第三讲 时间序列的随机模型分析

合集下载

《时间序列分析》期末复习——【计量经济学】

《时间序列分析》期末复习——【计量经济学】
随机游走(random walk)过程。
1.2 时间序列模型的分类(AR、MA、ARMA、ARIMA 过程)
(1)自回归过程,AR(p): xt = 1 xt-1 + 2 xt -2 + … + p xt-p + ut (2)移动平均过程,MA(q): xt = ut + 1 ut -1 + 2 ut -2 + … + q ut - q
自相关函数定义
以滞后期 k 为变量的自相关系数列
k =
Cov(xt , xtk ) = k , Var(xt ) Var(xtk ) 0
k = 0, 1, …, K
称为自相关函数。
● 自回归(AR)过程的自相关函数呈拖尾特征。移动平均(MA)过程的自相关 函数呈截尾特征。

相关图
rk
=
Ck C0
= (0.8)k Cos(0.5 k+2) + 0.5 (0.7) k + 0.7 (- 0.5)k 的衰减特征。
.4
RHO
.2
.0
-.2
-.4
-.6Biblioteka -.824
6
8
10
12
14
16
18
20
22
24
(file:5correfuction,rho) EViews 操作:建立一个 k=25 的 EViews 文件,点击 Quick 键,选 Generate series 功能,输入以下命令。
指数或正弦衰减。
k =1, 2 时有两个峰值然后截尾。
k =1, 2 有两个峰值然后截尾。
指数或正弦衰减。
k =1 有峰值然后按指数衰减。

时间序列分析模型课件(PPT108张)

时间序列分析模型课件(PPT108张)

确定性时序分析的目的
• 克服其它因素的影响,单纯测度出某一个 确定性因素对序列的影响 • 推断出各种确定性因素彼此之间的相互作 用关系及它们对序列的综合影响
4-3-2 时间序列趋势分析
• 目的
–有些时间序列具有非常显著的趋势,我们分析 的目的就是要找到序列中的这种趋势,并利用 这种趋势对序列的发展作出合理的预测
随机性变化分析: AR、MA、ARMA模型
Cramer分解定理(1961)
• 任何一个时间序列 { x t }都可以分解为两部分的叠 加:其中一部分是由多项式决定的确定性趋势成 分,另一部分是平稳的零均值误差成分,即
x t t t

d j0
jt j
(B)at
随机性影响
确定性影响
对两个分解定理的理解
(2)季节性周期变化 受季节更替等因素影响,序列依一固 定周期规则性的变化,又称商业循环。 采用的方法:季节指数; (3)循环变化 周期不固定的波动变化。
(4)随机性变化
由许多不确定因素引起的序列变化。 随机性变化分析: AR、MA、ARMA模型
确定性变化分析 时间序列分析
趋势变化分析 周期变化分析 循环变化分析
(1 )
0 1 , 2 j
j0

2 ~ WN ( 0 , (2) t )
( V , ) 0 , t s (3 ) E t s
确定性序列与随机序列的定义
• 对任意序列 而言,令 序列值作线性回归 关于q期之前的
2 ( t ) q 其中{ t } 为回归残差序列, Var
参数估计方法
线性最小二乘估计
Tt ab
t
a ln a b ln b
b t T t a

随机时间序列分析

随机时间序列分析

参数模型
参数模型是指通过已知的参数来描述 时间序列的统计特性,如AR模型、 MA模型和ARMA模型等。
非参数模型
非参数模型是指通过数据本身来描述 时间序列的统计特性,如滑动平均模 型和自回归积分滑动模型等。
04 随机时间序列分析的方法 与技术
参数估计与模型选择
参数估计
利用已知数据估计模型中的未知参数,常用方法包括最小二乘法、极大似然估计法等。
的问题。
非线性过程的建模挑战
要点一
非线性动态
许多时间序列数据具有非线性动态,这意味着传统的线性 模型可能无法准确描述数据的复杂行为。因此,需要开发 更复杂的非线性模型来捕捉数据的非线性特征。
要点二
模型复杂度
为了更好地描述非线性动态,需要增加模型的复杂度。然 而,这可能导致模型过拟合和欠拟合问题,影响模型的泛 化能力和解释性。
提高数据利用效率
提高数据利用效率。
随机时间序列分析的应用场景
金融领域
气象领域
经济领域
用于股票价格、汇率等 金融时间序列的预测和
分析。
用于气温、降水等气象 时间序列的预测和分析。
用于GDP、消费、投资 等经济时间序列的预测
和分析。
交通领域
用于车流量、客流量等 交通时间序列的预测和
就业形势分析
通过分析历史就业数据,利用随机 时间序列模型预测未来就业形势, 为政府和企业的决策提供支持。
金融市场的随机时间序列分析
股票价格预测
通过对股票价格的历史数据进行随机时间序列分析,可以预测未 来股票价格的走势,有助于投资者做出更明智的投资决策。
利率变动预测
利用随机时间序列模型对利率变动进行建模,有助于金融机构制定 合理的贷款和存款利率政策。

《时间序列模型 》课件

《时间序列模型 》课件
《时间序列模型》ppt 课件
目录
Contents
• 时间序列模型概述 • 时间序列模型的基础 • 时间序列模型的建立 • 时间序列模型的预测 • 时间序列模型的应用 • 时间序列模型的未来发展
01 时间序列模型概述
时间序列的定义
01 时间序列是指按照时间顺序排列的一系列观测值 。
02 时间序列数据可以是数值型、分类型或混合型。 03 时间序列数据可以用于描述和预测时间变化的现
详细描述
通过分析历史经济数据的时间序列特性,时间序列模型能够预 测未来经济走势,为政策制定者和企业决策者提供重要参考。
举例说明
例如,利用ARIMA模型分析国内生产总值(GDP)的时间 序列数据,可以预测未来一段时间的GDP增长趋势。
股票预测
01
总结词
时间序列模型在股票市场中具有实际应用价值。
02 03
SARIMA、VAR等。
识别模型阶数
02
确定模型的参数,如自回归阶数、差分阶数和移动平均阶数。
考虑季节性和趋势性
03
如果时间序列数据存在季节性和趋势性,需要在模型中加以考
虑。
参数估计
01
使用最小二乘法或最大似然法等统计方法估计模型 的参数。
02
考虑使用软件包或编程语言进行计算,如Python的 statsmodels库或R语言的forecast包。
象。
时间序列的特点
时序性
时间序列数据是按照时间顺序排列的,具有 时间上的连续性。
趋势性
时间序列数据通常具有一定的趋势,如递增 、递减或周期性变化。
季节性
一些时间序列数据呈现季节性变化,如年度 、季度或月度的变化规律。
不确定性
时间序列数据受到多种因素的影响,具有不 确定性,难以精确预测。

第3讲 时间序列的随机性分析

第3讲 时间序列的随机性分析

(3.8)
特别当0=0时,称模型为中心化AR(p)模型. 非中心化 模型可以通过下面的变换:
=0/(1-0-1-„-p) ; Yt=Xt-
化成中心化模型,今后只讨论中心化模型.
第3讲 时间序列的随机性分析
3.2 平稳时间序列分析
2012年7月2日星期一
3.2.1 AR(p)模型
利用延迟算子可以将中心化AR(p)模型简写为:
第3讲 时间序列的随机性分析
3.1 时间序列的预处理
2012年7月2日星期一
3.1.1 宽平稳性检验
例3.1 若随机序列{Xt}满足以下条件则称为白噪声序 列(white noise): (1)E(Xt)=0 (2)Cov(Xt ,Xt+k)=0 显然,白噪声序列是宽平稳序列。 例3.2 由如下随机过程生成的序列{Xt}称为随机游走序 列(random walk), Xt=Xt-1+et 这里,et 是一个独立白噪声,E(Xset)=0.
数学建模培训
2012年7月2日星期一
数学建模培训内容
第1讲 回归分析
第2讲 时间序列的确定性分析 第3讲 时间序列的随机性分析
第4讲 综合评价方法
第3讲 时间序列的随机性分析
第3讲 时间序列的随机性分析
2012年7月2日星期一
时间序列的随机性分析常采用的模型是ARMA模型和 GARCH模型,而ARMA模型是针对平稳非白噪声序列进 行建模。 所以本讲首先介绍时间序列的预处理---平稳性检验和 白噪声检验,然后介绍ARMA模型,最后介绍非平稳序列 的建模方法。
第3讲 时间序列的随机性分析
3.1 时间序列的预处理
2012年7月2日星期一
3.1.1 宽平稳性检验

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

随机时间序列分析

随机时间序列分析

当滞后期大于q时,Xt的自协方差系数为0。 因此:有限阶移动平均模型总是平稳的。
3、ARMA(p,q)模型的平稳性
由于ARMA (p,q)模型是AR(p)模型与MA(q)模型的组合: Xt=1Xt-1+ 2Xt-2 + … + pXt-p + t - 1t-1 - 2t-2 - - qt-q 而MA(q)模型总是平稳的,因此ARMA (p,q)模型的平 稳性取决于AR(p)部分的平稳性。 当AR(p)部分平稳时,则该ARMA(p,q)模型是平稳的, 否则,不是平稳的。
1、时间序列模型的基本概念
随机时间序列模型(time series modeling)是指仅用它的 过去值及随机扰动项所建立起来的模型,其一般形式为 Xt=F(Xt-1, Xt-2, …, t) 建立具体的时间序列模型,需解决如下三个问题: (1)模型的具体形式 (2)时序变量的滞后期 (3)随机扰动项的结构 例如,取线性方程、一期滞后以及白噪声随机扰动项( t =t),模型将是一个1阶自回归过程AR(1): Xt=Xt-1+ t 这里, t特指一白噪声。
考虑p阶自回归模型AR(p) Xt=1Xt-1+ 2Xt-2 + … + pXt-p +t • 引入滞后算子(lag operator )L: LXt=Xt-1, L2Xt=Xt-2, …, LpXt=Xt-p
(*)
(*)式变换为 (1-1L- 2L2-…-pLp)Xt=t 记(L)= (1-1L- 2L2-…-pLp),则称多项式方程
2、时间序列分析模型的适用性
• • 经典回归模型的问题: 迄今为止,对一个时间序列 Xt 的变动进行解释或预测, 是通过某个单方程回归模型或联立方程回归模型进行的, 由于它们以因果关系为基础,且具有一定的模型结构,因 此也常称为结构式模型(structural model)。 • 然而,如果Xt波动的主要原因可能是我们无法解释的因 素,如气候、消费者偏好的变化等,则利用结构式模型来 解释Xt的变动就比较困难或不可能,因为要取得相应的量 化数据,并建立令人满意的回归模型是很困难的。 • 有时,即使能估计出一个较为满意的因果关系回归方程, 但由于对某些解释变量未来值的预测本身就非常困难,甚 至比预测被解释变量的未来值更困难,这时因果关系的回 归模型及其预测技术就不适用了。

时间序列分析与ARIMA模型

时间序列分析与ARIMA模型

时间序列分析与ARIMA模型时间序列分析是一种研究时间上连续测量所构成的数据的方法。

它可以用来分析数据中的趋势、周期性和随机性,并预测未来的走势。

ARIMA(自回归滑动平均模型)是时间序列分析中常用的模型之一。

本文将介绍时间序列分析的基本概念以及ARIMA模型的原理和应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一组连续观测数据。

在时间序列分析中,我们常常关注序列中的趋势(trend)、季节性(seasonality)和周期性(cycle)等特征。

趋势是指长期上升或下降的走势;季节性是指数据在相同周期内波动的规律性;周期性是指超过一年的时间内出现的规律性波动。

二、ARIMA模型的原理ARIMA模型是由自回归(AR)和滑动平均(MA)模型组成的。

AR模型用过去的观测值来预测未来的值,滑动平均模型则用过去的噪声来预测未来的值。

ARIMA模型是将这两种模型结合起来,对时间序列进行建模和预测。

ARIMA模型包括三个主要部分:自回归阶数(p)、差分阶数(d)和滑动平均阶数(q)。

p表示模型中的自回归项数目,d表示需要进行的差分次数,q表示模型中的滑动平均项数目。

通过对时间序列的观测值进行差分,ARIMA模型可以将非平稳的序列转化为平稳的序列。

然后,可以通过对平稳序列的自回归和滑动平均建模,预测未来的值。

三、ARIMA模型的应用ARIMA模型在实际应用中被广泛使用。

它可以用于经济学、金融学、气象学等领域中的时间序列预测和分析。

以股票市场为例,投资者可以利用ARIMA模型对历史股价进行分析,预测未来股价的走势。

在气象学中,ARIMA模型可以用于预测未来的天气情况。

除了ARIMA模型,时间序列分析还包括其他模型,如季节性分解、移动平均、指数平滑等。

这些模型都有各自的优点和应用领域。

在实际应用中,根据不同的数据特点和研究目的,选择合适的模型进行分析和预测是十分重要的。

总结时间序列分析和ARIMA模型是研究时间数据的重要方法。

《时间序列模型》课件

《时间序列模型》课件
对于非线性时间序列,可能需要使用 其他复杂的模型,如神经网络、支持 向量机或深度学习模型。
对异常值的敏感性
时间序列模型往往对异常值非常敏感,一个或几个异常值可能会对整个模型的预测结果产生重大影响 。
在处理异常值时,需要谨慎处理,有时可能需要剔除异常值或使用稳健的统计方法来减小它们对模型 的影响。
PART 06
指数平滑模型
总结词
利用指数函数对时间序列数据进行平滑处理,以消除随机波动。
详细描述
指数平滑模型是一种非参数的时间序列模型,它利用指数函数对时间序列数据进行平滑处理,以消除 随机波动的影响。该模型通常用于预测时间序列数据的未来值,特别是对于具有季节性和趋势性的数 据。
GARCH模型
要点一
总结词
用于描述和预测时间序列数据的波动性,特别适用于金融 市场数据的分析。
时间序列的构成要素
时间序列由时间点和对应的观测值组成,包括时间点和观测值两 个要素。
时间序列的表示方法
时间序列可以用表格、图形、函数等形式表示,其中函数表示法 最为常见。
时间序列的特点
动态性
时间序列数据随时间变化而变化,具有动态 性。
趋势性
时间序列数据往往呈现出一定的趋势,如递 增、递减或周期性变化等。
随机性
时间序列数据受到多种因素的影响,具有一 定的随机性。
周期性
一些时间序列数据呈现出明显的周期性特征 ,如季节性变化等。
时间序列的分类
根据数据性质分类
时间序列可分为定量数据和定性数据两类。定量数据包括 连续型和离散型,而定性数据则包括有序和无序类型。
根据时间序列趋势分类
时间序列可分为平稳和非平稳两类。平稳时间序列是指其统计特 性不随时间变化而变化,而非平稳时间序列则表现出明显的趋势

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。

它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。

时间序列分析模型可以分为统计模型和机器学习模型两类。

一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。

常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。

-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。

它将序列的当前值作为过去值的线性组合来预测未来值。

ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。

-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。

ARIMA(p,d,q)模型中,d表示差分的次数。

-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。

SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。

2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。

常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。

-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。

-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。

二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。

SAS学习系列39.时间序列分析Ⅲ—ARIMA模型

SAS学习系列39.时间序列分析Ⅲ—ARIMA模型

39. 时间序列分析Ⅱ—-ARIMA 模型随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。

而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。

时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。

Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。

而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。

(一)ARMA 模型即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。

一、AR(p )模型——p 阶自回归模型 1。

模型:011t t p t p t x x x φφφε--=+++其中,0p φ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E (x t εt )=0.由于是平稳序列,可推得均值011pφμφφ=---. 若00φ=,称为中心化的AR (p )模型,对于非中心化的平稳时间序列,可以令01(1)p φμφφ=---,*t t x x μ=-转化为中心化。

记B 为延迟算子,1()p p p B I B B φφΦ=---称为p 阶自回归多项式,则AR (p )模型可表示为:()p t t B x εΦ=.2. 格林函数用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动εt —j 对系统现在行为影响的权数。

例如,AR(1)模型(一阶非齐次差分方程),1, 0,1,2,j j G j φ==模型解为0t j t j j x G ε∞-==∑.3。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。

时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。

本文将介绍几种常见的时间序列分析模型。

1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。

它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。

该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。

2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。

自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。

3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。

自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。

4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。

时间序列模型的介绍

时间序列模型的介绍

时间序列模型的介绍时间序列模型是一种用于分析和预测时间序列数据的统计模型。

时间序列数据是按时间顺序收集的观测数据,通常具有一定的趋势、季节性和随机性。

时间序列模型的目标是通过对过去的数据进行分析,揭示数据背后的规律性,从而对未来的数据进行预测。

时间序列模型可以分为线性模型和非线性模型。

线性模型假设时间序列数据是由线性组合的成分构成的,常见的线性模型有自回归移动平均模型(ARMA)、自回归模型(AR)和移动平均模型(MA)等。

非线性模型则放宽了对数据的线性假设,常见的非线性模型有非线性自回归模型(NAR)和非线性移动平均模型(NMA)等。

在时间序列模型中,常用的预测方法包括平滑法、回归法和分解法。

平滑法通过对时间序列数据进行平均、加权或移动平均等处理,来消除数据中的随机波动,得到趋势和季节性成分。

回归法则是通过建立时间序列数据与其他影响因素的关系模型,来预测未来的数据。

分解法则将时间序列数据分解为趋势、季节性和随机成分,分别进行建模和预测。

时间序列模型的应用非常广泛。

在经济领域,时间序列模型可以用于宏观经济指标的预测,如国内生产总值(GDP)、通货膨胀率和失业率等。

在金融领域,时间序列模型可以用于股票价格的预测和风险管理,如股票市场的指数预测和波动率的估计。

在气象领域,时间序列模型可以用于天气预报和气候变化研究,如温度、降雨量和风速等的预测。

在交通领域,时间序列模型可以用于交通流量的预测和拥堵状况的评估,如道路交通量和公共交通客流量等的预测。

然而,时间序列模型也存在一些限制和挑战。

首先,时间序列数据通常具有一定的噪声和不确定性,模型需要能够对这些随机波动进行合理的建模和处理。

其次,时间序列数据可能存在非线性关系和非平稳性,传统的线性模型可能无法很好地捕捉到数据的特征。

此外,时间序列数据的长度和频率也会对模型的预测能力产生影响,较短的数据序列和较低的采样频率可能导致预测结果的不准确性。

为了克服这些挑战,研究人员不断提出新的时间序列模型和方法。

时间序列分析模型

时间序列分析模型

Q LB
rk2 n ( n 2) nk k 1
m
该统计量近似地服从自由度为m的2分布 (m为滞后长度)。
因此:如果计算的Q值大于显著性水平为 的临界值,则有1-的把握拒绝所有k(k>0)同 时为0的假设。
例9.1.3: 表9.1.1序列Random1是通过一 随机过程(随机函数)生成的有19个样本的随 机时间序列。
表现在:两个本来没有任何因果关系的变量, 却有很高的相关性(有较高的R2)。例如:如果 有两列时间序列数据表现出一致的变化趋势(非 平稳的),即使它们没有任何有意义的关系,但 进行回归也可表现出较高的可决系数。
在现实经济生活中,实际的时间序列数据 往往是非平稳的,而且主要的经济变量如消ቤተ መጻሕፍቲ ባይዱ、 收入、价格往往表现为一致的上升或下降。这 样,仍然通过经典的因果关系模型进行分析, 一般不会得到有意义的结果。
由于t是一个白噪声,则序列{Xt}是平稳的。
后面将会看到:如果一个时间序列是非平稳 的,它常常可通过取差分的方法而形成平稳序 列。
• 事实上,随机游走过程是下面我们称之为1阶 自回归AR(1)过程的特例:
Xt=Xt-1+t 不难验证: 1)||>1时,该随机过程生成的时间序列是发散的, 表现为持续上升(>1)或持续下降(<-1),因此 是非平稳的;
由于Xt具有相同的均值与方差,且协方差 为零,由定义,一个白噪声序列是平稳的。
例9.1.2.另一个简单的随机时间列序被称为 随机游走(random walk),该序列由如下随机 过程生成: X t=Xt-1+t 这里, t是一个白噪声。 容易知道该序列有相同的均值:E(Xt)=E(Xt-1) 为了检验该序列是否具有相同的方差,可假设 Xt的初值为X0,则易知:

时间序列分析技巧例题和知识点总结

时间序列分析技巧例题和知识点总结

时间序列分析技巧例题和知识点总结时间序列分析是一种用于研究数据随时间变化规律的重要方法,在众多领域都有着广泛的应用,如经济学、金融学、气象学、工程学等。

通过对时间序列数据的分析,我们可以预测未来的趋势、发现周期性模式、识别异常值等。

接下来,让我们通过一些例题来深入理解时间序列分析的技巧,并对相关知识点进行总结。

一、时间序列的基本概念时间序列是按照时间顺序排列的一组数据点。

它可以是等间隔的,比如每小时、每天、每月的观测值,也可以是不等间隔的。

时间序列数据通常具有趋势性、季节性、周期性和随机性等特征。

二、常见的时间序列模型1、自回归模型(AR)自回归模型假设当前值与过去若干个值存在线性关系。

例如,一阶自回归模型 AR(1)可以表示为:$Y_t =\phi_1 Y_{t-1} +\epsilon_t$,其中$\phi_1$是自回归系数,$\epsilon_t$是随机误差项。

2、移动平均模型(MA)移动平均模型则认为当前值是由过去若干个随机误差项的线性组合构成。

一阶移动平均模型 MA(1)表示为:$Y_t =\epsilon_t +\theta_1 \epsilon_{t-1}$。

3、自回归移动平均模型(ARMA)ARMA 模型是 AR 模型和 MA 模型的组合,即同时考虑了序列的自相关性和随机性。

例如,ARMA(1,1)模型为:$Y_t =\phi_1 Y_{t-1} +\epsilon_t +\theta_1 \epsilon_{t-1}$。

4、自回归整合移动平均模型(ARIMA)对于非平稳的时间序列,需要先进行差分使其平稳,然后再应用ARMA 模型,这就是 ARIMA 模型。

三、时间序列分析的步骤1、数据可视化首先,绘制时间序列的折线图或柱状图,直观地观察数据的趋势、季节性和异常值。

2、平稳性检验平稳性是时间序列分析的重要前提。

常用的检验方法有单位根检验(如 ADF 检验),如果检验结果拒绝存在单位根,则序列是平稳的;否则,需要进行差分处理使其平稳。

时间序列分析方法 第03章 平稳ARMA模型

时间序列分析方法  第03章 平稳ARMA模型

第三章 平稳ARMA 过程一元ARMA 模型是描述时间序列动态性质的基本模型。

通过介绍ARMA 模型,可以了解一些重要的时间序列的基本概念,并且为描述单变量时间序列的动态性质提供一类十分有用的模型。

§3.1 预期、平稳性和遍历性3.1.1 预期和随机过程假设可以观察到一个样本容量为T 的随机变量t Y 的样本:},,,{21T y y y这意味着这些随机变量之间的是相互独立且同分布的。

例3.1 假设T 个随机变量的集合为:},,,{21T εεε ,),0(~2σεN i 且相互独立,我们称其为高斯白噪声过程产生的样本。

对于一个随机变量t Y 而言,它是t 时刻的随机变量,因此即使在t 时刻实验,它也可以具有不同的取值,假设进行多次试验,其方式可能是进行多次整个时间序列的试验,获得I 个时间序列:+∞=-∞=t t t y }{)1(,+∞=-∞=t t t y }{)2(,…,+∞=-∞=t t I t y }{)(将其中仅仅是t 时刻的观测值抽取出来,得到序列:},,,{)()2()1(I t t t y y y ,这个序列便是对随机变量t Y 在t 时刻的I 次观测值,也是一种简单随机子样。

定义3.1 假设随机变量t Y 是定义在相同概率空间},,{P ℜΩ上的随机变量,则称随机变量集合},2,1,0,{ ±±=t Y t 为随机过程。

例3.2 假设随机变量t Y 的概率密度函数为:]21exp[21)(22t t Y y y f t σσπ= 此时称此时密度为该过程的无条件密度,此过程也称为高斯过程或者正态过程。

定义3.2 可以利用各阶矩描述随机过程的数值特征:(1) 随机变量t Y 的数学期望定义为(假设积分收敛):⎰==+∞∞-tt Y t t t dy y f y Y E t )()(μ (3.1) 此时它是随机样本的概率极限:∑==∞→I i i t I t y I P Y E 1)(1lim)( (3.2) (2) 随机变量t Y 的方差定义为(假设积分收敛): 20)(t t t Y E μγ-= (3.3) 例3.3 几种重要类型的随机过程1) 假设},,{21 εε是一个高斯白噪声过程,随机过程t Y 为常数加上高斯白噪声过程:t t Y εμ+=则它的均值和方差分别为:μεμμ=+==)()(t t t E Y E2220)()(σεμγ==-=t t t t E Y E(2) 随机过程t Y 为时间的线性趋势加上高斯白噪声过程:t t t Y εβ+=则它的均值和方差分别为:t E t Y E t t t βεβμ=+==)()(2220)()(σεμγ==-=t t t t E Y E3.1.2 随机过程的自协方差函数将j 个时间间隔的随机变量构成一个随机向量),,,(1'=--j t t t t Y Y Y X ,通过随机试验可以获得该随机向量的简单随机样本。

时间序列分析模型汇总

时间序列分析模型汇总

平滑法
平滑法是进行趋势分析和预测时常用的一 种方法。它是利用修匀技术,削弱短期随 机波动对序列的影响,使序列平滑化,从 而显示出长期趋势变化的规律
• 简单平均数法 :也称算术平均法。即把若干历史 时期的统计数值作为观察值,求出算术平均数作 为下期预测值。这种方法基于下列假设:“过去 这样,今后也将这样”,把近期和远期数据等同 化和平均化,因此只能适用于事物变化不大的趋 势预测。如果事物呈现某种上升或下降的趋势, 就不宜采用此法。 • 加权平均数法: 就是把各个时期的历史数据按近 期和远期影响程度进行加权,求出平均值,作为 下期预测值。
例如,取线性方程、一期滞后以及白噪声随 机扰动项( n =n),模型将是一个1阶自回 归过程AR(1): Yn=aYn-1+ n 这里, n特指一白噪声。
一般的p阶自回归过程AR(p)是 Yn=a1Yn-1+ a2Yn-2 + … + apYn-p + n
(*)
一般的p阶自回归过程AR(p)是 Yn=a1Yn-1+ a2Yn-2 + … + apYn-p + n
三、确定性时间序列分析与随机性时间序列分 析: 时间序列依据其特征,有以下几种表现形式, 并产生与之相适应的分析方法: (1)长期趋势变化 受某种基本因素的影响,数据依时间变化时 表现为一种确定倾向,它按某种规则稳步地 增长或下降。 使用的分析方法有:移动平均法、指数平滑法、 模型拟和法等;
(2)季节性周期变化 受季节更替等因素影响,序列依一固 定周期规则性的变化,又称商业循环。 采用的方法:季节指数; (3)循环变化 周期不固定的波动变化。
例:拟合澳大利亚政府1981——1990年 每季度的消费支出序列

随机时间序列分析模型讲义

随机时间序列分析模型讲义

随机时间序列分析模型讲义【讲义】随机时间序列分析模型一、引言随机时间序列分析是一种经济学、统计学和数学领域的重要研究方法,用于描述和预测随机现象(例如经济指标、股票价格)随时间发展的变化规律。

本讲义将介绍常见的随机时间序列分析模型。

二、自回归模型(AR)1. 定义:自回归模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的数值相关。

AR(p)模型表示当前时刻的值与前p个时刻的值相关。

2. 公式:AR(p)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t其中,y_t代表当前时刻的数值,c为常数,φ_i为自回归系数,ε_t为误差项,服从均值为0,方差为σ^2的正态分布。

3. 参数估计:通过样本数据拟合AR(p)模型,可使用最小二乘法或极大似然法估计自回归系数。

三、移动平均模型(MA)1. 定义:移动平均模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的误差相关。

MA(q)模型表示当前时刻的值与过去q个时刻的误差相关。

2. 公式:MA(q)模型的数学公式可表示为:y_t = c + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)其中,y_t代表当前时刻的数值,c为常数,θ_i为移动平均系数,ε_t为误差项。

3. 参数估计:通过样本数据拟合MA(q)模型,可使用最小二乘法或极大似然法估计移动平均系数。

四、自回归移动平均模型(ARMA)1. 定义:自回归移动平均模型是自回归模型与移动平均模型的结合,综合考虑了过去若干时刻的数值和误差对当前时刻数值的影响。

ARMA(p, q)模型表示当前时刻的值与过去p个时刻的值和过去q个时刻的误差相关。

2. 公式:ARMA(p, q)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)3. 参数估计:通过样本数据拟合ARMA(p, q)模型,可使用最小二乘法或极大似然法估计自回归系数和移动平均系数。

随机时间序列分析模型

随机时间序列分析模型

随机时间序列分析模型随机时间序列分析模型是一种经济学和统计学领域常用的工具,用于研究一系列随机变量随时间的变化规律。

该模型基于假设,认为时间序列的观察值是随机过程的实现,且该过程具有一定的平稳性质。

下面我将介绍一种常用的随机时间序列分析模型- 自回归移动平均模型(ARMA模型)。

ARMA模型结合了自回归模型(AR)和移动平均模型(MA)的特点,用于描述时间序列数据之间的相关性。

在ARMA模型中,当前时刻的观察值被认为是过去时刻的观察值和随机误差项的线性组合。

其数学表示如下:\(X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \sum_{j=1}^{q}\theta_j \epsilon_{t-j} + \epsilon_t\)其中,\(X_t\)表示第t个时刻的观察值,\(c\)是常数,\(p\)和\(q\)分别表示自回归和移动平均过程的阶数,\(\phi_i\)和\(\theta_j\)是相应的回归系数,\(\epsilon_t\)表示误差项。

ARMA模型的核心思想是利用过去观察值的线性组合来预测当前观察值,并通过误差项来考虑模型无法完全解释的随机波动。

通过估计回归系数和误差项的方差,可以得到ARMA模型的具体参数估计。

ARMA模型的一个重要应用是时间序列预测。

通过拟合ARMA模型并利用已有观察值,可以对未来的观察值进行推断和预测。

这对于很多实际问题,如经济数据预测、股市走势分析等,具有重要的意义。

需要注意的是,ARMA模型在应用中需要满足一些前提条件,如观察值之间的相关性、平稳性等。

此外,ARMA模型的参数估计和模型选择也需要一定的经验和技巧。

总结起来,ARMA模型是一种常用的随机时间序列分析模型,可以用于描述时间序列数据之间的相关性和预测未来观察值。

通过合适的参数估计和模型选择,ARMA模型可以在实践中具有一定的预测能力。

随机时间序列分析是经济学和统计学中的重要方法,用于研究一系列随机变量随时间的变化规律。

时间序列分析模型汇总

时间序列分析模型汇总

时间序列分析模型汇总时间序列分析是一种广泛应用于各个领域的统计分析方法,它用来研究一组随时间而变化的数据。

时间序列数据通常具有趋势、季节性和随机性等特征,时间序列分析的目的是通过建立适当的模型来描述和预测这些特征。

本文将汇总一些常用的时间序列分析模型,包括AR、MA、ARIMA、GARCH和VAR等。

1.AR模型(自回归模型):AR模型是根据过去的观测值来预测未来的观测值。

它假设未来的观测值与过去的一系列观测值有关,且与其他因素无关。

AR模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+ε_t,其中Y_t表示时间t的观测值,c 为常数,φ_i为系数,ε_t为误差项。

2.MA模型(移动平均模型):MA模型是根据过去的误差项来预测未来的观测值。

它假设未来的观测值与过去的一系列误差项有关,且与其他因素无关。

MA模型的一般形式为:Y_t=μ+ε_t+Σ(θ_i*ε_t-i),其中Y_t表示时间t的观测值,μ为平均值,θ_i为系数,ε_t为误差项。

3.ARIMA模型(自回归积分移动平均模型):ARIMA模型是AR和MA模型的组合,它结合了时间序列数据的趋势和随机性特征。

ARIMA模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+Σ(θ_i*ε_t-i)+ε_t,其中Y_t表示时间t的观测值,c为常数,φ_i和θ_i为系数,ε_t为误差项。

4.GARCH模型(广义自回归条件异方差模型):GARCH模型用于建模并预测时间序列数据的波动性。

它假设波动性是由过去观测值的平方误差和波动性的自相关引起的。

GARCH模型的一般形式为:σ_t^2=ω+Σ(α_i*ε^2_t-i)+Σ(β_i*σ^2_t-i),其中σ_t^2为时间t的波动性,ω为常数,α_i和β_i为系数,ε_t为误差项。

5.VAR模型(向量自回归模型):VAR模型用于建模并预测多个时间序列变量之间的相互关系。

它假设多个变量之间存在相互依赖的关系,即一个变量的变动会对其他变量产生影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DF检验
yt 0 0 yt 1 t yt yt 1 0 0 yt 1 yt 1 t yt 0 ( 0 1 ) yt 1 t yt 0 yt 1 t
(令 γ = β0-1)

原假设为
H0:γ=0 (有单位根,即序列不平稳)
《金融统计与计量》对外经贸大学金融学院
AR模型的平稳性问题
《金融统计与计量》对外经贸大学金融学院
AR模型的平稳性问题
《金融统计与计量》对外经贸大学金融学院
AR模型的平稳性问题
《金融统计与计量》对外经贸大学金融学院
AR模型的平稳性条件
《金融统计与计量》对外经贸大学金融学院
移动平均模型(MA)
Jonathan
D. Cryer
Kung-Sik Chan,机械工业出版社,2011
《金融统计与计量》对外经贸大学金融学院
时间序列分析方法

时间序列分析方法由于各种领域的时间序列分析。时间序列模型不同于经济计 量模型的两个特点是:
这种建模方法不以经济理论为依据,而是依据变量自身的变化规

事实上,需要考虑Δyt有无漂移项,或有无时间趋势项。另 外,Δyt 亦有可能存在序列相关性,因此考虑下式(ADF检 验)
yt 0 2t yt 1 i yt i t
i 1
《金融统计与计量》对外经贸大学金融学院
ADF检验的步骤
估计y t 0 2 t y t 1 i y t i t

Analysis of Financial Time Series, 2nd Edition, Tsay, R., 2005, Wiley-Interscience.
《计量经济分析方法与建模——Eviews应用及实例》
高铁梅(主编),清华大学出版社,2006


《时间序列分析及应用——R语言》
自相关函数(ACF)的定义
《金融统计与计量》对外经贸大学金融学院
AR模型的自相关函数
《金融统计与计量》对外经贸大学金融学院
AR模型的自相关函数
《金融统计与计量》对外经贸大学金融学院
《金融计量经济学》 对外经贸大学金融学院 第42页 《金融统计与计量》对外经贸大学金融学院
AR模型的自相关函数
《金融统计与计量》对外经贸大学金融学院
差分
《金融统计与计量》对外经贸大学金融学院
时间序列平稳性的定义

严平稳:{xt1,xt2,..., xtk} 联合分布在时间平移变换下不变。 宽平稳:{xt}均值、方差以及协方差是不随时间变化的。
3 2 1 0 -1 -2 -3 25 50 75 100 125 150 175 200
1000
800
yt =0.2+0.05t+ yt-1 + et
600
20
400
10
200
0
0
-10 25 50 75 100 125 150 175 200
25
50
75
100
125
150
175
200
《金融统计与计量》对外经贸大学金融学院
单位根平稳的ADF检验
《金融统计与计量》对外经贸大学金融学院
单位根平稳的ADF检验
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
扩展的自相关函数(EACF)

为了方便ARMA模型的识别,一些绘图工具,例如扩展的自 相关法(EACF)(Tsay and Tiao,1984)、最小典型相关 法(SCAN)(Tsay and Tiao,1985)等。EACF对于适度大 的样本容量具有较好的样本性质。
《金融统计与计量》对外经贸大学金融学院
ARIMA模型的表示
《金融统计与计量》对外经贸大学金融学院
第三讲 时间序列的随机模型分析
3.3 自相关函数和偏自相关函数
《金融统计与计量》对外经贸大学金融学院
自相关函数(ACF)的定义
《金融统计与计量》对外经贸大学金融学院
自相关函数(ACF)的定义
《金融统计与计量》对外经贸大学金融学院

中心化处理

去除均值

去势

趋势型模型拟合

去季节性

求季节因子 X11,X12方法
《金融统计与计量》对外经贸大学金融学院
数据平稳化处理方法(交易数据)

对数变换
削弱增长趋势

差分
一阶差分 高阶差分
一阶对数差分(对数收益率)
高阶对数差分

金融产品的价格序列
Pt Pt 1 Rt 100% Pt 1
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
i 1
γ=0 ?
Yes
No
沒有单根,穩定
No No
估计y t 0 y t 1 i y t i t
i 1
Yes
α2=0 ?
No
γ=0 ?
有单根,不穩定
Yes
γ=0 ?
Yes
沒有单根,穩定
No
估计y t y t 1 i y t i t
《金融统计与计量》对外经贸大学金融学院
MA模型的自相关函数

MA(1)的自相关函数
截尾特征
《金融统计与计量》对外经贸大学金融学院
MA模型的自相关函数
《金融统计与计量》对外经贸大学金融学院
ARMA模型的自相关函数
《金融统计与计量》对外经贸大学金融学院
相关图(correlogram)
《金融统计与计量》对外经贸大学金融学院
第三讲 时间序列的随机 模型分析
对外经济贸易大学 金融学院金融工程系 黄晓薇 xwhuang@
本讲参考教材

Enders, Walter (2004), Applied Econometric Time Series 2nd, New York: John Wiley & Sons, Inc.
收益率序列
Pt rt ln P 100% p t p t -1 t 1
《金融统计与计量》对外经贸大学金融学院
数据平稳化的EViews命令
《金融统计与计量》对外经贸大学金融学院

假设一个随机模型含有d个单位根,其经过d次差分之后可以 变换为一个平稳的自回归移动平均模型。则该随机模型称为 单整自回归移动平均模型。
伯克斯—詹金斯积数十年理论与实践的研究指出,时间序列 的非平稳性是多种多样的,然而幸运的是经济时间序列常常 具有这种特殊的线性齐次非平稳特性(即参数是线性的,xt 及其滞后项都是一次幂的)。对于一个非季节性经济时间序 列常常可以用含有一个或多个单位根的随机过程模型描述。

《金融统计与计量》对外经贸大学金融学院
ARIMA(1,1)的随机模拟
10 ARIMA 0
-10
-20
-30 20 40 60 80 100 120 140 160 180 200
《金融统计与计量》对外经贸大学金融学院
ARIMA模型的表示
《金融统计与计量》对外经贸大学金融学院
ARIMA模型的表示
《金融统计与计量》对外经贸大学金融学院
ARMA(1,1)的EACF图

Where “X”denotes nonzero, “O”denotes either zero or nonzero.
《金融统计与计量》对外经贸大学金融学院
第三讲 时间序列的随机模型分析
3.4 ARIMA模型的构建流程
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
ARIMA过程的ACF和PACF特征
《金融统计与计量》对外经贸大学金融学院
《金融统计与计量》对外经贸大学金融学院
ARMA模型的平稳可逆性条件
《金融统计与计量》对外经贸大学金融学院
ARMA(1,1)的随机模拟
4 ARMA
2
0
-2
-4 20 40 60 80 100 120 140 160 180 200
《金融统计与计量》对外经贸大学金融学院
单整自回归滑动平均模型ARIMA
《金融统计与计量》对外经贸大学金融学院
不同的非平稳序列
3 e 2 1
yt- = yt-1 + et
12 8
16
0
4
-1 -2 -3 25
0
White noise
50 75 100 125 150 175 200
-4 25 50 75 100 125 150 175 200
50 40 30
yt =0.2+yt-1 + et
偏自相关函数
《金融统计与计量》对外经贸大学金融学院
偏自相关函数
AR(1)的偏相关函数
《金融统计与计量》对外经贸大学金融学院
偏相关图
《金融统计与计量》对外经贸大学金融学院
ACF和PACF特征总结
自相关函数 AR模型 MA模型 ARMA模型 拖尾 截尾 拖尾 偏相关函数 截尾 拖尾 拖尾
相关文档
最新文档