锻件与铸件

合集下载

锻件、铸件、冲压件的认识

锻件、铸件、冲压件的认识

1、(锻件)是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。

这种力量典型的通过使用铁锤或压力来实现。

铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。

在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。

锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。

这种方法生产的元件,强度与重量比有一个高的比率。

这些元件通常被用在飞机结构中。

锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。

锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。

2、(铸件)用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。

3、(冲压件)通过冲床和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件的成形加工方法,得到的工件就是冲压件。

冲压件是靠压力机和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件(冲压件)的成形加工方法。

冲压和锻造同属塑性加工(或称压力加工),合称锻压。

冲压的坯料主要是热轧和冷轧的钢板和钢带。

全世界的钢材中,有60~70%是板材,其中大部分是经过冲压制成成品。

汽车的车身、底盘、油箱、散热器片,锅炉的汽包、容器的壳体、电机、电器的铁芯硅钢片等都是冲压加工的。

仪器仪表、家用电器、自行车、办公机械、生活器皿等产品中,也有大量冲压件。

冲压件与铸件、锻件相比,具有薄、匀、轻、强的特点。

冲压可制出其他方法难于制造的带有加强筋、肋、起伏或翻边的工件,以提高其刚性。

由于采用精密模具,工件精度可达微米级,且重复精度高、规格一致,可以冲压出孔窝、凸台等。

冷冲压件一般不再经切削加工,或仅需要少量的切削加工。

热冲压件精度和表面状态低于冷冲压件,但仍优于铸件、锻件,切削加工量少。

第8章锻件与铸件超声检测ppt课件

第8章锻件与铸件超声检测ppt课件
与对比试块的透声性和耦合损失差ΔdB。作出该组试块的距离—波 幅曲线(面板曲线),再增益ΔdB。
扫查灵敏度:在基准灵敏度的基础上再提高增益6dB。 8.2.6 缺陷的判别与测定 (1)缺陷回波达到距离—波幅曲线者; (2)底面回波幅度降低量≥12dB者; (3)不论缺陷回波高低,认为是线状或片状缺陷者。 缺陷位置与大小测定: a. 缺陷位置测定:由缺陷波前沿对应的水平刻度值来确定。 b. 缺陷面积测定:利用缺陷反射法判别缺陷时,用缺陷6dB法测定 缺
采用CSⅡ标准试块。 曲面检测面:采用CSⅢ标准试块测定因曲率不同引起的耦合损失。
8.1.4 扫描速度和灵敏度的调节
1. 扫描速度的调节
在试块上或在锻件上已知尺寸的部位上调节扫描速度。
2. 检测灵敏度的调节
扫查灵敏度不低于最大检测距离处的Φ2mm平底孔当量直径。
(1)底波调节法
应用条件: 锻件的被探部位厚度x≥3N,且具有平行底面或圆柱曲

波B1达到基准高,然后用“衰减器”增益 ΔdB。
扫查灵敏度:在基准灵敏度的基础上提高5~10dB。
(2)试块调试法 1)单直探头检测
当锻件的厚度x<3N或由于几何形状所限或底面粗糙时, 根据检测要求选择相应的平底孔试块(CSⅠ、CSⅡ)调节 检测灵敏度。调节“增益”将试块平底孔的最大回波达到基 准高。 注意:当试块表面形状、粗糙度与锻件不同时,需进行耦 合补偿。当试块与工件的材质相差较大时,还应考虑介质衰 减补偿。 2)双晶直探头检测
边长为50mm的立方体内少于5个,回波高不小于Φ2mm的缺 陷。 缺陷的位置和大小测定:分散缺陷一般不太大,常用当量法 定量,同时要测定分散缺陷的位置。 分散缺陷类型:分散性的夹杂。
3. 密集缺陷
密集缺陷回波:示波屏上同时显示的缺陷回波很多,缺陷之 间的间隔很小,甚至连成一片。

铸造和锻造如何区别

铸造和锻造如何区别

个人收集整理仅供参考学习铸造和锻造如何区别铸造和锻造的区别:1、铸造:就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。

现代机械制造工业的基础工艺。

铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。

但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机、铸铁平板等)较多,且会产生粉尘、有害气体和噪声而污染环境。

铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。

公元前3200年,美索不达米亚出现铜青蛙铸件。

公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。

早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。

公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。

公元8世纪前后,欧洲开始生产铸铁件。

18世纪的工业革命后,铸件进入为大工业服务的新时期。

进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。

50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。

文档收集自网络,仅用于个人学习铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。

②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。

锻件与铸件区别

锻件与铸件区别

1、铸件的特点是容易获得其他方法不易获得的形状复杂的工件;铸件成本低;可以采用特殊工艺获得精密铸件,其表面不经加工即有理想的光洁度;铸件成形简单,比锻造价格便宜;但铸件内容易出现缺陷及非致密区,在强腐蚀及高压场合国内的技术一般不能保证锻件的质量.锻件是使用锻打设备对棒料进行锻打成型,一般无法锻打出比较复杂的工件,需要较大的加工量,但锻件组织结构比较致密,不容易出现内部缺陷,因此广泛用于要求高的部件加工,如阀座、阀芯、阀杆等,在高压及强腐蚀合金阀门中,锻件阀体也被大量采用。

2、尽管铸造技术已经有了巨大的发展,并利用计算机技术辅助优化结构设计和浇铸过程的流体几何设计,但是要达到1类或2类接受标准的X射线/MT或PT质量要求仍然是极端困难的,而这些都是核电站、热电站或石化工业内的苛刻环境所要求的标准。

因此就需要进行焊接改进。

.但是,在焊补后,铸件阀门的整体质量和可靠性就变得难于保证。

有时所有这些问题都遗留在铸件焊接金属框架里。

测试杆通常针对每个温度,但是它们的分析可能是不确定的。

即使圆形测试杆表明化学特性和物理特性是可接受的,逐渐本身仍然可能存在难于察觉的有损强度或防腐能力的内部缺陷。

.根据锅炉法典第IX节定期检查的要求,在使用过程中需要定期进行检查的内容包括,铸件金属的补焊,管道焊缝。

焊补位置的纪录因此必须保存,所以在工厂运行过程中,故障发生可能与原始的制造条件和标准有关。

在铸造过程中,浇铸到模腔内的金属在凝固过程中可能会产生收缩、分离或气孔,这些问题使得“浇铸”铸件无法被苛刻环境应用领域所接受。

收缩发生在两个过程中,温度高于熔点的金属冷却时产生收缩,随后在凝固过程中进一步收缩。

第一次增加熔化金属补偿,但是固态冷却过程中的补偿就要靠加大尺寸。

.分离,或熔化物的化学分离,是在模腔内壁固化出一层后的凝固过程中发生,在很长的温度变化期间,低流动性使得小固体颗粒-晶体-以树状结构形成和生长。

最初的晶体,紧靠着模腔内壁,合金含量最少。

304铸件和锻件屈服强度对比分析

304铸件和锻件屈服强度对比分析

304铸件和锻件屈服强度对比分析
304不锈钢是一种常见的不锈钢材料,常用于制造各种零件和构件。

在制造过程中,常用的加工方法包括铸造和锻造,其中铸造常用于制造铸件,而锻造常用于制造锻件。

1. 材料结构:304铸件与304锻件在材料结构上有所差异。

铸件的结晶形态是由冷却速度决定的,通常具有不均匀的晶粒结构,可能存在凝固缺陷。

而锻件由于经历了高温下的塑性变形和冷却过程,通常具有更加均匀细小的晶粒结构。

2. 内在应力:铸件在制造过程中可能会产生内在应力,其中一部分可以通过热处理来消除,但某些残余应力可能会保留下来。

而锻件经历了锻造和热处理过程,可以更好地消除内在应力。

3. 强度:一般情况下,锻件的强度要高于铸件。

锻件由于经历了塑性变形和热处理过程,粒得到了细化,结构更加致密,因此锻件通常具有更高的屈服强度和抗拉强度。

4. 韧性:铸件相对于锻件在韧性方面更好。

铸件的晶粒较大且不均匀,使其具有较高的冲击吸能能力。

而锻件的晶粒细小,强度高,但韧性相对较差。

尽管304铸件和锻件在材料结构、内在应力、强度和韧性方面存在差异,但一般情况下,304锻件具有更高的屈服强度,而304铸件相对更具韧性。

选择适合的加工方法需要根据具体的应用需求和工艺要求进行评估和选择。

第六章 锻件与铸件超声波探伤

第六章  锻件与铸件超声波探伤

• 疏松是由钢锭凝固时形成的不致密和孔穴, 疏松是由钢锭凝固时形成的不致密和孔穴, 锻造时锻压比不够未全熔合造成, 锻造时锻压比不够未全熔合造成,主要存 在于钢锭中心及头部。 在于钢锭中心及头部。铸造引起裂纹主要 是指锻钢件表面上出现的较浅的龟状表面 缺陷也称龟裂,是由于原材料成份不当, 缺陷也称龟裂,是由于原材料成份不当, 表面状况不好, 表面状况不好,加热温度和加热时间不合 适等原因产生。 适等原因产生。 • 锻造缺陷:折叠、白点、裂纹等。 锻造缺陷:折叠、白点、裂纹等。
• 缩孔和缩管是锻锭时,因冒口切除不当, 缩孔和缩管是锻锭时,因冒口切除不当, 铸模设计不良以及锻造条件(温度、 铸模设计不良以及锻造条件(温度、浇注 速度、浇注方法、熔炼方法等) 速度、浇注方法、熔炼方法等)不良所产 生的缩孔没有被锻合而遗留下来的缺陷, 生的缩孔没有被锻合而遗留下来的缺陷, 是由于锻造时切头留量不足残留下来的, 是由于锻造时切头留量不足残留下来的, 多见于锻件端部,故也称缩孔残余。 多见于锻件端部,故也称缩孔残余。 • 非金属夹杂物是由熔烧不良及铸锭不良, 非金属夹杂物是由熔烧不良及铸锭不良, 混进硫化物和氧化物等非金属夹杂物,或 混进硫化物和氧化物等非金属夹杂物, 者混进耐火材料等造成的缺陷。 者混进耐火材料等造成的缺陷。
• •
• • •ຫໍສະໝຸດ 4.材质衰减测定 材质衰减测定 在锻件上选定三处有代表性部位( 在锻件上选定三处有代表性部位(完好部 测出第一次底波B1和第二次底波 和第二次底波B2 位)测出第一次底波 和第二次底波 的波高分界值。 的波高分界值。 B −B −6 α= (dB/ mm ) 则 2X 这里X≥3N,为单程声程(厚度或直径) 这里 ,为单程声程(厚度或直径)
• •
2.具有平行平面和园盘形饼类锻件。 具有平行平面和园盘形饼类锻件。 具有平行平面和园盘形饼类锻件 具有平行平面锻件和饼型锻件采用纵波在 两个平行面探测, 两个平行面探测,当厚度较大时也可在锻 件厚度方向侧面探测。 件厚度方向侧面探测。

锻件和铸件的声速

锻件和铸件的声速

锻件和铸件的声速一、引言声速是指声波在介质中传播的速度,是介质特性之一。

在工程领域,锻件和铸件是常见的金属加工方法,它们在声速方面存在一定的差异。

本文将就锻件和铸件的声速进行探讨和比较。

二、锻件的声速锻件是以金属材料为原料,通过加热后进行塑性变形而制成的工件。

在锻造过程中,金属材料被加热至可塑性状态,然后通过锤击或压力加工等方式进行变形。

由于锻件的晶粒结构经过塑性变形,其晶粒细化程度高,晶界密度大,因此具有较高的声速。

锻件的声速受到多种因素的影响,如材料的种类、温度、晶粒结构等。

通常情况下,锻件的声速较高,一般在4000~7000 m/s之间。

不同材料的锻件声速也有所差异,例如钢锻件的声速约为5900 m/s,而铝锻件的声速约为6300 m/s。

三、铸件的声速铸件是通过将熔化的金属倒入模具中,然后冷却凝固而制成的工件。

相对于锻件而言,铸件制造工艺更加简单,适用范围更广。

然而,由于铸件的制造过程中没有经过塑性变形,其晶粒结构相对较大,晶界密度较低,因此铸件的声速较低。

铸件的声速同样受到多种因素的影响,如材料的种类、温度、晶粒结构等。

一般情况下,铸件的声速较低,一般在2000~4000 m/s之间。

不同材料的铸件声速也有所差异,例如铸铁件的声速约为3400 m/s,而铝合金铸件的声速约为6300 m/s。

四、锻件和铸件声速的比较从以上介绍可以看出,锻件和铸件在声速方面存在一定的差异。

锻件由于经过塑性变形,晶粒细化程度高,晶界密度大,因此其声速较高;而铸件由于没有经过塑性变形,晶粒结构相对较大,晶界密度较低,因此其声速较低。

锻件和铸件的声速还受到材料种类、温度等因素的影响。

不同材料的锻件和铸件声速差异较大,因此在具体工程应用中需要根据实际情况选择合适的加工方法和材料。

总结:锻件和铸件是常见的金属加工方法,在声速方面存在一定的差异。

锻件由于经过塑性变形,晶粒细化程度高,晶界密度大,因此其声速较高;而铸件由于没有经过塑性变形,晶粒结构相对较大,晶界密度较低,因此其声速较低。

锻件与铸件超声波探伤详细教程(附实例解析)

锻件与铸件超声波探伤详细教程(附实例解析)

锻件与铸件超声波探伤详细教程(附实例解析)第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。

它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。

一些标准规定对某些锻件和铸件必须进行超声波探伤。

由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。

第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。

锻压过程包括加热、形变和冷却。

锻件的方式大致分为镦粗、拔长和滚压。

镦粗是锻压力施加于坯料的两端,形变发生在横截面上。

拔长是锻压力施加于坯料的外圆,形变发生在长度方向。

滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。

滚压既有纵向形变,又有横向形变。

其中镦粗主要用于饼类锻件。

拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。

为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。

锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。

铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。

锻造缺陷主要有:折叠、白点、裂纹等。

热处理缺陷主要有:裂纹等。

缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。

疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。

夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。

内在夹杂主要集中于钢锭中心及头部。

裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。

奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。

锻造和热处理不当,会在锻件表面或心部形成裂纹。

白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。

合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。

白点在钢中总是成群出现。

二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。

铸件锻件检验流程及标准

铸件锻件检验流程及标准

铸件锻件检验流程及标准
铸件和锻件的检验流程主要包括:首先对外观质量进行目视检查,识别是否有裂纹、气孔、夹杂物等表面缺陷;其次通过表面粗糙度检测仪衡量表面质量;接着对尺寸精度进行精密测量,确保几何尺寸符合设计要求;内在质量检测涉及金相分析、硬度测试、机械性能试验、化学成分分析等;对原材料进行严格验收,包括材质证明文件审核、化学成分光谱分析及金相组织检验;在生产过程中进行多阶段抽样检查,如每批次熔炼产品进行硬度与力学性能测试,毛坯下料尺寸与表面质量也需严格把关。

检验标准则依据国家或行业规定的具体标准,如GB/T或ISO等标准体系,确保铸件与锻件品质达到安全、可靠的技术要求。

铸件法兰与锻件法兰的区别

铸件法兰与锻件法兰的区别

这个从外观分析不太好分析,我将我的分析经验说说:一是价格上的区别:市场上卖的法兰,铸造的最便宜,铸锻的其次,纯锻打的相比价格要高。

这是指你到各个商店比价后才可以得出大概的结论。

二是做破坏性分析:将法兰割开两半,铸造的法兰有沙眼,纯锻造法兰没有沙眼。

铸锻的法兰有时候能发现有裂纹。

三是从法兰的尺寸和光洁度区分(这个不是内行一般看不出来。

):市场上铸造法兰一般尺寸负公差在1-5mm,边缘倒角不规矩,边孔毛刺不光滑。

因为便宜做工就不那么精细了。

锻造的法兰公差小或正公差。

铸钢法兰和铸铁法兰的区分:铸铁法兰韧性差,一般用锤子砸就能砸裂。

法兰的材质了一般都能接近低碳的吧,要不焊接会很容易裂的。

补充1:称重量.一样的法兰铸的和锻的重量不一样.补充2:提问的兄弟好像描述我有些不是太懂铸件和锻件仅从外观上就可以区别开来另外锻件外表光洁质地厚实。

我所不解的是还有一种材料和铸件一样都是铸造出来的名字叫可锻铸铁。

虽普通铸件和可锻铸铁件都是铸造件但机械性能却错的很远可锻铸铁可代替受力不大的锻件哟~兄弟其实铸件和锻件是很好区分的仅从质地和外观就可分辨比如低压水暖阀门的法兰价格低的都是铸件对于液压用高压阀门的法兰都是锻打毛坯经过车削加工成型现在还有一种是精铸件他和一般铸件不同密度高通常一次成型不用车削掉很多材料这种加工手段通常技术难度高价格也较贵些好处是既有铸造能得到复杂结构又能保证强度液压阀体通常采用这种加工方法价格很贵另外铸件又分铸铁和铸钢后者优于前者主要是材料不同。

补充3:铸造的是把钢融化了之后,变成铁水,倒在模子里,然后冷却后再进行加工,材质不能保证. 铸锻的工艺是铸完了之后再进行锻制,相对于铸锻会好一点儿.起码不是生铁了.纯锻呢,就是把方钢,钢锭子,材质有保证,烧红了,用空气锤锻成了形状.再进行加工.这个材质有保证,但最好的还是用中板加工的,直接中板的材质.直接割出了内外径,再进行加工,材质是最好的.也就是我们河北万润管业有限公司生产的法兰.我们网站*。

锻造和铸造的区别

锻造和铸造的区别

锻造和铸造的区别一、制作工艺不同铸造是熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状、尺寸、成分、组织和性能的铸件。

锻造是用外力使毛坯变形,即在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件。

二、性能及组织结构不同金属经过锻造加工后能改善其组织结构和力学性能。

铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。

铸件的力学性能低于同材质的锻件力学性能。

此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。

而铸造的内部组织就要差一些,强度也要低。

和锻造件相比,铸造件硬度大,但是脆,且焊接性能不好。

铸件是材料在模具中整体浇注成型,它的应力分布均匀,对受压方向没有限制;而锻件是由同一方向的力打压而成,它内部的应力就有方向性,不同方向上的强度有所不同。

在材料,壁厚相同的情况下,锻件在强度和晶相结构上要优于铸件。

实际上不少时候铸件和锻件的材质牌号虽然不同,其实是一种材料。

例如,最常用的碳素钢材料中的WCB和A105的成分基本相同,只是因为加工方式的区别造成其金相结构的差异,而形成两个牌号。

三、加工缺陷有差别铸件的主要缺陷表现在沙眼,气泡等;锻件的主要缺陷表现在大晶粒,冷硬现象,裂纹,龟裂等。

四、加工成型特点有差别铸件对于铸造工艺的要求比较高,最大的特点是可以做出比较复杂的形状,比如阀门制作中,本体结构以及流道都是不规则的,铸造可以一次性成型,只要工艺过关,可以铸造出大口径的阀门本体。

锻件的致密性比较好,但是对于太复杂的流道和外形无法一次成型,往往需要模块化进行,分开锻造再焊接在一起,由此锻件的尺寸受到一定限制。

第八章锻件与铸件超声检测

第八章锻件与铸件超声检测

图5 CSⅡ标准试块
试块序号 CSⅡ-1 CSⅡ-2 CSⅡ-3 CSⅡ-4
孔径 φ2 φ3 φ4 φ6
检测距离L 1 2 3 4 5 6 7 8 9
5
10
15
20
25
30
35
40
45

检测面是曲面时,应采用CS Ⅲ标准试块来测定由于曲率 不同而引起的声能损失,其形状和尺寸按图6所示。
图6 CS Ⅲ标准试块


非缺陷回波 1)三角反射波:圆柱形,1.3d、1.67d 2)迟到波:细长轴,B1之后0.76d间距 3)61°反射波: 缺陷或结构面成61°特定 角。 轮廓回波:各种轮廓。
JB/T4730.3-2005规定


缺陷记录 1记录当量直径超过φ4mm的单个缺陷的波幅和 位置 2密集区缺陷 3底波降低量应按表6的要求记录
工件材质衰减系数的测定


在工件无缺陷完好区域,选取三处检测面 与底面平行且有代表性的部位,调节仪器 使第一次底面回波幅度(B1或Bn)为满刻 度的50%,记录此时衰减器的读数,再调 节衰减器,使第二次底面回波幅度(B2或 Bm)为满刻度的50%,两次衰减器读数 之差即为(B1-B2)或(Bn-Bm)的dB差 值(不考虑底面反射损失)。 工件上三处衰减系数的平均值即作为该工 件的衰减系数。
图3-69 轴类锻件超声探测方向。 (a)直探头径向探测(b)直探头轴向探测(c)斜探头 周向探测(d)斜探头轴向探测。

(2)饼类锻件检测 饼类锻件主要经受 镦粗工艺,因而缺 陷分布主要平行于 端面。所以用直探 头在端面检测是最 主要的检测方法。

(3)筒形锻件检测 由于铸锭中质量最差 的中心部分已被冲孔 时去除,因而锻件质 量一般较好。筒形锻 件一般在端面及外圆 作直探头检测。但对 于壁厚较薄的筒形锻 件,须加用斜探头探 测

316l锻件和铸件标号

316l锻件和铸件标号

316l锻件和铸件标号316L不锈钢是一种低碳、低硫、高锆含量的超低碳不锈钢材料,具有良好的耐腐蚀性能和可焊性,广泛应用于化工、制药、食品加工等领域。

316L锻件和铸件在不锈钢制品中有着重要的应用,下面将详细介绍这两种材料的特点和标号。

316L锻件是指通过锻造工艺将316L不锈钢制品加工成所需形状的零件。

锻造是一种常见的金属成形工艺,通过加热金属材料至较高温度后施加压力,使金属在压力和温度作用下发生塑性变形,最终获得所需形状的零件。

316L锻件具有以下特点:1. 良好的耐蚀性:316L不锈钢具有良好的耐腐蚀性能,能在多种腐蚀介质中长期使用而不发生腐蚀。

因此,316L锻件适用于对耐腐蚀要求较高的工作环境。

2. 优异的力学性能:316L锻件的力学性能优于铸件,具有更高的强度和硬度。

锻造过程中,金属的晶粒发生细化,结构更加致密,使得材料的强度得到提高。

3. 准确的尺寸和形状:通过锻造工艺,可以精确控制316L锻件的尺寸和形状,使其能够满足精密机械设备的要求。

同时,锻件的表面光洁度较高,有利于提高产品的美观度。

316L铸件是指通过铸造工艺将316L不锈钢材料熔化后倒入模具中,经冷却凝固形成所需形状的零件。

铸造是一种常见的金属成形工艺,具有以下特点:1. 生产效率高:铸造工艺可以实现批量生产,适用于大规模生产316L铸件。

而且,铸造过程不需要太多的人工操作,减少了劳动成本。

2. 复杂形状:相比于锻件,铸件可以更容易地获得复杂形状的零件。

铸件可以通过设计合理的模具,在凝固过程中形成复杂的内部结构,满足不同工程的需求。

3. 更大的尺寸范围:铸件的尺寸范围比锻件更广泛,可以生产大尺寸的316L铸件。

这对于某些特殊领域的大型设备和构件来说非常重要。

对于316L锻件和铸件的标号,一般都遵循国际标准。

常见的标号方式有ASTM、ASME、ISO等。

例如:ASTM标准:- 锻件标号:ASTM A182 F316L- 铸件标号:ASTM A351 CF3MASME标准:- 锻件标号:ASME SA182 F316L- 铸件标号:ASME SA351 CF3MISO标准:- 锻件标号:ISO 15156-3-2009 316L Strain-Enhanced Test需要根据实际使用需求来选择合适的标号,同时注意与使用要求和产品规范相匹配。

锻造和铸造的优缺点_锻造与铸造哪个好

锻造和铸造的优缺点_锻造与铸造哪个好

锻造和铸造的优缺点_锻造与铸造哪个好在分析锻造和铸造的优缺点之前,先介绍下铸造,锻造的种类以及是怎样的过程,后面再进行详细说明锻造与铸造哪个好。

铸造:熔融的液态金属填满型腔冷却。

制件中间易产生气孔。

锻造:主要是在高温下用挤压的方法成型。

可以细化制件中的晶粒。

锻造:用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。

铸造:把金属加热熔化后倒入砂型或模子里,冷却后凝固成为器物。

锻造和铸造的优缺点,锻造与铸造那个好?锻造时,金属经过塑性变形,有细化晶粒的做用,切纤维连续,因此常用于重要零件的毛丕制造,例如轴、齿论等。

铸造对被加工才料有要求,一般铸铁、铝等的铸造性能较好。

铸造不具备锻造的诸多优点,但它能制造形状复杂的零,因此常用于力学性能要求不高的支称件的毛丕制造。

例如机床外壳等。

铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。

现代机械制造工业的基础工艺。

铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。

但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机等)较多,且会产生粉尘、有害气体和噪声而污染环境。

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。

②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。

铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。

模具钢铸造,锻造,冲压,铸造的区别

模具钢铸造,锻造,冲压,铸造的区别

模具钢铸造,锻造,冲压,铸造的区别1。

锻造和铸造的区别(1)铸造:是把没有形状的金属液变成有形状的固体。

锻造:是把一种形状固体变成另一种形状的固体。

铸造好比是你玩蜡,你买了蜡(废钢,或生铁)然后将这个蜡化为液体,放入一个什么模子,这样你就得到不同形状的东西。

(固体-液体-固体锻造,好比是做面饼的过程,你把小的面团揉,放到模子里面,做成不同形状的产品。

差不多是固体在高温下,形状可变成别的形状(固体到固体)。

所谓铸造,是将熔融的金属浇铸到模型中获得铸件的过程。

铸造专业侧重的是金属熔炼过程,以及浇铸过程中工艺的控制。

锻造是固态下的塑性成型,有热加工,冷加工之分,像挤压、拉拔、墩粗,冲孔等都属于锻造。

(2)锻造是慢慢成型,铸造是一次成型铸造:熔融的液态金属填满型腔冷却。

制件中间易产生气孔。

锻造:主要是在高温下用挤压的方法成型。

可以细化制件中的晶粒。

2。

自由锻和模锻的区别自由锻是将加热好的金属坯料放在锻造设备的上,下砥铁之间,施加冲击力或压力,直接使坯料产生塑性变形,从而获得所需锻件的一种加工方法。

自由锻由于锻件形状简单,操作灵活,适用于单件,小批量及重型锻件的生产。

自由锻分手工自由锻和机器自由锻。

手工自由锻生产效率低,劳动强度大,仅用于修配或简单,小型,小批锻件的生产,在现代工业生产中,机器自由锻已成为锻造生产的主要方法,在重型机械制造中,它具有特别重要的作用。

模锻全称为模型锻造,将加热后的坯料放置在固定于模锻设备上的锻模内锻造成形的。

模锻可以在多种设备上进行。

在工业生产中,锤上模锻大都采用蒸汽-空气锤,吨位在5KN~300KN (0.5~30t)。

压力机上的模锻常用热模锻压力机,吨位在25000KN~63000KN。

模锻的锻模结构有单模堂锻模和多模膛锻模。

如图3-13所示为单模堂锻模,它用燕尾槽和斜楔配合使锻模固定,防止脱出和左右移动;用键和键槽的配合使锻模定位准确,并防止前后移动。

单模膛一般为终锻模膛,锻造时常需空气锤制坯,再经终锻模膛的多次锤击一次成形,最后取出锻件切除飞边。

锻造与铸造的区别和优缺点

锻造与铸造的区别和优缺点

锻造与铸造的区别和优缺点一、锻造、铸造的区别:锻造与铸造的不同点,例如:它们的词语意义不同,以及它们制作工艺不同。

下面主要给大家详细介绍锻造与铸造的相关特点。

词语意义不同:锻造:用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。

铸造:将金属熔化成液体后浇入模子里,经冷却凝固、清理后获得所需形状的铸件的加工方法。

能制成形状复杂的各类物件。

2.制作工艺不同:锻造:是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。

铸造:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,以获得零件或毛坯的方法。

二、锻造、铸造优劣势:锻造优点:通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。

相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

铸造优点:可以生产形状复杂的零件,尤其是复杂内腔的毛坯。

2.适应性广,工业常用的金属材料均可铸造,几克到几百吨。

3.原材料来源广,价格低廉,如废钢、废件、切屑等。

4.铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工。

5.应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。

锻造缺点:在锻造生产中,易发生的外伤事故。

铸造缺点:1.机械性能不如锻件,如组织粗大,缺陷多等。

2.砂型铸造中,单件、小批量生产,工人劳动强度大。

3.铸件质量不稳定,工序多,影响因素复杂,易产生许多缺陷。

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。

②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。

锻件和铸件的区别【深度解析】

锻件和铸件的区别【深度解析】

锻件和铸件的区别
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
铸件是直接浇注成型的,组织基本都为铸造组织,材料的力性比较差;而锻件是坯料锻造而成的,组织基本都为变形组织,材料的性能比较好,但是工艺流程比铸造长,生产成本比较高。

铸件:
优点:生产灵活,可用于生产的合金范围广泛,能生产复杂程度极高的零部件,比如发动机缸体。

另外铸造技术也是锻件以及轧制的前道工序。

缺点:产品质量不高,由于铸造过程中的吸气,夹渣,补缩不足等,会给铸件造成气孔、缩孔、缩松、夹渣等缺陷,使得铸件的机械性能大打折扣。

锻件:
锻件属于压力加工,零部件在制造过程中由于受到压力的作用,能锻合零部件中的缩孔,缩松,打碎大的枝晶,改善零件内部的偏析和夹杂的分布不均匀性,同时可以在零部件内形成有利于使用的特定织构。

以上这些都能及大地提高零件的机械性能,因此,锻件大多用于机器的关键承力部位。

锻件由于生产过程的特点,只能用来生产形状比较简单的零部件,对压力加工设备的吨位有要求,设备投资比较大。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.。

铸件、锻件、焊接件残余应力的产生和时效方法

铸件、锻件、焊接件残余应力的产生和时效方法

铸件、锻件、焊接件残余应力的产生和时效方法铸件、锻件、焊接件残余应力的产生和时效方法金属构件(铸件、锻件、焊接件)在冷热加工过程中产生残余应力,高者在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。

因此降低和消除构件的残余应力就十分必要了。

一、残余应力的产生1.铸造应力的产生(1)热应力铸件各部分的薄厚是不一样的,如机床床身导轨部分很厚,侧壁.筋板部分较薄,其横向端面如图一所示。

铸后,薄壁部分冷却速度快收缩大,而厚壁部分,冷却速度慢,收缩的小。

薄壁部分的收缩受到厚壁部分的阻碍,所以薄壁部分受拉力,厚壁部分受压力。

因纵向收缩差大,因而产生的拉压也大。

这时铸件的温度高,薄厚壁都处于塑性状态,其压应力使厚壁部分变粗,拉应力使薄壁部分变薄,拉压应力,随塑性变形而消失。

铸件逐渐冷却,当薄壁部分进入弹性状态而厚壁部分仍处于塑性时,压应力使厚壁部分产生塑性变形,继续变粗,而薄壁部分只是弹性拉长,这时拉压应力随厚壁部分变粗而消失。

铸件仍继续冷却,当薄厚壁部分进入弹性区时,由于厚壁部分温度高,收缩量大。

但薄壁部分阻止厚壁部分收缩,故薄壁受压应力,厚壁受拉应力。

应力方向发生了变化。

这种作用一直持续到室温,结果在常温下厚壁部分受拉应力,薄壁部分受压应力。

这个应力是由于各部分薄厚不同。

冷却速度不同,塑性变形不均匀而产生的,叫热应力。

在导轨或侧壁的同一个截面内,表层与内心部,由于冷却快慢不同,也产生相互平衡拉压的应力,用类似与上述方法分析,可知在室温下表层受压应力,心部受拉应力,并且截面越大,应力越大,此应力也叫热应力。

(2)相变应力常用的铸铁含碳量在2.8-3.5%,属于亚共晶铸铁,由结晶过程可知①:厚壁部分在1153℃共晶结晶时,析出共晶石墨,产生体积膨胀,薄壁部分阻碍其膨张,厚壁部分受压应力,薄壁部分受拉应力,薄辟部分受拉应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锻件与铸件锻件锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。

这种力量典型的通过使用铁锤或压力来实现。

铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。

目录1 锻件2 分类3 质量检验压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。

这种力量典型的通过使用铁锤或压力来实现。

铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。

在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。

锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。

这种方法生产的元件,强度与重量比有一个高的比率。

这些元件通常被用在飞机结构中。

锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。

锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。

1、飞机锻件按重量计算,飞机上有85%左右的的构件是锻件。

飞机发动机的涡轮盘、后轴颈(空心轴)、叶片、机翼的翼梁, 机身的肋筋板、轮支架、起落架的内外筒体等都是涉及飞机安全的重要锻件。

飞机锻件多用高强度耐磨、耐蚀的铝合金、钛合金、镍基合金等贵重材料制造。

为了节约材料和节约能源,飞机用锻件大都采用模锻或多向模锻压力机来生产。

汽车锻按重量计算,汽车上有71.9%的锻件。

一般的汽车由车身、车箱、发动机、前桥、后桥、车架、变速箱、传动轴、转向系统等15个部件构成汽车锻件的特点是外形复杂、重量轻、工况条件差、安全度要求高。

如汽车发动机所使用的曲轴、连杆、凸轮轴、前桥所需的前梁、转向节、后桥使用的半轴、半轴套管、桥箱内的传动齿轮等等,无一不是有关汽车安全运行的保安关键锻件。

2、柴油机锻件柴油机是动力机械的一种,它常用来作发动机。

以大型柴油机为例,所用的锻件有汽缸盖、主轴颈、曲轴端法兰输出端轴、连杆、活塞杆、活塞头、十字头销轴、曲轴传动齿轮、齿圈、中间齿轮和染油泵体等十余种。

3、船用锻件船用锻件分为三大类,主机锻件、轴系锻件和舵系锻件。

主机锻件与柴油机锻件一样。

轴系锻件有推力轴、中间轴艉轴等。

舵系锻件有舵杆、舵柱、舵销等。

4、兵器锻件锻件在兵器工业中占有极其重要的地位。

按重量计算,在坦克中有60%是锻件。

火炮中的炮管、炮口制退器和炮尾,步兵武器中的具有膛线的枪管及三棱刺刀、火箭和潜艇深水炸弹发射装置和固定座、核潜艇高压冷却器用不锈钢阀体、炮弹、枪弹等,都是锻压产品。

除钢锻件以外,还用其它材料制造武器。

5、石油化工锻件锻件在石油化工设备中有着广泛的应用。

如球形储罐的人孔、法兰,换热器所需的各种管板、对焊法兰催化裂化反应器的整锻筒体(压力容器),加氢反应器所用的筒节,化肥设备所需的顶盖、底盖、封头等均是锻件。

6、矿山锻件按设备重量计算,矿山设备中锻件的比重为12-24%。

矿山设备有:采掘设备、卷扬设备、破碎设备、研磨设备、洗选设备、烧结设备。

7、核电锻件核电分为压水堆和沸水堆两类。

核电站主要的大锻件可分为压力壳和堆内构件两大类。

压力壳含:筒体法兰、管嘴段、管嘴、上部筒体、下部筒体、筒体过渡段、螺栓等。

堆内构件是在高温、高压、强中子幅照、硼酸水腐蚀、冲刷和水力振动等严峻条件下工作的,所以要选用18-8奥氏不锈钢来制作。

8、火电锻件火力发电设备中有四大关键锻件,即汽轮发电机的转子和护环,以及汽轮机中的叶轮与汽轮机转子。

9、水电锻件水力发电站设备中的重要锻件有水轮机大轴、水轮发电机大轴、镜板、推力头等。

验的内容锻件缺陷的存在,有的会影响后续工序处理质量或加工质量,有的则严重影响甚至极大地降低所制成品件的使用寿命,危及安全。

因此为了保证或提高锻件的质量,除在工艺上加强质量控制,采取相应措施杜绝锻件缺陷的产生外,还应进行必要的质量检验,防止带有对后续工序(如热处理、表面处理、冷加工)及使用性能有恶劣影响的缺陷的锻件流人后续工序。

经质量检验后,还可以根据缺陷的性质及影响使用的程度对已制锻件采取补救措施,使之符合技术标准或使用的要求。

因此,锻件质量检验从某种意义上讲,一方面是对已制锻件的质量把关,另一方面则是给锻造工艺指出改进方向,从而保证锻件质量符合锻件技术标准的要求,并满足设计、加工、使用上的要求。

锻件质量的检验包括外观质量及内部质量的检验。

外观质量检验主要指锻件的几何尺寸、形状、表面状况等项目的检验;内部质量的检验则主要是指锻件化学成分、宏观组织、显微组织及力学性能等各项目的检验。

具体说来,锻件的外观质量检验也就是检查锻件的形状、几何尺寸是否符合图样的规定,锻件的表面是否有缺陷,是什么性质的缺陷,它们的形态特征是什么。

表面状态的检验内容一般是检查锻件表面是否有表面裂纹、折叠、折皱、压坑、桔皮、起泡、斑疤、腐蚀坑、碰伤、外来物、未充满、凹坑、缺肉、划痕等缺陷。

而内部质量的检验就是检查锻件本身的内在质量,是外观质量检查无法发现的质量状况,它既包含检查锻件的内部缺陷,也包含检查锻件的力学性能,而对重要件、关键件或大型锻件还应进行化学成分分析。

对于内部缺陷我们将通过低倍检查、断口检查、高倍检查的方法来检验锻件是否存在诸如内裂、缩孔、疏松、粗晶、白点、树枝状结晶、流线不符合外形、流线紊乱、穿流、粗晶环、氧化膜、分层、过热、过烧组织等缺陷。

而对于力学性能主要是检查常温抗拉强度、塑性、韧性、硬度、疲劳强度、高温瞬时断裂强度、高温持久强度、持久塑性及高温蠕变强度等。

由于锻件制成零件后,在使用过程中其受力情况、重要程度、工作条件不同,其所用材料和冶金工艺也不同,因此不同的部位依据上述情况并按照本部门的要求将锻件分出类别,不同的部门,不同的标准对锻件的分类也是不同的。

但不管怎么,对于锻件质量检验的整体来说都离不开两大类检验,即外观质量和内部质量的检验,只不过锻件的类别不同,其具体的检验项目、检验数量和检验要求不同罢了。

例如,有的工业部门将结构钢、不锈钢、耐热钢锻件分成Ⅳ类进行检验,有的部门将铝合金锻件与模锻件按其使用情况分成Ⅲ类进行检验,还有的部门将铝合金、铜合金锻件分成Ⅳ类进行检验。

(二)锻件质运检验的方法当今时代,人们对产品的使用要求更高了,相应对制造产品的锻件也提出了更高的要求。

而锻件质量问题的表现形式又多而杂,某些类型的锻件缺陷又将严重地降低锻件的性能,威胁使用的安全性、可靠性,缩短了使用寿命,这类缺陷的存在其后果是严重的。

因此对锻件质量的检验也提出了更高的要求,即绝不能将带有缺陷的锻件放过去,特别是不能放过那些严重影响使用性能的带有缺陷的锻件。

要做到这一点,就要在进行锻件质量的检验和控制时,除充分地沿用常规的检测方法及手段外,也要采用反映当代水平的更快速更准确的检测手段和方法,使之对锻件质量的评估、锻件缺陷性质的判断、产生原因的判断及形成机理的分析更准确,更符合实际,从而保证不放过缺陷锻件,并能采取得当的解决措施来改进和提高锻件质量。

如前所述,锻件质量的检验分为外观质量的检验和内部质量的检验。

外观质量的检验一般来讲是属于非破坏性的检验,通常用肉眼或低倍放大镜进行检查,必要时也采用无损探伤的方法。

而内部质量的检验,由于其检查内容的要求,有些必须采用破坏性检验,也就是通常所讲的解剖试验,如低倍检验、断口检验、高倍组织检验、化学成分分析和力学性能测试等,有些则也可以采用无损检测的方法,而为了更准确地评价锻件质量,应将破坏性试验方法与无损检测方法互相结合起来进行使用。

而为了从深层次上分析锻件质量问题,进行机理性的研究工作还要籍助于透射型或扫描型的电子显微镜、电子探针等。

通常锻件内部质量的检验方法可归结为:宏观组织检验法、微观组织检验法、力学性能检验、化学成分分析法及无损检测法。

宏观组织检验就是采用目视或者低倍放大镜(一般倍数在 30×以下)来观察分析锻的低倍组织特征的一种检验。

对于锻件的宏观组织检验常用的方法有低倍腐蚀法(包括热蚀法、冷蚀法及电解腐蚀法)、断口试验法和硫印法。

低倍腐蚀法用以检查结构钢、不锈钢、高温合金、铝及铝合金、镁及镁合金、铜合金、钛合金等材料锻件的裂纹、折叠、缩孔、气孔偏析、白点、疏松、非金属夹杂、偏析集聚、流线的分布形式、晶粒大小及分布等。

只不过对于不同的材料显现低倍组织时采用的浸蚀剂和浸蚀的规范不同。

断口试验法用以检查结构钢、不锈钢(奥氏体型除外)的白点、层状、内裂等缺陷、检查弹簧钢锻件的石墨碳及上述各钢种的过热、过烧等,对于铝、镁、铜等合金用来检查其晶粒是否细致均匀,是否有氧化膜、氧化物夹杂等缺陷。

而硫印法主要应用于某些结构钢的大型锻件,用以检查其硫的分布是否均匀及硫含量的多少。

除结构钢、不锈钢锻件用于低倍检查的试片不进行最终热处理外,其余材料的锻件一般都经过最终热处理后才进行低倍检验。

断口试样一般都进行规定的热处理。

微观组织检验法则是利用光学显微镜来检查各种材料牌号锻件的显微组织。

检查的项目一般有本质晶粒度,或者是在规定温度下的晶粒度,即实际晶粒度,非金属夹杂物,显微组织如脱碳层、共晶碳化物不均匀度,过热、过烧组织及其它要求的显微组织等。

力学性能和工艺性能的检验则是对已经过规定的最终热处理的锻件和试片加工成规定试样后利用拉力试验机、冲击试验机、持久试验机、疲劳试验机、硬度计等仪器来进行力学性能及工艺性能数值的测定。

化学成分的测试一般是采用化学分析法或光谱分析法对锻件的成分进行分析测试,随着科学技术的发展,无论是化学分析还是光谱分析其分析的手段都有了进步。

对于光谱分析法而言,现在已不单纯采用看谱法和摄谱法来进行成分分析,新出现的光电光谱仪不仅分析速度快,而且准确性也大大地提高了,而等离子光电光谱仪的出现更大大地提高了分析精度,其分析精度可达 10-6级,这对于分析高温合金锻件中的微量有害杂质如 Pb、As、Sn、Sb、Bi等是非常行之有效的方法。

以上所说的方法,无论是宏观组织检验法,还是微观组织检验法或性能及成分测定法,均属于破坏性的试验方法,对于某些重要的、大型的锻件破坏性的方法已不能完全适应质量检验的要求,这一方面是因为太不经济,另一方面主要是为了避免破坏性检查的片面性。

无损检测技术的发展为锻件质量检验提供了更先进更完善的手段。

对于锻件的质量检验所采用的无损检测方法一般有:磁粉检验法、渗透检验法、涡流检验法、超声波检验法等。

磁粉检验法广泛地用于检查铁磁性金属或合金锻件的表面或近表面的缺陷,如裂纹、发纹、白点、非金属夹杂、分层、折叠、碳化物或铁素体带等。

该方法仅适用于铁磁性材料锻件的检验,对于奥氏体钢制成的锻件不适于采用该方法。

渗透检验法除能检查磁性材料锻件外,还能检查非铁磁性材料锻件的表面缺陷,如裂纹、疏松、折叠等,一般只用于检查非铁磁性材料锻件的表面缺陷,不能发现隐在表面以下的缺陷。

涡流检验法用以检查导电材料的表面或近表面的缺陷。

相关文档
最新文档