空间直角坐标系专题学案含答案解析

合集下载

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析1.已知,则的最小值是()A.B.C.D.【答案】C【解析】用向量减法坐标法则求的坐标,再用向量模的坐标公式求模的最小值.解:=(1﹣t﹣2,1﹣t﹣t,t﹣t)=(﹣t﹣1,1﹣2t,0)==(﹣t﹣1)2+(1﹣2t)2=5t2﹣2t+2∴当t=时,有最小值∴的最小值是故选项为C点评:考查向量的坐标运算法则及向量坐标形式的求模公式.2.点M(4,﹣3,5)到原点的距离d= ,到z轴的距离d= .【答案】;5【解析】直接利用空间两点间的距离公式,求出点M(4,﹣3,5)到原点的距离d,写出点M (4,﹣3,5)到z轴的距离d,即可.解:由空间两点的距离公式可得:点M(4,﹣3,5)到原点的距离d=到z轴的距离d==,点M(4,﹣3,5)到z轴的距离d==5故答案为:;5点评:本题是基础题,考查空间两点的距离公式的求法,考查计算能力.(4,1,2)的距离为.3.给定空间直角坐标系,在x轴上找一点P,使它与点P【答案】点P坐标为(9,0,0)或(﹣1,0,0).【解析】设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.解:设点P的坐标是(x,0,0),由题意,即,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).点评:本题考查空间两点之间的距离公式,是一个基础题,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.4.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.5.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.6.已知A点坐标为A(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为()A.(6,0,0)B.(6,0,1)C.(0,0,6)D.(0,6,0)【答案】A【解析】先根据题意设P(x,0,0),再利用平面上两点的距离公式表示出|PA|=|PB|,最后解一个关于x的方程即得结果.解:∵点P在x轴上,∴设P(x,0,0又∵|PA|=|PB|,∴=解得;x=6.故选A.点评:本小题主要考查空间两点间的距离公式、空间中的点的坐标、方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.7.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.8.在z轴上与点A(﹣4,1,7)和点B(3,5,﹣2)等距离的点C的坐标为.【答案】(0,0,)【解析】根据C点是z轴上的点,设出C点的坐标(0,0,z),根据C点到A和B的距离相等,写出关于z的方程,解方程即可得到C的竖标,写出点C的坐标.解:由题意设C(0,0,z),∵C与点A(﹣4,1,7)和点B(3,5,﹣2)等距离,∴|AC|=|BC|,∴=,∴18z=28,∴z=,∴C点的坐标是(0,0,)故答案为:(0,0,)点评:本题考查两点之间的距离公式,不是求两点之间的距离,而是应用两点之间的距离相等,得到方程,应用方程的思想来解题,本题是一个基础题.9.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.10.点P(﹣3,2,﹣1)关于平面xOy的对称点是,关于平面yOz的对称点是,关于平面zOx的对称点是,关于x轴的对称点是,关于y轴的对称点是,关于z轴的对称点是.【答案】(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).【解析】根据空间直角坐标系,点点对称性,直接求解对称点的坐标即可.解:根据点的对称性,空间直角坐标系的八卦限,分别求出点P(﹣3,2,﹣1)关于平面xOy的对称点是(﹣3,2,1);关于平面yOz的对称点是:(3,2,﹣1);关于平面zOx的对称点是:(﹣3,﹣2,﹣1);关于x轴的对称点是:(3,﹣2,1);关于y轴的对称点是(3,2,1);关于z轴的对称点是(3,﹣2,﹣1).故答案为:(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).点评:本题是基础题,考查空间直角坐标系,对称点的坐标的求法,考查空间想象能力,计算能力.11.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.12.给定空间直角坐标系,在x轴上找一点P,使它与点P(4,1,2)的距离为.【答案】点P坐标为(9,0,0)或(﹣1,0,0).【解析】设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.解:设点P的坐标是(x,0,0),由题意,即,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).点评:本题考查空间两点之间的距离公式,是一个基础题,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.13.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.14.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.15.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.16.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.17.若A、B两点的坐标是A(3cosα,3sinα),B(2cosθ,2sinθ),则|AB|的取值范围是()A.[0,5]B.[1,5]C.(1,5)D.[1,25]【答案】B【解析】把要求的式子|AB|化为,根据﹣1≤cos(α﹣β)≤1 求出|AB|的取值范围.解:由题意可得|AB|===.∵﹣1≤cos(α﹣β)≤1,∴1≤13﹣12cos(α﹣β)≤25,∴1≤≤5,故选B.点评:本题主要考查两点间的距离公式,余弦函数的值域,同角三角函数的基本关系的应用,把要求的式子化为是解题的关键,属于中档题.18.已知三角形的三个顶点为A(2,﹣1,4),B(3,2,﹣6),C(5,0,2),则BC边上的中线长为.【答案】2【解析】根据B,C两点的坐标和中点的坐标公式,写出BC边中点的坐标,利用两点的距离公式写出两点之间的距离,整理成最简形式,得到BC边上的中线长.解:∵B(3,2,﹣6),C(5,0,2),∴BC边上的中点坐标是D(4,1,﹣2)∴BC边上的中线长为=,故答案为:2.点评:本题考查空间中两点的坐标,考查中点的坐标公式,两点间的距离公式,是一个基础题.19.已知x,y,z满足(x﹣3)2+(y﹣4)2+z2=2,那么x2+y2+z2的最小值是.【答案】27﹣10.【解析】利用球心与坐标原点的距离减去半径即可求出表达式的最小值.解:由题意可得P(x,y,z),在以M(3,4,0)为球心,为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|﹣=﹣=5,所以|OP|2=27﹣10.故答案为:27﹣10.点评:本题考查空间中两点间的距离公式的应用,考查计算能力.20.在空间直角坐标系中,解答下列各题:(1)在x轴上求一点P,使它与点P(4,1,2)的距离为;(2)在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.【答案】(1)点P坐标为(9,0,0)或(﹣1,0,0).(2)点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】(1)设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.(2)先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:(1)设点P的坐标是(x,0,0),由题意|P0P|=,即=,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.(2)设点M(x,1﹣x,0)则|MN|==∴当x=1时,|MN|min=.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题考查空间两点之间的距离公式,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.(1)中涉及二次函数研究最值问题,同时考查了计算能力,属于基础题.。

高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

一、选择题1.在空间直角坐标系中,M(–2,1,0)关于原点的对称点M′的坐标是A.(2,–1,0)B.(–2,–1,0)C.(2,1,0)D.(0,–2,1)【答案】A【解析】∵点M′与点M(–2,1,0)关于原点对称,∴M′(2,–1,0).故选A.2.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于A.13B.14C.23D.13【答案】A3.点B30,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为A.2B.2C.3D.5【答案】A【解析】点B30,0)是点A(m,2,5)在x轴上的射影,可得m3A到原点的距离222++2.故选A.(3)254.在空间直角坐标系中,点A(5,4,3),则A关于平面yOz的对称点坐标为A.(5,4,–3)B.(5,–4,–3)C.(–5,–4,–3)D.(–5,4,3)【答案】D【解析】根据关于坐标平面yOz 的对称点的坐标的特点,可得点A (5,4,3),关于坐标平面yOz 的对称点的坐标为(–5,4,3).故选D .5.空间中两点A (1,–1,2)、B (–1,1,22+2)之间的距离是A .3B .4C .5D .6【答案】B【解析】∵A (1,–1,2)、B (–1,1,22+2),∴A 、B 两点之间的距离d =222(11)(11)(2222)++--+--=4,故选B .6.在空间直角坐标系中,P (2,3,4)、Q (–2,–3,–4)两点的位置关系是A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对【答案】C7.点P (1,1,1)关于xOy 平面的对称点为P 1,则点P 1关于z 轴的对称点P 2的坐标是A .(1,1,–1)B .(–1,–1,–1)C .(–1,–1,1)D .(1,–1,1)【答案】B【解析】∵点P (1,1,1)关于xOy 平面的对称点为P 1,∴P 1(1,1,–1),∴点P 1关于z 轴的对称点P 2的坐标是(–1,–1,–1).故选B .8.已知点A (2,–1,–3),点A 关于x 轴的对称点为B ,则|AB |的值为A .4B .6C 14D .10【答案】D【解析】点A (2,–1,–3)关于平面x 轴的对称点的坐标(2,1,3),由空间两点的距离公式可知:AB ()()()222221133-++++10,故选D .9.在空间直角坐标系Oxyz 中,点M (1,2,3)关于x 轴对称的点N 的坐标是A.N(–1,2,3)B.N(1,–2,3)C.N(1,2,–3)D.N(1,–2,–3)【答案】D【解析】∵点M(1,2,3),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点M(1,2,3)关于x轴对称的点的坐标为(1,–2,–3),故选D.10.空间点M(1,2,3)关于点N(4,6,7)的对称点P是A.(7,10,11)B.(–2,–1,0)C.579222⎛⎫⎪⎝⎭,,D.(7,8,9)【答案】A11.在空间直角坐标系中,已知点A(1,0,2),B(1,–4,0),点M是A,B的中点,则点M的坐标是A.(1,–1,0)B.(1,–2,1)C.(2,–4,2)D.(1,–4,1)【答案】B【解析】∵点M是A,B的中点,∴M110420222+-+⎛⎫⎪⎝⎭,,,即M(1,–2,1).故选B.二、填空题12.空间中,点(2,0,1)位于___________平面上(填“xOy”“yOz”或“xOz”)【答案】xOz【解析】空间中,点(2,0,1)位于xOz平面上.故答案为:xOz.13.在正方体ABCD–A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为___________.29【解析】∵在正方体ABCD –A 1B 1C 1D 1中,D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),∴C 1(0,2,3),∴对角线AC 1的长为|AC 1|=222(04)2329-++=.故答案为:29.14.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作平面xOy 的垂线PQ ,则垂足Q 的坐标为___________. 【答案】(1,2,0)【解析】空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则点Q 的坐标为(1,2,0),如图所示.故答案为:(1,2,0).15.若A (1,3,–2)、B (–2,3,2),则A 、B 两点间的距离为___________.【答案】5【解析】由题意,A 、B 两点间的距离为222(12)(33)(22)++-+--=5.故答案为:5. 16.已知A (1,a ,–5),B (2a ,–7,–2)(a ∈R ),则|AB |的最小值为___________.【答案】3617.点A (–1,3,5)关于点B (2,–3,1)的对称点的坐标为___________.【答案】(5,–9,–3)【解析】设点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(a,b,c),则12 2332512abc-+⎧=⎪⎪+⎪=-⎨⎪+⎪=⎪⎩,解得a=5,b=–9,c=–3,∴点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(5,–9,–3).故答案为:(5,–9,–3).三、解答题18.若点P(–4,–2,3)关于坐标平面xOy及y轴的对称点的坐标分别是A和B.求线段AB的长.19.在Z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.【解析】设M(0,0,z),∵Z轴上一点M到点A(1,0,2)与B(1,–3,1)的距离相等,∴()222221021(03)(1)z z++-=+++-,解得z=–3,∴M的坐标为(0,0,–3).20.如图建立空间直角坐标系,已知正方体的棱长为2,(1)求正方体各顶点的坐标;(2)求A1C的长度.【解析】(1)∵正方体的棱长为2,∴A (0,0,2),B (0,2,2),C (2,2,2),D (2,0,2), A 1(0,0,0),B 1(0,2,0),C 1(2,2,0),D 1(2,0,0). (2)由(1)可知,A 1(0,0,0),C (2,2,2),A 1C 的长度|A 1C |=222222++=23.21.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.。

高中数学人教A版2教案:空间直角坐标系含解析

高中数学人教A版2教案:空间直角坐标系含解析

空间直角坐标系【教学目标】1。

掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。

2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.【重点难点】教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。

【课时安排】1课时【教学过程】导入新课大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度.为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系。

推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy 称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O 为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O-xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx 平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1图1表示的空间直角坐标系也可以用右手来确定。

【精品】高中数学 必修2_空间直角坐标系_讲义 知识点讲解+巩固练习(含答案)提高

【精品】高中数学 必修2_空间直角坐标系_讲义  知识点讲解+巩固练习(含答案)提高

空间直角坐标系【学习目标】通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.【要点梳理】要点一、空间直角坐标系1.空间直角坐标系从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3.空间点的坐标空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标1.空间直角坐标系中点的坐标的求法通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标.特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .2.空间直角坐标系中对称点的坐标在空间直角坐标系中,点(),,P x y z ,则有点P 关于原点的对称点是()1,,P x y z ---;点P 关于横轴(x 轴)的对称点是()2,,P x y z --;点P 关于纵轴(y 轴)的对称点是()3,,P x y z --;点P 关于竖轴(z 轴)的对称点是()4,,P x y z --;点P 关于坐标平面xOy 的对称点是()5,,P x y z -;点P 关于坐标平面yOz 的对称点是()6,,P x y z -;点P 关于坐标平面xOz 的对称点是()7,,P x y z -.要点三、空间两点间距离公式1.空间两点间距离公式空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 222121212||()()()d AB x x y y z z ==-+-+-.特别地,点(),,A x y z 与原点间的距离公式为222OA x y z =++.2.空间线段中点坐标空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++⎛⎫ ⎪⎝⎭. 【典型例题】 类型一:空间坐标系例1.画一个正方体ABCD —A 1B 1C 1D 1,以A 为坐标原点,以棱AB 、AD 、AA 1所在直线为坐标轴,取正方体的棱长为单位长度,建立空间直角坐标系。

空间直角坐标系专题学案(含答案解析)

空间直角坐标系专题学案(含答案解析)

1第九讲 空间直角坐标系时间: 年 月 日 刘老师 学生签名:一、 兴趣导入二、 学前测试要点考向1:利用空间向量证明空间位置关系考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。

2.题型灵活多样,难度为中档题,且常考常新。

考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。

2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。

例1:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点。

(1)求证:FH ∥平面EDB ;(2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。

【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。

【思路点拨】可以采用综合法证明,亦可采用向量法证明。

【规范解答】E FBC DHGX YZ2,,//,,,,,,,.ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC ABBC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥四边形为正方形,又且,平面又为中点,且平面H HB GH HF 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系,1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则(1)(0,0,1),(0,0,1),////HF HFGE HF HF ∴==∴⊂⊄∴设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB(2)(2,2,0),(0,0,1),0,.AC AC AC AC AC =-=∴=∴⊥⊥∴⊥GE GE GE 又BD,且GE BD=G ,平面EBD.(3)1111111(1,,),(1,1,1),(2,2,0).010,10,220011,0y z BE BD BE y z y z y BD ==--=--⎧=--+=⎧⎪=-=⎨⎨--==⎩⎪⎩∴=-1111设平面BDE 的法向量为n n 由即,得,n n (,)2222222(1,,),(0,2,0),(1,1,1).00,01,10010,-1y z CD CE CD y y z y z CE ==-=-⎧==⎧⎪==-⎨⎨-+==⎩⎪⎩∴=2222设平面CDE 的法向量为n n 由即,得,n n (,) 121212121cos ,,2||||2,60,n n n n n n n n ∴<>===∴<>=即二面角B-DE-C 为60。

4.3.1空间直角坐标系(优秀经典公开课教案及练习答案详解)

4.3.1空间直角坐标系(优秀经典公开课教案及练习答案详解)

4.3.1空间直角坐标系学科:数学年级:高一班级【学习目标】1.了解空间直角坐标系的建系方式.2.能在空间直角坐标系中求出点的坐标和已知坐标作出点.【学习重难点】重点:在空间直角坐标系中,确定点的坐标。

难点:通过建立适当的直角坐标系,确定空间点的坐标。

相关应用。

【预习指导】(1)我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数)x表(y,示。

那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组()z yx,,表示出来呢?(2)空间直角坐标系该如何建立呢?(3)建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?【合作探究】(1)、空间直角坐标系的建立。

(2)、与平面直角坐标系内点的坐标的确定过程进行比较,讨论空间直角坐标系内点的坐标的确定过程。

(3)例1、在空间直角坐标系中,作出点P(4,2,3)例2、已知长方体ABCD—A1B1C1D1的边长为AB=10,AD=6,AA1=8.以这个长方体的顶点A为坐标原点,以射线AB、AD、AA1分别为ox、oy、oz轴的正半轴,建立空间直角坐标系,求长方体各顶点的坐标【巩固练习】(1)在空间直角坐标系中,作出点Q(3,6,7),M(5,0,2)(2)V-ABCD为正四棱锥,O为底面中心,若AB=2,VO=3,试建立空间直角坐标系,并确定各顶点的坐标。

【当堂检测】1.点P(2,0,3)在空间直角坐标系中的位置是在( )A.y轴上 B.xOy面上 C.xOz面上 D.yOz面上2.在空间直角坐标系中,点P(1,3,-5)关于平面xOy对称的点的坐标是( )A.(-1,3,-5) B.(1,3,5) C.(1,-3,5) D.(-1,-3,5) 3.点P(1,2,-1)在xOz平面内的射影为B(x,y,z),则x+y+z=________.【解析】点P(1,2,-1)在xOz平面内的射影为B(1,0,-1),∴x=1,y=0,z=-1,∴x+y+z=1+0-1=0.【答案】0【拓展延伸】在空间直角坐标系中,已知点P(-2,1,4).(1)求点P关于x轴对称的点的坐标;(2)求点P关于xOy平面对称的点的坐标;(3)求点P关于点M(2,-1,-4)对称的点的坐标.类比平面直角坐标系中,点的对称性可归纳在空间直角坐标系内,点P(x,y,z)的几种特殊的对称点坐标:(1)关于原点的对称点是P1(-x,-y,-z),(2)关于横轴(x轴)的对称点是P2(x,-y,-z),(3)关于纵轴(y轴)的对称点是P3(-x,y,-z),(4)关于竖轴(z轴)的对称点是P4(-x,-y,z),(5)关于xOy坐标平面的对称点是P5(x,y,-z),(6)关于yOz坐标平面的对称点是P6(-x,y,z),(7)关于zOx坐标平面的对称点是P7(x,-y,z).【课堂小结】今天通过这堂课的学习,你能有什么收获?【课外作业】习题4.3组第1、2题【教学反思】。

数学人教B必修2学案:预习导航 2-4空间直角坐标系 含

数学人教B必修2学案:预习导航 2-4空间直角坐标系 含

预习导航1.空间直角坐标系的建立为了确定空间点的位置,在平面直角坐标系xOy的基础上,通过原点O,再作一条数轴z,使它与x轴,y轴都垂直,这样它们中的任意两条都互相垂直.轴的方向通常这样选择:从z轴的正方向看,x轴的正半轴沿逆时针方向转90°能与y 轴的正半轴重合,这样就在空间建立了一个空间直角坐标系Oxyz,O叫做坐标原点.每两条坐标轴分别确定的平面yOz,xOz,xOy叫做坐标平面,三个坐标平面把空间分成八个卦限,如图所示.xOy平面:由x轴及y轴确定的坐标平面;xOz平面:由x轴及z轴确定的坐标平面;yOz平面:由y轴及z轴确定的坐标平面.2.点在空间直角坐标系中的坐标取定了空间直角坐标系后,就可以建立空间内的任意一点与三个实数的有序数组(x,y,z)之间的一一对应关系.点M为空间一已知点,在空间直角坐标系中,过这点作两条轴所确定平面的平行平面,交另一条轴于一点,交点在这条轴上的坐标就是点M相应的一个坐标.设点M在x轴、y 轴、z轴的坐标依次为x,y,z.于是空间的点M就唯一确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,记为(x,y,z),并依次称x,y和z为点M的x坐标、y坐标和z坐标.反之,设(x,y,z)为一个三元有序数组,过x轴上坐标为x的点,y轴上坐标为y的点,z轴上坐标为z的点,分别作x轴、y轴、z轴的垂直平面,这三个平面的交点M便是三元有序数组(x,y,z)唯一确定的点.所以,通过空间直角坐标系,我们就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.八个卦限中的点的坐标符号也有一定的特点:Ⅰ:(+,+,+);Ⅱ:(-,+,+);Ⅲ:(-,-,+);Ⅳ:(+,-,+);Ⅴ:(+,+,-);Ⅵ:(-,+,-);Ⅶ:(-,-,-);Ⅷ:(+,-,-).思考1在空间直角坐标系中,点P(x,y,z)落在x,y,z轴上时,点的坐标有何特点?点P(x,y,z)落在xOy面、yOz面和xOz面上时,点的坐标有何特点?提示:坐标轴及坐标平面上点的坐标形式3.空间两点的距离公式可以看作是平面内两点间距离公式的推广,如图.M1(x1,y1,z1),P(x2,y1,z1),M2(x2,y2,z2),N(x2,y2,z1),|M1P|=|x2-x1|,|PN|=|y2-y1|,|M2N|=|z2-z1|,|M1N|2=|M1P|2+|PN|2=(x2-x1)2+(y2-y1)2,|M1M2|2=|M1N|2+|NM2|2=(x2-x1)2+(y2-y1)2+(z2-z1)2.所以点M1与M2间的距离为d(M1,M2)应用两点间的距离公式时,注意是三组对应坐标之差的平方和再开方.特别地,点M(x,y,z)到原点的距离公式为d(O,M)=思考2在空间直角坐标系中,表达式x2+y2+z2的几何意义是什么?提示:x2+y2+z2的几何意义是空间中点P(x,y,z)到原点O(0,0,0)的距离的平方.。

最新人教A版高中数学必修二(浙江专版)学案:4.3空间直角坐标系 含答案

最新人教A版高中数学必修二(浙江专版)学案:4.3空间直角坐标系 含答案

最新人教版数学精品教学资料4.3空间直角坐标系4.3.1&4.3.2 空间直角坐标系 空间两点间的距离公式[新知初探]1.空间直角坐标系(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x 轴、y 轴、z 轴,这样就建立了空间直角坐标系O ­xyz .(2)相关概念:点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M 的坐标可以用有序实数组(x ,y ,z )来表示,有序实数组(x ,y ,z )叫做点M 在此空间直角坐标系中的坐标,记作M (x ,y ,z ).其中x 叫点M 的横坐标,y 叫点M 的纵坐标,z 叫点M 的竖坐标.[点睛] 空间直角坐标系的画法(1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.4.空间两点间的距离公式(1)点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |= x 2+y 2+z 2.(2)任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|=x 1-x 22+y 1-y 22+z 1-z 22.[点睛] (1)空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.(2)空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,z 1+z 22.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式( )(2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2)( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,点P (3,4,5)与Q (3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称D .以上都不对解析:选A 点P (3,4,5)与Q (3,-4,-5)两点的横坐标相同,而纵、竖坐标互为相反数,所以两点关于x 轴对称.3.空间两点P 1(1,2,3),P 2(3,2,1)之间的距离为________. 解析:|P 1P 2|=-2+02+22=2 2.答案:2 2[典例] 在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标.[解] 建立如图所示的空间直角坐标系.点E 在z 轴上,它的x 坐标、y 坐标均为0,而E 为DD 1的中点,故其坐标为⎝⎛⎭⎪⎫0,0,12.由F 作FM ⊥AD ,FN ⊥DC ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝ ⎛⎭⎪⎫12,12,0.点G 在y 轴上,其x ,z 坐标均为0, 又GD =34,故G 点坐标为⎝ ⎛⎭⎪⎫0,34,0. 由H 作HK ⊥CG 于K ,由于H 为C 1G 的中点. 故HK =12,CK =18,∴DK =78,故H 点坐标为⎝ ⎛⎭⎪⎫0,78,12.[活学活用]如图,在长方体ABCD ­A ′B ′C ′D ′中,|AB |=12,|AD |=8,|AA ′|=5.以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA ′分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.解:因为|AB |=12,|AD |=8,|AA ′|=5,点A 为坐标原点,且点B ,D ,A ′分别在x 轴、y 轴和z 轴上,所以它们的坐标分别为A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5).点C ,B ′,D ′分别在xOy 平面、xOz 平面、yOz 平面内,坐标分别为C (12,8,0),B ′(12,0,5),D ′(0,8,5).点C ′在三条坐标轴上的射影分别是B ,D ,A ′,故点C ′的坐标为(12,8,5).[典例] 已知点M (3,2,1),N (1,0,5),求:(1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件.[解] (1)根据空间两点间的距离公式得线段MN 的长度|MN |=-2+-2+-2=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以有下面等式成立:x -2+y -2+z -2=x -2+y -2+z -2,化简得x +y -2z +3=0,因此,到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件是x +y -2z +3=0.[活学活用]已知直三棱柱ABC ­A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解:如图,以A 为原点,AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4). 因为M 为BC 1的中点, 所以由中点公式得M ⎝⎛⎭⎪⎫4+02,0+42,0+42,即M (2,2,2),又N 为A 1B 1的中点,所以N (2,0,4).所以由两点间的距离公式得 |MN |=-2+-2+-2=2 2.[典例] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________.(2)已知点P(2,3,-1)关于坐标平面xOy的对称点为P1,点P1关于坐标平面yOz的对称点为P2,点P2关于z轴的对称点为P3,则点P3的坐标为________.[解析] (1)如图所示,过A作AM⊥xOy交平面于M,并延长到C,使AM=CM,则A与C关于坐标平面xOy对称且C的坐标为(1,2,1).过A作AN⊥x轴于N并延长到点B,使AN=NB,则A与B关于x轴对称且B的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3,-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案] (1)(1,2,1),(1,-2,1) (2)(2,-3,1)[活学活用]在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴对称的点在xOz平面上的射影的坐标为( )A.(4,0,6) B.(-4,7,-6)C.(-4,0,-6) D.(-4,7,0)解析:选C 点M关于y轴对称的点是M′(-4,7,-6),点M′在xOz平面上的射影的坐标为(-4,0,-6).层级一学业水平达标1.点P(a,b,c)到坐标平面xOy的距离是( )A.a2+b2 B.|a|C.|b| D.|c|解析:选D 点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.已知A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:选A |AB|=+2++2++2=4 3.3.在空间直角坐标系中,点P(3,1,5)关于平面xOz对称的点的坐标为( )A.(3,-1,5) B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)解析:选A 由于点关于平面xOz对称,故其横坐标、竖坐标不变,纵坐标变为相反数,即对称点坐标是(3,-1,5).4.若点P(-4,-2,3)关于xOy平面及y轴对称的点的坐标分别是(a,b,c),(e,f,d),则c与e的和为( )A.7 B.-7C.-1 D.1解析:选D 由题意,知点P关于xOy平面对称的点的坐标为(-4,-2,-3),点P关于y轴对称的点的坐标为(4,-2,-3),故c=-3,e=4,故c+e=-3+4=1.5.点P(1,2,3)为空间直角坐标系中的点,过点P作平面xOy的垂线,垂足为Q,则点Q的坐标为( )A.(0,0,3) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:选D 由空间点的坐标的定义,知点Q的坐标为(1,2,0).6.空间点M(-1,-2,3)关于x轴的对称点的坐标是________.解析:∵点M(-1,-2,3)关于x轴对称,由空间中点P(x,y,z)关于x轴对称点的坐标为(x,-y,-z)知,点M关于x轴的对称点为(-1,2,-3).答案:(-1,2,-3)7.在空间直角坐标系中,点(-1,b,2)关于y轴的对称点是(a,-1,c-2),则点P(a,b,c)到坐标原点的距离|PO|=________.解析:由点(x,y,z)关于y轴的对称点是点(-x,y,-z)可得-1=-a,b=-1,c-2=-2,所以a=1,c=0,故所求距离|PO|=12+-2+02= 2.答案: 28.在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为点M 1,则点M 1关于原点对称的点的坐标是________.解析:由题意,知点M 1的坐标为(-2,0,-3),点M 1关于原点对称的点的坐标是(2,0,3). 答案:(2,0,3)9.如图,已知长方体ABCD ­A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).10.如图,在长方体ABCD ­A 1B 1C 1D 1中,|AB |=|AD |=2,|AA 1|=4,点M在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M ,N 两点间的距离.解析:由已知条件,得|A 1C 1|=2 2.由|MC 1|=2|A 1M |,得|A 1M |=223, 且∠B 1A 1M =∠D 1A 1M =π4.如图,以A 为原点,分别以AB ,AD ,AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则M ⎝ ⎛⎭⎪⎫23,23,4,C (2,2,0),D 1(0,2,4).由N 为CD 1的中点,可得N (1,2,2).∴|MN |=⎝ ⎛⎭⎪⎫1-232+⎝ ⎛⎭⎪⎫2-232+-2=533. 层级二 应试能力达标1.点A (0,-2,3)在空间直角坐标系中的位置是( ) A .在x 轴上 B .在xOy 平面内 C .在yOz 平面内D .在xOz 平面内解析:选C ∵点A 的横坐标为0,∴点A (0,-2,3)在yOz 平面内.2.在空间直角坐标系中,点P (2,3,4)和点Q (-2,-3,-4)的位置关系是( ) A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对解析:选C 点P 和点Q 的横、纵、竖坐标均相反,故它们关于原点对称.3.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 到点C 的距离为( ) A.132 B.534 C.532D.532解析:选D 利用中点坐标公式,得点P 的坐标为⎝ ⎛⎭⎪⎫2,32,3,由空间两点间的距离公式,得|PC |=-2+⎝ ⎛⎭⎪⎫32-12+-2=532. 4.在长方体ABCD ­A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6解析:选B 由已知,可得C 1(0,2,3),∴|AC 1|=-2+-2+-2=29.5.已知A (3,5,-7),B (-2,4,3),则线段AB 在yOz 平面上的射影长为________. 解析:点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为A ′(0,5,-7),B ′(0,4,3),∴线段AB 在yOz 平面上的射影长|A ′B ′|=-2+-2++2=101.答案:1016.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且点M 到点A ,B 的距离相等,则点M 的坐标是________.解析:因为点M 在y 轴上,所以可设点M 的坐标为(0,y,0).由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,解得y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0)7.在空间直角坐标系中,解答下列各题.(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最短. 解:(1)设P (x,0,0). 由题意,得|P 0P |=x -2+1+4=30,解得x =9或x =-1.所以点P 的坐标为(9,0,0)或(-1,0,0). (2)由已知,可设M (x 0,1-x 0,0).则|MN |=x 0-2+-x 0-2+-2=x 0-2+51.所以当x 0=1时,|MN |min =51. 此时点M 的坐标为(1,0,0).8.如图,正方体ABCD ­A1B 1C 1D 1的棱长为a ,M 为BD 1的中点,N 在A 1C 1上,且|A 1N |=3|NC 1|,试求MN 的长.解:以D 为原点,以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,取A 1C 1中点O 1,则O 1⎝ ⎛⎭⎪⎫a 2,a2,a ,因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .由两点间的距离公式可得: |MN |= ⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-34a 2+⎝ ⎛⎭⎪⎫a 2-a 2 =64a .(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-2+42=a 2+7-1,解得a =±3.6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为12-2+-2=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2 D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =-2+-3+2=5,∴圆C的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y -a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +2+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ­ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ­ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 12-2+-2=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -2+y -2=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4---1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20.∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧-a 2+-2-b 2=R 2,-1-a 2+-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+a -2=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|a -2-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点, 所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3kk 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。

苏教版必修2第2章 第三节 空间直角坐标系1 空间直角坐标系 (学案含答案)

苏教版必修2第2章 第三节 空间直角坐标系1 空间直角坐标系 (学案含答案)

苏教版必修2第2章第三节空间直角坐标系 1 空间直角坐标系(学案含答案)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。

【要点诠释】通常,将空间直角坐标系画在纸上时,x轴与y轴、x轴与z轴均成135°角,而z轴垂直于y轴。

y轴和z轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的单位长度的一半。

3. 空间一点的坐标对于空间任意一点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x 轴、y轴和z轴,它们与x轴、y轴和z轴分别交于P、Q、R。

点P、Q、R在相应数轴上的坐标依次为x、y、z,我们把有序实数组(x,y,z)叫作点A的坐标,记为A(x,y,z)。

【重要提示】特殊位置的点的坐标:①原点坐标(0,0,0);②x轴上的点的坐标为(,0,0)x,其中x为任意实数;③y轴上的点的坐标为(0,,0)y,其中y为任意实数;④z轴上的点的坐标为(0,0,)z,其中z为任意实数;⑤xOy平面(通过x轴和y轴的平面)上的点的坐标为(,,0)x y,其中x、y为任意实数;⑥ yOz 平面(通过x 轴和y 轴的平面)上的点的坐标为(0,,)y z ,其中y 、z 为任意实数;⑦ xOz 平面(通过x 轴和y 轴的平面)上的点的坐标为(,0,)x z ,其中x 、z 为任意实数。

考点二:空间直角坐标系中点的读取方法1. 投影法:即找到点P 在三条坐标轴上的投影点。

方法是过点P 作三个平面分别垂直于x 轴、y 轴和z 轴于A 、B 、C 三点(A 、B 、C 即为点P 在三条坐标轴上的投影点),点A 、B 、C 在x 轴、y 轴和z 轴上的坐标分别为a 、b 、c ,则(,,)a b c 就是点P 的坐标。

2. 路径法:先从原点出发沿x 轴的正方向(0)x >或负方向(0)x <移动x 个单位,再沿y 轴的正方向(0)y >或负方向(0)y <移动y 个单位,最后沿z 轴的正方向(0)z >或负方向(0)z <移动z 个单位即可读出此点坐标。

4.3.1空间直角坐标系(学案)

4.3.1空间直角坐标系(学案)

4.3.1空间直角坐标系(学案)学案设计:绵阳市开元中学 王小凤老师 学习时间:2011年 月 日 学生姓名 一.学习目标1.知识与技能① 理解空间直角坐标系,掌握空间点的坐标的确定方法和过程 ② 感受类比思想在探究新知识过程中的作用 2.过程与方法① 结合具体问题引入,诱导学生探究; ② 类比学习,循序渐进 3.情感态度与价值观通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.二.学习重、难点重点:空间直角坐标系的理解难点:建立恰当的空间直角坐标系,确定空间点的坐标四.学习过程 (一)创设情境【问题1】如何表示数轴上一个点的坐标? 【问题2】如何表示平面上一个点的坐标?【问题3】如果将某房间内悬挂的电灯泡近似地看做一个点,利用那些数据确定其在空间的具体位置?(二)概念建立1.空间直角坐标系的概念(学习层次:理解、掌握)(如图4.3-1)OABC D A B C ''''-是单位正方体.以O 为原点,分别以射线OA ,OC ,OD '的方向为正方向,以线段OA ,OC ,OD '的长为单位长,建立三条数轴:x 轴,y 轴,z 轴.也就建立了一个空间直角坐标系O xyz -,其中点O 叫做坐标原点, 叫做坐标轴.通过每两个坐标轴的平面叫做 ,分别称为xoy 平面,yoz 平面,zox 平面.【深化理解】(Ⅰ).空间直角坐标系的构成的元素.....:点( )、线(x 、y 、z 轴)、面( 平面、 平面、 平面);(Ⅱ).三个坐标平面的位置关系是: (Ⅲ).在平面上如何画空间直角坐标系?2. 右手直角坐标系 (学习层次:了解)3.空间直角坐标系中的点的坐标 (学习层次:理解、掌握、应用) 定义:教材P 134;结论:空间直角坐标系中的点M 与有序数组(),,x y z 一一对应。

3.1 空间直角坐标系的建立-3.2 空间直角坐标系中点的坐标 学案(含答案)

3.1 空间直角坐标系的建立-3.2 空间直角坐标系中点的坐标 学案(含答案)

3.1 空间直角坐标系的建立-3.2 空间直角坐标系中点的坐标学案(含答案)3空间直角坐标系3.1空间直角坐标系的建立3.2空间直角坐标系中点的坐标学习目标1.了解空间直角坐标系的建系方式.2.掌握空间中任意一点的表示方法.3.能在空间直角坐标系中求出点的坐标.知识点空间直角坐标系1.空间直角坐标系1建系方法过空间任意一点O作三条两两互相垂直的轴.有相同的长度单位.2建系原则伸出右手,让四指与大拇指垂直,并使四指先指向x轴正方向,然后让四指沿握拳方向旋转90指向y轴正方向,此时大拇指的指向即为z轴正向.3构成要素O叫作原点,x,y,z轴统称为坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面.yOz平面和xOz平面.2.空间直角坐标系中点的坐标在空间直角坐标系中,空间一点P的坐标可用三元有序实数组x,y,z来表示,有序实数组x,y,z叫作点P在此空间直角坐标系中的坐标,记作Px,y,z,其中x叫作点P的横坐标,y叫作点P的纵坐标,z叫作点P的竖坐标.特别提醒1在空间直角坐标系中,空间任一点P与有序实数组x,y,z之间是一种一一对应关系.2对于空间点关于坐标轴和坐标平面对称的问题,要记住“关于谁对称谁不变”的原则.1.空间直角坐标系中,在x轴上的点的坐标一定是0,b,c的形式.2.空间直角坐标系中,在xOz平面内的点的坐标一定是a,0,c的形式.3.关于坐标平面yOz对称的点其纵坐标.竖坐标保持不变,横坐标相反.题型一求空间中点的坐标例11画一个正方体ABCDA1B1C1D1,若以A为坐标原点,以棱AB,AD,AA1所在的直线分别为x轴.y轴.z轴,取正方体的棱长为单位长度,建立空间直角坐标系,则顶点A,C的坐标分别为________________;棱C1C中点的坐标为________;正方形AA1B1B对角线的交点的坐标为________.考点求空间中点的坐标题点求空间中点的坐标答案0,0,0,1,1,02已知正四棱锥PABCD的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.考点求空间中点的坐标题点求空间中点的坐标解正四棱锥PABCD的底面边长为4,侧棱长为10,正四棱锥的高为2.以正四棱锥的底面中心为原点,平行于BC,AB所在的直线分别为x轴.y轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A2,2,0,B2,2,0,C2,2,0,D2,2,0,P0,0,2.反思感悟1建立空间直角坐标系时,应遵循的两个原则让尽可能多的点落在坐标轴上或坐标平面上.充分利用几何图形的对称性.2求某点M的坐标的方法作MM垂直平面xOy,垂足M,求M的横坐标x,纵坐标y,即点M的横坐标x,纵坐标y,再求M点在z轴上射影的竖坐标z,即为M点的竖坐标z,于是得到M点的坐标x,y,z.跟踪训练1在棱长为1的正方体ABCDA1B1C1D1中,E,F分别是D1D,BD的中点,G在棱CD上,且|CG||CD|,H为C1G的中点,试建立适当的坐标系,写出E,F,G,H的坐标.考点求空间中点的坐标题点求空间中点的坐标解建立如图所示的空间直角坐标系.点E在z轴上,它的x坐标.y坐标均为0,而E为DD1的中点,故其坐标为.由F作FMAD,FNCD,垂足分别为M,N,由平面几何知识知|FM|,|FN|,故F点坐标为.因为|CG||CD|,G,C均在y轴上,故G点坐标为.由H作HKCG,可得|DK|,|HK|,故H点坐标为.题型二已知点的坐标确定点的位置例2在空间直角坐标系中作出点P5,4,6.考点已知坐标系中点的坐标确定位置题点已知坐标系中点的坐标确定位置解方法一第一步从原点出发沿x轴正方向移动5个单位.第二步沿与y 轴平行的方向向右移动4个单位.第三步沿与z轴平行的方向向上移动6个单位如图所示,即得点P.方法二以O为顶点构造长方体,使这个长方体在点O处的三条棱分别在x轴,y轴,z轴的正半轴上,且棱长分别为5,4,6,则长方体与顶点O相对的顶点即为所求点P.反思感悟已知点P的坐标确定其位置的方法1利用平移点的方法,将原点按坐标轴方向三次平移得点P.2构造适合条件的长方体,通过和原点相对的顶点确定点P的位置.3通过作三个分别与坐标轴垂直的平面,由平面的交点确定点P.跟踪训练2点2,0,3在空间直角坐标系中的A.y轴上B.xOy平面上C.xOz平面上D.yOz平面上考点已知坐标系中点的坐标确定位置题点已知坐标系中点的坐标确定位置答案C解析点2,0,3的纵坐标为0,此点是xOz平面上的点,故选C.题型三空间中点的对称问题命题角度1关于点和线的对称问题例31在空间直角坐标系中,点P2,1,4关于点M2,1,4对称的点P3的坐标是A.0,0,0B.2,1,4C.6,3,12D.2,3,12考点空间中点的对称问题题点关于点的对称问题2已知点A3,1,4,则点A关于x轴的对称点的坐标为A.3,1,4B.3,1,4C.3,1,4D.3,1,4考点空间中点的对称问题题点关于坐标轴的对称问题答案1C2A解析1根据题意知,M为线段PP3的中点,设P3x,y,z,由中点坐标公式,可得x2226,y2113,z24412,P36,3,12.故选C.2在空间直角坐标系中,关于x轴对称的点的横坐标不变,纵坐标和竖坐标变为原来的相反数,又点A3,1,4,点A关于x轴对称的点的坐标是3,1,4.故选A.反思感悟1利用线段中点的坐标公式可解决关于点的对称问题.2解决关于轴对称问题的关键是关于“谁”对称,“谁”不变.跟踪训练3在空间直角坐标系中,P2,3,4,Q2,3,4两点关于________对称.考点空间中点的对称问题题点关于坐标轴的对称问题答案y轴命题角度2关于平面对称例4在空间直角坐标系中,点P1,3,5关于平面xOy对称的点的坐标是A.1,3,5B.1,3,5C.1,3,5D.1,3,5考点空间中点的对称问题题点关于坐标平面的对称问题答案C解析两点关于平面xOy对称,则横坐标相同,纵坐标相同,竖坐标互为相反数,点P1,3,5关于平面xOy对称的点的坐标是1,3,5.故选C.反思感悟本类题易错点是把关于平面对称与关于线对称搞混,破解此类题关键是关于“谁”对称,“谁”不变.跟踪训练4点1,a,b关于平面xOy及x轴的对称点的坐标分别是1,2,c和d,2,3,则a,b,c,d的值分别是________________.考点空间中点的对称问题题点关于对称的综合问题答案2,3,3,11.点Q0,0,2019的位置是A.在x轴上B.在y轴上C.在z轴上D.在平面xOy上考点空间直角坐标系题点空间中的点的坐标答案C2.点2,1,5与点2,1,5A.关于x轴对称B.关于y轴对称C.关于xOy平面对称D.关于z轴对称考点空间中点的对称问题题点关于坐标平面的对称问题答案C3.点A1,,2在xOz平面的射影点的坐标为A.1,,2B.1,0,2C.1,,2D.0,,0答案B4.如图所示,点P在x轴的正半轴上,且|OP|2,点P在xOz 平面内,且PP垂直于x轴,|PP|1,则点P的坐标是________.考点空间直角坐标系题点空间中的点的坐标答案2,0,15.如图所示,在长方体ABCDA1B1C1D1中,|AB|4,|AD|3,|AA1|5,N为棱CC1的中点,分别以AB,AD,AA1所在的直线为x,y,z轴,建立空间直角坐标系.1求点A,B,C,D,A1,B1,C1,D1的坐标;2求点N的坐标.考点空间直角坐标系题点空间中的点的坐标解1显然A0,0,0,由于点B在x轴的正半轴上且|AB|4,所以B4,0,0.同理可得D0,3,0,A10,0,5.由于点C在坐标平面xOy内,BCAB,CDAD,则点C4,3,0.同理可得B14,0,5,D10,3,5,与点C的坐标相比,点C1的坐标中只有z坐标与点C不同,|CC1||AA1|5,则点C14,3,5.2由1知C4,3,0,C14,3,5,则C1C的中点坐标为,即N.1.空间中确定点M的坐标的三种方法1过点M作MM1垂直于平面xOy,垂足为M1,求出M1的横坐标和纵坐标,再由射线M1M的指向和线段MM1的长度确定竖坐标.2构造以OM为体对角线的长方体,由长方体的三个棱长结合点M的位置,可以确定点M的坐标.3若题中所给的图形中存在垂直于坐标轴的平面,或点M在坐标轴或坐标平面上,则利用这一条件,再作轴的垂线即可确定点M 的坐标.2.求空间对称点的规律方法1空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.2对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.。

7.5空间直角坐标系 学案(含答案)

7.5空间直角坐标系 学案(含答案)

7.5空间直角坐标系学案(含答案)75空间直角坐标系学习目标1了解空间直角坐标系,会用空间直角坐标系刻画点的位置2掌握空间两点间的距离公式知识链接在平面直角坐标系中,以点P1x1,y1,P2x2,y2为端点的线段的中点坐标为,两点间的距离为|P1P2|预习导引1空间直角坐标系及相关概念1空间直角坐标系从空间某一定点引三条两两垂直,且有相同单位长度的数轴x轴.y轴.z轴,这样就建立了空间直角坐标系Oxyz.2相关概念点O叫作坐标原点,x轴.y轴.z轴叫作坐标轴通过每两个坐标轴的平面叫作坐标平面,分别称为xOy 平面.yOz平面.zOx平面2空间一点的坐标空间一点M的坐标可以用有序实数组x,y,z来表示,有序实数组x,y,z叫作点M在此空间直角坐标系中的坐标,记作Mx,y,z其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标3空间两点间的距离公式1在空间中,点Px,y,z到坐标原点O的距离|OP|2在空间中,P1x1,y1,z1与P2x2,y2,z2的距离|P1P2|.题型一求空间中点的坐标例1建立适当的坐标系,写出底边长为2,高为3的正三棱柱的各顶点的坐标解以BC的中点O为原点,BC所在的直线为y轴,射线OA所在的直线为x轴,点O与B1C1的中点的连线所在的直线为z轴,建立空间直角坐标系,如图由题意知,AO2,从而可知各顶点的坐标分别为A,0,0,B0,1,0,C0,1,0,A1,0,3,B10,1,3,C10,1,3规律方法1题目若未给出坐标系,则建立空间直角坐标系时应遵循以下原则让尽可能多的点落在坐标轴上或坐标平面内;充分利用几何图形的对称性2求某点的坐标时,一般先找这一点在某一坐标平面上的射影,确定其两个坐标,再找出它在另一轴上的射影或者通过它到这个坐标平面的距离加上正负号确定第三个坐标跟踪演练1画一个正方体ABCDA1B1C1D1,以A为坐标原点,以棱AB,AD,AA1所在的直线为坐标轴,取正方体的棱长为单位长度,建立空间直角坐标系1求各顶点的坐标;2求棱C1C中点的坐标;3求面AA1B1B对角线交点的坐标解建立空间直角坐标系如图所示,且正方体的棱长为1.1各顶点坐标分别是A0,0,0,B1,0,0,C1,1,0,D0,1,0,A10,0,1,B11,0,1,C11,1,1,D10,1,12棱CC1的中点为M.3面AA1B1B对角线交点为N.题型二求空间中对称点的坐标例2在空间直角坐标系中,点P2,1,41求点P关于x 轴的对称点的坐标;2求点P关于xOy平面的对称点的坐标;3求点P关于点M2,1,4的对称点的坐标解1由于点P关于x轴对称后,它在x轴的分量不变,在y轴.z轴的分量变为原来的相反数,所以对称点为P12,1,42由于点P关于xOy平面对称后,它在x轴.y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P22,1,43设对称点为P3x,y,z,则点M为线段PP3的中点,由中点坐标公式,可得x2226,y2113,z24412,所以P36,3,12规律方法任意一点Px,y,z,关于原点对称的点是P1x,y,z;关于x轴横轴对称的点是P2x,y,z;关于y轴纵轴对称的点是P3x,y,z;关于z轴竖轴对称的点是P4x,y,z;关于xOy平面对称的点是P5x,y,z;关于yOz平面对称的点是P6x,y,z;关于xOz平面对称的点是P7x,y,z求对称点的问题可以用“关于谁对称,谁保持不变,其余坐标相反”的口诀来记忆跟踪演练2求点A1,2,1关于坐标平面xOy及x轴的对称点的坐标解如图所示,过点A作AM坐标平面xOy交平面于点M,并延长到点C,使AMCM,则点A与点C关于坐标平面xOy对称,且点C1,2,1过点A作ANx轴于点N并延长到点B,使ANNB,则点A 与B关于x轴对称且点B1,2,1点A1,2,1关于坐标平面xOy 对称的点为C1,2,1;点A1,2,1关于x轴对称的点为B1,2,1本题也可直接利用点关于坐标面.坐标轴对称的规律写出题型三空间中两点之间的距离例3已知ABC的三个顶点A1,5,2,B2,3,4,C3,1,51求ABC中最短边的边长;2求AC边上中线的长度解1由空间两点间距离公式得|AB|3,|BC|,|AC|,ABC中最短边是BC,其长度为.2由中点坐标公式得,AC的中点坐标为.AC边上中线的长度为.规律方法解决空间中的距离问题就是把点的坐标代入距离公式计算,其中确定点的坐标或合理设出点的坐标是解题的关键跟踪演练3已知两点P1,0,1与Q4,3,11求P,Q之间的距离;2求z轴上的一点M,使|MP||MQ|.解1|PQ|.2设M0,0,z,由|MP||MQ|,得,z6.M0,0,6.课堂达标1点2,0,3在空间直角坐标系中的Ay轴上BxOy 平面上CxOz平面上D第一象限内答案C解析点2,0,3的纵坐标为0,所以该点在xOz平面上2在空间直角坐标系中,点P3,4,5与Q3,4,5两点的位置关系是A关于x轴对称B关于xOy平面对称C关于坐标原点对称D以上都不对答案A解析点P3,4,5与Q3,4,5两点的横坐标相同,而纵.竖坐标互为相反数,所以两点关于x轴对称3已知点Ax,1,2和点B2,3,4,且|AB|2,则实数x的值是A3或4B6或2C3或4D6或2答案D解析由题意得2,解得x2或x6.4已知A3,2,4,B5,2,2,则线段AB中点的坐标为________答案4,0,1解析设线段AB的中点坐标为x0,y0,z0,则x04,y00,z01,线段AB的中点坐标为4,0,15在空间直角坐标系中,点A1,0,1与点B2,1,1间的距离为________答案解析|AB|.课堂小结1结合长方体的长.宽.高理解点的坐标x,y,z,培养立体思维,增强空间想象力2学会用类比联想的方法理解空间直角坐标系的建系原则,切实体会空间中点的坐标及两点间的距离公式同平面内点的坐标及两点间的距离公式的区别和联系3在导出空间两点间的距离公式过程中体会转化化归思想的应用,突出了化空间为平面的解题思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲空间直角坐标系时间:年月日刘老师学生签名:一、兴趣导入二、学前测试要点考向1:利用空间向量证明空间位置关系考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。

2.题型灵活多样,难度为中档题,且常考常新。

考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。

2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。

例1:如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF FB⊥,2AB EF=,90BFC∠=︒,BF FC=,H为BC的中点。

(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B DE C--的大小。

【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。

【思路点拨】可以采用综合法证明,亦可采用向量法证明。

【规范解答】E FBCDHGXYZ,,//,,,,,,,.ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系,1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则(1)(0,0,1),(0,0,1),////HF HF GE HF HF ∴==∴⊂⊄∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB(2)(2,2,0),(0,0,1),0,.AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD.(3)1111111(1,,),(1,1,1),(2,2,0).010,10,220011,0y z BE BD BE y z y z y BD ==--=--⎧=--+=⎧⎪=-=⎨⎨--==⎩⎪⎩∴=-u u ru u u r u u u rQ u u u r u u r g u u u r u u rg u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,)2222222(1,,),(0,2,0),(1,1,1).00,01,10010,-1y z CD CE CD y y z y z CE ==-=-⎧==⎧⎪==-⎨⎨-+==⎩⎪⎩∴=u u ru u u r u u u rQ u u u r u u r g u u u r u u rg u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,)121212121cos ,,2||||,60,n n n n n n n n ∴<>===∴<>=o o u r u u ru r u u r g u r u u r u r u u r即二面角B-DE-C 为60。

【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行;2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直;3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。

4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问题进行求解证明。

应用向量法解题,思路简单,易于操作,推荐使用要点考向2:利用空间向量求线线角、线面角考情聚焦:1.线线角、线面角是高考命题的重点内容,几乎每年都考。

2.在各类题型中均可出现,特别以解答题为主,属于低、中档题。

考向链接:1.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为: (1)异面直线所成角设分别为异面直线的方向向量,则(2)线面角设是直线l 的方向向量,n r是平面的法向量,则2.运用空间向量坐标运算求空间角的一般步骤为:(1)建立恰当的空间直角坐标。

(2)求出相关点的坐标。

(3)写出向量坐标。

(4)结合公式进行论证、计算。

(5)转化为几何结论。

例2:已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=12AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.(Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小.【命题立意】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。

【思路点拨】建系,写出有关点坐标、向量的坐标,(I ) 计算CM SN u u u u r u u u r、的数量积,写出答案; (II )求平面CMN 的法向量,求线面角的余弦,求线面角,写出答案。

【规范解答】设PA =1,以A 为原点,射线AB 、AC 、AP 分别为x,y,z 轴正方向建立空间直角坐标系,如图。

则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, 12),N(12,0,0),S(1,12,0) (I )111(1,1,),(,,0),2221100221(II)(,1,0),2(,,)CMN 022,(2,1,2)1021-1-22|cos |=2232SN CMN CM SN CM SN CM SN NC a x y z z x y x a x y a SN =-=--=-++=⊥=-=⎧-+=⎪⎪==-⎨⎪-+=⎪⎩<>=⨯u u u u r u u u r u u u u r u u u r g u u u r rr r u u u r因为所以设为平面的一个法向量,则令得因为所与平面所成的o45角为【方法技巧】(1)空间中证明线线,线面垂直,经常用向量法。

(2)求线面角往往转化成直线的方向向量与平面的法向量的夹角问题来解决。

(3)线面角的范围是0°~90°,因此直线的方向向量与平面法向量的夹角的余弦是非负的,要取绝对值。

要点考向3:利用空间向量求二面角考情聚焦:1.二面角是高考命题的重点内容,是年年必考的知识点。

2.常以解答题的形式出现,属中档题或高档题。

考向链接:求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角。

其计算公式为:设分别为平面的法向量,则θ与互补或相等,例3: 如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,2CF AB CE ==,1::1:2:4AB AD AA = (1) 求异面直线EF 与1A D 所成角的余弦值; (2) 证明AF ⊥平面1A ED(3) 求二面角1A ED F --的正弦值。

【命题立意】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。

【思路点拨】建立空间直角坐标系或常规方法处理问题。

【规范解答】方法一:以A 为坐标原点,AB 所在直线为X 轴,AD 所在直线为Y 轴建立空间直角坐标系(如图所示),设1AB =,依题意得(0,2,0)D ,(1,2,1)F ,1(0,0,4)A ,31,,02E ⎛⎫⎪⎝⎭(1) 易得10,,12EF ⎛⎫= ⎪⎝⎭u u u r ,1(0,2,4)A D =-u u u u r ,于是1113cos ,5EF A D EF A D EF A D==-u u u r u u u u ru u u r u u u u r g u u u r u u u u r , 所以异面直线EF 与1A D 所成角的余弦值为35。

(2) 证明:已知(1,2,1)AF =u u u r ,131,,42EA ⎛⎫=-- ⎪⎝⎭u u u r ,11,,02ED ⎛⎫=- ⎪⎝⎭u u u r于是AF u u u r ·1EA u u u r =0,AF u u u r ·ED u u u r=0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ⋂=所以AF ⊥平面1A ED(3)解:设平面EFD 的法向量(,,)u x y z =r ,则0u EF u ED ⎧=⎪⎨=⎪⎩r u u u r g r u u u rg ,即102102y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩ 不妨令X=1,可得(1,21u →=-)。

由(2)可知,AF →为平面1A ED 的一个法向量。

于是2cos,==3||AF AF |AF|u u u →→→→→→•,从而5sin ,=AF u →→所以二面角1A -ED-F 的正弦值为53要点考向4:利用空间向量解决探索性问题考情聚焦:立体几何中已知结论寻求结论成立的条件(或是否存在问题),能较好地考查学生的逻辑推理能力和空间想象能力,是今后考查的重点,也能很好地体现新课标高考的特点。

例4: 如图,圆柱OO 1内有一个三棱柱ABC-A 1B 1C 1,三棱柱的底面为圆柱底面的内接三角形,且AB 是圆O 的直径。

(I )证明:平面A 1ACC 1⊥平面B 1BCC 1;(II )设AB =AA 1,在圆柱OO 1内随机选取一点,记该点取自三棱柱ABC-A 1B 1C 1内的概率为p 。

(i )当点C 在圆周上运动时,求p 的最大值;(ii )记平面A 1ACC 1与平面B 1OC 所成的角为θ(0090θ<≤)。

当p 取最大值时,求cos θ的值。

【命题立意】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、必然与或然思想。

【思路点拨】第一步先由线线垂直得到线面垂直,再由线面垂直得到面面垂直;第二步首先求出长方体的体积,并求解三棱柱的体积的最大值,利用体积比计算出几何概率。

相关文档
最新文档