微观经济学计算题
微观经济学计算题及答案
计算题:A (1—5)1.假定某消费者关于某种商品的消费数量Q 与收入M 之间的函数关系为M=1002Q求:当收入M=4900时的需求收入点弹性 解:Q=110m E =0.52.假定某厂商的短期生产的边际成本函数SMC=32Q -8Q +100,且已知当产量Q =10时的总成本STC=2400,求相应的STC函数、SAC函数、AVC函数。
解:STC=3Q -42Q +100Q +2800 SAC=2Q -4Q +28001Q -+100 AVC=2Q -4Q +28001Q -3、假设某种商品的需求函数和供给函数为Q D =14-3P , Q S =2+6P 求该商品供求均衡时的需求价格弹性和供给弹性。
解:根据市场均衡条件Qd=Qs,解得P=4/3 Q=10 该商品在市场均衡时的需求价格弹性为0.4 该商品在市场均衡时的供给价格弹性为0.8。
4、假定某商品市场上有1000位相同的消费者,单个消费者的需求函数为:d Q =10-2P ;同时有20个相同的厂商向该市场提供产品,每个厂商的供给函数为:S Q =500P 。
(1) 求该商品的市场需求函数和市场供给函数;(2) 如果消费者对该商品的偏好减弱,使得个人需求曲线向左移动了4个单位,求变化后的市场均衡价格和均衡数量。
解:(1)Qd=1000×(10-2P)=10000-2000P Qs=20×500P=10000P (2)Qd=1000×(6-2P)=6000-2000P 6000-2000P = 10000P P=0.5 Q=50005、已知某人的效用函数为XY U =,他打算购买X 和Y 两种商品,当其每月收入为120元,2=X P 元、3=Y P 元时,(1)为获得最大效用,他应该如何选择X 和Y 的组合? (2)总效用是多少?解:(1)因为MUx=y ,MU y=x ,由MUx/ MU y= y/ x=Px/Py ,PxX+PyY=120, 则有y/ x =2/3,2 x+3y=120。
微观经济学--计算题
微观经济学典型计算题第一章市场均衡1、已知某商品的需求函数和供给函数分别为:Qd=14-3P,Qs=2+6P,该商品的均衡价格是( A )。
A.4/3B.4/5C.2/5D.5/22、已知某种商品的市场需求函数为D=20-P,市场供给函数为S=4P-5,在其他条件不变的情况下对该商品实现减税,则减税后的市场均衡价格(C)。
A.大于5B.等于5C.小于5D.小于或等于53、已知某商品的需求函数和供给函数分别为:QD=14-3P,QS=2+6P,该商品的均衡价格是(A)A.4/3B.4/5C.2/5D.5/24、假设某商品的需求曲线为Q=3-2P,市场上该商品的均衡价格为4,那么,当需求曲线变为Q=5-2P后,均衡价格将(A)A.大于4B.小于4C.等于4D.小于或等于45、已知当某种商品的均衡价格是10美元的时候,均衡交易量是5000单位。
现假定买者收入的增加使这种商品的需求增加了800单位,那么在新的均衡价格水平上,买者的购买量是(B)。
A.5000单位B.多于5000单位但小于5800单位C.5800单位D.多于5800单位弹性1、已知需求方程为:Q=50-2P,在P=10处的点价格弹性是(B)A.6B.0.67C.0.33D.02、假如Q=200+0.1M,M=2000元,其点收入弹性为(D)A.2B.–2C.0.1D.0.5第二章效应理论1、假定X和Y的价格PX和PY已定,当MRSXY>PX/PY时消费者为达到最大满足,他将A.增加购买X,减少购买YB.减少购买X,增加购买YC.同时增加购买X,YD.同时减少购买X,Y2、假定X和Y的价格PX和PY已定,当MRSXY>PX/PY时消费者为达到最大满足,他将增加购买X,减少购买Y对(T)3、已知某人的效用函数为TU=4X+Y,如果消费者消费16单位X和14单位Y,则该消费者的总效用是62错(F)4、在横轴表示商品X的数量,纵轴表示商品Y的数量的坐标平面上,如果一条无差异曲线上某一点的斜率为-1/4,这意味着消费者愿意放弃(D)个单位X而获得1单位Y。
微观经济学计算题
第一章1.已知某一时期内商品的需求函数为Qd=50-5P,供给函数为Qs=-10+5P。
(1)求均衡价格Pe和均衡数量Qe,并作出几何图形。
(2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。
求出相应的均衡价格Pe和均衡量Qe,并作出几何图形。
(3)假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5P。
求出相应的均衡价格Pe和均衡量Qe,并作出几何图形。
解:(1)根据均衡价格模型 (2) (3)Qd=50-5P Qs=-10+5P Qd=50-5PQs=-10+5P Qd=60-5P Qs=-5+5PQd=Qs Qd=Qs Qd=Qs解之得:Pe=6,Qe=20 解之得:Pe=7,Qe=25 解之得:Pe=5.5,Qe=22.52.假定下表是供给函数Qs=-3+2P在一定价格范围内的供给表:(1(2)根据给出的供给函数,求P=4元时的供给的价格点弹性。
解:(1)Es弧=(ΔQ/ΔP)·(P1+P2/Q1+Q2)=(7-3)/(5-3)·(3+5/3+7)=(4/2)·(8/10)=8/5(2)Es点=(dQ/dP)·(P/Q)=2·(4/5)=8/53.设需求函数为Q=M/Pn,式中M为收入,P为价格,n为常数,求需求的收入弹性和价格弹性。
解:由Q=M/Pn,得EM=dQ/dM·M/Q=1/Pn·M/(M/Pn)=1Ep=dQ/dp·P/Q=M·(-n)·1/Pn+1·P/M=-n4.在英国,对新汽车需求的价格弹性Ed=-1.2,需求的收入弹性Ex=3.0,计算:(a)其他条件不变,价格提高3%对需求的影响;(b)其他条件不变,收入增加2%,对需求的影响;(c)假设价格提高8%,收入增加10%,1980年新汽车销售量为800万辆,利用有关弹性系数的数据估计1981年新汽车的销售量。
微观经济学计算题及答案
四、计算题:(每小题8分,共16分)【得分: 】1. 假定某消费者关于某种商品的消费数量Q 与收入M 之间的函数关系为M=1002Q 求:当收入M=4900时的需求收入点弹性 解:Q=110m E =0.52.假定某厂商的短期生产的边际成本函数SMC=32Q -8Q +100,且已知当产量Q =10时的总成本STC=2400,求相应的STC函数、SAC函数、AVC函数。
解:STC=3Q -42Q +100Q +2800 SAC=2Q -4Q +28001Q -+100 AVC=2Q -4Q +28001Q-1. 假设某种商品的需求函数和供给函数为Q D =14-3P Q S =2+6P求该商品供求均衡时的需求价格弹性和供给弹性。
解:根据市场均衡条件Qd=Qs,解得P=4/3 Q=10 该商品在市场均衡时的需求价格弹性为 该商品在市场均衡时的供给价格弹性为。
2.假定某商品市场上有1000位相同的消费者,单个消费者的需求函数为:d Q =10-2P ;同时有20个相同的厂商向该市场提供产品,每个厂商的供给函数为:S Q =500P 。
(1) 求该商品的市场需求函数和市场供给函数;(2) 如果消费者对该商品的偏好减弱,使得个人需求曲线向左移动了4个单位,求变化后的市场均衡价格和均衡数量。
解:(1)Qd=1000×(10-2P)=10000-2000P Qs=20×500P=10000P (2)Qd=1000×(6-2P)=6000-2000P 6000-2000P = 10000P P= Q=50003.已知某人的效用函数为XY U =,他打算购买X 和Y 两种商品,当其每月收入为120元,2=X P 元、3=Y P 元时,(1)为获得最大效用,他应该如何选择X 和Y 的组合? (2)总效用是多少?解:(1)因为MUx=y ,MU y=x ,由MUx/ MU y= y/ x=Px/Py ,PxX+PyY=120, 则有y/ x =2/3,2 x+3y=120。
微观经济学计算题
1 某君对消费品x的需求函数为P=100-Q1/2,分别计算价格P=60和P=40时的价格弹性函数。
2假定某完全竞争的行业中有500家完全相同的厂商,每个厂商的成本函数为STC = + q + 10(1)求市场的供给函数。
(2)假定市场需求函数为Q D = 4000- 400P,求市场均衡价格。
3某农场主决定租进土地250英亩,固定设备的年成本为12000美元(包括利息、折旧等),燃料种子肥料等的年成本为3000美元,生产函数为Q=-L3+20L2+72L,Q为谷物年产量(吨),L为雇佣的劳动人数,劳动市场和产品市场均系完全竞争,谷物价格每吨75美元,按现行工资能实现最大利润的雇佣量为12人,每年的最大纯利润为3200美元,他经营农场的机会成本为5000美元,求解:(a)每个农业工人的年工资为若干(b)每英亩土地支付地租若干4已知:生产函数Q=20L+50L-6L2-2K2P L=15元,PK=30元,TC=660元其中:Q为产量,L与K分别为不同的生产要素投入,PL与PK分别为L和K的投入价格,TC为生产总成本。
试求最优的生产要素组合。
5一个厂商在劳动市场上处于完全竞争,而在产出市场上处于垄断。
已知它所面临的市场需求曲线P = 200 – Q,当厂商产量为60时获得最大利润。
若市场工资率为1200时,最后一位工人的边际产量是多少7假设某产品生产的边际成本函数是C=3Q2-8Q+100,若生产5单位产品时总成本是595,求总成本函数,平均成本函数,可变成本函数及平均可变成本函数.8假设某产品生产的边际成本函数是C=100+,求产量从1000到2000时成本的变化量.9假设完全竞争市场的需求函数和供给函数分别为QD=50000-2000P和Qs=40000+30000P.求:(1)市场均衡价格和均衡产量.(2)厂商的需求函数是怎样的.10假设某完全竞争厂商生产的某产品的边际成本函数为MC=0.4Q-12(元/件),总收益函数为TR=20Q,且已知生产10件产品时总成本为100元,试求生产多少件时利润极大,其利润为多少11 假定某垄断者面临的需求函数为P=100-4Q,总成本函数为TC=50+20Q,求:1 垄断者利润最大化时的利润、产量、价格。
微观经济学典型计算题
微观经济学典型计算题1、某消费者每年用于商品的价格分别为P1=20元和P2=30元,收入I=1800,该消费者的效用函数为U=3某1某22。
求:(1)消费者每年购买这两种商品的数量各应是多少?(2)每年从中获得的总效用是多少?解:(1)由消费者均衡条件MU1/P1=MU2/P2P1某1+P2某2=I3某22/20=6某1某2/3020某1+30某2=1800某1=30某2=40(2)每年获得的总效用U=3某1某22=1440002、已知某厂商只有一种可变生产要素L,产出一种产品Q,固定成本为既定,短期生产函数为Q=21L+9L2-L3,求:(1)总产量TP的最大值。
(2)平均产量AP的最大值(3)边际产量MP的最大值。
解:(1)MP=dQ/dP=21+18L-3L2MP=0,21+18L-3L2=0,L=7(2)AP=TP/L=21+9L-L2=MPL=4或者5,AP的最大值41(3)MP=dQ/dP=21+18L-3L2L=3,MP的最大值为483、设生产函数Q=LK-0.2L2-K2,K=10。
求:(1)L的平均产量函数和边际产量函数(2)当L分别为何值时,APL=0,MPL=0解:当K=10时,生产函数为Q=10L-0.2L2-100(1)平均产量APL=(10L-0.2L2-100)/L边际产量MPL=10-0.4L(2)APL=(10L-0.2L2-100)/L=0,L=36MPL=10-0.4L,L=251.1.经济人从事经济活动的人所采取的经济行为都是力图以自己的最小经济代价去获得自己的最大经济利益。
1.2.需求消费者在一定时期内在各种可能的价格水平愿意而且能够购买的该商品的数量。
1.3.需求函数表示一种商品的需求数量和影响该需求数量的各种因素之间的相互关系的函数。
1.4.供给生产者在一定时期内在各种价格水平下愿意并且能够提供出售的该种商品的数量。
1.5.供给函数供给函数表示一种商品的供给量和该商品的价格之间存在着一一对应的关系。
微观经济学计算题及答案完整版
微观经济学计算题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】四、计算题:(每小题8分,共16分)【得分: 】1. 假定某消费者关于某种商品的消费数量Q 与收入M 之间的函数关系为M=1002Q 求:当收入M=4900时的需求收入点弹性 解:Q=110 m E =0.52.假定某厂商的短期生产的边际成本函数SMC=32Q -8Q +100,且已知当产量Q =10时的总成本STC=2400,求相应的STC函数、SAC函数、AVC函数。
解:STC=3Q -42Q +100Q +2800 SAC=2Q -4Q +28001Q -+100 AVC=2Q -4Q +28001Q - 1.假设某种商品的需求函数和供给函数为 Q D =14-3P Q S =2+6P求该商品供求均衡时的需求价格弹性和供给弹性。
解:根据市场均衡条件Qd=Qs,解得P=4/3 Q=10 该商品在市场均衡时的需求价格弹性为 该商品在市场均衡时的供给价格弹性为。
2.假定某商品市场上有1000位相同的消费者,单个消费者的需求函数为:d Q =10-2P ;同时有20个相同的厂商向该市场提供产品,每个厂商的供给函数为:S Q =500P 。
(1) 求该商品的市场需求函数和市场供给函数;(2) 如果消费者对该商品的偏好减弱,使得个人需求曲线向左移动了4个单位,求变化后的市场均衡价格和均衡数量。
解:(1)Qd=1000×(10-2P)=10000-2000P Qs=20×500P=10000P(2)Qd=1000×(6-2P)=6000-2000P 6000-2000P = 10000P P= Q=50003.已知某人的效用函数为XY U =,他打算购买X 和Y 两种商品,当其每月收入为120元,2=X P 元、3=Y P 元时,(1)为获得最大效用,他应该如何选择X 和Y 的组合? (2)总效用是多少?解:(1)因为MUx=y ,MU y=x ,由MUx/ MU y= y/ x=Px/Py ,PxX+PyY=120, 则有y/ x =2/3,2 x+3y=120。
微观经济学 计算
13、某企业年产10000件商品。固定资本额为10万元,使用年限为10年,投入流动资本额为5万元,周转时间为3个月。雇佣工人200人,月平均工资30元,每件商品的社会价值为30元。请计算:(1)、m’是多少? (2)、年预付资本的周转速度是多少次? (3)、M’是多少?答案:(1)m=30元×10000件(商品总社会价值)—10000元(固定资本年周转额)—5万元×12/3(流动资本年 周转额)=300000元—10000元-200000元=90000万元。 m’=90000元m/30元×200元×12月=125%。(2)年预付资本周转速度=[10000元(固定资本周转额)+200000元(流动资本周转额)÷[100000元(固定资本)+50000元(流动资本)]=1.4次。(3)年剩余价值率是年剩余价值量和预付可变资本的比率。计算方法1:由(1)已知M=90000元。预付可变资本额为30元×200人×3个月=18000元。M’=90000元/18000元=500%。计算方法2:M’=m’×n=125%×12/3=500%。[分析]综合题就是跨章考试,在政治中一般不会考,这里只不过为了同学整体记忆方便而选的。[难度] ** [概念]略计算题(后补充)
微观经济学计算题
1.若某人的每月收入为120元,其效用函数为U=XY,X,Y价格分别为2元和3元,问:(1)为获得最大化得效用,他分别购买几单位的两种商品?(2)货币的边际效用和总效用分别是多少?(3)若X的价格提高40%,Y的价格不变,为保持原有效用水平,收入必须增加多少?2.假定某消费者的效用函数为U=X1的0.5次方*X2的0.5次方,量水平的价格分别为P1,P2,消费者的收入为M,求消费者对于两种商品的需求函数。
3.已知企业的生产函数为Y=5L-L的平方,其中L为雇佣工人的数量,求企业的合理劳动投入区域。
4.某工厂的生产函数为Q=L的八分之三次方*K的八分之五次方,家丁Pl=4,Pk=5,求该厂商生产200单位产品时应使用多少单位的L和K才能使成本最低?5.已知某厂商的短期成本函数为STC(Q)=0.04Q的三次方-0.8Q方+10Q+5.求:(1)总可变成本TVC,平均成本AC,平均可变成本AVC,平均不变成本AFC 和边际成本MC函数。
(2)最小的平均可变成本值。
6.已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q三次方-2Q 方+15Q+10.求:(1)当市场上产品价格为55时,厂商的短期均衡产量和利润。
(2)当市场价格下降为多少时,厂商必须停产?(3)厂商的短期供给函数。
7.已知某完全竞争的成本不变行业中单个厂商的长期总成本函数为LTC=Q三次方-12Q方+40Q,求:(1)当市场价格为100元时,厂商实现MR=LMC时的产量,平均成本和利润。
(2)该行业长期均衡时的价格和单个厂商的产量。
(3)当时市场需求函数为Q=660-15P时,行业长期均衡时的厂商数量?8.已知垄断厂商面临的需求曲线问哦Q=50-3P。
(1)求厂商的边际收益函数。
(2)若厂商的边际成本为4,求厂商的最大化产量和价格。
9.若厂商生产函数Q=-0.01L三次方+L平方+36L,其中Q为每日产量,L为每日投入的劳动小时数,若劳动市场与产品市场都是完全竞争的,单位价格为10元,小时工资为4.8元,求利润最大化的厂商每天雇佣多少小时的劳动?解答:1.(1)MUx=Y (U=XY对X求偏导数得出)MUy=X (U=XY对Y求偏导数得出)效用最大化时满足2X+3Y=120MUx / Px=MUy / Py 得Y / 2=X / 3解方程组得X=30 Y=20(2)总效用U=XY=30*20=600货币的边际效用=MUx / Px=MUy / Py =10 (3)Px'=2*(1+40%)=2.8设收入变为m时,能保持原有效用水平。
微观经济学计算题加答案解析
1、假定需求函数为Q=MP-N,其中M表示收入,P表示商品价格,N(N〉0)为常数。
求:需求的价格点弹性和需求的收入点弹性。
解因为Q=MP-N所以=-MNP-N-1,=P-N所以E m=2、假定某消费者的需求的价格弹性E d=1.3,需求的收入弹性E m=2。
2 。
求:(1)在其他条件不变的情况下,商品价格下降2%对需求数量的影响。
(2)在其他条件不变的情况下,消费者收入提高5%对需求数量的影响.解(1)由题知E d=1.3所以当价格下降2%时,商需求量会上升2。
6%.(2)由于E m=2.2所以当消费者收入提高5%时,消费者对该商品的需求数量会上升11%。
3、假定某市场上A、B两厂商是生产同种有差异的产品的竞争者;该市场对A厂商的需求曲线为P A=200-Q A,对B厂商的需求曲线为P B=300—0。
5×Q B ;两厂商目前的销售情况分别为Q A=50,Q B=100。
求:(1)A、B两厂商的需求的价格弹性分别为多少?i.如果B厂商降价后,使得B厂商的需求量增加为Q B=160,同时使竞争对手A厂商的需求量减少为Q A=40.那么,A厂商的需求的交叉价格弹性E AB是多少?ii.如果B厂商追求销售收入最大化,那么,你认为B厂商的降价是一个正确的选择吗?解(1)当Q A=50时,P A=200-50=150当Q B=100时,P B=300-0。
5×100=250所以(2)当Q A1=40时,P A1=200—40=160 且当P B1=300-0。
5×160=220 且所以(3)∵R=Q B·P B=100·250=25000R1=Q B1·P B1=160·220=35200R〈R1 ,即销售收入增加∴B厂商降价是一个正确的选择效用论1、据基数效用论的消费均衡条件若,消费者应如何调整两种商品的购买量?为什么?若,i=1、2有应如何调整?为什么?解:,可分为或当时,说明同样的一元钱购买商品1所得到的边际效用大于购买商品2所得到的边际效用,理性的消费者就应该增加对商品1的购买,而减少对商品2的购买。
微观经济学计算题集合
• (3)假定需求函数不变,由于生产技术水平 提高,使供给函数变为Q s=-5 + 5 P。求 出相应的均衡价格和均衡数量。
【解答】
• (1)需求函数Q d=50-5 P,供给函数Qs=-1 O + 5 P,Qd=Qs。有: 50-5 P=-1 0 + 5 P 得均 衡价格P=6。
• 4.完全竞争市场的单个厂商的成本函数为 C=Q3-20Q2+200Q,市场价格为P=600。
• ①求该厂商利润最大化的产量、平均成本 和利润是多少?
• ②该行业是否处于长期均衡?为什么? • ③该行业处于长期均衡时每个厂商的产量、
平均成本和利润是多少?
• ④判断①中厂商是处于规模经济阶段还是 规模不经济阶段?
• 问该商品价格上涨多少元,才能使其消费 量减少10%?
答: 已知ed=0.15,P=1.2 ,△Q/Q=-10%
根据弹性系数 一般公式:
0.15
10% P
1.2
△P=0.8(元) 该商品的价格上涨0.8元才能使其消费量减少10%。
第三章
• 见单元测验二计算题
第四章
• 1.已知生产函数Q=KL- 0.5L2-0.32K2,若K =10,求:
④在①中, LAC=200>100, 厂商处于规模不经济
阶段。因为其产量处于成本最低点右边。
• (1) (6分)
• (2)分别计算当总产量、平均产量和边际产 量达到极大值时,劳动的投入量。(9分)
• (1)劳动的总产量 TPL函数=10L-0.5L2-32 • 劳动的平均产量APL函数=TPL/L=10-0.5L-
微观经济学典型计算题
X=5元,P
Y=4元,假设该消费者计划购买6单位X和5单位Y,商品X和Y的边际效用分别为60和30,如要实现效用最大化,他应该(A)A.增购X而减少Y的购买量B.增购Y而减少X的购买量
C.同时增加X和Y的购买量D.同时减少X和Y的购买量
11、当X商品的价格下降时,替代效应=+5,收入效应=+3。则该商品是(A)。
第六章
1、某工人在工资为每小时20元时每周挣800元,当工资涨到每小时40元每周挣1200元,由此可知
A.收入效应大于替代效应B.收入效应小于替代效应
应D.无法确定C.收入效应等于替代效
A.3B.4C.5D.15
5、一个垄断企业以12元的价格销售8单位产品,以13元的价格销售7单位产品,则与8单位产品相对应的边际收益是()
A.5元B.12元C.1元D.6元
6、设垄断厂商的产品的需求函数为P=12-0.4Q,总成本函数TC=0.6 Q2+4Q+5,总利润最大时P为()
A.8B.10.4C.5D.4
A.-2 B.-1 C.+1 D.+3
15、当X商品的价格下降时,替代效应=+3,收入效应=-5。则该商品是(C)。
A.正常商品B.一般低档商品C.吉芬商品D.奢侈商品
16.已知某吉芬商品的价格下降时,收入效应=-4,则替代效应=(C)。
A.-2 B.-1 C.+2 D.+5
17、已知x商品的价格为5元,y商品的价格为2元,如果消费者从这两种商品的消费中得到最大效用时,商品x的边际效用为75,那么此时y商品的边际效用为( D )。
A.49B.
7C.14D.2
20、已知商品X的价格为2元,商品Y的价格为1元,如果消费者在获得最大满足时,商品Y的边际效用是30元,那么,商品X的边际效用是(D)
微观经济学计算题和答案
四、计算题:(每小题8分.共16分)【得分: 】1.假定某消费者关于某种商品的消费数量Q 与收入M 之间的函数关系为M=1002Q求:当收入M=4900时的需求收入点弹性 解: Q=110Mm E =0.52.假定某厂商的短期生产的边际成本函数SMC=32Q -8Q +100.且已知当产量Q =10时的总成本STC=2400.求相应的STC函数、SAC函数、AVC函数。
解:STC=3Q -42Q +100Q +2800SAC=2Q -4Q +28001Q -+100 AVC=2Q -4Q +28001Q -1. 假设某种商品的需求函数和供给函数为Q D =14-3P Q S =2+6P求该商品供求均衡时的需求价格弹性和供给弹性。
解:根据市场均衡条件Qd=Qs,解得P=4/3 Q=10 该商品在市场均衡时的需求价格弹性为0.4该商品在市场均衡时的供给价格弹性为0.8。
2.假定某商品市场上有1000位相同的消费者.单个消费者的需求函数为:d Q =10-2P ;同时有20个相同的厂商向该市场提供产品.每个厂商的供给函数为:S Q =500P 。
(1) 求该商品的市场需求函数和市场供给函数;(2) 如果消费者对该商品的偏好减弱.使得个人需求曲线向左移动了4个单位.求变化后的市场均衡价格和均衡数量。
解:(1)Qd=1000×(10-2P)=10000-2000P Qs=20×500P=10000P(2)Qd=1000×(6-2P)=6000-2000P 6000-2000P = 10000P P=0.5 Q=50003.已知某人的效用函数为XY U =.他打算购买X 和Y 两种商品.当其每月收入为120元.2=X P 元、3=Y P 元时.(1)为获得最大效用.他应该如何选择X 和Y 的组合? (2)总效用是多少?解:(1)因为MUx=y.MU y=x.由MUx/ MU y= y/ x=Px/Py.PxX+PyY=120. 则有y/ x =2/3.2 x+3y=120。
微观经济学计算题
1 某君对消费品x的需求函数为P=100-Q1/2,分别计算价格P=60和P=40时的价格弹性函数。
2假定某完全竞争的行业中有500家完全相同的厂商,每个厂商的成本函数为STC = 0.5q2 + q + 10(1)求市场的供给函数。
(2)假定市场需求函数为Q D = 4000- 400P,求市场均衡价格。
3某农场主决定租进土地250英亩,固定设备的年成本为12000美元(包括利息、折旧等),燃料种子肥料等的年成本为3000美元,生产函数为Q=-L3+20L2+72L,Q为谷物年产量(吨),L为雇佣的劳动人数,劳动市场和产品市场均系完全竞争,谷物价格每吨75美元,按现行工资能实现最大利润的雇佣量为12人,每年的最大纯利润为3200美元,他经营农场的机会成本为5000美元,求解:(a)每个农业工人的年工资为若干?(b)每英亩土地支付地租若干?4已知:生产函数Q=20L+50L-6L2-2K2P L=15元,PK=30元,TC=660元其中:Q为产量,L与K分别为不同的生产要素投入,PL与PK分别为L和K的投入价格,TC为生产总成本。
试求最优的生产要素组合。
5一个厂商在劳动市场上处于完全竞争,而在产出市场上处于垄断。
已知它所面临的市场需求曲线P = 200 – Q,当厂商产量为60时获得最大利润。
若市场工资率为1200时,最后一位工人的边际产量是多少?7假设某产品生产的边际成本函数是C=3Q2-8Q+100,若生产5单位产品时总成本是595,求总成本函数,平均成本函数,可变成本函数及平均可变成本函数.8假设某产品生产的边际成本函数是C=100+0.02Q,求产量从1000到2000时成本的变化量.9假设完全竞争市场的需求函数和供给函数分别为QD=50000-2000P和Qs=40000+30000P.求:(1)市场均衡价格和均衡产量.(2)厂商的需求函数是怎样的.10假设某完全竞争厂商生产的某产品的边际成本函数为MC=0.4Q-12(元/件),总收益函数为TR=20Q,且已知生产10件产品时总成本为100元,试求生产多少件时利润极大,其利润为多少?11 假定某垄断者面临的需求函数为P=100-4Q,总成本函数为TC=50+20Q,求:1 垄断者利润最大化时的利润、产量、价格。
微观经济学经典计算题
1.已知某一时期内某商品的反需求函数为P=20-0.2Q d,反供给函数为P=-10+0.2Q s。
(1)求均衡价格P和均衡数量Q。
(2)求市场均衡时的消费者剩余。
(3)如果政府对每单位商品征收 1 元的销售税,政府的税收收入是多少?在这1 元的税收中,消费者和生产者各承担多少?
(4)假定该商品市场受到外来冲击,引发需求增加,供给增加,该商品市场的均衡价格和均衡产量会发生什么变化?
2.已知某消费者的效用函数为U=X0.5Y0.5,P X=1元,P Y=3元。
假定她的收入是100元,
(1)求效用最大化时的均衡消费量。
(2)消费者的总效用是多少?每单位货币的边际效用为多少?
(3)若 P X上升为 2元,对两种商品的需求有何变化?此时总效用为多少?
(4)P X上升为 2元后,若要维持当初的效用水平,消费者收入最少应该达到多
3.已知某企业的生产函数为5.05.0L
Q ,已知 K=16,其总值为100,
K
P L=10。
求:
(1)L 的产出函数和生产 Q 的总成本函数、平均成本函数和边际成本函数;
(2)如果产品 P=40,厂商为了获得最大利润生产多少?最大化利
润是多少?
(3)如果 K 的总值从 100 上升到 120,产品 P=40,此时厂商为获得最大利润应生产多少?利润是多少?。
微观经济学计算题典型例题汇总
微观经济学典型计算题题目一:已知某商品的需求函数为Qd = 50 - 5P,供给函数为Qs = -10 + 5P。
求均衡价格和均衡数量。
解析:均衡时Qd = Qs,即50 - 5P = -10 + 5P。
移项可得50 + 10 = 5P + 5P,60 = 10P,解得P = 6。
将P = 6 代入需求函数或供给函数,可得Q = 50 - 5×6 = 20。
所以均衡价格为6,均衡数量为20。
题目二:消费者对某种商品的需求函数为Qd = 100 - 2P,当价格从30 元下降到20 元时,求消费者剩余的变化。
解析:当P = 30 时,Qd = 100 - 2×30 = 40。
此时消费者愿意支付的最高价格对应的需求量为Qd = 0 时,即100 - 2P = 0,解得P = 50。
消费者剩余为(50 - 30)×40÷2 = 400。
当P = 20 时,Qd = 100 - 2×20 = 60。
此时消费者剩余为(50 - 20)×60÷2 = 900。
消费者剩余的变化为900 - 400 = 500。
题目三:某企业的总成本函数为TC = Q² + 10Q + 50,求当产量为20 时的平均成本和边际成本。
解析:平均成本AC = TC/Q = Q + 10 + 50/Q。
当Q = 20 时,AC = 20 + 10 + 50/20 = 32.5。
边际成本MC = dTC/dQ = 2Q + 10。
当Q = 20 时,MC = 2×20 + 10 = 50。
题目四:完全竞争市场中,某企业的短期成本函数为STC = 0.1Q³ - 2Q² + 15Q + 10,当市场价格为P = 20 时,求企业的短期均衡产量。
解析:完全竞争市场中,企业的短期均衡条件是P = MC。
MC = dSTC/dQ = 0.3Q² - 4Q + 15。
(完整版)微观经济学计算题和简答题
假定某消费者关于某种商品的需求数量Q 与收入M 之间的函数关系为M=100Q 2 求:当收入M=2500时的需求的收入点弹性由M=100Q 2得:100M Q = 1001)100(2121•=-M dM dQ 21100M M 1001)100(2121==•=-M Q M dM dQ e m 相应的需求的收入点弹性恒等于1/2假定需求函数为Q=MP —N,其中M 表示收入,P 表示商品价格,N (N 〉0)为常数。
求:需求的价格弹性和需求的收入点弹性.1)(1==•==--=•-=-----N N m N N d MP M P Q M dM dQ e N MP P P N M Q P dP dQ e假定某商品市场上有100个消费者,其中60个消费者购买该市场1/3的商品,且每个消费者的需求的价格弹性均为3;另外40个消费者购买该市场2/3的商品,且每个消费者的需求的价格弹性均为6.求:按100个消费者合计的需求的价格弹性系数是多少?令市场上被100个消费者购买的商品总量为Q ,相应的市场价格为P根据题意:该市场1/3的商品被60个消费才买走,且每个消费者的需求的价格弹性都是3,单个消费者i 的需求价格弹性可以写为:3Q P =•-=ii di dP dQ e ,即: PQ dP dQ ii 3-= (i=1, 2,…,60) (1)且:3Q 601i Q i =∑= (2)再根据题意,该市场的2/3的商品被另外40个消费者购买,且每个消费者的需求的价格弹性是6,这样单个消费者j 的需求的价格弹性可写为:6=•-=j j j d Q P dP dQ e ,即: P Q dP dQ j j6-=, (j=1, 2, …40) (3) 而且:∑==40132Q j j Q (4) 该市场上100个消费者合计的需求的价格弹性可以写为:∑∑∑∑====+-=•+-=•-=601401601401)()(i j j i i j j i d Q P dP dQ dP dQ Q P dPQ Q d Q P dP dQ e 将(1)和(3)代入上式,得:∑∑∑∑====-+--=-+--=401601401601]63[)]6()3([j j i i j j i i d Q P Q P Q P Q P P Q P Q e 将(2)和(4)代入上式得:5)32633(=-•--=QP Q P Q P e d假定某消费者的需求的价格弹性e d =1.3,需求的收入弹性e M =2。
微观经济学计算题(附答案)
微观经济学练习题均衡价格理论1、某市场的供给曲线与需求曲线分别为P=4Q s和P=12-2Q d。
求出该市场的均衡价格和均衡数量。
Q s =1/4P Q d=1/2(12-P)Q s = Q d1/4P=1/2(12-P)P=8,Q=22、如果大豆是牛的一种饲料,那么对大豆市场的价格补贴计划会如何影响牛肉的均衡价格和均衡数量。
价格补贴计划会抬高牛饲料的价格,这又会使牛肉的供给曲线向左上方移动。
于是牛肉的均衡价格上涨,均衡数量减少。
(图略)3、考虑一个市场,其供给曲线和需求曲线分别为:P=4Qs和P=12-2Qd。
如果对场卖主出售的每单位产出课税为6,均衡价格和均衡数量将会受到什么影响?如果对买主征收同样的税呢?最初的均衡价格和均衡数量分别为:4Q s=12-2Q d,解出Q=2,P=8 税后,供给曲线变为:P=6+4 Q s P′,Q′分别表示税后的均衡价格和均衡数量。
得:=6+4Q′=12-2Q′,解出,P′=10,Q′=1P′代表买主支付的价格。
P′-6=4是卖主收取的价格。
若对买主课以6美元的税,则需求曲线变为P=6-2Q d,于是得到4Q″=6-2Q″,解出Q″=1,P″=4。
P″代表卖主收取的价格。
P″+T= P″+6=10是买主支付的价格。
4、1986年7月某外国城市公共汽车票从32美分提高到40美分,同年8月的乘客为880万人次,与1985年同期相比减少了12%,求需求的价格弧弹性。
解:P1=32 P2=40 Q2=880Q1=880/(1-12%)=1000E d= △Q/(Q1+Q2)·(P1+P2)/△P=(880 -1000)/(40 -32)×(40+32)/1000+880)=-0.57所以,需求的价格弧弹性约为-0.575、X公司和Y公司是机床行业的两个竞争者,其主要产品的需求曲线分别为:PX=1000—5QX PY=1600—4QY这两家公司现在的销售量分别为100单位X和250单位Y。
微观经济学计算题加答案解析
微观经济学计算题加答案解析1. 假设需求曲线为QX= 22-PX,其中PX 为一种商品的价格,QX 为该商品的需求量,那么该商品价格为9元时的需求量为多少?答案: QX= 22-PX,所以当 PX 为 9 时,QX 为 13.2. 一家公司的总收入为120万元,产品的购进成本为80万元,此时该公司的总利润为多少?答案:总收入减去成本,总利润为120万元减去80万元,即总利润为40万元。
3. 假设某商品的供给量为QS= 33+PX,其中PX 为该商品的价格,QS 为该商品的供给量,那么该商品价格为14元时的供给量为多少?答案: QS= 33+PX,所以当 PX 为 14 时,QS 为 47。
4. 一家公司的总成本为82万元,产品的销售收入为120万元,此时该公司的总利润为多少?答案:总收入减去成本,总利润为120万元减去82万元,即总利润为38万元。
5. 假设某商品的供给量为QS= 20-PX^2,其中PX 为该商品的价格,QS 为该商品的供给量,那么该商品价格为4元时的供给量为多少?答案: QS= 20-PX^2,所以当 PX 为 4 时,QS 为 8。
6. 假设需求曲线为QX= 10PX+50,其中PX 为一种商品的价格,QX 为该商品的需求量,那么该商品价格为12元时的需求量为多少?答案: QX= 10PX+50,所以当 PX 为 12 时,QX 为 170。
7. 一家公司的总成本为30万元,产品的销售收入为50万元,此时该公司的总利润为多少?答案:总收入减去成本,总利润为50万元减去30万元,即总利润为20万元。
8. 假设某商品的供给量为QS= 60+2PX,其中PX 为该商品的价格,QS 为该商品的供给量,那么该商品价格为10元时的供给量为多少?答案: QS= 60+2PX,所以当 PX 为 10 时,QS 为 80。
9. 假设需求曲线为QX= 40-3PX,其中PX 为一种商品的价格,QX 为该商品的需求量,那么该商品价格为18元时的需求量为多少?答案: QX= 40-3PX,所以当 PX 为 18 时,QX 为 6。
微观经济学计算题及答案
四、计算题:(每小题8分,共16分)【得分: 】1.假定某消费者关于某种商品的消费数量Q 与收入M 之间的函数关系为M=1002Q求:当收入M=4900时的需求收入点弹性 解:Q=110m E =0.52.假定某厂商的短期生产的边际成本函数SMC=32Q -8Q +100,且已知当产量Q =10时的总成本STC=2400,求相应的STC函数、SAC函数、AVC函数。
解:STC=3Q -42Q +100Q +2800SAC=2Q -4Q +28001Q -+100 AVC=2Q -4Q +28001Q -1. 假设某种商品的需求函数和供给函数为Q D =14-3P Q S =2+6P求该商品供求均衡时的需求价格弹性和供给弹性。
解:根据市场均衡条件Qd=Qs,解得P=4/3 Q=10 该商品在市场均衡时的需求价格弹性为0.4该商品在市场均衡时的供给价格弹性为0.8。
2.假定某商品市场上有1000位相同的消费者,单个消费者的需求函数为:d Q =10-2P ;同时有20个相同的厂商向该市场提供产品,每个厂商的供给函数为:S Q =500P 。
(1) 求该商品的市场需求函数和市场供给函数;(2) 如果消费者对该商品的偏好减弱,使得个人需求曲线向左移动了4个单位,求变化后的市场均衡价格和均衡数量。
解:(1)Qd=1000×(10-2P)=10000-2000P Qs=20×500P=10000P(2)Qd=1000×(6-2P)=6000-2000P 6000-2000P = 10000P P=0.5 Q=50003.已知某人的效用函数为XY U =,他打算购买X 和Y 两种商品,当其每月收入为120元,2=X P 元、3=Y P 元时,(1)为获得最大效用,他应该如何选择X 和Y 的组合? (2)总效用是多少?解:(1)因为MUx=y ,MU y=x ,由MUx/ MU y= y/ x=Px/Py ,PxX+PyY=120, 则有y/ x =2/3,2 x+3y=120。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知某商品的需求方程和供给方程分别为Q d=14-3P, Q s=2+6P。
求:该商品的均衡价格和均衡产销量,以及均衡时的需求价格弹性和供给价格弹性。
均衡时,供给量等于需求量,Q d=Q s,也就是14-3P=2+6P,
2.已知某商品的需求方程和供给方程分别为Q d=30-P,Q s =10+3P,试求:
(1)该商品的均衡价格;
(2)均衡时的需求价格弹性和供给弹性。
3.假设A公司和B公司的产品的需求曲线分别为Q A=200-0.2P A,Q B=400-0.25P B,这两家公司现在的销售量分别为100和250。
求这两家公司当前的需求价格弹性。
4.假定在某市场上A、B两厂商是生产同种有差异的产品的竞争者;该市场对A厂商的需求曲线为P A=200-Q A,对B厂商的需求曲线为P B=300-0.5Q B;两厂商目前的销售量分别为Q A=50,Q B=100。
求:A、B两厂商的需求的价格弹性各是多少?
关于A厂商:
5.已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场上出售,他的成本
函数为
Q
Q
TC40
2+
=
,两个市场的需求函数分别为1
1
1.0
12P
Q-
=,
2
2
4.0
20P
Q-
=。
求:
(1) 当该厂商实行三级价格歧视时,他追求利润最大化前提下的两个市场各自的销售量、价格以及厂商的总利润。
(2) 当该厂商在两个市场实行统一的价格时,他追求利润最大化前提下的销售量、价格以及厂商的总利润。
6.某垄断厂商所生产的产品在两个分割的市场出售,产品的成本函数为TC=Q2+10Q,两个市场的需求函数分别为Q1=32-0.4P1,Q2=18-0.1P2,求:
(1) 当该厂商实行三级价格歧视时,他追求利润最大化前提下的两个市场各自的销售量、价格以及厂商的总利润。
(2) 当该厂商在两个市场实行统一的价格时,他追求利润最大化前提下的销售量、价格以及厂商的总利润。
7.已知一垄断厂商的成本函数为TC=5Q2+20Q+10,产品的需求函数为Q=140-P,试求该厂商利润最大化的产量、价格及利润。
8.假设一个垄断厂商面临的需求曲线为P=10-3Q,成本函数为TC=Q2+2Q。
(1)求利润极大时的产量、价格和利润;
(2)如果政府企图对该垄断厂商采取限价措施迫使其达到帕累托最优时的产量水平,则
此时的产量、价格及利润分别是多少?
9.假设垄断厂商面临两个分割市场A和B,市场需求分别为P A=15-2Q A,P B=20-3Q B,厂商的固定成本为15元,单位变动成本为2元。
试求差别价格比统一定价可多获利多少。
10.一垄断企业生产某产品的总成本函数为:TC=(1/3)Q3-30Q2+1000Q,产品在实行差别价格的两个市场上出售,利润极大时总产量为48,第一个市场的需求函数为P1=1100-13Q1,第二个市场需求曲线上,当价格为均衡价格时的需求价格弹性系数为-3。
问该企业的纯利润是多少?。