有限元分析基础

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析基础

第一章有限元法概述

在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。

近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。

§1.1 有限元方法的发展历史、现状和将来

一,历史

有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。

60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在:

1)由弹性力学的平面问题扩展到空间、板壳问题。

2)由静力平衡问题——稳定性和动力学分析问题。

3)由弹性问题——弹塑性、粘弹性等问题。

二,现状

现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如:

SAP系列的代表SAP2000(Structure Analysis Program)

美国安世软件公司的ANSYS大型综合有限元分析软件

美国航天航空局的NASTRAN系列软件

除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。

三,将来

有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。

§1.2 有限元法的特点

机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。

其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。

数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。

“有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

方程求解,得到最终的力学问题近似解。其优点就是:计算简单收敛性好。缺点是:计算程序无法标准化,在不能获得整个问题的微分方程时,该方法不能运用。由于其是将微分方程转为差分方程,所以它是一种数学近似。

“有限元法”的基本思想就是“先分后合”或者“化整为零,又积零为整”。与有限差分不同,它是在力学模型上进行近似处理,也就是(分块近似)。

具体做法:把连续体模型转为由有限个单元组成的离散体模型,离散体模型之间通过一些节点联系。对于每一个离散体个体选择简单的函数近似表示其中的物理变化规律(如位移等),运用力学方程推导单元的平衡方程组,然后集合所有的方程组形成表征整体结构的方程组,引入边界条件,求取最后问题的解。

优点:概念清晰、易于学习理解,适用性强,便于电算化。

缺点:计算精度受单元划分的影响较大。

§1.3 有限元分析的一般过程

为了能够了解有限元分析的全貌,我们就一个简单的例子,来分析一下有限元分析的三个过程:结构离散化、单元分析、整体分析。

一,结构离散化

在该阶段中,要完成把连续结构的力学模型转变为离散的力学模型。处理的好坏,直接影响到最后分析结果的正确与否、计算的精度和计算的效率。

根据模型的传力特性和分析的目标,正确选择单元类型。通常单元分为:一维单元、二维单元和三维单元。

所谓一维单元就是指所求物理量仅随一个坐标变量而变化的单元。如桁架、平面刚架和空间刚架单元。

一维单元:杆单元、梁单元。

二维单元:三角形单元、四边形单元(平面类问题)

三维单元:四面体单元、六面体单元等(空间问题)

计算精度和计算效率:取决于单元划分的形状、大小和分布状况。通常单元愈多、愈密集,计算精度愈高,但计算效率愈低。有限元分析工作就是要在精度和效率两者之间做到有机的统一。

二,单元分析

进行单元分析的目的是为了到处表征单元力学特性的“单元刚度矩阵”。一般说来该过程有三种方法:

1,直接法。

2,虚功原理法(变分法)。

3,加权余数法。

直接法概念浅显,易于理解物理含义。

变分法需要泛函的数学知识,其推导过程具有严谨的数学概念。

加权余数法适用于泛函不存在的应用范围。

本教材将运用虚功原理方程结合弹性力学和材料力学中的知识来推求几种常见单元的单刚计算公式。

现在先看一个简单的阶梯轴的轴向拉伸问题

例:如图所示的变截面直杆,受拉力P,运用有限元方法分析其变形。

由于杆的两个端点节点1、2是单元上的点,所以它们应该满足上述方程。 节点1,x 1=0,∴u 1=a 0+a 1×0=a 0

节点2,x 2=l ,∴u 2=a 0+a 1×l a 1=(u 2-u 1)/l 将求出的结果带入方程并整理,就得:

[][]{}

e

N u u N N u l

x

u l x x l u l u u u δ=⎭⎬⎫

⎩⎨⎧=+⎪⎭⎫ ⎝⎛

-

=⎪⎭⎫ ⎝⎛-+=2121211211

式中:N 1、N 2是形函数 [N]形函数矩阵

{δ}e 节点位移向量 由位移与应变的关系知道:

dx

du

dx u du u =

-+=

ε 将上面推出的位移表达式代入,可得:

[]{}{}{}[]{}

e

e

e e

B l l l l x l

x dx d N dx d dx du dx u du u δδδδε=⎥⎦

⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-===-+=

11 上式中的[B]称为应变矩阵或几何矩阵。

运用材料力学中的虎克定律,可以将应变和应力联系起来。单向应力状态的虎克定律为

[]{}[]{}e

e S u u l E l

E

B E E δδεσ=⎭

⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-

===21 ×× 其中[S]称为应力矩阵。

利用虚功方程可以建立力与位移之间的关系,也就是单刚方程。在后面我们将会推导出它的一般形式如下:

{}[]{}e e e K F δ=

式中:{F}e 为单元节点力向量,对我们这个例子应为[U 1 U 2]T 。

相关文档
最新文档