江西省赣州市信丰县2014届九年级上期中数学试卷及答案
2014—2015学年第一学期九年级期中考试数学试题(新人教版)
2014—2015学年第一学期九年级期中考试数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算.★参考公式:抛物线c bx ax y ++=2的对称轴是a b x 2-=,顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22 一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.将图1按顺时针方向.....旋转90°后得到的是2.下列方程中是一元二次方程......的是A .012=+xB .12=+x yC .0532=++x xD .0122=++x x3.如图,已知点A 、B 、C 在⊙O 上,∠AO B =100°,则∠ACB 的度数是A .50°B .80°C .100°D .200° 4.下列美丽的图案,既是轴对称图形又是中心对称.............图形的是 A .B .C .D .5.一元二次方程0342=+-x x 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定6.已知⊙O 的半径为10cm ,如果圆心O 到一条直线的距离为10cm ,那么这条直线和这个圆的位置关系为A .相离B .相切C .相交D .无法确定第3题7.将抛物线241x y =向左平移2个单位,再向下平移1个单位,则所得的抛物线的解析式为A. ()12412++=x y B. ()12412-+=x yC. ()12412+-=x yD. ()12412--=x y8.要组织一次篮球联赛,赛制为单循环形式.....(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是A. 5个B. 6个C. 7个D. 8个9.一个运动员打高尔夫球,若球的飞行高度(m)y 与水平距离(m)x 之间的函数表达式为()10309012+--=x y ,则高尔夫球在飞行过程中的最大..高度为 A .10m B .20m C .30m D .60m 10.方程013)2(=+++mx x m m 是关于x 的一元二次方程......,则m 的值为 A .2-=m B .2=m C .2±=m D .2±≠m二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡...的相应位置)11.点A (-2,3)与点1A 是关于原点O 的对称点,则1A 坐标是 . 12.二次函数2)5(32+-=x y 的顶点坐标是 .13.已知关于x 的一元二次方程062=-+mx x 的一个根是2,则m =_ __. 14.如图所示,四边ABCD 是圆的内接四边形.....,若∠ABC=50°则∠ADC= . 15.如图所示,在小正方形组成的网格中,图②是由图①经过旋转变换得到的,其旋转中心是点 (填“A”或“B”或“C”).16.如图所示,一个油管的横截面,其中油管的半径是5cm ,有油的部分油面宽AB为8cm ,则截面上有油部分油面高CD 为 ___cm .17. 如图,用等腰直角三角板画∠AOB=450,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为__________________.18.一列数1a ,2a , 3a ,…,其中211=a ,111--=n n a a (n 为大于1的整数),则=100a . 三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答) 19.(1)(7分)915)2(2--+⨯-π.(2)(7分) 先化简,再求值:)2)(2()2(2a a a -+++, 其中3=a . 20.(8分)解方程:0562=++x x .21.(8分)已知:如图,在⊙O 中,弦AB=CD ,那么∠AOC 和∠BOD 相等吗...? 请说明理由.......22. (10分)如图,在平面直角坐标系中,△ABC 的三个顶都在格点上,点A 的坐标为(2,4),请解答下列问题: (1)画出ABC ∆关于x 轴对称的111C B A ∆,并写出点1A 的坐标.(2)画出111C B A ∆绕原点O 旋转180°后得到的222C B A ∆,并写出点2A 的坐标.22 17题23.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,2014年该商城1月份销售自行车64辆,3月份销售了100辆.(1)求1月到3月自行车销量的月平均增长率;(2)若按照(1)中自行车销量的增长速度,问该商城4月份能卖出多少辆自行车?24. (10分)已知:如图已知点P是⊙O外一点,PO交圆O于点C,OC=CP=2,点B在⊙O上,∠OCB=600,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.(12分)已知四边形 ABCD 中, AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,将∠MBN 绕点B 旋转.当∠MBN 旋转到如图的位置,此时∠MBN 的两边分别交AD、DC 于 E、F,且AE≠CF.延长 DC 至点 K,使 CK=AE,连接BK.求证:(1)△AB E≌△CBK;(2)∠KBC+∠CBF=600 ;(3)CF+AE=EF.26.(14分)如图,在平面直角坐标系中, A(0,2),B(-1,0),Rt△A OC的面积为4.(1)求点C的坐标;(2)抛物线c+=2经过A、B、C三点,求抛物线的解析式和对称轴;axbxy+(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.2014—2015学年第一学期九年级期中考试数学试题参考答案及评分说明说明:(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.C ; 3.A ; 4.D ; 5.A ; 6.B ; 7.B ; 8.C ; 9. A ; 10.B . 二、填空题(本大题共8小题,每小题3分,共24分)11.)3,2(-; 12.)2,5(; 13.1; 14.130°;15.B ; 16.2 ; 17.22°;18.21三、解答题(本大题共8小题,共86分) 19.(1)解:原式=3154--+⨯π ················································································ 4分 =420-+π ························································································· 6分=π+16 ································································································ 7分 (2)解:原式22444a a a -+++ ············································································· 3分84+=a ································································································ 5分 当208343=+⨯==时,原式a ······················································ 7分20.解:∵5,6,1===c b a∴01642>=-ac b ···························································································· 4分 ∴2462166±-=±-=x ················································································· 6分 ∴5,121-=-=x x ······························································································· 8分21.答:∠AOC=∠BOD ……………………………………………………1分 理由:∵AB=CD ∴弧AB=弧CD …………………………………………………………………………3分 ∴∠AOB=∠COD ………………………………………………………………………5分 ∴∠AOB-∠BOC=∠CDO-∠BOC …………………………………………………… 7分 即∠AOC=∠BOD ……………………………………………………………………… 8分 22.解:(1)图略,)4,2(1-A ………………………………………………………………5分 (2)图略,)4,2(2-A ………………………………………………………………5分 23.解:(1)设1月到3月自行车销量的月平均增长率为x ,依题意得…………………1分 100)1(642=+x解得 不符合题意,舍去)(49%,254121-===x x …………………………6分 答:1月到3月自行车销量的月平均增长率为25%.………………………………7分 (2)125%251100=+⨯)(……………………………………………………9分 答:商城4月份能卖出125辆自行车.……………………………………………10分 24.(1)解:连接OB ……………………………………………………………………1分 ∵OB=OC,∠OCB=60°∴△OBC 是等边三角形………………………………………………………3分 ∴BC=OC=2……………………………………………………………………4分 (2)证明:∵BC=OC,OC=CP∴BC=CP …………………………………………………………………5分 ∴∠CBP=∠P ……………………………………………………………6分 又∵∠OCB=60°∴∠CBP=30°由(1)可知△OBC 是等边三角形…………………7分 ∴∠OBC=60°…………………………………………………………8分 ∴∠OBC+∠CBP=90°…………………………………………………9分 ∴OB ⊥BP∴BP 是圆O 的切线……………………………………………………10分 25.证明:(1)∵AB ⊥AD,BC ⊥CD∴∠BAE=∠BCK=90°……………………………………………………1分 又∵AB=BC,AE=CK∴△ABE ≌△CBK …………………………………………………………4分(2)由(1)可知△ABE ≌△CBK∴∠KBC=∠EBA …………………………………………………………5分 又∵∠ABC=120°,∠MBN=60°∴∠CBF+∠ABE=60°……………………………………………………7分∴∠KBC+∠CBF=60°……………………………………………………8分 (3)由(1)可知△ABE ≌△CBK∴BK=BE ………………………………………………………………………9分 又∵∠KBF=∠MBN=60°,BF=BF∴△BKF ≌△BEF ……………………………………………………………10分 ∴KF=EF ………………………………………………………………………11分 又∵KF=KC+CF,CK=AE∴CF+AE=EF …………………………………………………………………12分 26.(1)C (4,0)……………………………………………………………………………3分 (2)抛物线的解析式:223212++-=x x y ,对称轴 23=x .……………………9分(3)设直线AC 的解析式为:b kx y +=,代入点A (0,2),C (4,0),得: ∴直线AC :221+-=x y ;……………………………………………………………11分 过点P 作PQ ⊥x 轴于H ,交直线AC 于Q , 设P (m ,223212++-m m ),Q (m ,221+-m ) 则m m PQ 2212+-= ∴4)2(44)221(2121222+--=+-=⨯+-⨯=⨯⨯=m m m m m OC PQ S ∴当m=2,即 P (2,3)时,S 的值最大.……………………………………………14分。
2014年江西省中考数学试卷及答案[1]
江西省2014年中等学校招生考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .22.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25B .28,28C .25,28D .28,313.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1 D .(2a 3-a 2)÷2a=2a-14.直线y =x +1与y=-2x+a 的交点在第一象限,则a 的取值可以是( ). A .-1B .0C .1D .25.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐奢压扁,剪去上面一截后,正好合适。
以下裁剪示意图中,正确的是( ). 6.已知反比例函数k y x=的图像如右图所示,则二次函数2224y kx x k =-+的图像大致为( ).二、填空题(本大题共8小题,每小题3分,共24分) 7_______8.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务。
5.78万可用科学记数法表示为________。
9.不等式组2101(2)02x x ->-+<⎧⎪⎨⎪⎩的解集是________10.若,a b 是方程2230x x --=的两个实数根,则22a b +=_______。
11.如图,在△ABC 中,AB=4,BC=6,∠B=60°,将三角形ABC 沿着射线BC 的方向平移2个单位后,得到三角形△A ′B ′C ′,连接A ′C ,则△A ′B ′C 的周长为______。
2014-2015学年九年级上期中数学试卷及答案
九年级数学期中学业水平检测试卷(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中) 1.下列方程为一元二次方程的是A .20-+=ax bx c (a 、b 、c 为常数) B .()231x x x +=-C .(2)3x x -=D .10x x+= 2.用配方法解方程2250x x --=时,原方程应变形为 A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是A .k >14-B .k >14-且0k ≠ C .k <14- D .k ≥14-且0k ≠4.一位卖“运动鞋”的经销商抽样调查了9位七年级学生的鞋号,号码分别为(单位:cm ):24,22,21,24,23,25,24,23,24,经销商最感兴趣的是这组数据的 A .中位数B .众数C .平均数D .方差5.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是A .16、10.5B .8、9C .16、8.5D .8、8.56.如图,⊙O 的半径为5,弦AB =8, M 是线段AB 上一个动点,则OM 的取值范围是 A .3≤OM ≤5 B .3≤OM <5 C .4≤OM ≤5 D .4≤OM <5 7. 如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠COD 的度数是A .40°B .45°C .50°D .60°(小时)(第5题图)(第5题)(第6题)(第7题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)9.若关于x 的方程()2320k x x -+=是一元二次方程,则k 的取值范围是 ▲ . 11.若n (n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为 ▲ .12.在一个不透明的口袋中,装有若干个颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为 ▲ . 13.小明等五位同学的年龄分别为:14、14、15、13、14,计算出这组数据的方差是0.4,则20年后小明等五位同学年龄的方差为 ▲ .14.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数为 ▲ . 15.如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 ▲ cm (结果保留π).16.如图,△ABC 内接于⊙O ,CB =a ,CA =b ,∠A -∠B =90°,则⊙O 的半径为 ▲ . 17.若圆锥的轴截面是一个边长为2的等边三角形,则这个圆锥的侧面积是 ▲. 18.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°, AO ∥DC,则∠B的度数为 ▲ .(第14题) (第15题)(第16题)(第8题)(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤) 19.(本题满分8分) 解方程:(1)(2)20x x x -+-= (2)263910x x +-=20.(本题满分8分)如图,学校打算用16 m 的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙(如下图),面积是30 m 2.求生物园的长和宽.21.(本题满分8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-2、3、-4,搅匀后先从中摸出一个球(不放回),再从余下的3个球中摸出1个球.(1)用树状图列出所有可能出现的结果;(2)求2次摸出的乒乓球球面上数字的积为偶数的概率.22.(本题满分8分)操作题: 如图,⊙O 是△ABC 的外接圆,AB =AC ,P 是⊙O 上一点.(1)请你只用无刻度的直尺........,分别画出图①和图②中∠P 的平分线; (2)结合图②,说明你这样画的理由.生物园23.(本题满分10分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB、CD的上方,求AB和CD间的距离.24.(本题满分10分)如图,已知P A、PB切⊙O于A、B两点,PO=4cm,∠APB=60°,求阴影部分的周长.25.(本题满分10分)某农户在山上种脐橙果树44株,现进入第三年收获。
2013~2014学年度人教版九年级第一学期期中数学试卷
12013-2014学年度第一学期期中考试九年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分) 1.根式2)2(-的值是( )A. -2B. 2C. 4±D. 4 2.函数2-=x y 中自变量x 的取值范围是( )A.x >2B.x≥2 C .x <2 D. x≤2 3.用配方法解方程0122=--x x 时,配方后所得的方程为( )A .012=+)(xB .012=-)(xC .212=+)(xD .212=-)(x4.已知x=-1是关于x 的一元二次方程x 2-2x+a=0的一个解,则此方程的另一个解是( ).A. x=3B. x=-2C. x=2D. x=-35.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴称图形又是中心对称图形的是( )6.如图,将ABC ∆绕顶点C 逆时针旋转得到'''C B A ∆,且点B 刚好落在''B A 上,若∠A=25°,∠BCA ′=45°,则∠A ′BA 等于( )A .30°B .35°C .40°D .45°A'CB AB'(第6题)2B AOC(第14题)7.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( )A.30°B.45° C .60° D .90°8.如图,点D 为线段AB 与线段BC 的垂直平分线的交点,∠A=35°,则∠D 等于( ) A .50° B . 65° C .55° D .70°9.已知关于x 的方程2()10x a b x ab -++-=,1x 、2x 是此方程的两个实数根,现给出三个结论:①12x x ≠;②12x x ab <;③222212x x a b +<+.其中正确结论个数是( )A. 0B. 1C.2D. 310.已知AB 是⊙O 的直径,C 是⊙O 上一点,︒=∠15CAB ,ACB ∠的平分线与⊙O 交于点D.若CD=3,则AB=( )A. 2B.6C. 22D. 3 二、填空题(每题3分,共18分)11.若点)1,(-a A 与点),2(b B 是关于原点O 的对称点,则b a += .12. 20032004(32)(32)-+=g20032004(32)(32)-+=g . 13.实数a 在数轴上的位置如图所示,则化简2)1(|2|-+-a a 的结果为 .14.如图,在等腰ABO Rt ∆中,OA=OB=23,︒=∠90O ,点C 是AB 上一动点,⊙O 的半径为1,过点C 作⊙O 的切线CD ,D 为切点,则切线长的最小值为 . 15. 如图,直线y = -2x +1与与双曲线y =x k在第一象限交于不同的B 、C 两点,则k 的取值范围 .16.如图,在等边三角形ABC 内有一点P ,PA=10,PB=8,PC=6.则∠BPC= 度.(第7题)A B CD(第8题)y A BCxO(第15题)(第16题)·(3三、解答题(共9小题,共72分)17.(本题满分6分) 计算:3681)2(122-⨯-+ 18.(本题满分6分)(1)当51x =时,求2+2x 4x -的值。
2014-2015年九年级上数学期中考试试题及答案
2014—2015学年度第一学期阶段检测..九年级数学试题..注意事项: ..1.答卷前,请考生务必将自己的姓名、考号、考试科目及选择题答案涂写在答题卡上,并同时将学校、姓名、考号、座号填写在试卷的相应位置。
2.本试卷分为卷I (选择题)和卷II (非选择题)两部分,共120分。
考试时间为90分钟。
第Ⅰ卷(选择题 共45分).一、选择题(本大题共15小题,每小题3分,满分45分) 1.方程x (x +1)=0的解是A. x =0B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=-1 2.图中三视图所对应的直观图是3.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是 A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16..4.如果反比例函数xky 的图像经过点(-3,-4),那么函数的图象应在 A .第一、三象限 B .第一、二象限C .第二、四象限D .第三、四象限..B.5.若函数xmy =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A .m >1B . m >0C . m <1D .m <06.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7.如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:28.一元二次方程2x 2 + 3x +5=0的根的情况是 A .有两个不相等的实数 B .有两个相等的实数 C .没有实数根D .无法判断9.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是A .(1)(2)(3)(4)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(3)(4)(1)10. 下列各点中,不在反比例函数xy 6-=图象上的点是 A .(-1,6) B .(-3,2) C .)12,21(- D .(-2,5)11.如右图,在△ABC 中,看DE ∥BC ,21=AB AD ,DE =4 cm ,则BC 的长为A .8 cmB .12 cmC .11 cmD .10 cmA .B .C .D .AB12.下列结论不正确的是A .所有的矩形都相似B .所有的正方形都相似11题图C .所有的等腰直角三角形都相似D .所有的正八边形都相似 13.在函数y=xk(k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是A . y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 14.如图所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是A.525 B.625C.1025D.192514题图15.如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x =>的图象上,则点E 的坐标是A .1122⎛⎫⎪ ⎪⎝⎭; B .3322⎛+ ⎝⎭C .11,22⎛⎫ ⎪ ⎪⎝⎭;D .3322⎛ ⎝⎭15题图第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中的横线上。
2014-2015年江西省赣州市信丰县西牛中学九年级上学期期中数学试卷及参考答案
2014-2015学年江西省赣州市信丰县西牛中学九年级(上)期中数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)1.(3分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)若x=3是方程x2﹣5x+m=0的一个根,则这个方程的另一个根是()A.﹣2 B.2 C.﹣5 D.53.(3分)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°4.(3分)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.(3分)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为()A.20°B.24°C.25°D.26°6.(3分)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b 图象的只可能是()A. B. C. D.二、填空题(本大题共8个小题,每小题3分,共24分)7.(3分)点(2,﹣2)关于原点对称的点的坐标是.8.(3分)已知是二次函数,则m=.9.(3分)抛物线y=x2﹣2x+3的顶点坐标是.10.(3分)若关于x的一元二次方程(m﹣1)x2﹣2mx+(m+2)=0有实数根,则m取值范围是.11.(3分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.12.(3分)如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,则CD的长是.13.(3分)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2013+i2014的值为.14.(3分)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.三、(本大题共4个小题,每小题6分,共24分)15.(6分)解方程:x2﹣5x﹣6=0.16.(6分)解方程:(x+3)2﹣2(3+x)=0.17.(6分)已知x是一元二次方程x2﹣2x+1=0的根,求代数式的值.18.(8分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.四、(本大题共3个小题,每小题8分,共24分)19.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.20.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.五、(本大题共2个小题,每小题9分,共18分)22.(9分)如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)观察图象,当x取何值时,y<0,y=0,y>0.23.(9分)如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG 于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.六、(本大题共1小题,共10分)24.(10分)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.2014-2015学年江西省赣州市信丰县西牛中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)1.(3分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故D选项正确.故选:D.2.(3分)若x=3是方程x2﹣5x+m=0的一个根,则这个方程的另一个根是()A.﹣2 B.2 C.﹣5 D.5【解答】解:由根与系数的关系,设另一个根为x,则3+x=5,即x=2.故选:B.3.(3分)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°【解答】解:∵∠ABC=60°,∴旋转角∠CBC1=180°﹣60°=120°.∴这个旋转角度等于120°.故选:A.4.(3分)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.20【解答】解:连接OC,根据题意,CE=CD=6,BE=2.在Rt△OEC中,设OC=x,则OE=x﹣2,故:(x﹣2)2+62=x2解得:x=10即直径AB=20.故选:D.5.(3分)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为()A.20°B.24°C.25°D.26°【解答】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=70°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠ABC=20°.故选:A.6.(3分)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b 图象的只可能是()A. B. C. D.【解答】解:图象开口向上可知a大于0,又对称轴x=﹣<0.可得b>0,所以,函数y=ax+b图象是递增趋势,且与y轴的交点坐标大于0,故选:B.二、填空题(本大题共8个小题,每小题3分,共24分)7.(3分)点(2,﹣2)关于原点对称的点的坐标是(﹣2,2).【解答】解:点(2,﹣2)关于原点对称的点的坐标为(﹣2,2).故答案为(﹣2,2).8.(3分)已知是二次函数,则m=2.【解答】解:∵是二次函数,∴m+2≠0,m2﹣2=2,解得:m=2,故答案为:2.9.(3分)抛物线y=x2﹣2x+3的顶点坐标是(1,2).【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).故答案为:(1,2).10.(3分)若关于x的一元二次方程(m﹣1)x2﹣2mx+(m+2)=0有实数根,则m取值范围是m≤2且m≠1.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2mx+(m+2)=0有实数根,∴,解得m≤2且m≠1.故答案为:m≤2且m≠1.11.(3分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.12.(3分)如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,则CD的长是8.【解答】解:连接OA,∵OC⊥AB,AB=24,∴AD=AB=12,在Rt△AOD中,∵OA=13,AD=12,∴OD===5,∴CD=OC﹣OD=13﹣5=8.故答案为:8.13.(3分)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2013+i2014的值为i﹣1.【解答】解:由题意得,i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=i5•i=﹣1,故可发现4次一循环,一个循环内的和为0,∵=503…2,∴i+i2+i3+i4+…+i2013+i2014=i﹣1.故答案是:i﹣1.14.(3分)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°故答案为:15°或165°.三、(本大题共4个小题,每小题6分,共24分)15.(6分)解方程:x2﹣5x﹣6=0.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.16.(6分)解方程:(x+3)2﹣2(3+x)=0.【解答】解:原方程可化为(x+3)2﹣2(x+3)=0,∴(x+3)[(x+3)﹣2]=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,∴x1=﹣3,x2=﹣1.17.(6分)已知x是一元二次方程x2﹣2x+1=0的根,求代数式的值.【解答】解:∵x2﹣2x+1=0,∴x1=x2=1,原式=÷=•=,∴当x=1时,原式=.18.(8分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.【解答】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×30=15cm,CF=CD=×16=8cm,在Rt△AOE中,OE===8cm,在Rt△OCF中,OF===15cm,∴EF=OF﹣OE=15﹣8=7cm.答:AB和CD的距离为7cm.四、(本大题共3个小题,每小题8分,共24分)19.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.【解答】解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(,﹣1);(3)∵PO∥AC,∴=,∴=,∴OP=2,∴点P的坐标为(﹣2,0).20.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?【解答】解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)(20+4x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.21.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.五、(本大题共2个小题,每小题9分,共18分)22.(9分)如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)观察图象,当x取何值时,y<0,y=0,y>0.【解答】解:(1)A(﹣1,0),B(0,﹣3),C(4,5),设解析式为y=ax2+bx+c,代入可得:,解得:.故解析式为:y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,故顶点坐标为:(1,﹣4),对称轴为直线x=1;(3)观察图象可得:当x<﹣1或x>3时,y>0,当x=﹣1或x=3时,y=0,当﹣1<x<3时,y<0.23.(9分)如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG 于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.【解答】(1)证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°,∵DE⊥AG,∴∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠AFB=∠AED=90°,在△AED和△BFA中,∵,∴△AED≌△BFA(AAS),∴BF=AE,∵AF﹣AE=EF,∴AF﹣BF=EF;(2)解:如图,将△ABF绕A点旋转到△ADF′,使B与D重合,连接F′E,根据题意知:∠FAF′=90°,DE=AF′=AF,∴∠F′AE=∠AED=90°,即∠F′AE+∠AED=180°,∴AF′∥ED,∴四边形AEDF′为平行四边形,又∠AED=90°,∴四边形AEDF′是矩形,∵AD=3,∴EF′=AD=3.六、(本大题共1小题,共10分)24.(10分)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【解答】方法一:解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FG=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).方法二:(1)略.(2)设P(t,﹣t2﹣2t+3),Q(﹣2﹣t,﹣t2﹣2t+3),∴矩形PQMN周长为:2PQ+2PM,∴2PQ+2PM=2(﹣2﹣t﹣t)+2(﹣t2﹣2t+3),∴2PQ+2PM=﹣2t2﹣8t+2,∴当t=﹣2时,周长最大,∴P(﹣2,3),∵A(﹣3,0),C(0,3),∴l AC:y=x+3,∵点E在直线AC上,且E X=P X,把x=﹣2代入,∴E(﹣2,1),=AM×EM=×1×1=,∴S△AEM(3)∵D为抛物线顶点,∴D(﹣1,4),Q(0,3),∴DQ=,∵FG=2DQ=2×=4,∴t2+3t﹣4=0,∴t1=﹣4,t2=1,∴F1(﹣4,﹣5),F2(1,0).拓展:方法二追问(4):在(2)的条件下,若直线l与抛物线相交,交点为G、H(G点在H点右侧)且点P与点B关于直线l对称,求出点G、H坐标.(4)∵点P与点B关于直线L对称,∴PB被GH垂直平分,∵P(﹣2,3),B(1,0),∴K PB==﹣1,∵PB⊥GH,∴K PB×K GH=﹣1,∴K GH=1,∵F为PB的中点,∴F X==﹣,F Y=,∴⇒,∴G(,),H(,).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
2014-2015学年人教版九年级上期中教学质量检测数学试题及答案
2014—2015学年度上学期期中教学质量检测九年级数学试卷(满分:120分 答题时间:120分钟)一、选择题(每小题2分,共12分) 1.一元二次方程()()5252-=-x x 的根是 ( )A.7B.5C.5或3D.7或52.用配方法解下列方程时,配方有错误的是 ( ) A.09922=--x x化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t化为1681472=⎪⎭⎫ ⎝⎛-t D.02432=--y y 化为910322=⎪⎭⎫ ⎝⎛-y 3.某经济开发区2014年1月份的工业产值达50亿元,第一季度总产值为175亿元, 问:2,3月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程 ( ) A.()1751502=+x B.()175150502=++xC.()()1751501502=+++x x D.()()175150150502=++++x x4.在抛物线442--=x x y 上的一个点是 ( ) A.(4,4) B.(3,-1) C.(-2,-8) D.(21-,47-) 5.如图,在平面直角坐标系中,抛物线所表示的函数解析式为()k h x y +--=22,则下列结论正确的是 ( )A.h >0,k >0B.h <0,k >0C.h <0,k <0D.h >0,k <0题号 一 二 三 四 五 六 总分 得分得分密封线内不要答题密封线外不要写考号姓名第5题6.如图所示,某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8m,两侧距离地面4m高各有一个挂校名横匾用的铁环P.两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)() A.9.2m B.9.1m C.9m D.5.1m二、填空题(每小题3分,共24分)7.若方程02=-xx的两个根为1x,2x(1x<2x),则2x-1x= .8.在平面直角坐标系中,点A(-1,2)关于原点对称的点为B(a,-2),则a= .9.将抛物线232+=xy先向右平移4个单位,再向下平移2个单位,所得抛物线的解析式为 .10.抛物线322--=xxy与x轴分别交于A、B两点,则AB的长为 .11.如图,在等边△ABC中,D是边AC上的一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是 .12.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8).以点A为圆心,以AB长为半径画弧交x轴正半轴于点C,则点C的坐标为 .13.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是°(写出一个即可)14.如图,将半径为3的圆形纸片,按下列顺序折叠.若AB和BC都经过圆心O,则阴影部分的面积是(结果保留π)得分第6题第11题B三、解答题(每小题5分,共20分) 15.解方程:(1)()()03232=-+-x x x (2)012=--x x16.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有361人受到感染, 问每轮传染中平均一个人传染了几个人?17.已知二次函数c bx x y ++=2的图象经过点(-3,4),(-1,0).求其函数的解析式.18.如图,在半径为50mm 的⊙O 中,弦AB 长50mm ,求:(1)∠AOB 的度数;(2)点O 到AB 的距离.得分 第18题四、解答题(每小题7分,共28分)19.图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点.点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动.(1)请在图①中用圆规画出光点P经过的路径;(2)在图①中,所画图形是图形(填“轴对称”或“中心对称”),所画图形的周长是(结果保留π).20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD,BD的长. 得分第20题21.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出AE所在⊙O的半径r.第21题22.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形的一边长为x(m),面积为s(m2).(1)写出s与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.五、解答题(每小题8分,共16分)23.如图,四边形OABC是平行四边形.以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点 E,连接CD、CE.若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.24.如图,抛物线nxxy++-=42经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式和顶点坐标;(2)若P是x轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.(直接写出答案) 得分第24题得分六、解答题(每小题10分,共20分)25.如图所示,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2cm的速度向左运动,最终点A与点M重合.(1)求重叠部分面积(即图中阴影面积)y(cm2)与时间t(s)之间的函数关系式.(2)经过几秒钟重叠部分面积等于8cm2?第25题26.如图①,直线λ:y=mx+n(m<0,n>0)与x,y轴分别交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD.过点A,B,D的抛物线P叫做λ的关联抛物线,λ叫做P的关联直线. (1)若λ:y=-2x+2,则P表示的函数解析式为,若P:y=-x2-3x+4,则λ表示的函数解析式为;(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若λ:y=-2x+4,P的对称轴与CD相交于点E,点F在λ上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若λ:y=mx-4m,G为AB中点.H为CD中点,连接GH,M为GH中点,连接OM.若OM=10,直接写出λ,P表示的函数解析式.九年级数学答案一、1.D 2.B 3.D 4.D 5.A 6.B二、7.1 8.1 9.()243-=x y 10. 4 11. 19 12.(4,0) 13. 答案不唯60°~75°即可14. 3π15.解:(1)()()0133=--x x 31=x ,1=x (2)251±=x 16.解:设每轮传染中平均一个人传染了x 人,根据题意得:()36112=+x ∴191±=+x 181=x 202=x (舍去)答:每轮传染中平均一个人传染了18人 17.122++=x x y18.(1)∠AOB=60° (2)点O 到AB 的距离为325mm.19.解:(1) (2)轴对称 4π评分说明:(1)不用圆规,画图正确,可不扣分; (2)每答对一空得2分20.解:如图连接OD. ∵AB 是直径,∴∠ACB=∠ADB=90°. 在Rt △ABC 中, ()cm AC AB BC 86102222=-=-=∵CD 平分∠ACB , ∴∠ACD=∠BCD , ∴∠AOD=∠BOD ∴AD=BD.又 在Rt △ABD 中,222AB BD AD =+,∴()cm AB BD AD 25102222=⨯=== 21.解:∵弓形的跨度AB=3m ,EF 为弓形的高, ∴OE ⊥AB , ∴AF=21AB=23m. ∵设所在的⊙O 的半径为r ,弓形的高EF=1m , ∴AO=r ,OF=r-1,在Rt △AOF 中,222OF AF AO += 即()222123-+⎪⎭⎫ ⎝⎛=r r ,解得m r 813=.22.(1)设矩形一边长为x ,则另一边长为(6-x). ∴()x x x x S 662+-=-=, 其中0<x <6.(2)()93622+--=+-=x x x S 当矩形的一边长为3m 时,矩形面积最大,最大为9m 2. 眼时设计费为900010009=⨯(元). 因此,当该广告牌为边长为3m 的正方形时,设计费最多. 23. 解:(1)连接OD ,则OD=OA=OE ,∴∠ODA=∠A. ∵AB ∥OC , ∴∠A=∠EOC ,∠ODA=∠DOC. ∴∠DOC=∠EOC ,∵CO=CO.∴ △CEO ≌△CDO. ∵CE 是⊙O 的切线,∴∠CDO=∠CEO=90°. ∵CD 为⊙O 的切线. (2)在 OABC 中,OA=BC=3,∵CE ⊥OA ,CE=CD=4, ∴S OABC=OA ·CE=3×4=12.评分说明:辅助线画成实线,可不扣分.24.解:(1)342-+-=x x y .顶点坐标为(2,1). (2)(-1,0) (110+,0) (101-,0)25.(1)()222021t y -=(2)当y=8时,即()8220212=-t ,解得81=t ,122=t (舍去) = 2(t-10)226.(1)22+--=x x y 44+-=x y (2)如图①,∵直线λ:y=mx+n ,当x=0时,y=n ,∴B(o,n). 当y=0时,mnx -= ∴A(m n -,o).由题意得D(-m,0).设抛物线对称轴与x 轴交点为N(x,o), ∵DN=AN ∴m n --x=x-(-n). ∴2x=-n-mn-. ∴P 的对称轴mnmn x 2+-=. (3)∵λ:y=-2x+4, ∴2-=m ,4=n . 由(2)可知,P 的对称轴122482-=⨯-+--=+-=m n mn x . 如图②,当点Q 1在直线λ下方时,∵直线42+-=x y 与x ,y 轴交点分别为A(2,0),B(0,4).由题意得C(0,2),D(-4,0).设直线CD:y=kx+2, 则-4k+2=0.解得k=21,∴221+=x y 过B 作BQ 1∥CE. ∴BQ 1的函数解析式为 421+=x y . 当x=-1时,()274121=+-⨯=y . ∴Q 1(-1,27)综上所述点Q 的坐标为(-1,217)或(-1,27).(4)λ:y=-2x+8. P:y=-8412+-x x . 评分说明:不画草图或画划图不正确,可不扣分.。
2014九年级初三第一学期数学期中试卷(A) 及答案
九年级数学(A ) 第1页(共10页) 九年级数学(A ) 第2页(共10页)(第4题)(第10题)2013—2014学年度第一学期期中考试试卷九年级数学(A)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个正确的).1.如图所示的几何体的俯视图是( )正面A .B .C .D .2.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OC3.已知关于x 的方程062=--kx x 的一个根为x =3,则实数k 的值为( ) A .1 B .-1 C .2 D .-24.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情 况是( )A .越来越小B .越来越大C .大小不变D .不能确定 5.已知直线y =ax (a ≠0)与双曲线的一个交点坐标为(2,6),则它们的另一个交点坐标是( )A . (﹣2,6)B .(﹣6,﹣2)C .(﹣2,﹣6)D .(6,2) 6.如图,点A 是反比例函数6y x=-(x < 0)的图象上的一点,过点 A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( )A .12B .6C .3D .17.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( ) A .5个B .6个C .7个D .8个8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长 为( )A. 3B.3.5C.2.5D.2.89.已知m ,n 是关于x 的一元二次方程x 2﹣3x +a =0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a的值为( ) A .﹣10 B . 4C . ﹣4D . 1010.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ; (4)AOB DEOF S S ∆=四边形中正确的有( ) A. 4个B. 3个C. 2个D. 1个二、耐心填一填(本大题共5小题,每小题3分,共15分,请把答案填在答题卷相应的横线上方)11.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点. 若DE=3,则BC= . 12.已知反比例函数y=2x的图像经过点A (m ,1),则m 的值为。
江西省赣州市信丰县2014届九年级上期中数学试卷及答案
江西省赣州市信丰县2014届九年级(上)期中数学试卷一.选择题(每小题3分,共18分)1.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x≤2 C.x>2 D.x≥22.方程x2﹣8x=0的解是()A.x1=0 x2=8 B.x=8 C.x=0 D.无解3.下列图形中,对称轴条数最多的是()A.B.C.D.4.将二次三项式x2﹣4x+1配方后得()A.(x﹣2)2+3 B.(x﹣2)2﹣3 C.(x+2)2+3 D.(x+2)2﹣35.下列式子中,不能与合并的是()A.B.﹣C.D .6.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2013为止,则AP2013等于()A.2011+671B.2012+671C.2013+671D.2014+671二.填空题(每题3分,共24分)7.点A(﹣2,﹣3)关于原点的对称点为A′,则A′点的坐标为_________.8.化简的结果是_________.9.如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=_________度.10.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=_________度.11.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为_________.12.已知⊙O1与⊙O2的半径分别是2cm和5cm,圆心距是O1O2=3cm,则两圆的位置关系是_________.13.已知xy=3,则x=_________.14.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为_________cm.三.(本大题共两小题,每题5分,共10分)15.(5分)解方程:(x+2)2﹣5(x+2)=0.16.(5分)先化简,再求值:÷+1,在0,,2三个数中选一个合适的,代入求值.四.(本大题共两小题,每题6分,共12分)17.(6分)(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.18.(6分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果=6,求x的值.五.(本大题共两小题,每题8分,共16分)19.(8分)(2005•长沙)己知一元二次方程x2﹣3x+m﹣1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.20.(8分)已知:一个三角形两边长分别是6和8,第三边长x2﹣16x+60=0的一个实数根,试求第三边的长及该三角形的面积.六.(本大题共两小题,每题9分,共18分)21.(9分)(2010•天津)已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.(9分)如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,求PA+PB的最小值.七.(本大题共两小题,第23题10分,第24题12分,共22分)23.(10分)某市大力建设廉租房,2010年投资了24.5亿元人民币建了廉租房100万平方米.之后廉租房的总面积每年递增,且增长率相等,第三年共建廉租房121万平方米.(1)用科学记数法表示:24.5亿=_________万;(2)求廉租房建筑面积的年增长率;(3)若其中后两年的建房成本按每年10.7%的增长率上涨,该市后两年建廉租房共需投入约多少亿元人民币?(精确到0.1亿元)24.(12分)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A1A0B1=α(α<∠A1A0B1),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;θ6=_________,(2)图1中,连接A0H时,在不添加其他辅助线的情况下,直线A0H是否垂直平分线段A2B1?答:_________;请说明你的理由;归纳与猜想设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α().(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数.参考答案一.选择题(每小题3分,共18分)1.D2.A3.B4.B5.D6.C二.填空题(每题3分,共24分)7.(2,3).8.2.9.20度.10.90度.11.8.12.内切.13.±.14.cm.三.(本大题共两小题,每题5分,共10分)15.解:方程分解因式得:(x+2)(x+2﹣5)=0,可得x+2=0或x﹣3=0,解得:x1=﹣2,x2=3.16.解:原式=÷=•=,当x=时,原式=.四.(本大题共两小题,每题6分,共12分)17.解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.18.解:根据例题可得=(x+1)2﹣(1﹣x)(x﹣1)=6,整理得:2x2=4,两边直接开平方得:x=±.五.(本大题共两小题,每题8分,共16分)19.解:(1)∵方程有两个不相等的实数根,∴△>0,解得m<.(2)∵方程有两个相的等的实数根,∴△=0,即9﹣4(m﹣1)=0解得m=∴方程的根是:x1=x2=.20.解:∵x2﹣16x+60=0,∴x1=10,x2=6,∴三角形的第三边是6或10.当第三边是10时,三角形是直角三角形,∴三角形的面积为:=24;当第三边是6时,三角形是等腰三角形,由勾股定理可以求出地边上的高为:2.∴三角形的面积为:=8答:三角形的第三边长为10或6,面积为24或8.六.(本大题共两小题,每题9分,共18分)21.解:(1)∵AB是⊙O的直径,AP是切线,∴∠BAP=90°.在Rt△PAB中,AB=2,∠P=30°,∴BP=2AB=2×2=4.由勾股定理,得.(5分)(2)如图,连接OC、AC.∵AB是⊙O的直径,∴∠BCA=90°,又∵∠ACP=180°﹣∠BCA=90°.在Rt△APC中,D为AP的中点,∴.∴∠4=∠3.又∵OC=OA,∴∠1=∠2.∵∠2+∠4=∠PAB=90°,∴∠1+∠3=∠2+∠4=90°.即OC⊥CD.∴直线CD是⊙O的切线.(8分)22.解:∵MN=20,∴⊙O的半径=10,连接OA、OB,在Rt△OBD中,OB=10,BD=6,∴OD==8,同理,在Rt△AOC中,OA=10,AC=8,∴OC==6,∴CD=8+6=14,作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,在Rt△AB′E中,∵AE=AC+CE=8+6=14,B′E=CD=14,∴AB′=14,∴PA+PB的最小值是14.七.(本大题共两小题,第23题10分,第24题12分,共22分)23.解:(1)∵24.5亿=2450000000,∴2450000000÷10000=245000万.故答案为:245000;(2)设廉租房建筑面积的年增长率为x,由题意,得100(1+x)2=121,解得:x1=0.1,x2=﹣2.1(舍去),∴x=0.1=10%.答:廉租房建筑面积的年增长率10%;(3)由题意,得第二年的投入为:24.5×(1+10.7%)=27.1亿元;第三年的投入为:27.1215×(1+10.7%)=30.0亿元;∴后两年建廉租房共需投入:27.1+30=57.1亿元.24.解:(1)60°﹣α,α,36°﹣α.α;(2)是图1中直线A0H垂直平分A2B1,证明如下:证明:∵△A0A1A2与△B0B1B2是全等的等边三角形,∴A0A2=A0B1,∴∠A0A2B1=∠A0B1A2.又∵△A0A1A2与△A0B1B2是等边三角形,∴∠A0A2H=∠A0B1H=60°.∴∠HA2B1=∠HB1A2.∴A2H=B1H.∴点H在线段A2B1的垂直平分线上.又∵A0A2=A0B1,∴点A0在线段A2B1的垂直平分线上.∴直线A0H垂直平分A2B1.(3)当n为奇数时,;当n为偶数时,θn=α.。
2014江西中考数学Word解析版
江西省2014年中等学校招生考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最小的数是().A.-12B.0 C.-2 D.22.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是().A.25,25 B.28,28 C.25,28 D.28,313.下列运算正确的是是().A.a2+a3=a5B.(-2a2)3=-6a5C.(2a+1)(2a-1)=2a2-1D.(2a3-a2)÷2a=2a-1 4.直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是().A.-1 B.0 C.1 D.25.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐奢压扁,剪去上面一截后,正好合适。
以下裁剪示意图中,正确的是().6.已知反比例函数kyx的图像如右图所示,则二次函数2224y kx x k的图像大致为().二、填空题(本大题共8小题,每小题3分,共24分)79_______8.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务。
5.78万可用科学记数法表示为________。
9.不等式组2101(2)02xx->-+<⎧⎪⎨⎪⎩的解集是________10.若,是方程2230xx 的两个实数根,则22_______。
11.如图,在△ABC 中,AB=4,BC=6,∠B=60°,将三角形ABC 沿着射线BC 的方向平移2个单位后,得到三角形△A ′B ′C ′,连接A ′C ,则△A ′B ′C 的周长为______。
12.如图,△ABC 内接于⊙O ,AO=2,23BC,则∠BAC 的度数_______13.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。
2013—2014学年度第一学期九年级数学期中考试及答案
九年级数学试卷第1 页共7 页密封线内不得答题2013—2014学年度第一学期九年级期中考试数学试卷(满分100分时间:100分钟)1、已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)2、二次函数342++=xxy的图像可以由二次函数2xy=的图像平移而得到,下列平移正确的是()A、先向左平移2个单位,再向上平移1个单位B、先向左平移2个单位,再向下平移1个单位C、先向右平移2个单位,再向上平移1个单位D、先向右平移2个单位,再向下平移1个单位3、已知两个相似多边形的相似比是3︰4,其中较小多边形的周长为36 cm,则较大多边形的周长为( )A.48 cmB.54 cmC.56 cmD.64 cm4、下列四个点中,有三个点在同一反比例函数y=kx的图象上,则不在..这个函数图象上的点是().A.(5,1) B.(-1,5) C.⎛⎪⎫5,3D. ⎛⎪⎫-3,-5 2AB AB2AB2BP6、反比例函数y=1kx-的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A、0B、1C、2D、37、如图,在△ABC中,∠ADE=∠A CD=∠ABC,则图中相似三角形有()对。
A、1B、2C、3D、48、对于二次函数y=2(x+1)(x-3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=-19、如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落九年级数学试卷第 2 页 共 7 页第14题10、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中正确的结论是( )A 、①②B 、①③④C 、①②③⑤D 、①②③④⑤二、填空题(本题共5小题,每小题4分,满分20分) 11、已知3=b ,则a b a +=______。
2014-2015学年度9年级上学期期中考试数学试题(4)
2015学年度9年级上学期期中考试数学试题(4)一、选择题:1.将一元二次方程x 2-4x -5=0化成的形式,则b 的值是( ).A .-1B .1C .-9D .92. 如图,四边形ABCD 内接于⊙O ,若∠BOD=1600,则∠BCD=( ).A. 160°B. 100°C. 80°D. 20°3.某城市2011年底已有绿化面积300公顷,计划经过两年绿化,使绿化面积逐年增加,到2013年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( ).A .300(1+x)=363B .300(1+x)2=363C .300(1+2x)=363D .363(1-x)2=3004.如图,正方形ABCD 是⊙O 的内接正方形,点P 是劣弧BC 上不同于点B 的任意一点,则∠BPA 的度数是( ).A .45°B .60°C .75°D .90°5.如图,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M , OM :OD =3:5,则AB 的长是( ).A .5B .8C .4D .66.如图,EB 、EC 是⊙O 的两条切线,B 、C 为切点,A 、D 是⊙O 上两点,∠E=46°,∠DCF=33°。
求∠A 的度数( ). A .90° B .100° C .110° D . 67°7、若⊙P 的半径长为11,圆心P 的坐标为(6,8),则平面直角坐标系的原点O 与⊙P 位置关系是( )A .在圆上B .在圆内C . 在圆外D .无法确定8.如图,已知圆锥侧面展开图的扇形面积为65π cm 2,扇形的弧长为10π cm ,则圆锥的高是( ).A .5 cmB .10 cmC .12 cmD .13 cm9.如图,△ABC 是⊙O 的内接三角形,BD 为直径,若∠DBC=18°,则∠A 的度数是( ). A .36° B.72° C .60° D .无法确定 b a x =-2)(10.已知α、β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值( ).A .2006B .-4C .4D .-2006二、填空题:11.将一元二次方程2x (x -3)=1化成一般形式为12.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为,则该圆弧所在圆的圆心坐标为 ,弧ABC 的长为__________(结果保留根号及)13. 如图,⊙O 是等边△ABC 的外接圆,⊙O 的半径为2,则等边△ABC 的边长为 .14.如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC =3BC ,CD 与⊙O 相切,切点为D .若CD =,则线段BC 的长度等于 .15.若关于x 的一元二次方程kx 2-2x -1=0有两个实数根,则k 的取值范围是__ __。
2014年江西省中考数学试卷答案与解析
2014年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分。
每小题只有一个正确选项)﹣解:∵在﹣,个数中,﹣,﹣|=<>﹣2.(3分)(2014•南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,解:联立,5.(3分)(2014•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()B6.(3分)(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx 2﹣4x+k 2的图象大致为( )B的图象经过二、四象限,∴=<二、填空题(本大题共8小题,每小题3分,满分24分) 7.(3分)(2014•沈阳)计算:= 3 .8.(3分)(2014•江西)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法为 5.78×104.9.(3分)(2014•南昌)不等式组的解集是x>.,.10.(3分)(2014•江西)若α、β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2=10.11.(3分)(2014•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.12.(3分)(2014•江西)如图,△ABC内接于⊙O,AO=2,BC=2,则∠BAC的度数为60°.BC=OBD==BAC=BC=×=BD=OBD==BAC=∠13.(3分)(2014•南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.,,﹣(﹣××4414.(3分)(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.PC=PB==2;.24三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(2014•南昌)计算:(﹣)÷.•16.(6分)(2014•江西)小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格..17.(6分)(2014•南昌)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.(×CD=4=518.(6分)(2014•南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,√”,在B组的卡片上分别画上“√,×,×”,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.P=的概率为.P=的概率为.P=四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)(2014•江西)如图,在平面直角坐标系中,点A,B分别在x轴、y轴的正半轴上,OA=4,AB=5.点D在反比例函数y=(k>0)的图象上,DA⊥OA,点P在y轴负半轴上,OP=7.(1)求点B的坐标和线段PB的长;(2)当∠PDB=90°时,求反比例函数的解析式.==得:20.(8分)(2014•南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?21.(8分)(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)=10cm BD=10AD=10AB=BD+AD=20五、(本大题共2小题,每小题9分,共18分)22.(9分)(2014•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.OC==,==,23.(9分)(2014•江西)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.EF=(=[,=8+4EF==4.×x六(本大题共12分)24.(12分)(2014•南昌)如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x 轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为4;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽右端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.x;;.BOC=∠AOB=,)(,),,的碟宽为.y=a=,得碟宽为为;,碟宽为,碟宽为,碟宽为.﹣),的碟宽为=6a=(,.((h)()GFI=•GFH=,。
2014年秋新人教版九年级上期中检测试卷和答案解析
2014 年秋新人教版九年级上期中检测试卷和答案解析
概念所用的时间(单位:分钟)之间满足函数关系 y=-0.1x2+2.6x+43(0≤x≤30),y 的值越大,表示接受能力越强. (1)若用 10 分钟提出概念,学生的接受能力 y 的值是多少? (2)如果改用 8 分钟或 15 分钟来提出这一概念,那么与用 10 分钟相比,学生的接 受能力是增强了还是减弱了?通过计算来回答. 【解析】(1)当 x=10 时,y=-0.1x2+2.6x+43=-0.1×100+2.6×10+43=59. (2)当 x=8 时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4, ∴用 8 分钟与用 10 分钟相比,学生的接受能力减弱了; 当 x=15 时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5, ∴用 15 分钟与用 10 分钟相比,学生的接受能力增强了. 22.(8 分)(2013·来宾中考)某商场以每件 280 元的价格购进一批商品,当每件商 品售价为 360 元时,每月可售出 60 件,为了扩大销售,商场决定采取适当降价的 方式促销,经调查发现,如果每件商品降价 1 元,那么商场每月就可以多售出 5 件. (1)降价前商场每月销售该商品的利润是多少元? (2)要使商场每月销售这种商品的利润达到 7200 元,且更有利于减少库存,则每 件商品应降价多少元? 【解析】(1)由题意,得 60(360-280)=4800 元. 答:降价前商场每月销售该商品的利润是 4800 元. (2)设要使商场每月销售这种商品的利润达到 7200 元,且更有利于减少库存,则 每件商品应降价 x 元, 由题意,得(360-x-280)(5x+60)=7200, 解得:x1=8,x2=60.
江西省信丰县2014届九年级数学上学期期中试题
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
江西省信丰县2014届九年级上学期期中考试数学试题(扫描版,无答案)湘教版5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2014届人教版九年级上期中考试数学试题及答案
新干思源实验学校2013-2014学年度九年级(上)期中数学试题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共30分)1.已知等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90°-2 nC.2n D.90°-n °2.如图,已知AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8,BE =3,那么AC 的长为( ) A.8B.5C.3D.343.如图,在△ABC 中,AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是∠ABC 的平分线,DE //AB ,若BE =5 cm ,CE =3 cm ,则△CDE 的周长是( )A.15 cmB.13 cmC.11 cmD.9 cm 4.一元二次方程,用配方法解该方程,配方后的方程为( )A. B.C.D.5.已知一等腰三角形的底和腰是方程的两根,则这个三角形的周长为( )A.8B.10C.8或10D.不能确定 6. 定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A.a =cB.a =bC.b =cD.a =b =c7.以不在同一直线上的三个点为顶点作平行四边形,最多能作( ) A.4个 B.3个 C.2个 D.1个8.如图,点E 是平行四边形ABCD 的边AD 的中点,CE 与BA 的延长线交于点F .若∠FCD =∠D ,则下列结论不成立的是( )A.AD=CFB.BF=CFC.AF=CDD.DE=EF 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC ⊥BD 时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD 时,它是正方形10. 如图所示,在正方形ABCD 中,E 为CD 上一点,延长BC 至F ,使CF=CE ,连接DF ,BE 与DF 相交于点G ,则下面结论错误的是( ) A. BE=DF B. BG ⊥DF C.∠F +∠CEB=90° D.∠FDC +∠ABG=90°二、填空题(每小题3分,共24分)11.三角形的三条中位线围成的三角形的周长为10 cm ,则原三角形的周长是_______cm. 12.已知直角三角形两直角边长分别是5 cm 、12 cm ,其斜边上的高是_______. 13.已知方程没有实数根,则的最小整数值是_____.14.已知方程04322 x x 的两根为1x ,2x ,那么2221x x = . 15.已知方程23(1)532m x mx m 的两根互为相反数,则m 的值为_________. 16.已知(x 2+y 2)(x 2-1+y 2)-12=0,则x 2+y 2的值是_________。17.如图,在梯形ABCD 中,AB ∥CD ,AD=CD ,E 、F 分别是AB 、BC 的中点,若∠1=35°, 则∠D =_____.18.已知菱形的两条对角线长分别为6和8,则此菱形的周长为______,面积为______.三、解答题(共66分)19.(8分)已知:如图,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .20.(8分)如果关于的一元二次方程有实数根,求的取值范围.21.(8分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的点,CE=AF ,请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明.22.(8分)(2013·山东菏泽中考)已知m 是方程x 2-x -2=0的一个实数根,求代数式的值.23.(8分)已知关于x 的方程041222 n mx x ,其中n m ,分别是一个等腰三角形的腰和底的长,求证这个方程有两个不相等的实数根.24.(8分)如图,在四边形ABCD 中,DB 平分∠ADC ,∠ABC =120°,∠C =60°,∠BDC =30o ;延长CD 到点E ,连接AE ,使得∠E =12∠C . (1)求证:四边形ABDE 是平行四边形; (2)若DC =12,求AD 的长.25.(8分)如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥DC ,AB =BC ,且 AE ⊥BC .⑴ 求证:AD =AE ;⑵ 若AD =8,D C =4,求AB 的长.26.(10分)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多的进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为15万辆,而截止到2010年底,全市的汽车拥有量已达21.6万辆. (1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护环境,缓解汽车拥堵状况,从2011年起,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过23.196万辆;另据统计,该市从2011年起每年报废的汽车数量是上年底汽车拥有量的10%.假定在这种情况下每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.参考答案1.C 解析:如图,当△ABC 为锐角三角形时,已知∠A = n °,则∠C =2180n .所以∠DBC =2218090n n .当△ABC 为钝角三角形时,同理可得. 2.D 解析:因为CB=BE=3,所以 BD=BA=8-3=5,所以AC=34925 . 3.B 解析:因为AB=AC ,所以∠ABC =∠C .因为DE //AB ,所以∠DEC =∠ABC =∠C ,所以DE =DC . 因为BD 是∠ABC 的平分线,所以∠ABD =∠DBE .又由DE //AB ,得∠ABD =∠BDE ,所以∠DBE =∠BDE , 所以BE=DE=DC =5 cm ,所以△CDE 的周长为DE +DC +EC =5 cm+5 cm +3 cm=13 cm ,故选B. 4.B 解析:移项得,配方得,即,故选B.5.B 解析:解方程得,.由题意可得等腰三角形三边长分别为2,4,4,所以三角形周长为10,故选B. 6. A 解析:由方程满足,知方程有一个根是.又方程有两个相等的实数根,所以由根与系数的关系知,所以b =-2a ,a =c ,故选A.7.B 解析:分别以任意两点的连线为对角线都可以画出平行四边形,因此可以画出三个平行四边形.8.B 解析:由AB ∥CD , ∠FCD =∠D ,得∠FCD =∠D =∠F =∠FAD ,所以AE=EF ,EC=ED. 又AE=ED ,所以△FAE ≌△CDE ,所以AF=CD ,AE=EF=EC=ED ,所以AD=CF.故A 、C 、D 都正确,只有B 不正确.9.D 解析:根据菱形、矩形、正方形的定义进行判断.10.C 解析:由题意可知△FDC ≌△EBC ,从而∠FDC =∠EBC , ∠F =∠CEB , BE=DF , ∵∠CEB +∠EBC =90 ,∴∠F +∠GBF =90 ,∴ BG DF. ∵∠ABG +∠EBC =90 ,∴∠ABG + ∠FDC =90 ,∴ 只有选项C 是错误的.11.20 解析:由三角形中位线的性质,三角形的中位线等于三角形第三条边长的一半,所以该三角形的周长应为2×10=20(cm ).12. 1360cm 解析:可知该直角三角形的斜边长为13 cm ,由三角形的面积公式可得斜边上的高为136013125(cm ) .13. 2 解析:当时,方程为一元一次方程,有一个根;当时,方程为一元二次方程,此时由根的判别式可知当方程没有实数根时的取值范围为,所以的最小整数值是2. 14.425 解析:由根与系数的关系可知2321 x x ,122x x g ,所以4254492)(212212221x x x x x x . 15.0 解析:由根与系数的关系可知0)1(35 m m,解得0 m .16.4 解析:将x 2+y 2看作一个整体m ,得012)1( m m ,整理得0122 m m ,解得4 m 或3 m ,由于m 是大于零的数,所以3 m 舍去.17.110° 解析:因为EF 为△ABC 的中位线,所以∠1=∠CAB =35°,而AB ∥CD ,所以∠CAB=∠DCA =35°.又AD=CD ,△ADC 为等腰三角形,所以由三角形内角和定理 知∠D =180°-35°×2=110°.18.20,24 解析:根据菱形的对角线互相垂直平分可得. 19.证明:因为AD 是∠BAC 的平分线,所以∠CAD =∠DAB .又因为DE ⊥AB , DE 是∠ADB 的平分线,所以△ADE ≌△BDE , 所以AD=DB ,∠DAB =∠B .所以∠CAD =∠DAB =∠B =30°, 所以CD =21AD =21DB . 20.解:由于方程是一元二次方程,所以,解得.由于方程有实数根,因此,解得.因此的取值范围是且.21.解:猜想:BE ∥DF 且BE=DF .证明:∵ 四边形ABCD 是平行四边形, ∴ CB=AD ,CB ∥AD . ∴ ∠BCE=∠DAF .在△BCE 和△DAF 中,,,,AF CE DAF BCE AD CB∴ △BCE ≌△DAF ,∴ BE=DF ,∠BEC=∠DFA ,∴ BE ∥DF ,即BE=DF 且BE ∥DF .22. 分析:利用方程根的定义,把根代入方程,然后用整体代入法求代数式的值. 解法1:∵ m 是方程x 2-x -2=0的一个根, ∴ m 2-m -2=0.∴ m 2-m =2,m 2-2=m . ∴ 原式=(m 2-m )+1)=2×(+1)=2×2=4.解法2:解方程x 2-x -2=0得其根为:x =-1或x =2,故m =-1或m =2, 当m =-1时,(m 2-m )+1)=4;当m =2时,(m 2-m )+1)=4.故代数式(m 2-m ) 21m m的值为4.23.证明:因为n m ,分别是一个等腰三角形的腰和底的长, 根据三角形的三边关系,有n m 2,即224n m . 对于方程041222n mx x , 其根的判别式04414)2(2222 n m n m ,所以方程有两个不相等的实数根.24.(1)证明:∵ ∠ABC =120°,∠C =60°, ∴ ∠ABC +∠C =180°, ∴ AB ∥DC ,即AB ∥ED . 又∵ ∠C =60°,∠E =12∠C ,∠BDC =30°, ∴ ∠E =∠BDC =30°,∴ AE ∥BD . ∴ 四边形ABDE 是平行四边形.(2)解:由(1)得AB ∥DC ,AB ≠DC , ∴ 四边形ABCD 是梯形.∵ DB 平分∠ADC ,∠BDC =30°, ∴ ∠ADC =∠C =60°.∴ 四边形ABCD 是等腰梯形, ∴ BC =AD .∵ 在△BCD 中,∠C =60°,∠BDC =30°, ∴ ∠DBC =90°.又已知DC =12,∴ AD =BC =12DC =6. 25.(1)证明:如图,连接AC , ∵ AB ∥CD ,∴ ∠ACD =∠BAC. ∵ AB =BC ,∴ ∠ACB =∠BAC , ∴ ∠ACD =∠ACB .∵ AD ⊥DC ,AE ⊥BC , ∴ ∠D =∠AEC =90° . 又∵ AC=AC ,∴ △ADC ≌△AEC ,∴ AD=AE . (2)解:由(1)知:AD=AE ,DC=EC .设AB =x , 则BE =x -4,AE =8.在Rt △ABE 中,∠AEB =90°, 由勾股定理得:222AB BE AE ,即2228(4)x x ,解得:x =10.∴ AB =10. 26.解:(1)设该市汽车拥有量的年平均增长率为x ,根据题意,得6.21)1(152 x ,解得%202.01 x ,2.22 x (不合题意,舍去).(2)设全市每年新增汽车数量为y 万辆,则2011年底全市的汽车拥有量为(21.6×90%+y )万辆,2012年底全市的汽车拥有量为万辆.根据题意得:(21.6×90%+y )×90%+y ≤23.196,解得y ≤3. 答:该市每年新增汽车数量最多不能超过3万辆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省赣州市信丰县2014届九年级(上)期中数学试卷一.选择题(每小题3分,共18分)1.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x≤2 C.x>2 D.x≥22.方程x2﹣8x=0的解是()A.x1=0 x2=8 B.x=8 C.x=0 D.无解3.下列图形中,对称轴条数最多的是()A.B.C.D.4.将二次三项式x2﹣4x+1配方后得()A.(x﹣2)2+3 B.(x﹣2)2﹣3 C.(x+2)2+3 D.(x+2)2﹣35.下列式子中,不能与合并的是()A.B.﹣C.D.6.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2013为止,则AP2013等于()A.2011+671B.2012+671C.2013+671D.2014+671二.填空题(每题3分,共24分)7.点A(﹣2,﹣3)关于原点的对称点为A′,则A′点的坐标为_________.8.化简的结果是_________.9.如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=_________度.10.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=_________度.11.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为_________.12.已知⊙O1与⊙O2的半径分别是2cm和5cm,圆心距是O1O2=3cm,则两圆的位置关系是_________.13.已知xy=3,则x=_________.14.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为_________cm.三.(本大题共两小题,每题5分,共10分)15.(5分)解方程:(x+2)2﹣5(x+2)=0.16.(5分)先化简,再求值:÷+1,在0,,2三个数中选一个合适的,代入求值.四.(本大题共两小题,每题6分,共12分)17.(6分)(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.18.(6分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果=6,求x的值.五.(本大题共两小题,每题8分,共16分)19.(8分)(2005•长沙)己知一元二次方程x2﹣3x+m﹣1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.20.(8分)已知:一个三角形两边长分别是6和8,第三边长x2﹣16x+60=0的一个实数根,试求第三边的长及该三角形的面积.六.(本大题共两小题,每题9分,共18分)21.(9分)(2010•天津)已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.(9分)如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,求PA+PB的最小值.七.(本大题共两小题,第23题10分,第24题12分,共22分)23.(10分)某市大力建设廉租房,2010年投资了24.5亿元人民币建了廉租房100万平方米.之后廉租房的总面积每年递增,且增长率相等,第三年共建廉租房121万平方米.(1)用科学记数法表示:24.5亿=_________万;(2)求廉租房建筑面积的年增长率;(3)若其中后两年的建房成本按每年10.7%的增长率上涨,该市后两年建廉租房共需投入约多少亿元人民币?(精确到0.1亿元)24.(12分)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A1A0B1=α(α<∠A1A0B1),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;θ6=_________,(2)图1中,连接A0H时,在不添加其他辅助线的情况下,直线A0H是否垂直平分线段A2B1?答:_________;请说明你的理由;归纳与猜想设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α().(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数.参考答案一.选择题(每小题3分,共18分)1.D2.A3.B4.B5.D6.C二.填空题(每题3分,共24分)7.(2,3).8.2.9.20度.10.90度.11.8.12.内切.13.±.14.cm.三.(本大题共两小题,每题5分,共10分)15.解:方程分解因式得:(x+2)(x+2﹣5)=0,可得x+2=0或x﹣3=0,解得:x1=﹣2,x2=3.16.解:原式=÷=•=,当x=时,原式=.四.(本大题共两小题,每题6分,共12分)17.解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.18.解:根据例题可得=(x+1)2﹣(1﹣x)(x﹣1)=6,整理得:2x2=4,两边直接开平方得:x=±.五.(本大题共两小题,每题8分,共16分)19.解:(1)∵方程有两个不相等的实数根,∴△>0,解得m<.(2)∵方程有两个相的等的实数根,∴△=0,即9﹣4(m﹣1)=0解得m=∴方程的根是:x1=x2=.20.解:∵x2﹣16x+60=0,∴x1=10,x2=6,∴三角形的第三边是6或10.当第三边是10时,三角形是直角三角形,∴三角形的面积为:=24;当第三边是6时,三角形是等腰三角形,由勾股定理可以求出地边上的高为:2.∴三角形的面积为:=8答:三角形的第三边长为10或6,面积为24或8.六.(本大题共两小题,每题9分,共18分)21.解:(1)∵AB是⊙O的直径,AP是切线,∴∠BAP=90°.在Rt△PAB中,AB=2,∠P=30°,∴BP=2AB=2×2=4.由勾股定理,得.(5分)(2)如图,连接OC、AC.∵AB是⊙O的直径,∴∠BCA=90°,又∵∠ACP=180°﹣∠BCA=90°.在Rt△APC中,D为AP的中点,∴.∴∠4=∠3.又∵OC=OA,∴∠1=∠2.∵∠2+∠4=∠PAB=90°,∴∠1+∠3=∠2+∠4=90°.即OC⊥CD.∴直线CD是⊙O的切线.(8分)22.解:∵MN=20,∴⊙O的半径=10,连接OA、OB,在Rt△OBD中,OB=10,BD=6,∴OD==8,同理,在Rt△AOC中,OA=10,AC=8,∴OC==6,∴CD=8+6=14,作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,在Rt△AB′E中,∵AE=AC+CE=8+6=14,B′E=CD=14,∴AB′=14,∴PA+PB的最小值是14.七.(本大题共两小题,第23题10分,第24题12分,共22分)23.解:(1)∵24.5亿=2450000000,∴2450000000÷10000=245000万.故答案为:245000;(2)设廉租房建筑面积的年增长率为x,由题意,得100(1+x)2=121,解得:x1=0.1,x2=﹣2.1(舍去),∴x=0.1=10%.答:廉租房建筑面积的年增长率10%;(3)由题意,得第二年的投入为:24.5×(1+10.7%)=27.1亿元;第三年的投入为:27.1215×(1+10.7%)=30.0亿元;∴后两年建廉租房共需投入:27.1+30=57.1亿元.24.解:(1)60°﹣α,α,36°﹣α.α;(2)是图1中直线A0H垂直平分A2B1,证明如下:证明:∵△A0A1A2与△B0B1B2是全等的等边三角形,∴A0A2=A0B1,∴∠A0A2B1=∠A0B1A2.又∵△A0A1A2与△A0B1B2是等边三角形,∴∠A0A2H=∠A0B1H=60°.∴∠HA2B1=∠HB1A2.∴A2H=B1H.∴点H在线段A2B1的垂直平分线上.又∵A0A2=A0B1,∴点A0在线段A2B1的垂直平分线上.∴直线A0H垂直平分A2B1.(3)当n为奇数时,;当n为偶数时,θn=α.。