E 在BC 中点位置时,BAE EAF ∠=∠.【点拨】本题考查了相似三角形的判定、正方形的性质、三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形和等腰三角形是解题关键.9.(1)理由见详解;(2)2BD =1,理由见详解.【分析】(1)根据题目已知条件易得:180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,问题得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:∠AD=AE ,∠AD=DE ,∠AE=DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.解:(1)如图可知:180ADE ADB EDC ∠+∠+∠=︒在ABD △中,∴ 180B ADB DAB ∠+∠+∠=︒ 又B ADE C ∠=∠=∠∴EDC DAB ∠=∠∴BDA CED △∽△.(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形∴90BAC ∠=︒BC=2,∴AB=AC=2∠当AD=AE 时,∴ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒∴90DAE ∠=︒∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上∴此情况不符合题意.∠当AD=DE 时,∴DAE DEA ∠=∠∴由(1)结论可知:BDA CED ≌∴∴2BD =∠当AE=DE 时,45ADE DAE ∠=∠=︒∴AED 是等腰直角三角形45B ∠=︒,∴==45B C DAE ∠∠∠=︒∴90ADC ∠=︒,即AD BC ⊥ ∴1=12BD BC =.综上所诉:2BD =1.【点拨】本题主要考查相似三角形的判定及等腰三角形的存在性问题,关键是利用“K”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.10.(1)详见分析;(2)△ABD ∠∠ACD ;△APN ∠∠ACP ;△APN ∠∠QCN ;△ACP ∠∠QCN ;(3)1.5.【分析】(1)根据等边三角形性质得到∠ABP =∠PCN =60°,利用角的和差证明∠BAP =∠CPN ,根据相似三角形的判定定理证明结论;(2)因为△ABC 是正三角形,AD 是边BC 上的高线,由三线合一可证△ABD ∠∠ACD ;因为∠APN=∠ACP=60°,∠PAN=∠CAP,所以△APN ∠∠ACP ;因为∠APN=∠NCQ=60°,∠PNA=∠CNQ,所以△APN∠∠QCN ;因为△APN ∠∠ACP ,△APN∠∠QCN ,所以△ACP ∠∠QCN ;(3)当点P 在BD 的中点运动到DC 的中点时,利用相似三角形性质,设PB =x ,CN =y ,则3≤x ≤9,由第(1)题利用相似三角形性质可得:1212y x x -=,解得2112y x x =-+,又利用函数图象可知:当x =3或9时,y =94,当x =6时,y 最大=3,所以点N 运动的路径长为:(3-94)×2=1.5. 解:(1)在正三角形ABC 中,∠ABP =∠PCN =60°,∠∠BAP +∠BP A =120°,又∠∠APQ =60°,∠∠CPN +∠BP A =120°, ∠∠BAP =∠CPN ,∠∠ABP ∠∠PCN ;(2)△ABD ∠∠ACD ;△APN ∠∠ACP ;△APN ∠∠QCN ;△ACP ∠∠QCN ;理由:∠△ABC 是正三角形,AD ∠BC ,由三线合一可证△ABD ∠∠ACD ;∠∠APN=∠ACP=60°,∠PAN=∠CAP ,∠△APN ∠∠ACP ;∠∠APN=∠NCQ=60°,∠PNA=∠CNQ,∠△APN∠∠QCN ;∠△APN ∠∠ACP ,△APN∠∠QCN ,∠△ACP ∠∠QCN ;(3)能,设PB =x ,CN =y ,由第(1)题可得:1212y x x -=, ∠2112y x x =-+,又3≤x ≤9,利用函数图象可知: 当x =3或9时,y =94,当x =6时,y 最大=3; ∠点N 运动的路径长为:(3-94)×2=1.5. 【点拨】本题考查的是相似三角形的判定和性质、正三角形的性质,掌握相关的性质定理、灵活运用所学知识是解题的关键.11.(1)C (-4,0);(2)∠证明见分析,∠存在.使△PBM 为直角三角形的点P 有两个P1(-94,0),P2(0,0). 【分析】(1)根据B 点坐标求得直线解析式,再求得A 点坐标,然后根据A 与C 关于y 轴对称,据此即可确定C 的坐标;(2)∠根据点C 与点A 关于y 轴对称,即可得到BC=BA ,则∠BCP=∠MAP ,再根据三角形的外角的性质即可证得∠PMA=∠BPC ,从而证得两个三角形相似;∠首先求得B 的坐标,当∠PBM=90°时,则有∠BPO∠∠ABO ,根据相似三角形的对应边的比相等,即可求得PO 的长,求得P 的坐标;当∠PMB=90°时,则∠PMA═90°时,BP∠AC ,则此时点P 与点O 重合.则P 的坐标可以求得.(1)解:∠直线y=-34x+b与y轴相交于点B(0,3),∠b=3,∠直线的解析式为y=-34x+3,令y=0,得到x=4,∠A(4,0),∠点C与点A关于y轴对称,∠C(-4,0);(2)∠证明:∠∠BPM=∠BAC,且∠PMA=∠BPM+∠PBM,∠BPC=∠BAC+∠PBM,∠∠PMA=∠BPC,又∠点C与点A关于y轴对称,且∠BPM=∠BAC,∠∠BCP=∠MAP,∠∠PBC∠∠MPA;∠解:存在.由题意:A(4,0),B(0,3),C(-4,0)当∠PBM=90°时,则有∠BPO∠∠ABO,∠POBO=BOAO,即PO3=34,∠PO=94,即:P1(-94,0).当∠PMB=90°时,则∠PMA═90°,∠∠PAM+∠MPA=90°,∠∠BPM=∠BAC,∠∠BPM+∠APM=90°,∠BP∠AC.∠过点B只有一条直线与AC垂直,∠此时点P与点O重合,即:符合条件的点P2的坐标为:P2(0,0).∠使∠PBM为直角三角形的点P有两个P1(-94,0),P2(0,0).【点拨】本题是属于一次函数综合题,考查了相似三角形的判定和性质、待定系数法、一次函数的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.12.【试题再现】见分析;【问题探究】点E是四边形ABCD的边AB上的相似点. 理由见分析;【深入探究】(1) 点P是四边形ABCD的边AB上的一个强相似点,见分析;(2)解:试题分析:【试题再现】易证∠BCE=∠CAD,又∠ADC=∠CEB=90°,故得∠ADC∠∠CEB.【问题探究】要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明∠ADE∠∠BEC,所以问题得解.【深入探究】(1)分别证明∠ADP∠∠PDC,∠BPC∠∠PDC,从而∠ADP∠∠PDC∠∠BPC,故点P是四边形ABCD的边AB上的一个强相似点.(2)过点P作PE∠DC于点E,过点D作DF∠BC于点F,则四边形ABFD是矩形,通过证明∠ADP∠∠EDP和∠CBP∠∠CEP得DC =8,再求出CF=2,在Rt∠CDF中,由勾股定理,得解:【试题再现】∠∠ACB=90°,∠∠ACD+∠BCE=90°,∠AD∠DE,∠∠ACD+∠CAD=90°,∠∠BCE=∠CAD,∠∠ADC=∠CEB=90°,∠∠ADC∠∠CEB.【问题探究】点E是四边形ABCD的边AB上的相似点.理由如下:∠∠DEC=40°,∠∠DEA+∠CEB=140°.∠∠A=40°,∠∠ADE+∠AED=140°,∠∠ADE=∠CEB,又∠∠A=∠B,∠∠ADE∠∠BEC,∠点E 是四边形ABCD 的边AB 上的相似点.【深入探究】(1)∠AD∠BC,∠∠ADC+∠BCD=180°,∠DP 平分∠ADC,CP 平分∠BCD, ∠∠CDP+∠DCP=12(∠ADC+∠BCD)=90°, ∠DA∠AB,DA∠BC,∠CB∠AB,∠∠DPC=∠A=∠B=90°,∠∠ADP=∠CDP,∠∠ADP∠∠PDC,同理∠BPC∠∠PDC,∠∠ADP∠∠PDC∠∠BPC,即点P 是四边形ABCD 的边AB 上的一个强相似点.(2)过点P 作PE∠DC 于点E,过点D 作DF∠BC 于点F,则四边形ABFD 是矩形,∠DF=AB,在∠ADP 与∠EDP 中,ADP EDP,DAP DEP 90,DP DP,∠∠∠∠=⎧⎪==︒⎨⎪=⎩∠∠ADP∠∠EDP,∠AD=DE,同理∠CBP∠∠CEP,∠BC=EC,∠DC=AD+BC=8.在Rt∠CDF 中,CF=BC -BF=BC -AD=5-3=2,由勾股定理,得13.(1)34;(2)75. 分析:(1)如图,过点P 作CD 的垂线,分别交AB 、CD 于M 、N ,易证△PNE∠∠BMP,从而证得PE 3tan PB 4PN PN ACD BM CN ===∠= (2)首先证明BP=BC,再过点B 作BF 垂直AC 得PF=CF,由cos ,BC FC FCB AC BC ∠==得9,5FC PF == 根据AP=AC -PC 即可求解.解:(1)P CD AB CD M N 过点作的垂线,分别交、于点、,90PNE ∴∠︒=.ABCD 四边形是矩形,//90,AB CD ABC BCD ,∴∠=∠=︒BCMN 四边形是矩形,∴90,BMP BM CN ∴∠=︒=90,90,PNE BPE ∠=︒∠=︒90,90,NPE PCN MPB MPE ∴∠+∠=︒∠+∠=︒,90PEN MPB PNE BMP ∴∠=∠∠=∠=︒又~,PNE BMP ∴∆∆PE 3tan .PB 4PN PN ACD BM CN ∴===∠= 34PE PB ∴的值为 (2).PE CE EPC ECP =∠=∠当,则 ABCD 四边形是矩形,90,BCD ∴∠=︒,PE PB ⊥90.BPE ∴∠=︒BPC BCP ∴∠=∠.BP BC ∴=B BF AC F PF CF.⊥=过点作于点,则cos ,BC FC FCB AC BC∠== 3,53FC ∴= 9,5FC ∴= 9.5PF ∴= 187555AP AC PC ∴=-=-= 【点拨】本题考查的是矩形的性质、相似三角形的判定和性质以及解直角三角形,正确作出辅助线、灵活运用相关的定理是解题的关键.14.【小问1】AD BE =,说明见分析【小问2】BED FDC ∠=∠,EDB DFC ∠=∠;说理见分析【小问3】∠BD BF CD +=,理由见分析;∠AE EG +【分析】(1)【问题情境】证明()ABD BCE AAS ∆≅∆,即可求解.(2)【变式探究】利用等量代换即可求解.(3)【拓展应用】∠等量代换即可求解;∠在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN ,先证明()BDF MED SAS ∆≅∆,得到EM =CM ,在求出22.5ECM MEC ∠=∠=︒,即可确定E 点在射线CE 上运动,当A 、E 、N 三点共线时,EA +EG 的值最小,最小值为AN ,在Rt ANC 中求出AN 即可.解:(1)【问题情境】AD BE =,理由如下:90ABC ∠=︒,90ABD CBE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,BAD CBE ∴∠=∠,AB BC =,()ABD BCE AAS ∴∆≅∆,AD BE ∴=;(2)【变式探究】BED FDC ∠=∠,EDB DFC ∠=∠;理由如下:B FDEC ∠=∠=∠,180EDB BED EDB FDC FDC DFC EDF ∴∠+∠=∠+∠=∠+∠=︒-∠,BED FDC ∴∠=∠,EDB DFC ∠=∠;(3)【拓展应用】∠AB BC =,AF BF BD CD ∴+=+,2AF BD =,2BD BF BD CD ∴+=+,BD BF CD ∴+=;∠在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN , 45B ∠=︒,45EDF ∠=︒,BFD EDM ∴∠=∠,DF DE =,()BDF MED SAS ∴∆≅∆,BD EM ∴=,EM BD =,45B DME ∠=∠=︒,CD BD BF =+,CM BD ∴=,EM CM ∴=,MCE MEC ∴∠=∠,45EMD ∠=︒,22.5ECM MEC ∴∠=∠=︒,E ∴点在射线CE 上运动, G 点与N 的关于CE 对称,EG EN∴=,EA EG EA EN AN∴+=+,∴当A、E、N三点共线时,EA EG+的值最小,最小值为AN,45B∠=︒,AB BC=,67.5ACB∴∠=︒,45ACE∴∠=︒,由对称性可知,ACE ECN∠=∠,90ACN∴∠=︒,点G是AC的中点,2AC=,1CG∴=,1CN∴=,在Rt ANC中,ANAE EG∴+【点拨】本题是三角形的综合题,熟练掌握三角形全等的判定及性质,轴对称求最短距离的方法是解题的关键.15.(1)AEDE;(2)CE=a-b;(3)见分析【分析】(1)根据相似三角形的性质即可求得结果;(2)由已知易证∠ADB∠∠DEC,从而由全等三角形的性质即可求得CE的长度;(3)作CG//FE交DE于点G,易证得∠FBE∠∠EGC,从而可得BEFE=CGEC;可证得∠DGC∠∠DCE,可得DCDE=CGEC,即有BEFE=DCDE,再由AB=CD即可得要证的结论.解:(1)∠∠ABC∠∠DAE∠BC AE AC DE故答案为:AE DE;(2)∠∠B=∠ADE=∠C,∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∠∠EDC=∠BAD又∠DA=DE∠∠ADB∠∠DEC∠EC=BD,AB=DC=b∠BD=BC-DC=a-b.即:CE=a-b.(3)∠∠DEF=∠B∠∠BFE+∠BEF=∠BEF+∠DEC∠∠BFE=∠DEC.作CG//FE交DE于点G,如图3.∠∠DEF=∠EGC∠∠B=∠EGC∠∠FBE∠∠EGC∠BEFE=CGEC∠四边形ABCD是平行四边形∠∠B+∠BCD=180°∠∠EGC+∠DGC=180°,且∠B=∠EGC ∠∠DGC=∠BCD又∠∠EDC=∠CDG ∠∠DGC∠∠DCE∠DCDE=CGEC∠BEFE=DCDE∠DC·FE=BE·DE又∠四边形ABCD是平行四边形∠AB=DC∠AB·FE=BE·DE【点拨】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,平行四边形的性质等知识,(3)问中作辅助线是难点,灵活运用这些知识是重点.16.(1)答案见分析;(2)直线l2的函数表达式为:y=3944x--;(3)点D的坐标为2238,33⎛⎫-⎪⎝⎭或(8,﹣14)或1626,33⎛⎫-⎪⎝⎭【分析】(1)由垂直的定义得∠ADC=∠CEB=90°,平角的定义和同角的余角的相等求出∠DAC=∠ECB,最后由角角边证明:∠BEC∠∠CDA;(2)如图2,仿照(1)作辅助线,构建三角形全等,同理证明∠BOA∠∠AED,求出点D的坐标为(-7,3),最后利用待定系数法可得直线l2的函数表达式;(3)分三种情况:∠如图3,∠CPD=90°时,∠如图4,∠PCD=90°,此时P与A重合,∠如图5,∠CDP=90°,分别作辅助线,构建三角形全等,根据全等三角形的性质可得点D 的坐标.解:(1)如图1所示:∠AD∠ED,BE∠ED,∠∠ADC=∠CEB=90°,又∠∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∠∠ACD+∠BEC=90°,又∠∠ACD+∠DAC=90°,∠∠DAC=∠ECB ,在∠CDA 和∠BEC 中,ADC CEB DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∠∠CDA∠∠BEC (AAS );(2)如图2,在l 2上取D 点,使AD=AB ,过D 点作DE∠OA ,垂足为E ,∠直线y=43x+4与坐标轴交于点A 、B , ∠A (-3,0),B (0,4),∠OA=3,OB=4,由(1)得∠BOA∠∠AED ,∠DE=OA=3,AE=OB=4,∠OE=7,∠D (-7,3)设l 2的解析式为y=kx+b ,∠3703k b k b-+⎧⎨-+⎩== 解得3494k b ⎧-⎪⎪⎨⎪-⎪⎩== ∠直线l 2的函数表达式为:y =3944x --; (3)点D 的坐标为223833⎛⎫- ⎪⎝⎭,或(8,﹣14)或162633⎛⎫- ⎪⎝⎭,分三种情况:∠如图3,∠CPD=90°时,过P作MH∠x轴,过D作DH∠y轴,MH和DH交于H,∠∠CPD是等腰直角三角形,∠CPD=90°,∠CP=PD,同理得∠CMP∠∠PHD(AAS),∠DH=PM=6,PH=CM,设PH=a,则D(6+a,a-8-6),∠点D是直线y=-2x+2上的动点且在第四象限内.∠a-8-6=-2(6+a)+2,解得:a=43,∠D(2238,33);∠如图4,∠PCD=90°,此时P与A重合,过D作DE∠y轴于E,∠∠CPD是等腰直角三角形,同理得∠AOC∠∠CED,∠OA=CE=6,OC=DE=8,∠D(8,-14);∠如图5,∠CDP=90°,过点D作MQ∠x轴,延长AB交MQ于Q,则∠Q=∠DMC=90°,∠∠CDP是等腰直角三角形,同理得∠PQD∠∠DMC,∠PQ=DM,DQ=CM,设CM=b,则DM=6-b,AQ=8+b,∠D(6-b,-8-b),∠点D是直线y=-2x+2上的动点且在第四象限内,∠-8-b=-2(6-b)+2,解得:b=23,∠D(1626,33-);综上,点D的坐标为223833⎛⎫-⎪⎝⎭,或(8,﹣14)或162633⎛⎫-⎪⎝⎭,【点拨】本题是一次函数和四边形的综合题,综合考查了矩形的性质,全等三角形的性质和判定,一次函数上点的坐标的特点等知识点,重点是运用类比的方法,作辅助线,构建全等三角形依次解决问题.。
相似三角形几何模型-一线三等角(基础篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)
专题27.33 相似三角形几何模型-一线三等角(基础篇)(专项练习)一、单选题1.如图,在正方形ABCD中,P是BC上一点(点P不与点B,C重合),连接AP.作PE⊥AP,PE交CD于点E.若AB=6,点P为BC的中点,则DE=()A.32B.92C.12D.532.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF△△∽,AB=6,DE=2,DF=3,则BE的长是()A.12B.15C.313D.3153.如图,在等边三角形ABC中,AB=4,P是边AB上一点,BP=32,D是边BC上一点(点D不与端点重合),作⊥PDQ=60°,DQ交边AC于点Q.若CQ=a,满足条件的点D有且只有一个,则a的值为()A.52B.83C.2D.34.如图,在ABC中,AB=AC,D在AC边上,E是BC边上一点,若AB=3,AE=2,⊥AED=⊥B,则AD的长为()A .35B .32C .43D .345.如图,在ABC 中,AB AC =,点D 是边BC 上一点,且ADE B ∠=∠,下列说法错.误.的是( )A .AD CE BD DE ⋅=⋅B .ADE ACDC .ABD DCE △△D .AD DE =6.如图,在△ABC 中,AB =AC ,D 在AC 边上,E 是BC 边上一点,若AB =6,AE =2⊥AED =⊥B ,则AD 的长为( )A .3B .4C .5D .5.57.如图,在等边三角形ABC 中,P 为边BC 上一点,D 为边AC 上一点,且⊥APD =60°,BP =1,CD =23,则ΔABC 的边长为( )A .3B .4C .5D .68.如图,D 是等边三角形ΔABC 边上的点,AD =3,BD =5,现将ΔABC 折叠,使点C与点D 重合,折痕为EF ,且点E 点F 分别在边AC 和BC 上,则CECF的值为( )A .1113 B .35C .45D .899.如图,在矩形ABCD 中,E ,F ,G 分别在AB ,BC ,CD 上,DE ⊥EF ,EF ⊥FG ,BE =3,BF =2,FC =6,则DG 的长是( )A .4B .133C .143D .510.如图,在测量旗杆高度的数学活动中,小达同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面 1.5AB =米,同时量得2BC =米,10CD =米,则旗杆高度DE 为( )A .7.5米B .403米 C .7米 D .9.5米二、填空题11.如图,在矩形ABCD 中,E 是BC 上的点,点F 在CD 上,要使ABE ∆与CEF ∆相似,需添加的一个条件是_______(填一个即可).12.如图,在边长为a 的正方形中,E 、F 分别为边BC 和CD 上的动点,当点E 和点F 运动时, AE 和EF 保持垂直.则⊥⊥ABE⊥⊥FCE;⊥当BE=12a 时、梯形ABCF 的面积最大;⊥当点E 运动到BC 中点时Rt ABE⊥Rt⊥AEF;⊥当Rt ABE⊥Rt⊥AEF 时cos⊥AFE=其中正确结论的序号是 .13.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且:1:4CF CD =,给出下列结论:⊥ABE ECF ∽;⊥ABE AEF ∽;⊥AE EF ⊥;⊥ADF ECF ∽.其中正确结论的序号为________.14.如图,四边形ABCD 是正方形,6AB =,E 是BC 中点,连接DE ,DE 的垂直平分线分别交AB DE CD 、、于M 、O 、N ,连接EN ,过E 作EF EN ⊥交AB 于F ,则AF =______.15.如图,在矩形ABCD 中,E ,F 分别是边BC ,CD 上的点,4AB =,8AD =,3CF =,若ABE △与以E ,C ,F 为顶点的三角形相似,则BE 的长为______.16.如图,在等边三角形ABC中,点D、点E分别在BC,AC上,且⊥ADE=60°,(1)写出和⊥CDE相等的角:______;(2)若AB=3,BD=1,则CE长为______.17.如图,在矩形ABCD中,点E、F分别在边AD、DC上,⊥ABE⊥⊥DEF,AB=3,AE=4,DE=1.2,则EF=_____.18.如图,D是等边三角形ABC的边AB上一点,且AD:1DB=:2,现将ABC折叠,使点C与点D重合,折痕为EF,点E、F分别在AC和BC上,且CE:CF的值为______.19.如图,在矩形ABCD中,E是BC的中点,连接AE,过点E作EF AE⊥交DC于BC=,则DF的长为______.点F.若4AB=,620.如图,将长方形纸片ABCD沿MN折叠,使点A落在BC边上点A′处,点D的对应点为D′,连接A'D′交边CD于点E,连接CD′,若AB=9,AD=6,A'点为BC的中点,则线段ED'的长为_____.三、解答题21.如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且⊥EFG=90°.求证:⊥EBF⊥⊥FCG.22.如图,等边三角形△ACB的边长为3,点P为BC上的一点,点D为AC上的一点,连接AP、PD,⊥APD=60°.(1) 求证:△ABP⊥△PCD;(2) 若PC=2,求CD的长.23.如图,在⊥ABC中,AD是角平分线,点E是边AC上一点,且满足ADE B∠=∠.(1) 证明:ADB AED∆∆;(2) 若3AE =,5AD =,求AB 的长.24.如图,在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 边上一点,E 为AC 边上一点,且30ADE ∠=︒,求证:ABD DCE ∽△△.25.在矩形ABCD 中,4AB =,6AD =,将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图⊥,若点P 恰好在边BC 上,连接AP ,求APDE的值; (2)如图⊥,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.26.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.参考答案:1.B 【分析】根据正方形的性质,余角,可证明出⊥ABP ⊥⊥PCE ,再根据相似三角形的性质即可求出CE的值,最后根据线段的和差关系即可求解.解:在正方形ABCD中,AB=BC=CD=6,⊥B=⊥C=90°,⊥P为BC中点,⊥BP=PC=12AB=3,⊥AP⊥PE,⊥⊥APE=90°=⊥APB+⊥EPC,⊥⊥B=90°,⊥⊥APB+⊥BAP=90°,⊥⊥BAP=⊥EPC,⊥⊥B=⊥C=90°,⊥⊥ABP⊥⊥PCE,⊥AB PCBP CE=,即633CE=,⊥32 CE=,⊥DE=CD-CE=39622-=,故选:B.【点拨】本题主要考查了正方形的性质、相似三角形的判定与性质,证得⊥ABP⊥⊥PCE 是解答本题的关键.2.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.解:⊥ABE DEF∽,⊥AB AE DE DF=,⊥623AE =,⊥9AE=,⊥矩形ABCD中,⊥A=90°,⊥222269313 BE AB AE++故选:C.【点拨】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE 的长后利用勾股定理求解.3.B【分析】先证明⊥BPD⊥⊥CDQ,利用相似三角形的性质得出比例式,进而建立关于BD的一元二次方程,再判别式为0,建立方程求解,即可得出结论.解:⊥⊥ABC是等边三角形,⊥⊥B=⊥C=60°,⊥⊥BPD+⊥BDP=180°-⊥B=120°,⊥⊥PDQ=60°,⊥⊥BDP+⊥CDQ=120°,⊥⊥BPD=⊥CDQ,⊥⊥B=⊥C=60°,⊥⊥BPD⊥⊥CDQ,⊥BP BD CD CQ=,⊥324BDBD a=-,⊥2BP2-8BP+3a=0,⊥满足条件的点P有且只有一个,⊥方程2BP2-8BP+3a=0有两个相等的实数根,⊥⊥=82-4×2×3a=0,⊥a=83.故选:B.【点拨】此题是相似形综合题,主要考查了等式的性质,相似三角形的判定和性质,一元二次方程根的判别式,利用方程的思想解决问题是解本题的关键.4.C【分析】由等边对等角可得⊥B=⊥C,即得出⊥C=⊥AED.再结合题意易证⊥EAD∼⊥CAE,即得出AD AE AE AC=,代入数据即可求出AD 的长. 解:根据题意可知AB =AC =3,⊥⊥B =⊥C ,⊥⊥B =⊥AED ,⊥⊥C =⊥AED ,又⊥⊥EAD =⊥CAE , ⊥⊥EAD ∼⊥CAE , ⊥AD AE AE AC =,即223AD =, 解得:43AD =, 故选C .【点拨】本题考查等腰三角形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解题关键.5.D【分析】根据AB AC =和ADE B ∠=∠,可证得⊥ABD ⊥⊥DCE ,⊥ADE ⊥⊥ACD ,再逐项判断即可求解.解:⊥AB AC =,⊥⊥B =⊥C ,⊥⊥ADC =⊥B +⊥BAD ,⊥ADC =⊥ADE +⊥CDE ,ADE B ∠=∠,⊥⊥BAD =⊥CDE ,⊥⊥ABD ⊥⊥DCE ,故C 正确,不符合题意;⊥AD BD DE CE=, ⊥AD CE BD DE ⋅=⋅,故A 正确,不符合题意;⊥AB AC =,⊥⊥B =⊥C ,⊥ADE B ∠=∠,⊥⊥ADE =⊥C ,⊥⊥DAE =⊥CAD ,⊥⊥ADE ⊥⊥ACD ,故B 正确,不符合题意;⊥AD DE AC CD=,⊥AED =⊥ADC , ⊥点D 是边BC 上一点,⊥AC 不一定等于CD ,⊥⊥ADC 不一定等于⊥DAC ,⊥⊥AED 不一定等于⊥DAC ,⊥AD 不一定等于DE ,故D 错误,符合题意;故选:D .【点拨】本题主要考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质定理.6.A【分析】由等边对等角可得B C ∠=∠,即得出C AED ∠=∠.再结合题意易证EADCAE ,即得出AD AE AE AC =,代入数据即可求出AD 的长. 解:根据题意可知6AB AC ==,⊥B C ∠=∠.⊥B AED ∠=∠,⊥C AED ∠=∠.又⊥EAD CAE ∠=∠, ⊥EADCAE , ⊥AD AE AE AC =32632= 解得:3AD =.故选A【点拨】本题考查等腰三角形的性质,三角形相似的判定和性质.掌握三角形相似的判定方法是解题关键.7.A【分析】根据等边三角形性质求出AB =BC =AC ,⊥B =⊥C =60°,推出⊥BAP =⊥DPC ,证⊥BAP ⊥⊥CPD ,得出AB BP CP CD=,代入求出即可. 解:⊥⊥ABC 是等边三角形,⊥AB =BC =AC ,⊥B =⊥C =60°,⊥⊥BAP +⊥APB =180°-60°=120°,⊥⊥APD =60°,⊥⊥APB +⊥DPC =180°-60°=120°,⊥⊥BAP =⊥DPC ,即⊥B =⊥C ,⊥BAP =⊥DPC , ⊥⊥BAP ⊥⊥CPD , ⊥AB BP CP CD= ⊥23CD =,CP =BC -BP =x -1,BP =1, ⊥1213x x =-解得:AB =3.故选A .【点拨】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出⊥BAP ⊥⊥CPD ,主要考查了学生的推理能力和计算能力.8.A【分析】根据等边三角形的性质、相似三角形的性质得到⊥AED =⊥BDF ,根据相似三角形的周长比等于相似比计算即可.解:⊥⊥ABC 是等边三角形,⊥⊥A =⊥B =⊥C =60°,AB =AC =BC =3+5=8,由折叠的性质可知,⊥EDF =⊥C =60°,EC =ED ,FC =FD ,⊥⊥AED =⊥BDF , ⊥⊥AED ⊥⊥BDF ,⊥1113DE AE AD DE DF BD DF BF ++==++, ⊥1113CE DE CF DF ==,故选A.【点拨】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.9.B【分析】先运用勾股定理可求得EF, 过G作GH⊥DE垂足为H,则四边形EFGH是矩形可得HG=EF,再说明⊥EBF⊥⊥DAE、⊥DAE⊥⊥GHD,进一步可得⊥EBF⊥⊥GHD,最后运用相似三角形的性质解答即可.解:⊥在Rt⊥BEF中,BF=2,BE=3⊥EF22223213BE BF+=+如图:过G作GH⊥DE垂足为H,⊥DE⊥EF,EF⊥FG⊥四边形EFGH是矩形⊥HG=EF13⊥矩形ABCD⊥⊥A=⊥B=90°⊥⊥AED+⊥ADE=90°⊥DE⊥EF⊥⊥AED+⊥BEF=90°⊥⊥BEF=⊥ADE又⊥⊥A=⊥B=90°⊥⊥EBF⊥⊥DAE同理:⊥DAE⊥⊥GHD⊥⊥EBF⊥⊥GHD⊥DG HGEF BE=,1313=解得DG=133.故选B.【点拨】本题主要考查了矩形的判定与性质、运用勾股定理解直角三角形、相似三角形的判定与性质等知识点,灵活运用相似三角形的判定与性质是解答本题的关键.10.A【分析】由平面镜反射可得:,ACB DCE ∠=∠ 再证明,ABC EDC ∽再利用相似三角形的性质可得答案.解:由平面镜反射可得:,ACB DCE ∠=∠90,ABC EDC ,ABC EDC ∽,AB BC DE CD1.5AB =米,2BC =米,10CD =米,1.52,10DE 解得:7.5DE =,经检验:符合题意,∴ 旗杆高度DE 为7.5米.故选A【点拨】本题考查的是相似三角形的应用,掌握“利用相似三角形的性质列方程求解”是解本题的关键.11.AE EF ⊥或⊥BAE =⊥CEF ,或⊥AEB =⊥EFC (任填一个即可)【分析】根据相似三角形的判定解答即可.解:⊥矩形ABCD , ⊥⊥ABE =⊥ECF =90︒,⊥添加⊥BAE =⊥CEF ,或⊥AEB =⊥EFC ,或AE⊥EF ,⊥⊥ABE⊥⊥ECF ,故答案为:⊥BAE =⊥CEF ,或⊥AEB =⊥EFC ,或AE⊥EF .【点拨】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答. 12.⊥⊥⊥解:⊥证明:⊥四边形ABCD 为正方形,⊥⊥B=⊥C=90°,又⊥AE⊥EF ,⊥⊥AEF=90°,⊥⊥AEB+⊥FEC=90°,而⊥AEB+⊥BAE=90°,⊥⊥BAE=⊥FEC ,⊥Rt⊥ABE⊥Rt⊥ECF ,故⊥正确⊥ 解 :⊥Rt⊥ABE⊥Rt⊥ECF ,⊥AB :EC=BE :CF ,又⊥AB=a ,设BE=x ,则CE=a ﹣x ,⊥a :(a ﹣x )=x :CF , ⊥CF=,⊥2)2221()21()215(28ABCF a x S CF AB BC ax x a a a a -=+⋅-=+⋅=-+梯形 ⊥当时,取得最大值.故⊥正确⊥当点E 运动到BC 中点时,BE=EC=在直角三角形ABE 中,由勾股定理解得又由Rt⊥ABE⊥Rt⊥ECF 可知AB BE AE EC CF EF ==即5222a a a CF EF== 解得CF=,EF=所以在直角三角形AEF 中,由勾股定理得在直角三角形ABE 和直角三角形AEF 中,⊥Rt ABE 与Rt⊥AEF 相似.故⊥正确⊥由⊥可知当Rt ABE⊥Rt⊥AEF 时,点E 是BC 的中点⊥ ⊥.故⊥错误考点:相似三角形的判定与性质;正方形的性质;梯形点评:本题主要考查相似三角形的判定与性质,掌握相似三角形的判定定理,灵活运用勾股定理是本题的关键13.①②③【分析】容易证明⊥△ABE ⊥△ECF ;利用⊥可得90AEB FEC ∠+∠=,,可得⊥AE ⊥EF ;且可得2AE AB EF EC==,可证得⊥△ABE ⊥△AEF ,而AD DF CE CF ≠,所以⊥不正确. 解:⊥E 为BC 中点,CF :CD =1:4,⊥2AB BE CE CF==, 且⊥B =⊥C , ⊥△ABE ⊥△ECF ,⊥⊥正确;⊥⊥BAE =⊥FEC ,且90BAE AEB ∠+∠=, ⊥90AEB FEC ∠+∠=,⊥90AEF ∠=,⊥AE ⊥EF ,⊥⊥正确;由⊥可得2AE AB EF EC ==, ⊥AB EC BE AE EF EF==,且90ABE AEF ∠=∠=, ⊥△ABE ⊥△AEF ,⊥⊥正确;⊥2,3DA DF CE CF ==, ⊥AD DF CE CF≠, ⊥△ADF 和△ECF 不相似,⊥⊥不正确,综上可知正确的为:⊥⊥⊥,故答案为⊥⊥⊥.【点拨】考查相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键. 14.2【分析】MN 垂直平分DE ,得出NE ND =,利用6DN NC +=,在ΔRt NCE 中利用勾股定理求得CN 的长,再证明FBE ECN ∆∆,利用相似比求得BF 的长度,进而求得AF 的长度.解:设CN x =,则6DN x =-MN 垂直平分DE∴6NE ND x ==-在ΔRt NCE 中,222CN CE NE +=又⊥E 是BC 中点⊥3CE =2223(6)x x ∴+=-解得94x = 又⊥EF EN ⊥90NEC FNB ∴∠+∠=,NEC EFB CNE FEB ∴∠=∠∠=∠ Δ~ΔFBE ECN ∴ FB CE BE CN∴= 3934FB ∴= 4FB ∴=642AF AB FB ∴=-=-=故答案为:2.【点拨】本题考查线段垂直平分线的应用,勾股定理及相似三角形的应用,解决本题的关键是各知识点的综合应用.15.26,或327【分析】设BE =x ,当ABE △⊥△ECF 时,AB BE EC CF =即483x x =-,当ABE △⊥△FCE 时,AB BE FC EC =即438x x=-,解方程即可. 解:设BE =x , 当ABE △⊥△ECF 时,AB BE EC CF =即483x x =- 整理得28120x x -+=,解得1226x x ==,,经检验都符合题意, 当ABE △⊥△FCE 时,AB BE FC EC=即438x x =-, 解得327x =. 经检验符合题意,故答案为26,或327. 【点拨】本题考查三角形相似性质,列分式方程,正确三角形相似性质,列分式方程是解题关键.16. ⊥BAD23【分析】 (1) 根据⊥ABC 是等边三角形,得到⊥B =⊥C = 60°, AB = BC ;又因为⊥ADC =⊥B +⊥BAD ,⊥EDC +⊥ADE = ⊥B +⊥BAD 就得到⊥EDC =⊥BAD(2) 因为⊥EDC =⊥BAD ,⊥C =⊥B 得到⊥ABD ~⊥DCE ,得到AB BD CD EC= ,即可求出EC ; (1) 证明: ⊥⊥ABC 是等边三角形,⊥B =⊥C = 60°, AB = BC ;又⊥⊥ADC =⊥B +⊥BAD⊥EDC +⊥ADE = ⊥B +⊥BAD又⊥⊥ADE =⊥B =60°⊥⊥EDC =⊥BAD所以和⊥CDE 相等的角为:⊥BAD故答案为:⊥BAD(2) ⊥⊥EDC =⊥BAD⊥⊥C =⊥B⊥ABD ~⊥DCE ,AB BD CD EC∴= 3,1BC AB BD === 又312CD BC BD =-=-=312EC∴= 解得:EC =23故答案为:23 ; 【点拨】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得⊥ABD ~⊥DCE 是解答此题的关键.17.2【分析】由勾股定理,求出BE =5,由⊥ABE ⊥⊥DEF ,得AB DE =BE EF ,进而求出EF 的长.解:在矩形ABCD 中⊥A =90°⊥AB =3,AE =4⊥BE 22AB AE +2234+⊥⊥ABE ⊥⊥DEF⊥AB DE =BE EF ⊥31.2=5EF解得EF =2故答案为:2. 【点拨】本题主要考查相似三角形的性质,借助于矩形的性质和勾股定理求边长,熟练掌握以上性质是解题的关键.18.45【分析】设AD =k ,则DB =2k ,得到AB =AC =BC=3k ,⊥A =⊥B =⊥C =⊥EDF =60°,进而证明⊥AED ⊥⊥BDF ,得到⊥AED 与⊥BDF 的相似比为4:5,即可求出CE :CF =DE :DF =4:5,问题得解.解:设AD =k ,则DB =2k ,⊥⊥ABC 为等边三角形,⊥CEF 折叠得到⊥DEF ,⊥AB =AC =BC =3k ,⊥A =⊥B =⊥C =⊥EDF =60°,⊥⊥EDA +⊥FDB =120°,⊥EDA +⊥AED =120°,⊥⊥FDB =⊥AED ,⊥⊥AED ⊥⊥BDF ,由⊥CEF 折叠得到⊥DEF ,得CE =DE ,CF =DF ,⊥⊥AED 的周长为4k ,⊥BDF 的周长为5k ,⊥⊥AED 与⊥BDF 的相似比为4:5,⊥CE :CF =DE :DF =4:5.故答案为:45.【点拨】本题主要考查了相似的性质与判定、等边三角形的性质、翻折变换的性质及其应用等知识,熟知等边三角形、翻折变换的性质,借助相似三角形的判定与性质(用含有k 的代数式表示)将两条线段的比转化为相似比是解题的关键.19.74 【分析】结合矩形的性质证明BAE CEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解. 解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,BAE CEF ∴∆∆,::AB CE BE CF ∴=,E 是BC 的中点,6BC =,3BE CE ∴==,4AB =, 4:33:CF ∴=, 解得94CF =, 97444DF CD DF ∴=-=-=. 故选:74. 【点拨】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAECEF ∆∆是解题的关键.20.94 【分析】根据折叠的性质可得'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,由线段中点可得''11322A B AC BC AD ====,在'Rt A BM 中,利用勾股定理可得'5A M =,4MB =,利用相似三角形的判定定理及性质可得''A BMECA ,'''A E AC A M BM =,代入求解,同时根据线段间的数量关系即可得出结果. 解:将长方形纸片ABCD 沿着MN 折叠,使点A 落在BC 边上点'A 处,⊥'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-, ⊥'A 是BC 的中点,⊥''11322A B AC BC AD ====, 在'Rt A BM 中,'22'2A B BM AM+=, 即()22239+-=x x ,解得:5x =,⊥'5A M =,4MB =,⊥''90MA B EAC ∠+∠=︒,''90A EC EAC ∠+∠=︒, ⊥''MA B A EC ∠=∠,⊥'90B ACE ∠=∠=︒,⊥''A BM ECA ,⊥'''A E AC A M BM =,即'354A E =, ⊥'154A E =, ⊥'''''159644ED A D A E AD A E =-=-=-=, 故答案为:94 【点拨】题目主要考查长方形中的折叠问题,包括勾股定理,相似三角形的判定及性质等,结合图形,熟练掌握运用折叠的性质及相似三角形的性质是解题关键.21.见分析【分析】根据正方形的性质得⊥B =⊥C =90°,再利用等角的余角相等得⊥BEF =⊥CFG ,然后根据有两组角对应相等的两个三角形相似可得到⊥EBF ⊥⊥FCG .解:⊥四边形ABCD 为正方形,⊥⊥B =⊥C =90°,⊥⊥BEF +⊥BFE =90°,⊥⊥EFG =90°,⊥⊥BFE +⊥CFG =90°,⊥⊥BEF =⊥CFG ,⊥⊥EBF ⊥⊥FCG .【点拨】本题考查正方形的性质,相似三角形的判定,解的关键是掌握相似三角形的判定定理.22.(1)见分析(2)CD 的长为23【分析】(1)由等边三角形和⊥APD =60°得,⊥B =⊥C =⊥APD =60°,⊥APB +⊥CPD =120°,在△APB中,⊥APB +⊥BAP =120°,由此可得⊥BAP =⊥CPD .因此△ABP ⊥△PCD ;(2)由(1)的结论△ABP ⊥△PCD 可得BP AB CD PC =,从而可以求出线段CD 的长. (1)证明:⊥等边三角形ABC ,⊥⊥B =⊥C =60°,⊥⊥APD =60°,⊥⊥APB +⊥CPD =120°,在△APB 中,⊥APB +⊥BAP =120°,⊥⊥BAP =⊥CPD ,⊥⊥ABP ⊥⊥PCD ;(2)解:等边三角形边长为3,PC =2,由(1)得△ABP ⊥△PCD ,BP AB CD PC =,⊥132CD =,⊥CD =23.答:CD 的长为23. 【点拨】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP ⊥△PCD .23.(1)见分析(2)253【分析】(1)证出⊥BAD =⊥EAD .根据相似三角形的判定可得出结论;(2)由相似三角形的性质可得出AD AB AE AD =,则可得出答案. 解:(1)⊥AD 是⊥BAC 的角平分线,⊥⊥BAD =⊥EAD .⊥⊥ADE =⊥B ,⊥⊥ADB ⊥⊥AED .(2)⊥⊥ADB ⊥⊥AED ,⊥AD AB AE AD=, ⊥AE =3,AD =5,⊥535AB =, ⊥253AB =. 【点拨】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.见分析【分析】利用三角形的外角性质证明⊥EDC =⊥DAB ,即可证明⊥ABD ⊥⊥DCE .证明:⊥AB=AC ,且⊥BAC =120°,⊥⊥ABD =⊥ACB =30°,⊥⊥ADE =30°,⊥⊥ABD =⊥ADE =30°,⊥⊥ADC =⊥ADE +⊥EDC =⊥ABD +⊥DAB ,⊥⊥EDC =⊥DAB ,⊥⊥ABD ⊥⊥DCE .【点拨】本题考查了三角形相似的判定、等腰三角形的性质、三角形的外角性质,利用三角形的外角性质证明⊥EDC =⊥DAB 是解题的关键.25.(1)23(2)32【分析】(1)根据矩形的性质可得⊥BAD =⊥ABC =90°,再由折叠的性质可得APB AED ∠=∠.可证得ABP △⊥DAE △.即可求解;(2)过点E 作EH DP ∥交AD 于H ,由折叠的性质可得HED HDE ∠=∠,从而得到EH DH =.然后设EH DH x ==,则6AH x =-,由勾股定理可得103DH =,从而得到83AH =.再证得AEH △⊥BFE △,即可求解. (1)解:在矩形ABCD 中,⊥BAD =⊥ABC =90°,⊥90BAP APB ∠+∠=︒,由折叠性质得:AP DE ⊥,⊥90BAP AED ∠+∠=︒,⊥APB AED ∠=∠.⊥90EAD ABP ∠=∠=︒,⊥ABP △⊥DAE △.⊥4263AP AB DE AD ===. (2)解:过点E 作EH DP ∥交AD 于H ,⊥EH DF ∥,⊥HED EDP ∠=∠.⊥由折叠性质得HDE EDP ∠=∠,⊥DPE =⊥A =90°,⊥HED HDE ∠=∠,⊥EH DH =.设EH DH x ==,则6AH x =-,⊥E 是AB 的中点,⊥2AE =,⊥AE 2+AH 2=EH 2,⊥()22226x x +-=,解得:103x =,即103DH =, ⊥83AH =. ⊥EH DF ∥,⊥⊥HEP =90°,⊥⊥AEH +⊥BEF =90°,⊥⊥A =⊥B =90°,⊥⊥AEH +⊥AHE =90°,⊥⊥AHE =⊥BEF ,⊥AEH △⊥BFE △, ⊥AE AH BF BE =,即8232BF =, 解得32BF =, ⊥BF 的长为32. 【点拨】本题主要考查了矩形与折叠问题,相似三角形的判定和性质,熟练掌握矩形与折叠的性质,相似三角形的判定和性质是解题的关键.26.(1)DE ,AE ;(2)AC .证明见详解.【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ⊥直线l 于E ,先证⊥MCA ⊥⊥AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证⊥NGP ⊥⊥DEP (AAS )即可.(1)解:⊥(AAS)≌ABC DAE ,⊥AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ⊥直线l 于E ,⊥90MAN ∠=︒,⊥⊥CAM +⊥NAG =90°,⊥BM ⊥l ,⊥⊥MCA =90°,⊥⊥M +⊥CAM =90°,⊥⊥M =⊥NAG ,⊥NG l ⊥,⊥⊥AGN =90°,在⊥MCA 和⊥AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥MCA ⊥⊥AGN (AAS ),⊥AC =NG ,由(1)知(AAS)≌ABC DAE ,⊥AC =DE ,⊥NG =DE ,在⊥NGP 和⊥DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ⊥⊥NGP ⊥⊥DEP (AAS )⊥NP =DP ,故答案为AC.【点拨】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键.。
专题训练(七)-相似三角形的基本模型
专题训练(七) 相似三角形的基本模型下面仅以X 字型、A 字型、双垂型、M 字型4种模型设置练习,帮助同学们认识基本模型,并能从复杂的几何图形中分辨出相似三角形,进而解决问题. 模型1 X 字型及其变形(1)如图1,对顶角的对边平行,则△ABO ∽△DCO ; (2)如图2,对顶角的对边不平行,则△ABO ∽△CDO.1.(恩施中考)如图,在ABCD 中,AC 与BD 交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF ∶FC 等于( )A .1∶4B .1∶3C .2∶3D .1∶2第1题第2题2.(黔东南中考)将一副三角尺如图所示叠放在一起,则BEEC的值是________.3.已知:如图,∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.模型2 A 字型及其变形(1)如图1,公共角所对应的边平行,则△ADE ∽△ABC ;(2)如图2,公共角的对边不平行,且有另一对角相等,两个三角形有一条公共边,则△ACD ∽△ABC.4.如图,已知菱形ABCD 的边长为3,延长AB 到E ,使BE =2AB ,连接EC 并延长交AD 的延长线于点F ,求AF 的长.5.(泰安中考改编)如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB.求证:AB AE =ACAD.6.如图,AD 与BC 相交于E ,点F 在BD 上,且AB ∥EF ∥CD ,求证:1AB +1CD =1EF.模型3 双垂型直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD ∽△ABC ∽△CBD.7.如图,在Rt △ABC 中,CD ⊥AB ,D 为垂足,且AD =3,AC =35,则斜边AB 的长为( ) A .3 6 B .15C .9 5D .3+3 58.如图,△ABC 中,∠ACB =90°,CD 是斜边AB 上的高,AD =9,BD =4, 那么CD =________, AC =________.模型4 M 字型Rt △ABD 与Rt △BCE 的斜边互相垂直,则有△ABD ∽△CEB.9.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,求AB 的长.10.(常州中考改编)如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,且CF =3FD ,∠BEF =90°. (1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长.参考答案 1.D 2.333.∵∠ADE =∠ACB ,∴180°-∠ADE =180°-∠ACB ,即∠BDF =∠ECF.又∵∠BFD =∠EFC ,∴△BDF ∽△ECF.∴BD CE =DF CF ,即84=DF2.∴DF =4. 4.∵BE =2AB ,AB =3,∴BE =6,AE =9.∵四边形ABCD 是菱形,∴BC ∥AF.∴△EBC ∽△EAF.∴BE AE =BC AF .∴AF =AE ·BC BE =9×36=92. 5.证明:∵AB =AD ,∴∠ADB =∠ABE.又∵∠ADB =∠ACB ,∴∠ABE =∠ACB.又∵∠BAE =∠CAB ,∴△ABE ∽△ACB.∴AB AC =AE AB .又∵AB =AD ,∴AB AC =AE AD .∴AB AE =ACAD. 6.证明:∵AB ∥EF ,∴△DEF ∽△DAB.∴EF AB =DF BD .又∵EF ∥CD ,∴△BEF ∽△BCD.∴EF CD =BF BD .∴EF AB +EF CD =DF BD +BF BD =BD BD =1.∴1AB +1CD =1EF. 7.B 8.6 313 9.∵AB ⊥BD ,ED ⊥BD ,∴∠B =∠D =90°,∠ACB +∠A =90°.∵AC ⊥CE ,∴∠ACB +∠ECD =90°.∴∠A =∠ECD.∴△ABC ∽△CDE.∴AB CD =BC ED .又∵C 是线段BD 的中点,ED =1,BD =4,∴BC =CD =2.∴AB2=21.∴AB =4. 10.(1)证明:∵四边形ABCD 为正方形,∴∠A =∠D =90°.∴∠ABE +∠AEB =90°.又∵∠BEF =90°,∴∠AEB +∠DEF =90°.∴∠ABE =∠DEF.∴△ABE ∽△DEF.(2)∵AB =BC =CD =AD =4,CF =3FD ,∴DF =1,CF =3.∵△ABE ∽△DEF ,∴AE DF =AB DE ,即4-DE 1=4DE .∴DE =2.又∵ED ∥CG ,∴△EDF ∽△GCF.∴ED GC =DF CF ,即2GC =13.∴GC =6.∴BG =BC +CG =4+6=10.Welcome To Download !!!欢迎您的下载,资料仅供参考!。
相似专题四相似三角形的基本模型A字型及其变形初中数学模型
3.如图,在△ABC中,点D,E分别在边AB,AC上,请添加一个条件: ________∠__A_E_D__=__∠__B_(_答__案__不__唯__一__) _,使△ABC∽△AED.
4.如图,在▱ABCD中,点P在BC的延长线上,连接AP,交BD于点M,交DC于点 N.求证:AM2=MN·MP.
专题(四) 相似三角形的基本模型(一)——A字型及其变形
Hale Waihona Puke 【模型展示】(1)A 字型
如图 1,已知:DE∥BC.
结论:△ADE∽△ABC⇒
AD AB
=AAEC
=DBCE
.
(2)反 A 字型(共角)
如图 2,已知:∠AED=∠C.
结论:△ADE∽△ABC⇒
AD AB
=AAEC
=DBCE
.
(3)反 A 字型(共边共角) 如图,已知:∠ABD=∠C. 结论:①△ABD∽△ACB; ②AADB =AABC =DBCB ; ③AB2=AD·AC.
【对应训练】
1.(2022·凉山州)如图,在△ABC 中,点 D,E 分别在边 AB,AC 上.若 DE∥BC,
AD DB
=23
,DE=6 cm,则 BC 的长为(
C
)
A.9 cm B.12 cm C.15 cm D.18 cm
2.如图,在△ABC 中,AD 是中线,BC=8,∠B=∠DAC.则线段 AC 的长为 ( B)
解:(1)∵DE∥BC,∴AAEC =AADB =23 , ∵AE=4,∴AC=6,∴EC=6-4=2
(2)∵M 是 BC 的中心,∴S△ABM=12 S△ABC=18, 又∵DE∥BC,∴△ADN∽△ABM,
(完整版)专题:相似三角形的几种基本模型及练习
专题:相似三角形的几种基本模型(1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型"的相似三角形。
“A ”字型 “X ”(或8)字型 “A ” 字型(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形。
ABCD E12AABBCC DD EE12412(3) “母子" (双垂直)型 射影定理:由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。
“母子” (双垂直)型 “旋转型”(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
(5)一线“三等角”型“K ” 字(三垂直)型(6)“半角”型图1 :△ABC 是等腰直角三角形,∠MAN=12∠BAC ,结论:△A BN ∽△MAN ∽△MCA ; ABEADCAB CDEAACCDEE B EA CD12A B C D 图2图1旋转N M60°120°E DCA 45°EDC B A图2 :△ADE 是等边三角形, ∠DAE=12∠BAC ,结论:△A BD ∽△CAE ∽△CBA; 应用1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3B .4C .5D .62.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABDD .不存在图3 图4 图53.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对.A.4 对 B 。
相似三角形的基本模型(K字型)(原卷版)(人教版) -九年级数学下册
专题07相似三角形的基本模型(K字型)【模型说明】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.【例题精讲】(1)如图①,若∠BAC=∠CDE=90°,请猜想线段AF与DF之间的数量关系和位置关系,并证明你的猜想;(1)求此拋物线的解析式.课后训练4.如图,AOB∆是直角三角形,AOB∠5.如图,已知D是等边为EF,点E、F分别在∠=,将边AC绕点C顺时针旋转α得到线段10.(1)问题发现:如图1,ABCα∠=.请求出线段BC与DE的数量关系;线BC上取点D,使得CDEα(1)如图1,求点D的坐标;(2)如图2,点P在第二象限内抛物线上,过点接AE,过点E作EF⊥AE交线段为d,求d与t的函数关系式;(3)如图3,在(2)的条件下,点EH-CE=2AH,求点P的坐标.3(1)求证:EA·ED (2)若BE平分∠=45°,BD交EF于点(3)若AB=BC,点=EJ,当AEED=_________。
专题训练: 相似三角形的五种基本模型
专题训练 相似三角形的五种基本模型模型一 “A ”字型1.2016·黔西南州如图3-ZT -1,在△ABC 中,点D 在AB 上,BD =2AD ,DE ∥BC 交AC 于点E ,则下列结论不正确的是( )A .BC =3DEB .BD AB =CEACC . △ADE ∽△ABCD . S △ADE =13S △ABC2.如图3-ZT -2,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D .(1)求证:AE ·BC =BD ·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.模型二“X”字型3.如图3-ZT-3,在▱ABCD中,E,F分别是AD,CD边上的点,连接BE,AF,他们相交于点G,延长BE交CD的延长线于点H,则图中的相似三角形共有()A.2对B.3对C.4对D.5对4.如图3-ZT-4,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF∶S△EFC=2∶3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.模型三母子型4.如图3-ZT-5,在△ABC中,点D,E分别在边AC,BC上,下列条件中不能判断△CAB∽△CED的是()图3-ZT-5A.∠CDE=∠B B. ∠CED=∠AC. CDCE=CBCAD.CDCA=CEAB6.如图3-ZT-6,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.(1)求证:△ADC∽△ACB;(2)若AC=4,BC=3,求AD的长.7.如图3-ZT-7,F,E分别是AB,AC上的点,连接FE并延长交BC的延长线于点D.已知AE·CE=EF·ED.找出图中所有相似的三角形,并证明.模型四一线三等角型8.如图3-ZT-8,已知等边三角形ABC的边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.9.(1)尝试:如图3-ZT-9①,已知A,E,B三点在同一条直线上,且∠A=∠B=∠DEC =90°,求证:△ADE∽△BEC.(2)一位同学在尝试了上题后还发现:如图3-ZT-9②③,只要A,E,B三点在同一条直线上,且∠A=∠B=∠DEC,那么(1)中的结论总成立.你认为他的发现正确吗?若正确请加以证明;若不正确,请说明理由.模型五旋转型10.如图3-ZT-10所示,在△ABC和△AED中,AB·AD=AC·AE,∠CAE=∠BAD,S△ADE=4S△ABC.求证:DE=2BC.教师详解详析1.D2.解:(1)证明:∵BE 平分∠ABC , ∴∠ABE =∠CBE . ∵ED ∥BC , ∴∠DEB =∠CBE , ∴∠ABE =∠DEB , ∴BD =ED . ∵ED ∥BC ,∴∠AED =∠C ,∠ADE =∠ABC , ∴△ADE ∽△ABC , ∴AE AC =ED BC , ∴AE AC =BD BC, ∴AE ·BC =BD ·AC . (2)∵S △ADE S △BDE =AD BD =32,∴AD AB =35.由(1)知△ADE ∽△ABC ,∴ED BC =ADAB, 即6BC =35,∴BC =10. 3.C [解析] 有△AGB ∽△FGH ,△HED ∽△HBC ,△HED ∽△BEA ,△AEB ∽△CBH ,共4对.故选C.4.解:(1)∵AC ∥BD ,∴CE DE =AC DB =64=32.∵△BEF 和△EFC 同高,且S △BEF ∶S △EFC =2∶3,∴CF BF =32,∴CE DE =CF BF .又∠BCD =∠FCE ,∴△CEF ∽△CDB ,∴EF BD =CF BC ,∴EF 4=35,∴EF =125. (2)∵△CEF ∽△CDB ,∴∠CEF =∠D , ∴EF ∥BD .∵AC ∥BD ,∴EF ∥AC , ∴△BEF ∽△BAC ,∴S △BEF ∶S △ABC =(BF BC )2.由(1)知BF CF =23,∴BF BC =25. ∵S △BEF =4,∴4∶S △ABC =(25)2,∴S △ABC =25.5.D6.解:(1)证明:∵CD ⊥AB , ∴∠ADC =∠ACB =90°. 又∵∠A =∠A , ∴△ADC ∽△ACB .(2)在Rt △ABC 中,AC =4,BC =3, ∴AB =AC 2+BC 2=5. ∵△ADC ∽△ACB , ∴AD AC =AC AB ,即AD 4=45, ∴AD =165.7.解:图中所有相似的三角形有△AEF ∽△DEC ,△ABC ∽△DBF . 证明如下:∵AE ·CE =EF ·ED , ∴AE ∶ED =EF ∶CE . ∵∠AEF =∠DEC , ∴△AEF ∽△DEC , ∴∠A =∠D . 又∵∠B =∠B ,∴△ABC ∽△DBF .8.解:(1)证明:∵△ABC 是等边三角形, ∴∠B =∠C =60°,∴∠EDB +∠BED =120°.∵∠EDF =60°,∴∠FDC +∠EDB =120°,∴∠BED =∠FDC ,∴△BDE ∽△CFD . (2)∵△BDE ∽△CFD , ∴BD CF =BE CD, 即13=BE 5,解得BE =53. 9.解:(1)证明:∵∠A =∠B =∠DEC =90°,∴∠DEA +∠CEB =90°. ∵∠DEA +∠D =90°,∴∠D =∠CEB ,∴△ADE ∽△BEC . (2)正确.以题图②为例加以证明:∵∠A =∠B =∠DEC ,∠A +∠D =∠DEC +∠CEB , ∴∠D =∠CEB ,∴△ADE ∽△BEC . 10.证明:∵AB ·AD =AC ·AE ,∴AB AC =AE AD .又∵∠CAE =∠BAD ,∴∠CAE +∠DAC =∠BAD +∠DAC , 即∠DAE =∠CAB ,∴△ADE ∽△ACB . 又∵S △ADE =4S △ABC ,∴S △ADES △ABC =4,∴(DEBC )2=S △ADE S △ABC =4, ∴DEBC=2,∴DE =2BC .。
相似三角形的基本模型(A字型)(原卷版)(人教版) -九年级数学下册
专题04相似三角形的基本模型(A 字型)【模型说明】“A ”字模型图形(通常只有一个公共顶点)的两个三角形有一个“公共角”(是对应角),再有一个角相等或夹这个公共角的两边对应成比例,就可以判定这两个三角形相似.图1图2图31)“A ”字模型条件:如图1,DE ∥BC ;结论:△ADE ∽△ABC ⇔AD AB =AE AC =DE BC.2)反“A ”字模型条件:如图2,∠AE D =∠B ;结论:△ADE ∽△ACB ⇔AD AC =AE AB =DE BC.3)同向双“A ”字模型条件:如图3,EF ∥BC ;结论:△AEF ∽△ABC ,△AEG ∽△ABD ,△AGF ∽△ADC ⇔EG FG AG BD CD AD==【例题精讲】例1.(基本模型1)如图,已知D 是BC 的中点,M 是AD 的中点.求:AN NC 的值.A.24B.12【变式训练2】.如图,在Rt ABC BC上,连接C D AE,交于点F【变式训练4】.如图,△ABO AO 边的三等分点M 、N 分别作的值为()A .9【变式训练5】.如图,把边长为使点B 和D 重合,求折痕课后训练1.如图,,AB CD AE FD ∥∥,A .DH CH FH BH =B .GE DF3.如图,在三角形ABC中,点折至三角形ABC平面内,使得=与AD交于点O,若AH CH4.在平面直角坐标系中,已知,另一直角边交直角边构造直角ABC小值为.5.已知,平行四边形ABCD中,7.一块直角三角形木板的面积为21.5m,一条直角边AB为1.5m,怎样才能把它加工成一个面积最大的正方形桌面?甲、乙两位木匠的加工方法如图所示,请你用学过的知识说明哪位木匠的方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).8.如图,在平行四边形ABCD中,AD=AC,∠ADC=α,点E为射线BA上一动点,且AE <AB,连接DE,将线段DE所在直线绕点D顺时针旋转α交BA延长线于点H,DE所在直线与射线CA交于点G.(1)如图1,当α=60°时,求证:△ADH≌△CDG;(2)当α≠60°时,①如图2,连接HG,求证:△ADC∽△HDG;②若AB=9,BC=12,AE=3,请直接写出EG的长.9.在等腰三角形ABC 中,AB AC =,作CM AB ⊥交AB 于点M ,BN AC ⊥交AC 于点N .(1)在图1中,求证:BMC CNB ≌;(2)在图2中的线段CB 上取一动点P ,过P 作//PE AB 交CM 于点E ,作//PF AC 交BN 于点F ,求证:①PE PF BM +=;②OM BN AM PF AM PE ⋅-⋅=⋅.10.在矩形ABCD 中,6AB =,8AD =,点E 是边AD 上一点,EM EC ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项.(1)如图1,求证:ANE DCE ∠=∠;(2)如图2,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长;(3)联结AC ,如果AEC ∆与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.(1)求证:DB AB=;(2)点E在BC边上,连接AE交BD于点F 度数.△(3)在(2)的条件下,若16BC=,ABF。
沪科版九年级数学上册专题训练(:相似三角形的五种基本模型
专题训练(相似三角形的五种基本模型►模型一平行线型如图ZT-3-1,由DE∥BC可以得出∠ADE=∠B,进一步可得出△ADE∽△ABC.图ZT-3-1图ZT-3-21.如图ZT-3-3所示,已知D,E分别是△ABC的AB,AC边上的点,且DE∥BC,DE∶BC=1∶3,那么AE∶AC等于()A.1∶9 B.1∶3 C.1∶1 D.1∶2图ZT-3-32.如图ZT-3-4所示,AB是斜靠在墙上的长梯,梯脚B距墙角C处1.6 m,梯上点D 距点E处1.4 m(DE⊥AC于点E),BD长0.55 m,则梯子AB的长为()A.3.85 m B.4.00 m C.4.40 m D.4.50 m图ZT-3-43.如图ZT-3-5所示,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.图ZT-3-5►模型二相交线型如图ZT-3-6所示,由∠B=∠D,可以得出△ABC∽△ADE.图ZT-3-6如图ZT-3-7所示,由∠B=∠ADE,可以得出△ABC∽△ADE.图ZT-3-7如图ZT-3-8所示,由∠B=∠D(或∠C=∠E),可以得出△ABC∽△ADE.图ZT-3-8我们把这类相似的三角形叫做相交线型.4.如图ZT-3-9所示,D,E分别是△ABC的边AB,AC上的点,写出使△AED∽△ABC 的一个条件.图ZT-3-95.如图ZT-3-10所示,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的相似三角形.(写出两对即可)图ZT-3-10►模型三母子相似型如图ZT-3-11所示,由AC⊥BC,CD⊥AB可得Rt△CAD∽Rt△BCD∽Rt△BAC,其中Rt△CAD∽Rt△BCD可以看成是姊妹型相似,Rt△CAD∽Rt△BAC、Rt△BCD∽Rt△BAC 可以看成是母子型相似.图ZT-3-11如图ZT-3-12,由∠ACD=∠B(或∠ADC=∠ACB),得△ACD∽△ABC.图ZT-3-126.如图ZT-3-13所示,在Rt△ABC中,∠ACB为直角,CD⊥AB于点D,BC=3,AB=5,写出其中的一对相似三角形是________∽________,它们的相似比是________.图ZT-3-137.如图ZT-3-14所示,在已建立平面直角坐标系的4×4正方形网格中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是__________________________________________.图ZT-3-14►模型四旋转型如图ZT-3-15所示,由∠B=∠D,∠1=∠2可以得到△ABC∽△ADE.我们把这种类型的相似三角形称为旋转型.图ZT-3-158.如图ZT-3-16,△BAC,△AGF均为等腰直角三角形,且△BAC≌△AGF,∠BAC =∠AGF=90°.若△BAC固定不动,△AFG绕点A旋转,AF,AG与边BC的交点分别为D,E.请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.图ZT-3-16►模型五一线三等角型9.如图ZT-3-17,等边三角形ABC的边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.图ZT-3-1710.(1)尝试:如图ZT-3-18①,已知A,E,B三点在同一直线上,且∠A=∠B=∠DEC =90°.求证:△ADE∽△BEC;(2)一位同学在尝试了上题后还发现:如图②,图③,只要A,E,B三点在同一直线上,且∠A=∠B=∠DEC,则(1)中的结论总成立.你同意吗?请选择其中之一说明理由.图ZT-3-18教师详解详析1.B2.C3.证明:由FD ∥AB ,FE ∥AC ,可得∠B =∠FDE ,∠C =∠FED ,所以△ABC ∽△FDE.4.解:(答案不唯一)这里△AED 与△ABC 已有一个公共角∠A ,因此再找一个条件即可. 当找角时,∠AED =∠B 或∠ADE =∠C 均可使△AED ∽△ABC ;当找夹∠A 的边成比例时,AD AC =AE AB或AD·AB =AC·AE ,均可使△AED ∽△ABC. 5.解:(答案不唯一)由∠A =∠A ,可以得到Rt △ABF ∽Rt △ACE ;由∠EDB =∠FDC, 可以得到Rt △DEB ∽Rt △DFC ;由∠ABF =∠DBE ,可以得到Rt △ABF ∽Rt △DBE ;同理可得: Rt △ACE ∽Rt △DCF.由Rt △ABF ∽Rt △DBE ,Rt △ABF ∽Rt △ACE ,得Rt △DBE ∽Rt △ACE.同理可得:Rt △DCF ∽Rt △ABF.写出上述的任意两对均可.6.(答案不唯一)如Rt △BCD Rt △CAD 3∶4 [解析] 由“母子”相似和“姊妹”相似可得: Rt △CAD ∽Rt △BAC ,Rt △BCD ∽Rt △BAC, Rt △CAD ∽Rt △BCD.由BC =3,AB =5可得AC =4,Rt △BCD ∽Rt △CAD 的相似比是3∶4.7.(1,4)或(3,4) [解析] 当AB 作为较短的直角边时,P 点的坐标是(3,4)或(1,4);当AB 作为较长的直角边时,P 点的坐标是(3,1)或(1,1),不合题意,舍去;当AB 作为斜边时,不存在满足条件的P 点.所以格点P 的坐标是(1,4)或(3,4).8.解:(答案不唯一)△ABE ∽△DAE ,△DAE ∽△DCA.对△ABE ∽△DAE 进行证明:∵△BAC ,△AGF 为等腰直角三角形,∴∠B =45°,∠GAF =45°,∴∠EAD =∠B.又∵∠AED =∠BEA ,∴△ABE ∽△DAE.9.解:(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,∴∠EDB +∠BED =120°.∵∠EDF =60°,∴∠FDC +∠EDB =120°,∴∠BED =∠FDC ,∴△BDE ∽△CFD.(2)∵△BDE ∽△CFD ,∴BD CF =BE CD, 即13=BE 5, 解得BE =53.10.解:(1)证明:∵∠A=∠B=∠DEC=90°.∴∠DEA+∠CEB=90°,∠DEA+∠D=90°,∴∠D=∠CEB,∴△ADE∽△BEC.(2)同意.以题图②为例说明理由:∵∠A=∠B=∠DEC,∠A+∠D=∠DEC+∠CEB,∴∠D=∠CEB,∴△ADE∽△BEC.。
相似三角形的基本模型(子母型)(原卷版)(人教版) -九年级数学下册
专题06相似三角形的基本模型(子母型)
【模型说明】
“母子”模型的图形(通常有一个公共顶点和另外一个不是公共的顶点,由于小三角形寓于大三角形中,恰似子依母怀),也是有一个“公共角”,再有一个角相等或夹这个公共角的两边对应成比例就可以判定这两个三角形相似.
图1图2图3 1)“母子”模型(斜射影模型)
条件:如图1,∠C=∠ABD;结论:△ABD∽△ACB,AB2=AD·AC.
2)双垂直模型(射影模型)
条件:如图2,∠ACB=90o,CD⊥AB;
结论:△ACD∽△ABC∽△CBD;CA2=AD·AB,BC2=BD·BA,CD2=DA·DB.
3)“母子”模型(变形)
条件:如图3,∠D=∠CAE,AB=AC;结论:△ABD∽△ECA;
【例题精讲】
(1)求直线AB 的解析式及抛物线顶点坐标;
(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点(3)如图2,将抛物线215:324
L y x x =--向右平移得到抛物线于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.
课后训练
4.如图,在矩形ABCD中,=45°,则DF的长是。
中考数学专题训练:相似三角形模型的运用(附参考答案)
中考数学专题训练:相似三角形模型的运用(附参考答案)1.如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC=12.4,则CD的长是( )A.14 B.12.4C.10.5 D.9.32.如图,把△ABC绕点A旋转得到△ADE,当点D刚好落在边BC上时,连接CE,设AC,DE相交于点F,则图中相似三角形的对数是( )A.3对B.4对 C.5对D.6对3.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使边AD与对角线BD 重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形的面积比为( )A.112B.19C.18D.164.如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC,GA,交于点O,GA与BC交于点P,连接OD,OB,则下列结论一定正确的是( )①EC⊥AG;②△OBP∽△CAP;③BO平分∠CBG;④∠AOD=45°.A.①③ B.①②③C.②③ D.①②④5.如图,BD,CE为△ABC的高,且BD与CE交于点O.(1)求证:△AEC∽△ADB;(2)若∠A=40°,求∠BOC的度数.的值.6.)如图,AG∥BD,AF∶FB=1∶2,BC∶CD=2∶1,求GEED7.如图,在正方形ABCD中,点E为对角线AC,BD的交点,AF平分∠DAC交BD 于点G,交DC于点F.(1)求证:△AEG∽△ADF;(2)判断△DGF的形状并说明理由;(3)若AG=1,求GF的长.8.如图,等边三角形ABC的边长为3,点P为边BC上的一点,点D为边AC上的一点,连接AP,PD,∠APD=60°.(1)求证:①△ABP∽△PCD;②AP2=AD·AC.(2)若PC=2,求CD和AP的长.9.如图,点P是正方形ABCD边AB上一点(点P不与点A,B重合),连接PD,将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求∠PBE的度数;的值.(2)若△PFD∽△BFP,求APAB10.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在同一条直线上,连接AF并延长交边CD于点M.(1)求证:△MFC∽△MCA;(2)求证:△ACF∽△ABE;(3)若DM=1,CM=2,求正方形AEFG的边长.参考答案1.C 2.B 3.C 4.D5.(1)证明略(2)∠BOC=140°6.GEED =327.(1)证明略(2)△DGF是等腰三角形,理由略(3)GF=√2-1 8.(1)①证明略②证明略(2)CD=23AP=√79.(1)∠PBE=135°(2)APAB 的值为1210.(1)证明略(2)证明略(3)正方形AEFG的边长为3√55。
初中数学九年级模型构建专题:相似三角形中的基本模型 练习题 附加答案
模型构建专题:相似三角形中的基本模型——熟知需要用相似来解决的图形◆模型一“A”字型1.(2017·湘潭中考)如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC 的面积比为________.第1题图第2题图2.如图,△ABC中,点D、E分别在边AB、AC上,请添加一个条件:____________,使△ABC∽△AED.3.如图,在△ABC中,DE∥BC,ADAB=23,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.◆模型二“X”字型4.(2016·哈尔滨中考)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.ADAB=AEAC B.DFFC=AEEC C.ADDB=DEBC D.DFBF=EFFC第4题图第5题图第6题图5.(2016·贵港中考)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB 于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S ▱ABCD=AC·BC;③OE∶AC=3∶6;④S△OCF=2S△OEF,其中成立的有()A.1个B.2个C.3个D.4个6.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD=________.7.如图,四边形ABCD中,AD∥BC,点E是边AD的中点,连接BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,EDBC=13,求线段DC的长;(2)求证:EF·GB=BF·GE.◆模型三旋转型8.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.∠C=∠E B.∠B=∠ADE C.ABAD=ACAE D.ABAD=BCDE第8题图第9题图第10题图9.★如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6,△ABC 固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=__________.◆模型四“子母”型(大三角形中包含小三角形)10.(2016·毕节中考)如图,在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC =22,AB=3,则BD=________.11.(2016·云南中考)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C.152D.5第11题图第12题图◆模型五垂直型12.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A .1对B .2对C .3对D .4对13.如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED 、EC 为折痕将两个角(∠A 、∠B )向内折起,点A 、B 恰好落在CD 边上的点F 处.若AD =3,BC =5,则EF 的长是( )A.15 B .215 C.17 D .217第13题图 第14题图14.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.15.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 与BE 相交于点F .(1)求证:△ACD ∽△BFD ;(2)当AD =BD ,AC =3时,求BF 的长.◆模型六 一线三等角型16.(2017·潮阳区模拟)如图,在边长为9的等边△ABC 中,BD =3,∠ADE =60°,则CE 的长为________.17.如图,在△ABC 中,AB =AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD =∠B . (1)求证:AC ·CD =CP ·BP ;(2)若AB =10,BC =12,当PD ∥AB 时,求BP 的长.参考答案与解析1.1∶42.∠ADE =∠C (答案不唯一)3.解:(1)∵DE ∥BC ,∴AE AC =AD AB =23.∵AE =4,∴AC =6,∴EC =6-4=2.(2)∵M 为BC 的中点,∴S △ABM =12S △ABC =18.∵DE ∥BC ,∴△ADN ∽△ABM ,∴S △ADN S △ABM=⎝⎛⎭⎫AD AB 2=49,∴S △ADN =8.4.A5.D 解析:∵四边形ABCD 是平行四边形,∠ABC =60°,∴∠BCD =120°.∵CE 平分∠BCD ,∴∠DCE =∠BCE =60°,∴△CBE 是等边三角形,∴BE =BC =CE ,∠CEB =60°.∵AB =2BC ,∴AE =BE =BC =CE ,∴∠CAE =30°,∴∠ACB =180°-∠CAE -∠ABC =90°.∵AB ∥CD ,∴∠ACD =∠CAB =30°,故①正确;∵AC ⊥BC ,∴S ▱ABCD =AC ·BC ,故②正确;在Rt △ACB 中,∵∠ACB =90°,AB =2BC ,∴AC =3BC .∵AO =OC ,AE =BE ,∴OE ∥BC ,∴OE =12BC ,∴OE ∶AC =12BC ∶3BC =3∶6,故③正确;∵OE ∥BC ,∴△OEF ∽△BCF ,∴CF EF =BC OE =2,∴S △OCF ∶S △OEF =CFEF =2,∴S △OCF =2S △OEF ,故④正确.故选D.6.4.5 解析:∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB .又∵EF ∥CD ,∴FO FD =EO EC ,则FOEO =FD EC ,∴AF EB =FD EC ,即AF 4=1.52,解得AF =3,∴AD =AF +FD =3+1.5=4.5. 7.(1)解:∵AD ∥BC ,∴△DEF ∽△CBF ,∴FD FC =ED BC =13,∴FC =3FD =6,∴DC =FC -FD =4.(2)证明:∵AD ∥BC ,∴△DEF ∽△CBF ,△AEG ∽△CBG ,∴EF BF =DE BC ,AE BC =GEGB .∵点E 是边AD 的中点,∴AE =DE ,∴EF BF =GEGB,∴EF ·GB =BF ·GE .8.D9.1或116 解析:∵△ABC ≌△DEF ,AB =AC ,∴∠AEF =∠B =∠C .∵∠AEC =∠AEF+∠MEC =∠B +∠BAE ,∴∠MEC =∠EAB .∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠AEF ,∴AE ≠AM .当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC -EC =6-5=1.当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA .又∵∠C =∠C ,∴△CAE ∽△CBA ,∴CE AC =AC CB ,∴CE =AC 2CB =256,∴BE =6-256=116,∴BE =1或116.10.8311.D解析:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA.∵AB=4,AD=2,∴S△ACD∶S△ABC=(AD∶AB)2=1∶4,∴S△ACD∶S△ABD=1∶3.∵S△ABD=15,∴S△ACD=5.故选D.12.C13.A14.285解析:根据“垂线段最短”,得PM的最小值就是当PM⊥AB时PM的长.∵直线y=34x-3与x轴、y轴分别交于点A、B,∴令x=0,得y=-3,∴点B的坐标为(0,-3),即OB=3.令y=0,得x=4,∴点A的坐标为(4,0), 即OA=4,∴PB=OP+OB=4+3=7.在Rt△AOB中,根据勾股定理得AB=OA2+OB2=42+32=5.在Rt△PMB与Rt△AOB中,∵∠PBM=∠ABO,∠PMB=∠AOB,∴Rt△PMB∽Rt△AOB,∴PMOA=PBAB,即PM4=75,解得PM=285.15.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF =90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)解:∵AD=BD,△ACD∽△BFD,∴ACBF=ADBD=1,∴BF=AC=3.16.217.(1)证明:∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC =∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD=ABCP,∴AB·CD=CP·BP.∵AB=AC,∴AC·CD=CP·BP.(2)解:∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.又∵∠B=∠B,∴△BAP∽△BCA,∴BABC=BPBA.∵AB=10,BC=12,∴1012=BP10,∴BP=253.数学选择题解题技巧1、排除法。
中考数学几何专项——相似模型(相似三角形)
相似模型【相似模型一: A 字型】 特征 模型 结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB C BDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD【相似模型二: X 型】 特征 模型 结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D ③ 顺着比, 交叉乘 ④ △BOC∽△DOA【相似模型三: 旋转相似】 特征 模型结论成比例线段共端点① △ABC ∽△ADE ② △ABD∽△ACE【相似模型四: 三平行模型】 特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=【相似模型五: 半角模型】 特征模型 结论ECD BAA BDC EEDCBA90度, 45度; 120度, 60度 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六: 三角形内接矩形模型】 特征模型 结论矩形EFGH 或正方形EFGH 内接与三角形H GFED C BA【相似模型七: 十字模型】 特征 模型结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE, 则AF=BE,②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中, CE ⊥BD, 则△CDE ∽△BCD,平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中, AB =AC,AB ⊥AC, ①D 为中点, ②AE ⊥BD, ③BE :EC =2:1, ④∠ADB =∠CDE, ⑤∠AEB =∠CED,⑥∠BMC =135°, ⑦ , 这七个结论中, “知二得五”【A 型, X 型, 三平行模型】1.如图, 在△ABC 中, EF ∥DC, ∠AFE=∠B, AE=6, ED=3, AF=8, 则AC=_________, _________.F E DCBABCDE FA2. 如图, AB ∥CD, 线段BC, AD 相交于点F, 点E 是线段AF 上一点且满足∠BEF=∠C, 其中AF=6, DF=3, CF=2, 则AE=_________.3.如图, 在Rt △ABD 中, 过点D 作CD ⊥BD, 垂足为D, 连接BC 交AD 于点E, 过点E 作EF ⊥BD 于点F, 若AB=15, CD=10, 则BF:FD=_____________.FEBCD AN MEDCBA4.如图, 在□ABCD中, E为BC的中点, 连接AE, AC, 分别交BD于M, N, 则BM:DN=_____________.5.如图所示, AB∥CD, AD, BC相交于点E, 过E作EF∥AB交BD于点F.则下列结论:①△EFD∽△ABD;②;③;④.其中正确的有___________.F EDCBA图26.在△ABC中, AB=9, AC=6, 点M在边AB上, 且AM=3, 点N在AC边上.当AN= 时, △AMN与原三角形相似.7.如图, 在△ABC中, ∠C=90°, AC=8, BC=6, D是边AB的中点, 现有一点P位于边AC上, 使得△ADP与△ABC相似, 则线段AP的长为.8.如图, 已知O是坐标原点, 点A.B分别在轴上, OA=1, OB=2, 若点D在轴下方, 且使得△AOB与△OAD相似, 则这样的点D有个.9.如图, 在Rt△ACB中, ∠C=90°, AC=16cm, BC=8cm, 动点P从点C出发, 沿CA方向运动;动点Q同时从点B出发, 沿BC方向运动,如果点P的运动速度均为4cm/s, Q点的运动速度均为2cm/s, 那么运动几秒时, △ABC与△PCQ相似.10.将△ABC的纸片按如图所示的方式折叠, 使点B落地边AC上, 记为点B', 折叠痕为EF, 已知AB=AC=8, BC=10,若以点B'.F.C为顶点的三角形与△ABC相似, 那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图, 四边形中, 平分, , , 为的中点.(1)求证: ;(2)与有怎样的位置关系?试说明理由;(3)若, , 求的值.13.如图, 在中, 为上一点, , , , 于, 连接.(1)求证:;(2)找出图中一对相似三角形, 并证明.14.如图, 在中, , 分别是, 上的点, , 的平分线交于点, 交于点.(1)试写出图中所有的相似三角形, 并说明理由(2)若, 求的值.15.如图, 在平行四边形ABCD中, 对角线AC.BD交于点O. M为AD中点, 连接CM交BD于点N, 且ON=1.(1)求BD的长;(2)若△DCN的面积为2, 求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB = _________.19.如图所示, AD=DF=FB, DE∥FG∥BC,则=__________.20.如图, 在矩形ABCD中, 对角线AC, BD相交于点O, OE⊥BC于点E, 连接DE交OC于点F, 作FG⊥BC于点G, 则线段BG与GC的数量关系是___.21.如图, 已知点C为线段AB的中点, CD⊥AB且CD=AB=4, 连接AD, BE⊥AB, AE是∠DAB的平分线, 与DC相交于点F, EH⊥DC于点G, 交AD 于点H, 则HG的长为 .22.如图1, 在△ABC 中, 点D.E 、Q 分别在边AB.AC.BC 上, 且DE ∥BC, AQ 交DE 于点P. (1)求证: ;(2)如图, 在△ABC 中, ∠BAC=90°, 正方形DEFG 的四个顶点在△ABC 的边上, 连接AG 、AF, 分别交DE 于M 、N 两点. 如图2, 若AB=AC=1, 直接写出MN 的长;如图3, 求证MN2=DM【母子型】1.已知: 如图, △ABC 中, ∠ACB=90°, CD ⊥AB 于D, S △ABC=20, AB=10。
初三相似三角形模型题
在△ABC和△DEF中,若AB/DE = BC/EF,且△A = △D,则下列结论正确的是:A. △ABC △ △DEFB. △ABC △ △DFEC. △ABC与△DEF无法确定关系D. △ABC △ △EDF(正确答案)已知△PQR中,PQ = 6,QR = 8,RP = 10,△STU中,ST = 9,TU = 12,若△PQR △ △STU,则下列US的长度可能正确的是:A. 15B. 13.5C. 16(正确答案)D. 18两个三角形若两边对应成比例,且其中一边的对角相等,则这两个三角形:A. 一定全等B. 一定相似C. 可能相似,也可能不相似D. 一定不相似(正确答案)在△MNO和△PQR中,MN/PQ = NO/QR,且△M = △Q,则:A. △N = △R(正确答案)B. △O = △PC. △MNO与△PQR无法判定关系D. △MNO △ △PQR若△ABC的三个内角度数比为1:2:3,△DEF的三个内角度数比为3:4:5,则:A. △ABC △ △DEF(正确答案)B. △ABC △ △DEFC. △ABC与△DEF是等腰三角形D. △ABC与△DEF是等边三角形在△GHK和△LMN中,若GH/LM = HK/MN,且△G = △M,则下列说法错误的是:A. △GHK △ △LMN(正确答案应为相似,但此选项要求选错误说法)B. △K = △NC. △H = △M(已知)D. 对应边之间的比例相等已知△XYZ中,XY = 5,YZ = 6,ZX = 7.5,△ABC中,AB = 10,BC = 12,则当AC = _______ 时,△XYZ △ △ABC。
A. 13B. 14C. 15(正确答案)在△IJK和△LMN中,若IJ/LM = JK/MN,且△J = △N为钝角,则:A. △IJK △ △LMNB. △IJK与△LMN无法判定关系C. △I = △L(正确答案)D. △K = △M两个三角形若三边对应成比例,则它们:A. 一定全等B. 一定不相似C. 一定相似(正确答案)D. 无法确定关系。
浙教版九年级数学上册第四章:相似三角形基本模型练习题(含答案)
相似证明中的基本模型A 字形图①A 字型,结论:AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DEAC AB BC== 图③双A 字型,结论:DF BG EF GC =,图④内含正方形A 字形,结论AH a aAH BC-=(a 为正方形边长)IH G FED CB AGFEDC BAEDCB A ED C BA图① 图② 图③ 图④8字型图①8字型,结论:AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD==、四点共圆 图③双8字型,结论:AE DF BE CF=,图④A 8字型,结论:111AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ⋅=⋅△△△△EFD C BA F ED C BAOD C BAODC BAGFED CB A图① 图② 图③ 图④ 图⑤一线三等角型结论:出现两个相似三角形HE DC B AE DC BAEDCBAC60°F E DCB AFED CB A图① 图② 图③ 图④角分线定理与射影定理图①内角分线型,结论:AB BD AC DC =,图②外角分线型,结论:AB BDAC CD= 图③斜射影定理型,结论:2AB BD BC =⋅,图④射影定理型,结论:1、2AC AD AB =⋅,2、2CD AD BD =⋅,3、2BC BD BA =⋅D C BD BCAEDB AD B A梅涅劳斯型常用辅助线G FEDCBAGFEDCBA G E DC B ADEFCBA四、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下:如图:1212ABC ACDBC AHS BCS CD CD AH ⋅⋅==⋅⋅△△. 图1:“山字”型H DC B A如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△. 图2:“田字”型G HODCBA如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.图3:“燕尾”型CDEB A考点一:相似三角形【例1】 如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.EDCBA【答案】∵AD AC AE AB ⋅=⋅ ∴AD ABAE AC=∵DAE BAC ∠=∠∴DAE ∆∽BAC ∆∴ADE B ∠=∠ 【例2】 如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.ED CB A【答案】∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠ ∴ABD ∆∽CBE ∆∴BE BCBD AB=∵EBD CBA ∠=∠ ∴BED ∆∽BCA ∆∴11322DEDE AC AC===⇒== 【例3】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB =________.PCBA【解析】120APB BPC ∠=∠=︒,60BAP ABP ABC ABP CBP ∠=︒-∠=∠-∠=∠,故ABP BCP △∽△,2PB PA PC =⋅.【例4】 如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【答案】45︒ 【解析】连接DF 、CG ,则45EDF EBF DFB ∠=∠+∠=︒,若DFB EBG ∠=∠,则EBF EBG ∠+∠可求,问题的关键是证明BCG FDB △∽△.考点二:相似三角形与边的比例☞考点说明:可运用相似三角形模型,常用A 字形与8字形【例5】 在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA MPED C BA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴CM PC BD PB =, ∵CM AB ∥,∴CEM AED ∆∆∽, ∴CM AD CE AE =, ∵BD CE =, ∴CM CM CE BD =, ∴PC AD PB AE=, ∴AD BP AE CP ⋅=⋅【例6】 如图,在ABC ∆的边AB 上取一点D ,在AC 取一点E ,使AD AE =,直线DE 和BC 的延长线相交于P ,求证:BP BDCP CE= PEDCBA4321MPE D CBA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴BP BD CP CM =, ∵CM AB ∥, ∴14∠=∠, 又∵AD AE =,∴12∠=∠,∴24∠=∠, ∵23∠=∠, ∴34∠=∠, ∴CM CE = ∴BP BD CP CE= 【例7】 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =.F NMED CBAK HF N MG ED CBA【答案】过M ,N 分别作AC 的平行线交AB 于H ,G 两点,NH 交AM 于K ,∵BM MN NC ==, ∴BG GH HA ==,易知12HK GM =,12GM HN =,∴14HK HN =,即13HK KN =,又∵DF HN ∥, ∴13DE HK EF KN ==,即3EF DE =. 考点三:相似三角形与内接矩形☞考点说明:内接矩形问题是相似三角形中比较典型的问题,考查了相似三角形对应高的比等于相似比【例1】 一块直角三角形木板的一条直角边AB 长为1.5米,面积为1.5平方米,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案。
【重点突围】2023学年九年级数学上册专题提优训练(人教版) 相似三角形的基本六大模型(解析版)
相似三角形的基本六大模型考点一 (双)A 字型相似 考点二 (双)8字型相似考点三 母子型相似 考点四 旋转相似考点五 K 字型相似 考点六 三角形内接矩形/正方形考点一 (双)A 字型相似1.(2021·山东临沂·三模)如图 在△ABC 中 DE △BC 若AE =2 EC =3 则△ADE 与△ABC 的面积之比为ADEABC S S =故选:A 【点睛】本题考查的是相似三角形的判定和性质6AF AC∆;AEF ABC上AD与)见解析;(2)见解析)直接利用两边成比例且夹角相等的两个三角形相似即可证得结论;根据相似三角形的性质和平行线的判定方法可得Rt ABC中从点C出发出发当有一点到达所在线段的端点时1)求运动时间为多少秒时2)若CPQ的面积为3)当t为多少时为顶点的三角形与ABC相似40Rt CPQ的面积为)分两种情况:△Rt CPQ∽△Rt CPQ∽40为顶点的三角形与ABC相似.用方程的思想解决问题是解本题的关键.AB=9ADM交直线考点二(双)8字型相似1.(2021·海南海口·九年级期末)如图在▱ABCD中E为CD的中点连接AE、BD且AE、BD交于点F则DEFS△:EFBCS四边形为()然后求出DEF 和△DEF SS =4BAF S =2ADF S=ABD S 的面积 再根据平行四边形的性质可得DBC ABD S S = 然后相比计算即可得解.【详解】解:四边形是平行四边形//AB DE ∴ AB=CD E 为CD 的中点DEF ∴△△DEF S ∴:(BAF S =设DEF S S = 则4BAF S =EF :1AF =:2DEF S∴:ADF S EF =:AF 2ADF S S ∴=4ABD BAF ADF S S S S ∴=+=+BD 是平行四边形ABCD DBC ABD SS ∴= 6DBC S S ∴=DEF S ∴:EFBC S 四边形故选A .【点睛】本题考查了相似三角形的判定与性质三角形面积的比等于相似比的平方是解题的关键13Rt ABC中⊥作MN CB得,BNM BCA CNM ABD ,可得,BN MN CN BC BD BC,因为1BNCN BC BC ,列出关于即可求出MN 的长.【详解】△MN △BC DB△MN △DB△,BNMBCA CNM ABD ,MNBN MN CN ACBC BD BC 即,23MNBN MN CN BC BC , 又△1BNCN BC BC13MN MN65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质)求证:ABC△DBE.BC=CE8=6)因为ABC△DBE根据相似三角形的性质可知∠【详解】证明:(1)DBE∴ABC△DBE;2)ABC△DBEDE BE=AC BCBC=CE8AC=6=-=3BE CE BC36【答案】(1)见解析;(2)见解析【分析】(1)利用平行四边形的性质得AB=CD AB△CD再证明四边形BECD为平行四边形得到BD△CE根据相似三角形的判定方法由CM△DB可判断△BND△△CNM;(2)先利用AD2=AB•AF可证明△ADB△△AFD则△1=△F再根据平行线的性质得△F=△4△2=△3所以△3=△4加上△NMC=△CMD于是可判断△MNC△△MCD所以MC:MD=CN:CD然后利用CD=AB和比例的性质即可得到结论.【详解】证明:(1)△四边形ABCD是平行四边形△AB=CD AB△CD而BE=AB△BE=CD而BE△CD△四边形BECD为平行四边形△BD△CE△CM△DB△△BND△△CNM;(2)△AD2=AB•AF△AD:AB=AF:AD而△DAB=△F AD△△ADB△△AFD△△1=△F△CD△AF BD△CE△△F=△4△2=△3△△3=△4而△NMC=△CMD△△MNC△△MCD△MC:MD=CN:CD△MC•CD=MD•CN而CD=AB△CM•AB=DM•CN.若GEC 的面积为可以得到CEF 即可得到ADE ECF ≌ 则答案可证;先证明CEGABG 根据相似三角形的性质得出8ABG S = AG GC BGC S =ABC ABG BCG S S S =+得ABC S △【详解】(1)证明:△四边形//B AD C AD BC =ECF在ADE 和△△()ADE ECF ASA ≌AD CF =BC CF =;(2)△四边形ABCD //AB DC 2AB EC =△CEG ABG△GEC 的面积为22ABGCEG S AB S CE ⎛⎫== ⎪⎝⎭44ABG CEG S S ==⨯△CEGABG 12AG AB GC CE == 11822BGC ABG SS ==⨯8ABC ABG BCG SS S =+=+2212ABCD ABC S S ==⨯=【点睛】本题考查平行四边形的性质、全等三角形的判定与性质关键是明确题意 利用数形结合的思想解答.考点三母子型相似∠=∠若1.(2021·北京市师达中学九年级阶段练习)如图ABC中点D在边AB上且ACD ABC在ABC中BED=︒45Rt CEF中BF DG⊥Rt CEF.Rt CEF 中 32CE3EF =DGEDG 和△中DGE CEF DEG=∠==∠首先利用相似三角形的判定得出BAD ACE ∽ 得B ∠由BAD ACE ∽可证进而得出CD CE = 再由线段之间关系.【详解】(1)证明:AB AC ECA ∠ ACE ∆∽ EAC ∠ACB ∠=ABC ∴△∽△∴AC BC CD AC=2AC BC CD ∴=.(2)解:BAD ACE ∽AEC ∠CED =∠CEAD ABC 的中线2BC CD CD =22CD CD=此题主要考查了相似三角形的判定与性质以及重心的性质等知识根据已知得出BAD ACE ∽是解边上 点E 在AC)如果DEF与ABC互为母子三角形DE.12C.2或12ABC 中 与ADE 互为母子三角形.ABC 中 AD 是中线交于点F 若AGE 与△C ;(2)见解析;(3)AG GF )根据互为母子三角形的定义即可得出结论;)根据两角对应相等两三角形相似得出分当,G E 分别在线段△DEF 与ABC 互为母子三角形)AD 是BAC ∠的角平分线 BAD CAD =∠ADE B ∠=∠ ABD ADE ∴∽.又2AB AD =ABD ∴与ADE 互为母子三角形.(3)如图 当,G E 分别在线段AGE 与CD AD GE AG∴=AG DG ∴=AD 是中线BD CD ∴=又//GE BC GEF ∴∽△△DF DB GF GE ∴=3DG GF =3AG GF=.AGE 与CD AD GE AG∴=12AG ∴=AD 是中线BD CD ∴=又//GE BC GEF ∴∽△△DF DB GF GE ∴=DG GF =13AG GF =.3GF考虑全面 进行分类讨论 避免漏解.考点四 旋转相似 1.(2022·吉林长春·九年级期末)在同一平面内 如图① 将两个全等的等腰直角三角形摆放在一起 点A 为公共顶点 90BAC AED ∠=∠=︒.如图② 若△ABC 固定不动 把△ADE 绕点A 逆时针旋转 使AD 、AE 与边BC 的交点分别为M 、N 点M 不与点B 重合 点N 不与点C 重合.3 3EC CDECDC=CDE绕点C顺时针旋转AF考点五K字型相似3在ABC中F在BC上BPD∠=又BPD∠=DPC∴∠+∠∠=∠DPC∠=∠设DPC∴∠=∠BPC△△ADP∴∽AD AP∴=BP BC)∠∴∽ABD DFEAB AD∴=DF DEADE是等腰直角三角形DE AD∴=2AB=22∴=4DF∠=EFD45∴∠=∠EFC∴∽EFC DECFC EC∴=EC CD=EC=,CD DF52EC FC CD FC∴=⋅=∴=1FC∴=.CD5【点睛】本题考查相似三角形的综合题在ABC中PE与边BC20n n n得到ADE△CDF再判断出ADC△DCB得到ADE△CDF再判断出ADC△CDB△(3)由(2的结论得出ADE△CDF判断出再利用勾股定理计算出即可.【详解】解:n时即:BC=90∠=ACB∴∠+∠=90A ABC⊥CD AB90∴∠+=DCB∴∠=∠A∠=FDE90∴∠-∠-∠FDE ADC∠即ADE∴△CDFADE∠=∠90A DCB∴△CDBADC△AD AC∴=DC BC()290①∠=ACB∴∠+∠=90A ABC⊥CD ABDCB ABC∴∠+∠=90∴∠=∠A DCB∠=90FDE∴∠-∠-∠FDE ADC∠即ADE∴△CDFADEDE AD∴=DF DC∠=∠90A DCB∠∴△CDBADC△AD AC n∴==DC BC m②成立.如图90∠=ACB∴∠+∠=90A ABC又CD AB ⊥90DCB ∴∠+∠A DCB ∴∠=∠90FDE ∠=∠FDE ADC ∴∠+∠+∠即ADE ∠=∠ADE ∴△CDFDE AD DF DC∴= A DCB ∠=∠ 90∠ADC ∴△CDB △AD AC n DC BC m ∴== DE n DF m∴=.()3由()2有ADE △CDF 12DE AC DF BC = 12AD AE DE CD CF DF ∴== 2CF AE ∴=如图4图6 连接EF .在Rt DEF △Rt CEF中根据勾股定理得CE=25如图5当Rt CEF中根据勾股定理得(2[25 CE+25CE=5如图6当Rt CEF 中 根据勾股定理得(2[2CE CE +25CE = 综上:2CE = 考点六 三角形内接矩形/正方形1.(2022·山东东营·中考真题)如图 在ABC 中 点F 、G 在BC 上 点E 、H 分别在AB 、AC 上 四边是ABC 的高.24△AEF ABC ∽AM 和AD 分别是△AEH ,AM EH DM EF AD BC==AM AD DM AD =-=1CD CB2 2x-=解得30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学相似三角形基本模型专题训练相似三角形基本模型专题训练【相似三角形的基本图形】1、A 字形和反A 字形2、反A 共边形AE AD DE AC AB BC == AE AD DE AB AC BC==2AC AD AB = 3、双垂线模型①、2AD BD DC = ②、2AC CD CB = ③、2AB BD BC = 4、一线三等角模型AB BC ACCD DE CE== 5、旋转模型注意:公共角或对顶角或同角(等角)的余角(或补角)相等【典例精讲精练】模块一:A 字形模型和反A 字形模型1、如图,点D 、E 、F 、G 为ABC ?两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ?的面积三等分,那么下列结论正确的是……………………………………………()(A)14DE FG=(B)1DF EG FBGC ==(C)AD FB(D)AD DBB2、如图已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB=12,AC=8,AD=6,当AP 的长度为_____时△ADP 和△ABC 相似.3、如图,在△ABC 中,如果DE 与BC 不平行,那么下列条件中,不能..判断△ADE ∽△ABC 的是A .∠ADE=∠C ;B .∠AED=∠B ;C .AD DE AB BC =; D .AD AEAC AB=4、如图,在△ABC 中,AD 是BC 上的高,且BC = 5,AD =3,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 和AC 上,如果设边EF 的长为 (03)x x <<,矩形EFGH 的面积为y ,那么y 关于x 的函数解析式是 .5、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =,那么:ADE BEC S S ??=()A. 1:24;B. 1:20;C. 1:18;D. 1:16;6、如图,点D 为△ABC 内部一点,点E 、F 、G 分别为线段AB 、AC 、AD 上一点,且EG ∥BD ,GF ∥DC . (1)求证: EF ∥BC ;(2)当23AE BE=时,求EFGBCDS S ??的值.(EFG S ?表示△EFG 的面积, BCD S ?表示△BCD 的面积) AB CED7、在Rt △ABC 中,?=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠co t 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若EBM BAE ∠=∠,求斜边AB 的长.8、如图,已知在ABC ?中,10==AC AB ,34tan =∠B (1)求BC 的长;(2)点D 、E 分别是边AB 、AC 的中点,不重合的两动点M 、N 在边BC 上(点M 、N 不与点B 、C 重合),且点N 始终在点M 的右边,联结DN 、EM ,交于点O ,设x MN =,四边形ADOE 的面积为y .①求y 关于x 的函数关系式,并写出定义域;②当OMN ?是等腰三角形且1=BM 时,求MN 的长.CBM 图11C B (M )图10模块二:反A 共边模型1、如图,在△ABC 中,若AB =AC =3,D 是边AC 上一点,且BD=BC=2,则线段AD 的长为 .2、如图,在边长为1的正方形网格上有点P 、A 、B 、C ,则图中所形成的三角形中,相似的三角形是.3、在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图5),△ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD .第1题图第2题图第3题图第4题图 4、如图,Rt △ABC 中,∠C =90°,AB =5, AC=3,在边AB 上取一点D ,作DE ⊥AB 交BC 于点E .现将△BDE 沿DE 折叠,使点B 落在线段DA 上(不与点A 重合),对应点记为B 1;BD 的中点F 的对应点记为F 1.若△EFB ∽△A F 1E ,则B 1D = . 5、如图,在△ABC 中,∠C=90°,AD 是∠CAB 的角平分线,BE AE ⊥,垂足为点E .求证:2BE DE AE =?.BA备用图AECD B第5题图6、如图,ABC ?中,PC 平分ACB ∠,PC PB =(1)求证:APC ?∽ACB ?;(2)若2=AP ,6=PC ,求AC 的长.7、如图,已知在梯形ABCD 中,AD // BC ,∠A = 90o,AB = AD .点 E 在边AB 上,且DE ⊥CD ,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF .(1)求证:DE = DC ;(2)如果2BE BF BC =?,求证:∠BEF =∠CEF .8、已知:如图,△ABC 中,点D 、E 是边AB 上的点,CD 平分∠ECB ,且2BC BD BA =?.(1) 求证:△CED ∽△ACD ; (2) 求证:AB CEBC ED.BD E9、如图,ABC ?中,点D 、E 分别在BC 和AC 边上,点G 是BE 边上一点,且BAD BGD C ∠=∠=∠,联结AG .(1)求证:BD BC BG BE ?=?;(2)求证:BGA BAC ∠=∠.10、如图,已知在等腰△ABC 中,AB =AC ,点E 、点D 是底边所在直线上的两点,联接AE 、AD ,若DE DC AD ?=2,求证:(1)△ADC ∽△EDA ;(2) CDEBAD AE =22.BDAGE CACB11、如图,在△ABC 中,点D 在边AC 上,AE 分别交线段BD 、边BC 于点F 、G ,∠1=∠2,AF DFEF BF=.求证:2BF FG FE = .12、如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,BE 、AD 相交于点G ,EF ∥AD 交BC 于点F ,且2BF BD BC =,联结FG 。
(1)求证:FG ∥CE ;(2)设∠BAD=∠C ,求证:四边形AGFE 是菱形。
13、已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=;(2)如果2CF FG FB =?,求证:CG CE BC DE ?=?图9GFEDCBA14、已知:如图,在梯形ABCD中,AD//BC,∠BCD=90o,对角线AC、BD相交于点E,且AC⊥BD.(1)求证:2CD BC AD=?;(2)点F是边BC上一点,联结AF,与BD相交于点G.如果∠BAF =∠DBF,求证:22AG BG AD BD=.15、如图,在△ABC中,∠ACB=90°,AC=8,sin45B=,D为边AC中点,P为边AB上一点(点P不与点A、B重合) ,直线PD交BC延长线于点E,设线段BP长为x,线段CE长为y.(1)求y关于x的函数解析式并写出定义域;(2)过点D作BC平行线交AB于点F,在DF延长线上取一点Q,使得QF=DF,联结PQ、QE,QE交边AC于点G,①当△EDQ与△EGD相似时,求x的值;②求证:PD DEPQ QE=.ACBDEFG(第23题图)EB16、已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;模块三:双垂线模型1、如图,在△ABC 中,90ABC ∠=?,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN = ;2、如图,在AOB ?中,已知90AOB ∠=?,3AO =,6BO =,将A OB ? 绕顶点O 逆时针旋转到A OB ''?处,此时线段A B ''与BO 的交点E 为BO 的中点,那么线段B E '的长度为.3、如图,已知扇形AOB 的半径为6,圆心角为90°,E 是半径OA 上一点,F 是AB 上一点.将扇形AOB 沿EF 对折,使得折叠后的圆弧'A F 恰好与半径OB 相切于点G ,若 OE =5,则O 到折痕EF 的距离为.4、如图,在Rt △ABC 中,∠C =90°,AC =3,cot 34A =,点D 、E 分别是边BC 、AC 上的点,且∠EDC=∠A ,将△ABC 沿DE 对折,若点C 恰好落在边AB 上,则DE 的长为 .5、已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AB =x ,S ⊿AFG =y ,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.6、已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点,沿PE 翻折△BPE 得到△FPE ,直线PF 交CD 边于点Q ,交直线AD 于点G ,联结EQ . (1)如图,当BP =1.5时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP=x ,DG=y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若△CQE ∽△FHG ,求BP 的长.7、如图,Rt △ABC 中,90C ∠=?,30A ∠=?,2BC =,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G ;(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长;模块四:一线三等角模型1、已知D 、E 、F 分别为等腰△ABC 边BC 、CA 、AB 上的点,如果AB=AC ,BD=2,CD=3,CE=4,AE=23,∠FDE=∠B ,那么AF 的长为() A. 5.5B. 4.5C. 4D. 3.52、如图,D 为等边△ABC 边BC 上一点,60ADE ∠=?,交AC 于E ,若2BD =,3CD =,则CE = ;3、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ?的周长是 cm .第1 题图第2题图第3题图第4题图4、如图4,梯形ABCD 中,AD //BC ,AB =DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ?=2,则图中有对相似三角形.5、在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD上的E 点处,若AM AE 2=,那么EN 的长等于6.如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =? (1)求证:∠DAC =∠DCE ;(2)若DE AC AD AB AD ?+?=2,求证:∠ACD =90o .7、如图,在ABC ?中,8AB =,10BC =,3cos 4C =,2ABC C ∠=∠, BD 平分ABC ∠交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且AEF ABC ∠=∠,AE 与BD 相交于点G .(1)求证:AB BGCE CF=;(2)设BE x =,CF y =,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)当AEF ?是以AE 为腰的等腰三角形时,求BE 的长.(备用图1)BCDA(第25题图)BCEFDGAA8、如图,△ABC 中,AB =5,BC =11,3cos 5B =,点P 是BC 边上的一个动点,联结AP ,取AP 的中点M ,将线段MP 绕点P 顺时针旋转90°得到线段PN ,联结AN ,NC .(1) 当点N 恰好落在BC 边上时,求NC 的长;(2) 若点N 在△ABC 内部(不含边界),设BP=x ,CN=y ,求y 关于x 的函数关系式,并求出函数的定义域;(3) 若△PNC 是等腰三角形,求BP 的长.9、如图,在等腰梯形ABCD 中,AD //BC ,AB=CD ,AD =6,BC=24,4sin 5B =,点P 在边BC 上,BP =8,点E 在边AB 上,点F 在边CD 上,且∠EPF =∠B .过点F 作FG ⊥PE 交线段PE 于点G ,设BE =x ,FG =y .(1)求AB 的长;(2)当EP ⊥BC 时,求y 的值;(3)求y 与x 的函数关系式,并写出x 的取值范围.10、如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.模块五:旋转模型1、如图在△ABC 与△ADE 中,EDAEBC AB =,要使△ABC 与△A DE 相似,还需添加一个条件,这个条件可以是.2、如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC 中,AB =6,BC =7,AC =5,△A 1B 1C 是△ABC 以点C 为转似中心的其中一个转似三角形,那以点C 为转似中心的另一个转似三角形△A 2B 2C (点A 2、B 2分别与A 、B 对应)的边A 2B 2长为.3、把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(2)B ,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为;4、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,联结DE ,F 为线段DE 上一点,且∠AFE =∠B .若AB =5,AD =8,AE =4,则AF 的长为.5、如图已知:CEBDAC AB AE AD ==,求证:ADE ABC ∠=∠D6、已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠.(1)求证:ACAGAB AD =;(2)当BC GC ⊥时,求证:?=∠90BAC .第18题图CD图87、如图,已知CD 是△ABC 中∠ACB 的角平分线,E 是AC 上的一点,且2CD BC CE =?,AD=6,AE=4.(1) 求证:△BCD ∽△DCE ; (2) 求证:△ADE ∽△ACD ; (3) 求CE 的长.8、如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.9、如图,在Rt △CAB 与Rt △CE F 中,∠ACB=∠FCE=90°,∠CAB=∠CFE ,AC 与EF 相交于点G ,BC =15,AC=20.(1)求证:∠CEF =∠CAF ;(2)若AE =7,求AF 的长.CDB 10、在△ABC 中,D 是BC 的中点,且AD=AC ,DE ⊥BC ,与AB 相交于点E ,EC 与AD 相交于点F .(1) 求证:△ABC ∽△FCD ;(2) 若DE =3,BC =8,求△FCD 的面积.11、已知:如图,正方形ABCD ,BM 、DN 分别是正方形的两个外角平分线,∠MAN =45°,将∠MAN 绕着正方形的顶点A 旋转,边AM 、AN 分别交两条角平分线于点M 、N ,联结MN .(1)求证:ABMADN ??;(2)联结BD ,当∠BAM 的度数为多少时,四边形BMND 为矩形,并加以证明.ADN12、如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =;(1)试用x 的代数式表示FC ;(2)设FGy EF=,求y 关于x 的函数关系式,并写出定义域;(3)当△AEG 是等腰三角形时,直接写出BE 的长;模块六:比例的性质、比例中项、黄金分割、三角形重心1、已知23x y =,那么=+-yx y x 2、如果53a b =,那么a b a b-+的值等于; 3、线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ;4、已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ____5、在中国地理地图册上,联结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1290千米,那么飞机从台湾绕道香港再到上海的飞行距离约为千米.6、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm .7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm . 8、线段10AB =cm ,点P 是线段AB 的黄金分割点,且AP BP >,那么AP = cm . 9、相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于厘米;10、已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于;11、△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB = ; 12、已知点G 是△ABC 的重心,AB =AC =5,BC =8,那么AG = .13、如图,已知在ABC ?中,90ACB ∠=?,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH = .14、两个相似三角形的相似比为2:3,则它们的面积比为;15、已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为;16、如果两个相似三角形的面积比为1:4,那么它们的周长为.17、已知ABC ?∽DEF ?,点A 、B 、C 对应点分别是D 、E 、F ,4:9:=DE AB ,那么DEF ABC S S ??:等于()(A )3:2;(B )9:4;(C )16:81;(D )81:16.18、如图,在平行四边形ABC D 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于点F ,若S △AFD =9,则S △EFC =.。