职高高一数学第三章函数复习题

合集下载

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元测试卷第三章函数的概念和性质知识梳理1. 知识系统整合2. 规律方法收藏1.同一函数的判定方法(1)定义域相同;(2)对应关系相同(两点必须同时具备).2.函数解析式的求法(1)定义法;(2)换元法;(3)待定系数法;(4)解方程(组)法;(5)赋值法.3.函数的定义域的求法(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.(3)复合函数问题①若函数f(x)的定义域为[a,b],函数f[g(x)]的定义域应由a≤g(x)≤b 解出;②若函数f[g(x)]的定义域为[a,b],则函数f(x)的定义域为函数g(x)在[a,b]上的值域.注意:①函数f(x)中的x与函数f[g(x)]中的g(x)地位相同.②定义域所指永远是x的范围.4.函数值域的求法(1)配方法(二次或四次);(2)判别式法;(3)换元法;(4)函数的单调性法.5.判断函数单调性的步骤(1)设x1,x2是所研究区间内任意两个自变量的值,且x1<x2;(2)判定f(x1)与f(x2)的大小:作差比较或作商比较;(3)根据单调性定义下结论.6.函数奇偶性的判定方法首先考查函数的定义域是否关于原点对称,再看函数f(-x)与f(x)之间的关系:①若函数f(-x)=f(x),则f(x)为偶函数;若函数f(-x)=-f(x),则f(x)为奇函数;②若f(-x)-f(x)=0,则f(x)为偶函数;若f(x)+f(-x)=0,则f(x)为奇函数;③若f(x)f(-x)=1(f(-x)≠0),则f(x)为偶函数;若f(x)f(-x)=-1(f(-x)≠0),则f(x)为奇函数.7.幂函数的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,图象最多只能同时出现在两个象限内,至于是否在第二、三象限内出现,则要看幂函数的奇偶性.(2)幂函数的图象在第一象限内的变化规律为:在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大,直线x =1的左侧,图象从下到上,相应的指数由大到小.8.函数的应用解决函数应用题关键在于理解题意,提高阅读能力.一方面要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面,要不断拓宽知识面,增加间接的生活阅历,诸如了解一些物价、行程、产值、利润、环保等实际问题,及有关角度、面积、体积、造价的问题,培养实际问题数学化的意识和能力.3 学科思想培优一、函数的定义域函数的定义域是指函数y =f (x )中自变量x 的取值范围.确定函数的定义域是进一步研究函数其他性质的前提,而研究函数的性质,利用函数的性质解决数学问题是中学数学的重要组成部分.所以熟悉函数定义域的求法,对于函数综合问题的解决起着至关重要的作用.[典例1] (1)函数f (x )=x x -132+(3x -1)0的定义域是( )A.)31,(-∞B.)131(,C.)3131(,-D.)31,(-∞∪)131(,(2)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A.]25,0[ B .[-1,4]C.[-5,5] D .[-3,7] 【答案】(1)D (2)A【解析】(1)由题意,得⎩⎨⎧≠->-01301x x ,解得x <1且x ≠31.(2)设u =x +1,由-2≤x ≤3,得-1≤x +1≤4,所以y =f (u )的定义域为[-1,4].再由-1≤2x -1≤4,解得0≤x ≤25,即函数y =f (2x -1)的定义域是]25,0[ 二、分段函数问题所谓分段函数是指在定义域的不同子区间上的对应关系不同的函数.分段函数是一个函数而非几个函数,其定义域是各子区间的并集,值域是各段上值域的并集.分段函数求值等问题是高考常考的问题.[典例2] 已知实数a ≠0,函数f (x )=⎩⎨⎧≥--<+1,21,2x a x x a x 若f (1-a )=f (1+a ),则a 的值_____.【答案】-43【解析】①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-23(舍去); ②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得-(1-a )-2a =2(1+a )+a ,解得a =-43,符合题意.综上所述,a =-43. 三、函数的单调性与奇偶性单调性是函数的一个重要性质,某些数学问题,通过函数的单调性可将函数值间的关系转化为自变量之间的关系进行研究,从而达到化繁为简的目的,特别是在比较大小、证明不等式、求值或求最值、解方程(组)等方面应用十分广泛.奇偶性是函数的又一重要性质,利用奇偶函数图象的对称性可以缩小问题研究的范围,常能使求解的问题避免复杂的讨论.[典例3]设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y +=+,112f ⎛⎫= ⎪⎝⎭,当0x >时,()0f x >. (1)求(0)f 的值; (2)判断函数的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.【解析】(1)令0x y ==,则(0)(0)(0)f f f =+,∴(0)0f =.(2)令y x =-,得(0)()()0f f x f x =+-=, ∴()()f x f x -=-,故函数()f x 是R 上的奇函数. (3)任取12,R x x ∈且12x x <,则210x x ->. ∵()()21f x f x -()()2111f x x x f x =-+- ()()()2111f x x f x f x =-+- ()210f x x =->,∴()()12f x f x <.故()f x 是R 上的增函数.∵112f ⎛⎫= ⎪⎝⎭,∴()1111122222f f f f ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()(2)2f x f x ++<∴[]()(2)((2)(22)(1)f x f x f x x f x f ++=++=+<.又由()y f x =是定义在R 上的增函数,得221x +<,解得21x <-四、函数图象及应用函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于函数图象正确地画出.函数图象广泛应用于解题过程中,利用数形结合解题具有直观、明了、易懂的优点.[典例4] 设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:函数f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )的单调性; (4)求函数的值域.【解析】(1)证明:∵函数f (x )的定义域关于原点对称, 且f (-x )=(-x )2-2|-x |-1 =x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数. (2)当0≤x ≤3时,f (x )=x 2-2x -1=(x -1)2-2.当-3≤x <0时,f (x )=x 2+2x -1=(x +1)2-2.即f (x )=⎪⎩⎪⎨⎧<≤--+≤≤--)03(2)1()30(,2)1(22x x x x 根据二次函数的作图方法,可得函数图象如下图.(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1)和[0,1)上单调递减, 在[-1,0)和[1,3]上单调递增.(4)当0≤x ≤3时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2;当-3≤x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2.故函数f (x )的值域为[-2,2].五、幂函数的图象问题对于给定的幂函数图象,能从函数图象的分布、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性等性质.注意图象与函数解析式中指数的关系,能够根据图象比较指数的大小.[典例5] 如图是幂函数y =x a ,y =x b ,y =x c ,y =x d 在第一象限内的图象,则a ,b ,c ,d 的大小关系为( )A.a <b <c <dB.a <b <d <cC.b <a <c <dD.b <a <d <c 【答案】A【解析】由幂函数的图象特征可知,在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大.故选A.六、函数模型及其应用建立恰当的函数模型解决实际问题的步骤:(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示;(2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域; (3)求解函数模型,并还原为实际问题的解.[典例6] 已知A ,B 两城市相距100 km ,在两地之间距离A 城市x km 的D 处修建一垃圾处理厂来解决A ,B 两城市的生活垃圾和工业垃圾.为保证不影响两城市的环境,垃圾处理厂与市区距离不得少于10 km.已知垃圾处理费用和距离的平方与垃圾量之积的和成正比,比例系数为0.25.若A 城市每天产生的垃圾量为20 t ,B 城市每天产生的垃圾量为10 t .(1)求x 的取值范围;(2)把每天的垃圾处理费用y 表示成x 的函数;(3)垃圾处理厂建在距离A 城市多远处,才能使每天的垃圾处理费用最少? 【解析】(1)由题意可得x ≥10,100-x ≥10. 所以10≤x ≤90.所以x 的取值范围为[10,90].(2)由题意,得y =0.25[20x 2+10(100-x )2],即y =215x 2-500x +25000(10≤x ≤90). (3)由y =215x 2-500x +25000=350000)3100(2152+-x (10≤x ≤90),则当x =3100时,y 最小.即当垃圾处理厂建在距离A 城市3100km 时,才能使每天的垃圾处理费用最少.《第三章 函数的概念和性质》单元测试卷(一)基础测评卷(时间:120分钟,满分:150分)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=-3x +2,则f (2x +1)等于( B ) A .-3x +2 B .-6x -1 C .2x +1 D .-6x +5【答案】B【解析】在f (x )=-3x +2中,用2x +1替换x ,可得f (2x +1)=-3(2x +1)+2=-6x -3+2=-6x -1.2.函数1()f x x=的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞D .[1,0)(0,)-+∞【答案】D【解析】由题意可得:10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选:D3.已知21,[1,0),()1,[0,1],x x f x x x +∈-⎧=⎨+∈⎩则函数()y f x =-的图象是( ) A .B .C . D .【答案】A【解析】当0x =时,依函数表达式知2(0)(0)011f f -==+=,可排除B ;当1x =时,(1)(1)10f -=-+=,可排除C 、D .故选A4.已知函数y =21,02,0x x x x ⎧+≤⎨->⎩,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52- 【答案】C【解析】当0x ≤时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-,故选C.5.某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为 ()A .y 10x ⎡⎤=⎢⎥⎣⎦B .3y 10x +⎡⎤=⎢⎥⎣⎦C .4y 10x +⎡⎤=⎢⎥⎣⎦D .5y 10x +⎡⎤=⎢⎥⎣⎦【答案】B【解析】根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为310x y +⎡⎤=⎢⎥⎣⎦,也可以用特殊取值法,若56,5x y ==,排除C ,D ,若57,6x y ==,排除A ,故选B .6.设函数f (x )(x ∈R)为奇函数,f (1)=21,f (x +2)=f (x )+f (2),则f (5)等于( C )A .0B .1C .25D .5【答案】C【解析】令x =-1,得f (1)=f (-1)+f (2).∵f (x )为奇函数,∴f (-1)=-f (1),∴f (1)=-f (1)+f (2),∴21=-21+f (2),∴f (2)=1.令x =1,得f (3)=f (1)+f (2)=21+1=23.令x =3,得f (5)=f (2)+f (3)=257.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C【解析】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<.故选:C 8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( C )A .-6B .6C .-8D .8【答案】C【解析】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),故f (x )关于x =-2对称,f (x )=m 的根关于x =-2对称,∴x 1+x 2+x 3+x 4=4×(-2)=-8.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列各组函数表示的是同一个函数的是( BD )A .f (x )=32x -与g (x )=x ·x 2-B .f (x )=|x |与g (x )=x 2C .f (x )=x +1与g (x )=x +x 0D .f (x )=x x与g (x )=x 0【答案】BD【解析】对于A ,f (x )=32x -与g (x )=x ·x 2-的对应关系不同,故f (x )与g (x )表示的不是同一个函数;对于B ,f (x )=|x |与g (x )=x 2的定义域和对应关系均相同,故f (x )与g (x )表示的是同一个函数;对于C ,f (x )的定义域为R ,g (x )的定义域为{x |x ≠0},故f (x )与g (x )表示的不是同一个函数;对于D ,f (x )=x x与g (x )=x 0的对应关系和定义域均相同,故f (x )与g (x )表示的是同一个函数.10.下列函数既是定义域上的减函数又是奇函数的是( BD )A .f (x )=x 1B .f (x )=-x 3C .f (x )=x |x |D .f (x )=-3x【答案】BD【解析】A .f (x )=x 1在定义域(-∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足题意;对于B ,f (x )=-x 3在定义域R 上是奇函数,且是减函数,∴满足题意,对于C ,f (x )=x |x |=⎪⎩⎪⎨⎧<-≥0,0,22x x x x ,在定义域R 上是奇函数,且是增函数,∴不满足题意;对于D ,f (x )=-3x 在定义域R 上是奇函数,且是减函数,∴满足题意.故选BD .11.已知函数f (x )=31++-x x ,则( ABD ) A .f (x )的定义域为[-3,1] B .f (x )为非奇非偶函数 C .f (x )的最大值为8 D .f (x )的最小值为2【答案】ABD【解析】由题设可得函数的定义域为[-3,1],f 2(x )=4+2×322+--x x=4+2×2)1(4+-x ,而0≤2)1(4+-x ≤2,即4≤f 2(x )≤8,∵f (x )>0,∴2≤f (x )≤22,∴f (x )的最大值为22,最小值为2,故选ABD .12.下列说法正确的是( )A .若方程x 2+(a -3)x +a =0有一个正实根,一个负实根,则a <0B .函数f (x )=2211x x -+-是偶函数,但不是奇函数C .若函数f (x )的值域是[-2,2],则函数f (x +1)的值域为[-3,1]D .曲线y =|3-x 2|和直线y =a (a ∈R)的公共点个数是m ,则m 的值不可能是1【答案】AD【解析】设方程x 2+(a -3)x +a =0的两根分别为x 1,x 2,则x 1·x 2=a <0,故A 正确;函数f (x )=2211x x -+-的定义域为⎪⎩⎪⎨⎧≥-≥-010122x x ,则x =±1,∴f (x )=0,所以函数f (x )既是奇函数又是偶函数,故B 不正确;函数f (x +1)的值域与函数f (x )的值域相同,故C 不正确;曲线y =|3-x 2|的图像如图,由图知曲线y =|3-x 2|和直线y =a 的公共点个数可能是2,3或4,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.若函数()(31)4,1,1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围【答案】11,83⎡⎫⎪⎢⎣⎭【解析】因为函数()f x 是定义在R 上的减函数,所以3100314a a a a a -<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<. 14.函数f (x )=x x+-11的定义域为___,单调递减区间为___.【答案】(-∞,-1)∪(-1,+∞),(-∞,-1)【解析】函数f (x )的定义域为(-∞,-1)∪(-1,+∞).任取x 1,x 2∈(-1,+∞)且x 1<x 2,则f (x 1)-f (x 2)=)1)(1()22121x x x x ++-(>0,即f (x 1)>f (x 2),故f (x )在(-1,+∞)上为减函数;同理,可得f (x )在(-∞,-1)上也为减函数.15.函数y =f (x )是R 上的增函数,且y =f (x )的图像经过点A (-2,-3)和B (1,3),则不等式|f (2x -1)|<3的解集为____.【答案】1(,1)2-【解析】因为y =f (x )的图像经过点A (-2,-3)和B (1,3),所以f (-2)=-3,f (1)=3.又|f (2x -1)|<3,所以-3<f (2x -1)<3,即f (-2)<f (2x -1)<f (1).因为函数y =f (x )是R 上的增函数,所以-2<2x -1<1,即⎩⎨⎧<-->-112212x x ,即⎪⎩⎪⎨⎧<->121x x ,所以-21<x <1.16.对于任意定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.现给定一个实数a ∈(4,5),则函数f (x )=x 2+ax +1的不动点共有___个.【答案】2【解析】由定义,令x 2+ax +1=x ,则x 2+(a -1)x +1=0,当a ∈(4,5)时,Δ=(a -1)2-4>0,所以方程有两根,相应地,函数f (x )=x 2+ax +1(a ∈(4,5))有2个不动点.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知幂函数39*()m y x m N -=∈的图象关于y 轴对称且在()0,∞+上单调递减,求满足()()33132mm a a +<---的a 的取值范围.【解析】因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<, 解得3m <.又因为*m N ∈,所以1m =,2; 因为函数的图象关于y 轴对称, 所以39m -为偶数,故1m =. 则原不等式可化为()()1133132a a +<---,因为13y x-=在(),0-∞,()0,∞+上单调递减,所以1320a a +>->或3210a a -<+<或1032a a +<<-, 解得2332a <<或1a <-. 故a 的取值范围是1a <-或2332a <<. 18.(10分)已知函数21()1x f x x -=+(1)试判断函数在(-1,+∞)上的单调性,并给予证明;(2)试判断函数在[3,5]x ∈的最大值和最小值 【解析】(1)∵()213211x y f x x x -===-++, ∴函数()f x 在()1,-+∞上是增函数, 证明:任取1x ,()21x ∈-+∞,,且12x x <, 则()()1212213333221111f x f x x x x x ⎛⎫⎛⎫-=---=- ⎪ ⎪++++⎝⎭⎝⎭()()()1212311x x x x -=++, ∵121x x -<<,∴120x x -<,()()12110x x ++>, ∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()1,-+∞上是增函数. (2)∵()f x 在()1,-+∞上是增函数, ∴()f x 在[3]5,上单调递增, 它的最大值是()25135512f ⨯-==+,最小值是()23153314f ⨯-==+. 19.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求函数f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.【解析】(1)∵f (x )的两个零点是-3和2,∴-3和2是方程ax 2+(b -8)x -a -ab =0的两根,∴有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③将③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0.∵a ≠0,∴a =-3,∴b =a +8=5,∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3(x +21)2+43+18.图像的对称轴是直线x =-21.∵0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18,∴此时函数f (x )的值域是[12,18].20.(12分)已知函数())1f x a =≠. (1)若0a >,求()f x 的定义域;(2)若()f x 在区间(]0,1上是减函数,求实数a 的取值范围. 【解析】(1)当0a >且1a ≠时,由30ax -≥得3x a≤,即函数()f x 的定义域是3,a ⎛⎤-∞ ⎥⎝⎦.(2)当10a ->即1a >时,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1上为减函数,即0a -<,并且且310a -⨯≥,解得13a ;当10a -<即1a <时 ,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1为增函数,即0a -> 并且310a -⨯≥,解得0a <综上可知,所求实数a 的取值范围是()(],01,3-∞.21.(12分)已知函数f (x )=x mx+,且此函数图象过点(1,2). (1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)讨论函数f (x )在(0,1)上的单调性,并证明你的结论. 【解析】(1)∵函数f (x )=x mx+,且此函数图象过点(1,2), ∴2=1+m , ∴m =1;(2)f (x )=x 1x +,定义域为:()()00-∞⋃+∞,,, 又f (﹣x )=﹣x 1x+=--f (x ), ∴函数f (x )是奇函数;(3)函数f (x )在(0,1)上单调递减, 设0<x 1<x 2<1, 则()()()()211212121212121212111x x x x f x f x x x x x x x x x x x x x ---=+--=-+=-⋅⋅⋅, ∵0<x 1<x 2<1,∴x 1﹣x 2<0,0<x 1x 2<1,x 1x 2﹣1<0, ∴()()()1212121210x x f x f x x x x x --=-⋅>, 即f (x 1)>f (x 2),∴f (x )在(0,1)上的单调递减.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好为51元? (2)当销售商一次订购x 个零件时,该厂获得的利润为P 元,写出P =f (x )的表达式.【解析】(1)设每个零件的实际出厂价格恰好为51元时,一次订购量为x 0个,则60-0.02(x 0-100)=51,解得x 0=550,所以当一次订购量为550个时,每个零件的实际出厂价恰好为51元.(2)设一次订量为x 个时,零件的实际出厂单价为W ,工厂获得利润为P ,由题意P =(W -40)·x ,当0<x ≤100时,W =60;当100<x <550时,W =60-0.02(x -100)=62-50x;当x ≥550时,W =51.当0<x ≤100时, f (x )=(60-40)x =20x ;∴当100<x <550时, f (x )=(22-50x )x =22x -501x 2;当x ≥550时, f (x )=(51-40)x =11x .故f (x )=⎪⎪⎩⎪⎪⎨⎧∈≥∈<<-∈≤<+++),550(,11),550100(5022),1000(202N x x x N x x x x N x x x《第三章 函数的概念和性质》单元测试卷(二)能力测评卷(时间:120分钟,满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,既是奇函数又是在其定义域上是增函数的是( )A .y =x +1B .y =-x 3C .y =x 1D .y =x |x |【答案】D【解析】选项A 中,函数为非奇非偶函数,不符合题意;选项B 中,函数为奇函数,但在定义域为减函数,不符合题意;选项C 中,函数为奇函数,但在定2.已知幂函数y =f (x )的图象过点2,则下列结论正确的是( )A .y =f (x )的定义域为[0,+∞)B .y =f (x )在其定义域上为减函数C .y =f (x )是偶函数D .y =f (x )是奇函数3.函数f (x )=x x 2的定义域为( )A .(0,1)B .[0,1]C .(-∞,0]∪[1,+∞)D .(-∞,0)∪(1,+∞)【答案】D【解析】:由题意知:x 2-x >0,解得x <0或x >1,∴函数f (x )的定义域为(-∞,0)∪(1,+∞).4.已知函数f (3x +1)=x 2+3x +1,则f (10)=( ) A .30 B .19 C .6 D .20 【答案】B【解析】令x =3得f (10)=32+3×3+1=19.5.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A.(-∞,1] B.(-∞,-1) C.[1,+∞) D.(-∞,1)【答案】A【解析】由于f(x)=|x+a|的零点是x=-a,且在直线x=-a两侧左减右增,要使函数f(x)=|x+a|在(-∞,-1)上是单调函数,则-a≥-1,解得a≤1.故选A.6.为了节约用电,某城市对居民生活用电实行“阶梯电价”,计费方法如下:( ) A.475度 B.575度 C.595.25度 D.603.75度【答案】D【解析】不超过230度的部分费用为:230×0.5=115;超过230度但不超过400度的部分费用为:(400-230)×0.6=102,115+102<380;设超过400度的部分为x,则0.8x+115+102=380,∴x=203.75,故用电603.75度.7.已知函数y=x2-4x+5在闭区间[0,m]上有最大值5,最小值1,则m 的取值范围是( )A.[0,1] B.[1,2] C.[0,2] D.[2,4]【答案】D【解析】∵函数f(x)=x2-4x+5=(x-2)2+1的对称轴为x=2,此时,函数取得最小值为1,当x=0或x=4时,函数值等于5.又f(x)=x2-4x+5在区间[0,m]上的最大值为5,最小值为1,∴实数m的取值范围是[2,4],故选D.8.已知定义域为R的函数y=f(x)在(0,4)上是减函数,又y=f(x+4)是偶函数,则( )A.f(2)<f(5)<f(7) B.f(5)<f(2)<f(7)C.f(7)<f(2)<f(5) D.f(7)<f(5)<f(2)【答案】B【解析】因为y=f(x+4)是偶函数,所以f(x+4)=f(-x+4),因此f(5)=f(3),f(7)=f(1),因为y=f(x)在(0,4)上是减函数,所以f(3)<f(2)<f(1),f(5)<f(2)<f(7),选B.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数y=xα的定义域为R且为奇函数,则α可能的值为( )A.-1 B.1 C.2 D.3【答案】BD【解析】当α=-1时,幂函数y=x-1的定义域为(-∞,0)∪(0,+∞),A不符合;当α=1时,幂函数y=x,符合题意;当α=2时,幂函数y=x2的定义域为R且为偶函数,C不符合题意;当α=3时,幂函数y=x3的定义域为R且为奇函数,D符合题意.故选BD.10.某工厂八年来某种产品总产量y(即前x年年产量之和)与时间x(年)的函数关系如图,下列五种说法中正确的是( )A.前三年中,总产量的增长速度越来越慢B.前三年中,年产量的增长速度越来越慢C.第三年后,这种产品停止生产D.第三年后,年产量保持不变【答案】AC【解析】由题中函数图象可知,在区间[0,3]上,图象是凸起上升的,表明总产量的增长速度越来越慢,A正确;由总产量增长越来越慢知,年产量逐年减小,因此B错误;在[3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,因此C正确,D错误,故选AC.11.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列命题中正确的是( )A .f (-3.9)=f (4.1)B .函数f (x )的最大值为1C .函数f (x )的最小值为0D .方程f (x )-21=0有无数个根值可能是( )A .2B .3C .4D .5 【答案】ABC【解析】函数y =x 2-4x -4的部分图象如图,f (0)=f (4)=-4,f (2)=-8.因为函数y =x 2-4x -4的定义域为[0,m ],值域为[-8,-4],所以m 的取值范围是[2,4],故选ABC.三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若函数f (x )=12+++bx x a x 在[-1,1]上是奇函数,则f (x )的解析式为________.14.已知幂函数()221()33mm f x m m x--=-+在(0,)+∞上单调递增,则m 值为_____.【答案】2【解析】由题意可知2233110m m m m ⎧-+=⎪⎨-->⎪⎩,解得2m =,故答案为:215.若定义在R 上的奇函数()f x 满足()()4f x f x +=,()11f =,则()()()678f f f ++的值为_______.【答案】1-【解析】由于定义在R 上的奇函数()y f x =满足()()4f x f x +=,则该函数是周期为4的周期函数,且()11f =,则()()800f f ==,()()()7111f f f =-=-=-,()()()622f f f =-=,又()()22f f -=-,()20f ∴=,则()60f =,因此,()()()6781f f f ++=-. 16.已知函数()(),f x g x 分别是定义在R 上的偶函数和奇函数,()()23x f x g x +=⋅.则函数()f x =__________;关于x 不等式()()2240g x x g x ++->的解集__________.【答案】33x x -+ ()(),41,-∞-+∞【解析】函数()f x 、()g x 分别是定义在R 上的偶函数和奇函数, ∴()()f x f x -=,()()g x g x -=-,又()()23xf xg x +=⋅,…①∴()()23xf xg x --+-=⋅, 即()()23xf xg x --=⋅,…②由①②求得函数()33x x f x -=+,()33x xg x -=-. 易知()33x xg x -=-是定义域R 上的单调增函数,所以不等式()()2240g x x g x ++->可化为()()()2244g x x g x g x +>--=-,即224x x x +>-,整理得2340x x +->, 解得4x <-或1x >, 所以不等式的解集为()(),41,-∞-+∞, 故答案为33x x -+,()(),41,-∞-+∞四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=61x -,(1)求函数f(x)的定义域; (2)求f(-1), f(12)的值.【解析】(1)根据题意知x -1≠0且x +4≥0,∴x≥-4且x≠1, 即函数f(x)的定义域为[-4,1)∪(1,+∞).(2) ()6132f -==---f(12)=66412111-=--=3811-. 18.(12分)已知幂函数f (x )=(m 2-5m +7)·x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 【解析】(1)由题意得m 2-5m +7=1, 即m 2-5m +6=0,解得m =2或m =3. 又f (x )为偶函数,所以m =3,此时f (x )=x 2.(2)由(1)知,g (x )=x 2-ax -3,因为g (x )=x 2-ax -3在[1,3]上不是单调19.(12分)已知函数()2f x x =+, (1)若该函数在区间()-2∞,+上是减函数,求a 的取值范围. (2)若1a =-,求该函数在区间[1,4]上的最大值与最小值. 【解析】(1)因为函数()212112()222a x a ax af x a x x x ++-+-===++++在区间(2,)-+∞上是减函数,所以120a ->,解得12a <, 所以a 的取值范围1,2⎛⎫-∞ ⎪⎝⎭.(2)当1a =-时,13()122x f x x x -+==-+++,则()f x 在(),2-∞-和()2,-+∞上单调递减,因为[](),,421⊆-+∞,所以()f x 在[]1,4的最大值是()111012f -+==+,最小值是()4114422f -+==-+, 所以该函数在区间[]1,4上的最大值为0,最小值为12-.20.已知函数f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2+2x .(1)现已画出函数f (x )在y 轴左侧的图象,如图所示,请补全函数f (x )的图象;(2)求出函数f (x )(x >0)的解析式;(3)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 【解析】函数f(x)的图象如下:(2)因为f(x)为奇函数,则f(-x)=- f(x)∴当x 0>时,x 0-<∴f(-x)=- f(x)=()()2222x x x x ⎡⎤-+-=-⎣⎦故f(x)()220x x x =-+>(3)由(1)中图象可知:y=f(x)与y=a 的图象恰好有三个不同的交点1a ∴-<<121.已知函数2()4f x x =+. (1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[2,)+∞上单调递增;(2)当0a >时,解关于x 的不等式2()(1)2(1)f x a x a x >-++.【解析】(1)由题意得,124(),,[2,)g x x x x x=+∀∈+∞,且12x x <,则()()()()()121212121212121244444x x x x g x g x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由212x x >≥,得12120,40x x x x -<->.于是()()120g x g x -<,即()()12g x g x <所以函数()g x 在区间[2,)+∞上单调递增(2)原不等式可化为22(1)40ax a x -++>.因为0a >,故2(2)0x x a ⎛⎫--> ⎪⎝⎭. (i )当22a <,即1a >时,得2x a <或2x >. (ii )当22a=,即1a =时,得到2(2)0x ->,所以2x ≠;(iii )当22a >,即01a <<时,得2x <或2x a >.综上所述,当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭22. 2018年10月24日,世界上最长的跨海大桥—港珠澳大桥正式通车。

职高数学第三章函数习题集及答案

职高数学第三章函数习题集及答案

3.1函数的概念及其表示法习题练习3.1.11、求y=3x-1的定义域:2、指出下列各函数中,哪个与函数y x=是同一个函数:(1)2xyx=;(2)y;(3)s t=.3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。

参考答案:1、R2、(3)3、6、12、0练习3.1.21、利用“描点法”作出函数xy=的图像,并判断点(16,4)是否为图像上的点2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。

3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。

参考答案:1、作图略,在。

2、y=8x,(x为正整数)3、y=2x(x为正整数)3.2函数的性质习题练习3.2.11、判断函数y=-2x+3的单调性.23、判断函数y=8X+3的单调性.参考答案:1、减2、左增、右减3、增练习3.2.21、判断y=8X+3的奇偶性:2、判断y=4X 的奇偶性3、判断y=X 2的奇偶性 参考答案:1、非奇非偶函数2、奇函数3、偶函数3.3函数的实际应用举例习题练习3.31、.求()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩的定义域; 2、求函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩的定义域;3、求函数() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩的定义域; 4、作出函数()1,0,1,0x x y f x x x -<⎧==⎨+⎩的图像 5、设函数()221,20,1,0 3.x x f x x x +-<⎧⎪=⎨-<<⎪⎩作出函数的图像.6、设函数7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩作出函数的图像 参考答案:1、-2<=x<=32、R3、x>=04、略5、略6、略。

(精选试题附答案)高中数学第三章函数的概念与性质知识点题库

(精选试题附答案)高中数学第三章函数的概念与性质知识点题库

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识点题库单选题1、下列图形能表示函数图象的是()A.B.C.D.答案:D分析:根据函数的定义,判断任意垂直于x轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x轴的直线与函数的图象至多有一个交点,所以A、B显然不符合,C在x=0与函数图象有两个交点,不符合,只有D符合要求.故选:D2、“幂函数f(x)=(m2+m−1)x m在(0,+∞)上为增函数”是“函数g(x)=2x−m2⋅2−x为奇函数”的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:A分析:要使函数f(x)=(m2+m−1)x m是幂函数,且在(0,+∞)上为增函数,求出m=1,可得函数g(x)为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案.要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x ,解得:m =±1,故必要性不成立,故选:A .3、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32.综上:−12≤x ≤0或12≤x ≤32. 故选:A4、下列四个函数在(−∞,0)是增函数的为( )A .f (x )=x 2+4B .f (x )=1−2xC .f (x )=−x 2−x +1D .f (x )=2−3x答案:D分析:根据各个函数的性质逐个判断即可对A ,f (x )=x 2+4二次函数开口向上,对称轴为y 轴,在(−∞,0)是减函数,故A 不对.对B ,f (x )=1−2x 为一次函数,k <0,在(−∞,0)是减函数,故B 不对.对C ,f (x )=−x 2−x +1,二次函数,开口向下,对称轴为x =−12,在(−∞,−12)是增函数,故C 不对. 对D ,f (x )=2−3x 为反比例类型,k <0,在(−∞,0)是增函数,故D 对.故选:D5、已知函数f(x)={−3x +3,x <0−x 2+3,x ≥0,则不等式f (a )>f (3a −4)的解集为( ) A .(−12,+∞)B .(2,+∞)C .(−∞,2)D .(−∞,−12)答案:B分析:由分段函数表达式,判断其单调性,利用单调性,求解不等式.根据题目所给的函数解析式,可知函数f (x )在(−∞,+∞)上是减函数,所以a <3a −4,解得a >2.故选:B6、设函数f(x)=x2+2(4−a)x+2在区间(−∞,3]上是减函数,则实数a的取值范围是()A.a≥−7B.a≥7C.a≥3D.a≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x=a−4,又∵函数在(−∞,3]上为减函数,∴a−4⩾3,即a⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.7、若函数y=f(x)在R上单调递增,且f(2m−3)>f(−m),则实数m的取值范围是()A.(−∞,−1)B.(−1,+∞)C.(1,+∞)D.(−∞,1)答案:C分析:由单调性可直接得到2m−3>−m,解不等式即可求得结果.∵f(x)在R上单调递增,f(2m−3)>f(−m),∴2m−3>−m,解得:m>1,∴实数m的取值范围为(1,+∞).故选:C.8、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..9、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.10、已知幂函数y =f(x)的图象过点P(2,4),则f(3)=( )A .2B .3C .8D .9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=x α,则2α=4,得α=2,所以f(x)=x 2,所以f(3)=32=9,故选:D填空题11、已知f (x )={(3a −1)x +4a,x <1−x +1,x ⩾1是定义在R 上的减函数,那么a 的取值范围是___. 答案:[17,13) 分析:利用函数在R 上是减函数,可列出不等式组{3a −1<0(3a −1)+4a ⩾−1+1 ,由此求得a 的取值范围.由于f (x )={(3a −1)x +4a,x <1−x +1,x ⩾1是定义在R 上的减函数,∴{3a −1<0(3a −1)+4a ⩾−1+1 , 求得17⩽a <13,所以答案是:[17,13). 12、函数y =√7+6x −x 2的定义域是_____.答案:[−1,7].分析:由题意得到关于x 的不等式,解不等式可得函数的定义域.由已知得7+6x −x 2≥0,即x 2−6x −7≤0解得−1≤x ≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13、函数y =√x 2−1的单调递减区间为___________.答案:(−∞,−1](或(−∞,−1)都对)解析:利用复合函数的单调性,同增异减,即可得到答案;令t =x 2−1,则y =√t ,∵ t =x 2−1在(−∞,−1)单调递减,y =√t 在(0,+∞)单调递增,根据复合函数的单调性可得:y =√x 2−1在(−∞,−1)单调递减,所以答案是:(−∞,−1).14、已知函数f (x )=mx 2+nx +2(m,n ∈R )是定义在[2m,m +3]上的偶函数,则函数g (x )=f (x )+2x 在[−2,2]上的最小值为______.答案:-6分析:先利用题意能得到f(−x)=f(x)和2m+m+3=0,解得n=0和m=−1,代入f(x)中,再代入g(x),再结合二次函数的性质求最小值因为函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,故{f(−x)=f(x)2m+m+3=0,即{mx2−nx+2=mx2+nx+2m=−1,则{2nx=0m=−1解得{n=0m=−1,所以g(x)=f(x)+2x=−x2+2x+2=3−(x−1)2,x∈[−2,2],所以g(−2)=−(−2)2+2×(−2)+2=−6,g(2)=−22+2×2+2=2,则g(x)min=−6,所以答案是:-615、已知函数y=f(2x+1)的定义域为[−1,2],则函数y=f(x−1)的定义域为_________.答案:[0,6]分析:根据抽象函数的定义域求解规则求解即可.函数y=f(2x+1)的定义域为[−1,2],即−1≤x≤2,所以−1≤2x+1≤5,所以−1≤x−1≤5,即0≤x≤6,所以函数的定义域为[0,6].所以答案是:[0,6].解答题16、上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足2≤t≤20,t∈N∗,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当10≤t≤20时地铁可达到满载状态,载客量为1200人,当2≤t<10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为p(t).(1)求p(t)的解析式;(2)若该时段这条线路每分钟的净收益为Q=6p(t)−3360t−360(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?答案:(1)p(t)={−10t 2+200t +200,2≤t <101200,10≤t ≤20(t ∈N ∗);(2)6分钟. 分析:(1)2≤t <10时,求出正比例系数k ,写出函数式即可得解;(2)求出每一段上的最大值,再比较大小即可得解.(1)由题意知p(t)={1200−k(10−t)2,2≤t <101200,10≤t ≤20(t ∈N ∗ ),(k 为常数), 因p(2)=1200−k(10−2)2=1200−64k =560,则k =10,所以p(t)={−10t 2+200t +200,2≤t <101200,10≤t ≤20(t ∈N ∗); (2)由Q =6p(t)−3360t −360得Q ={6(−10t 2+200t+200)−3360t −360,2≤t <103840t −360,10≤t ≤20 ,即Q ={840−60(t +36t ),2≤t <103840t−360,10≤t ≤20 (t ∈N ∗), ①当2≤t <10时,Q =840−60(t +36t )≤840−60×12=120,当且仅当t =6等号成立; ②当10≤t ≤20时,Q =3840t −360在[10,20]上递减,当t =10时Q 取最大值24,由①②可知,当发车时间间隔为t =6分钟时,该时段这条线路每分钟的净收益最大,最大为120元.17、已知集合A ={x |2<x <4},集合B ={x |m −1<x <m 2}.(1)若A ∩B =∅;求实数m 的取值范围;(2)命题p:x ∈A ,命题q:x ∈B ,若p 是q 的充分条件,求实数m 的取值集合.答案:(1)−√2≤m ≤√2或m ≥5(2){m |m ≤−2 或2≤m ≤3}分析:(1)讨论B =∅或B ≠∅,根据A ∩B =∅列不等式组即可求解.(2)由题意得出A ⊆B ,再由集合的包含关系列不等式组即可求解.(1)∵A ∩B =∅,∴当B =∅时,m -1≥m 2,解得:m ∈∅.当B ≠∅时,m -1≥4或m 2≤2,∴−√2≤m ≤√2或m ≥5.(2)∵x∈A是x∈B的充分条件,∴A⊆B,∴{m−1≤2m2≥4,解得:m≤-2或2≤m≤3.所以实数m的取值集合为{m|m≤−2或2≤m≤3}18、已知幂函数f(x)=x m2−m−2(m∈Z)是偶函数,且在(0,+∞)上是减函数,求函数f(x)的解析式.答案:f(x)=x−2分析:根据幂函数的单调性,可知m2−m−2<0,又m∈Z,则m=0,1,再根据函数f(x)是偶函数,将m= 0,1分别代入验证可得答案.因为幂函数f(x)在区间(0,+∞)上单调递减,则m2−m−2<0,得m∈(−1,2),又∵m∈Z,∴m=0或1.因为函数f(x)是偶函数,将m=0,1分别代入,当m=0时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.当m=1时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.∴f(x)的解析式为f(x)=x−2.19、判断下列函数的奇偶性:(1)f(x)=√4−x2|x+3|−3;(2)f(x)=(x−1)√1+x1−x;(3)f(x)=√1−x2+√x2−1;(4)f(x)={x2−2x+3,x>00,x=0−x2−2x−3,x<0. 答案:(1)奇函数(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数(4)奇函数分析:根据函数奇偶性的概念,逐问判断即可.(1)由{4−x 2≥0|x +3|−3≠0,得−2≤x ≤2,且x ≠0, 所以f (x )的定义域为[−2,0)∪(0,2],关于原点对称,所以f (x )=√4−x 2|x+3|−3=√4−x 2x+3−3=√4−x 2x . 又f (−x )=√4−(−x )2−x =−√4−x 2x =−f (x ),所以f (x )是奇函数.(2)因为f (x )的定义域为[−1,1),不关于原点对称,所以f (x )既不是奇函数也不是偶函数.(3)对于函数f (x )=√1−x 2+√x 2−1,{1−x 2≥0x 2−1≥0,∴x =±1,其定义域为{−1,1},关于原点对称. 因为对定义域内的每一个x ,都有f (x )=0,所以f (−x )=f (x ),f (−x )=−f (x ), 所以f (x )=√1−x 2+√x 2−1既是奇函数又是偶函数.(4)函数f (x )的定义域为R ,定义域关于原点对称.①当x =0时,−x =0,所以f (−x )=f (0)=0,f (x )=f (0)=0,所以f (−x )=−f (x );②当x >0时,−x <0,所以f (−x )=−(−x )2−2(−x )−3=−(x 2−2x +3)=−f (x ); ③当x <0时,−x >0,所以f (−x )=(−x )2−2(−x )+3=−(−x 2−2x −3)=−f (x ). 综上,可知函数f (x )为奇函数.。

第三章:函数的概念与性质重点题型复习-【题型分类归纳】高一数学上学期同步讲与练(解析版)

第三章:函数的概念与性质重点题型复习-【题型分类归纳】高一数学上学期同步讲与练(解析版)

第三章:函数的概念与性质重点题型复习题型一函数的概念辨析【例1】下列关于函数与区间的说法正确的是()A.函数定义域必不是空集,但值域可以是空集B.函数定义域和值域确定后,其对应法则也就确定了C.数集都能用区间表示D.函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A,函数的定义域和值域均为非空数集,A错误;对于B,若函数的定义域和值域均为R,对应法则可以是y x=,也可以是2y x=,B错误;对于C,自然数集无法用区间表示,C错误;对于D,由函数定义可知,一个函数值可以有多个自变量值与之对应,D正确.【变式1-1】下列对应关系或关系式中是从A 到B 的函数的是( ) A .A ⊆R ,B ⊆R ,221x y +=B .{}1,0,1A =-,{}1,2B =,:1f x y x →=+C .A =R ,B =R ,1:2→=-f x y xD .A =Z ,B =Z ,:→=f x y 【答案】B【解析】对于A ,221x y +=可化为y =显然对任意x A ∈(1x =±除外),y 值不唯一,故不符合函数的定义; 对于B ,符合函数的定义;对于C ,当2x =时,对应关系无意义,故不符合函数的定义; 对于D ,当x 为非正整数时,对应关系无意义,故不符合函数的定义. 故选:B【变式1-2】已知集合{0,1,2}A =,{1,1,3}B =-,下列对应关系中,从A 到B 的函数为( ) A .f :x y x →= B .f :2x y x →= C .f :2x y x →= D .f :21x y x →=- 【答案】D【解析】对A :当0,1,2x =时,对应的y x =为0,1,2,所以选项A 不能构成函数;对B :当0,1,2x =时,对应的2y x =为0,1,4,所以选项B 不能构成函数; 对C :当0,1,2x =时,对应的2y x =为0,2,4,所以选项C 不能构成函数;对D :当0,1,2x =时,对应的21y x =-为1-,1,3,所以选项D 能构成函数;故选:D.【变式1-3】如图所示,下列对应法则,其中是函数的个数为( )A .3B .4C .5D .6【答案】A【解析】①②③这三个图所示的对应法则都符合函数的定义,即A 中每一个元素在对应法则下,在B 中都有唯一的元素与之对应,对于④⑤,A 的每一个元素在B 中有2个元素与之对应,∴不是A 到B 的函数, 对于⑥,A 中的元素3a 、4a 在B 中没有元素与之对应,∴不是A 到B 的函数, 综上可知, 是函数的个数为3.故选:A.【变式1-4】下列关系中是函数关系的是( )A .等边三角形的边长和周长关系B .电脑的销售额和利润的关系C .玉米的产量和施肥量的关系D .日光灯的产量和单位生产成本关系 【答案】A【解析】根据函数关系的定义可得,选项A 中,当等边三角形的边长取一定的值时,周长有唯一且确定的值与其对应, 所以等边三角形的边长和周长符合函数关系;其他选项中,两个量之间没有明确的对应关系,所以不是函数关系故选:A【变式1-5】若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是( ) A . B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.题型二 判断是否为同一个函数【例2】下列各组函数中,表示同一函数的是( )A .()()21,11x f x g x x x -==+- B .()())22,f x x g x x ==C .()()2,f x x g x x = D .()()211,1f x x x g x x =+-=-【答案】C【解析】A. 函数()211x f x x -=-的定义域为{}|1x x ≠,()1g x x =+的定义域为R ,故不是同一函数;B. ()2f x x =R ,()2g x x =的定义域为[0,)+∞,故不是同一函数;C. ()()2,f x x g x x x==的定义域都是R ,且解析式相同,故是同一函数;D. ()11f x x x =+-{}|1x x ≥,()21g x x =-{|1x x ≥或1}x ≤-, 故不是同一函数,故选:C【变式2-1】下列各组函数中,表示同一函数的是( )A .()0f x x =,()xg x x = B .()211x f x x -=-,()1g x x =+C .()11f x x x -+()21g x x =-D .()f x x =,()2g x x =【答案】A【解析】A 中,()0f x x =,()xg x x= 定义域都为{|0}x x ≠ ,对应关系以及值域相同,故为同一函数;B 中,()211x f x x -=-,定义域为{|1}x x ≠,()1g x x =+定义域为R ,故不是同一函数;C 中,()11f x x x -+{|1}x x ≥,()21g x x =-{|1x x ≥或1}x ≤- ,故不是同一函数;D 中,()f x x =,定义域为R ,()(2g x x =定义域为{|0}x x ≥,故不是同一函数;故选:A【变式2-2】下列各组函数是同一函数的是( )A .2()f x x =与2()(1)g x x =+B .3()f x x =-()g x x x =-C .()xf x x =与01()g x x=D .()33f x x x =+⋅-与2()9g x x =- 【答案】C【解析】对于A ,()2f x x =,()()21g x x =+,对应关系不同,即不是同一函数,故A 不正确; 对于B ,3()f x x x x =-=--定义域为(,0]-∞,()g x x x =-定义域为(,0]-∞, 定义域相同,对应关系不同,函数不是同一函数,故B 不正确;对于C ,()1xf x x==,定义域为()(),00,∞-+∞U ,1()1g x x ==,定义域为()(),00,∞-+∞U , 定义域、对应关系相同,故为同一函数,故C 正确;对于D ,()33f x x x =+⋅-定义域为[)3,+∞,2()9g x x =-定义域为(][),33,∞∞--⋃+, 定义域不同,函数不是同一函数,故D 不正确;故选:C【变式2-3】下列各组函数是同一函数的是( )A .321x x y x +=+与y x = B .2x y x =与y x =C .||x y x=与1y = D .()21y x =-与1y x =-【答案】A【解析】对于A ,321x xy x x +==+的定义域为R ,y x =的定义域为R ,则两个函数的定义域和对应关系都相同,是同一函数;对于B ,2x y x x==的定义域为{}0x x ≠,y x =的定义域为R ,则两个函数的定义域不同,不是同一函数; 对于C ,||x y x=的定义域为{}0x x ≠,1y =的定义域为R ,则两个函数的定义域不同,不是同一函数;对于D ,()211y x x =-=-和1y x =-的对应关系不同,故不是同一函数.故选:A.题型三 求函数的定义域【例3】函数()1321f x x x =--的定义域为( )A .2{|3x x >且1}x ≠ B .2{|3x x <或1}x > C .2{|1}3x x ≤≤ D .2{|3x x ≥且1}x ≠ 【答案】D【解析】由题得3202,103x x x -≥⎧∴≥⎨-≠⎩且1x ≠.所以函数的定义域为2{|3x x ≥且1}x ≠故选:D【变式3-1】函数()2021y x -的定义域为( ) A .1,2∞⎛⎫- ⎪⎝⎭ B .1,2⎛⎫+∞ ⎪⎝⎭ C .11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭ D .11,,322⎛⎫⎛⎤-∞⋃ ⎪ ⎥⎝⎭⎝⎦【答案】C【解析】要使函数()2021y x =+-有意义, 则有30210x x ->⎧⎨-≠⎩,解得3x <且12x ≠,所以其定义域为11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式3-2】已知函数(+1)f x 的定义域为[1,2],则(23)f x -+的定义域为( ) A .[1,2] B .1[0,]2 C .[1,1]- D .1[,1]2【答案】B【解析】因为函数(+1)f x 的定义域为[1,2],所以12x ≤≤,则2+13x ≤≤,所以22+33x ≤-≤,解得102x ≤≤,所以(23)f x -+的定义域为1[0,]2,故选:B【变式3-3】已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为( )A .3[,1]2-B .3[,1)(1,1]2--⋃- C .[3,7]- D .[3,1)(1,7]--⋃- 【答案】B【解析】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .【变式3-4】函数f (x )221mx x =--+的定义域为R ,则实数m 的取值范围是( ) A .(0,1) B .(﹣∞,﹣1] C .[1,+∞) D .(﹣∞,﹣1) 【答案】B【解析】f (x )的定义域是R ,则2210mx x --+≥恒成立,即2+210mx x -≤恒成立,则0Δ0m ⎧⎨≤⎩<,解得1m ≤-,所以实数m 的取值范围为(],1-∞-.故选:B.【变式3-5】若函数223()1x f x ax ax -=++的定义域为R ,则实数a 的取值范围是__________.【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立, 0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<, 综上,04a ≤<. 故答案为:[0,4).题型四 求函数的解析式【例4】已知函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,则()2f =( ) A .1 B .3 C .7 D .9【答案】D【解析】因为函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,令()4f x x t -=,则()4f x x t =+, 所以()45f t t t =+=,解得1t =,所以()41f x x =+,(2)2419f =⨯+=,故选:D【变式4-1】已知二次函数()f x 满足()221465f x x x +=-+,求()f x 的解析式; 【答案】()259f x x x =-+【解析】设二次函数()()20f x ax bx c a =++≠,则()()()2212121f x a x b x c +=++++()()22442465ax a b x a b c x x =+++++=-+,故44,426,5a a b a b c =+=-++=,解得1,5,9a b c ==-=,故()259f x x x =-+.【变式4-2】若函数()63f g x x ⎡⎤=+⎣⎦,且()21g x x =+,则()f x 等于( ) A .129x + B .61x + C .3 D .3x 【答案】D【解析】令()21g x x t =+=,则12t x -=()63132f t t t -∴=⨯+=,即()3f x x =故选:D.【变式4-3】设函数1121f x x⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为( )A .()111x x x +-≠ B .()111x x x +-≠ C .()111x x x +≠-- D .()211xx x ≠-+ 【答案】B【解析】令()111t t x=+≠,则可得11x t =-()1t ¹ 所以()()211111t f t t t t +=+=-≠-,所以()()111x f x x x +-≠=,故选:B【变式4-4】若对任意实数x ,均有()2()92f x f x x --=+,求()f x . 【答案】32x -.【解析】利用方程组法求解即可;∵()2()92f x f x x --=+(1) ∴()()()292f x f x x --=-+(2) 由(1)2(2)+⨯得3()96f x x -=-+, ∴()32()f x x x R =-∈. 故答案为:32x - .【变式4-5】设函数()f x 是R →R 的函数,满足对一切x ∈R ,都有()()22f x x f x +-=,则()f x 的解析式为()f x =______.【答案】2,111,1x xx ⎧≠⎪-⎨⎪=⎩ 【解析】由()()22f x x f x +-=,得()()()222f x x f x -+-=,将()f x 和()2f x -看成两个未知数,可解得()()211f x x x=≠-, 当1x =时,()()()212112f f -+-=,解得()11f =,综上,()2,1,11, 1.x f x xx ⎧≠⎪=-⎨⎪=⎩ 故答案为:2,111,1x x x ⎧≠⎪-⎨⎪=⎩.题型五 定义法证明函数的单调性【例5】已知函数()218x f x x -=+,判断并证明()f x 在区间[]22-,上的单调性. 【答案】单调递增,证明见解析【解析】()f x 在区间[]22-,上单调递增,理由如下: 任取1x ,[]22,2x ∈-,且12x x <,()()()()()()()()()()()()22122112121212122222221212121818811888888x x x x x x x x x x x x f x f x x x x x x x -+--+-++----=-==++++++. 因为1222x x -≤<≤,所以120x x -<,1244x x -<+<,1244x x -<<, 所以12128x x x x +->- 所以121280x x x x ++->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间[]22-,上单调递增.【变式5-1】已知函数()f x =()f x 在区间[)1,+∞上的单调性,并证明你的结论. 【答案】增函数,证明见解析【解析】()f x 在区间[)1,+∞上是增函数.证明如下:设[)12,1,x x ∀∈+∞,且12x x <, 则()()12f x f x -= 因为[)12,1,x x ∈+∞0,又12x x <,所以120x x -<0,0,故()()120f x f x -<, 故()f x 在区间[)1,+∞上是增函数.【变式5-2】证明:函数31()2f x x x=-在区间(0,)+∞上是增函数.【答案】证明见解析.【解析】设12,(0,)x x ∈+∞,且12x x <,而3312121211()()22f x f x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()3312211122x x x x ⎛⎫=-+- ⎪⎝⎭()()2212121122122x x x x x x x x x x -=-+++()()221211221212x x x x x x x x ⎡⎤=-+++⎢⎥⎣⎦因为221211221210,0,0x x x x x x x x -<++>>,则()()2212112212120x x x x x x x x ⎡⎤-+++<⎢⎥⎣⎦, 所以12())0(f x f x -<,即12()()f x f x <,所以函数31()2f x x x=-在区间(0,)+∞上是增函数.【变式5-3】已知函数()f x 对任意的a ,∈b R ,都有()()()1f a b f a f b +=+-,且当0>x 时,()1f x >,判断并证明()f x 的单调性;【答案】函数()f x 在R 上为增函数;(2)4(1,)3m ∈-.【解析】设12,x x 是R 上任意两个不等的实数,且12x x <,则210x x x ∆=->,()()()()()()()()212111211111y f x f x f x x x f x f x x f x f x f x ⎡⎤∆=-=-+-=-+--=∆-⎣⎦,由已知条件当0x >时,()1f x >, 所以()1f x ∆>,即0y ∆>, 所以函数()f x 在R 上为增函数;题型六 利用函数的单调性求参数【例6】若函数()1f x ax =+[]1,1-内单调递减,则实数a 的取值范围是______. 【答案】[)1,0-【解析】由题意知,第一步函数单调递减,由复合函数同增异减可知0a <,第二步考虑函数定义域,10ax +≥ 在[]1,1-恒成立,(1)0a f <⎧⎨≥⎩ 得到10a -≤< 故答案为:10a -≤<.【变式6-1】若1()1ax f x x +=-在区间(1,)+∞上是增函数,则实数a 的取值范围是______. 【答案】1a <- 【解析】函数()111+1()=111a x a ax a f x a x x x -+++==+---,由复合函数的增减性可知,若1()1a g x x +=-在(1,)+∞为增函数,10a ∴+<,1a <-,【变式6-2】(多选)函数2()(21)3f x x a x =+-+在(2,2)-上为单调函数,则实数a 的取值范围可以是( )A .3,2⎛⎤-∞- ⎥⎝⎦ B .35,42⎛⎫- ⎪⎝⎭ C .35,42⎡⎤-⎢⎥⎣⎦ D .5,2⎡⎫+∞⎪⎢⎣⎭【答案】AD【解析】二次函数2()(21)3f x x a x =+-+图象对称轴为:212a x -=-, 因函数()f x 在(2,2)-上为单调函数,于是有: 当函数()f x 在(2,2)-上递减时,2122a --≥,解得32a ≤-, 当函数()f x 在(2,2)-上递增时,2122a --≤-,解得52a ≥, 所以实数a 的取值范围是:32a ≤-或52a ≥.故选:AD【变式6-3】已知函数21,22(),12x mx x f x m x x⎧-≥⎪⎪=⎨⎪-≤<⎪⎩对于12,[1,)x x ∀∈+∞且12x x ≠,都有1212()[()()]0x x f x f x -->,则m 的取值范围为 ______. 【答案】40,3⎛⎤⎥⎝⎦【解析】由题意可知,()f x 在[1,)+∞上为单调增函数,要使my x=-在[1,2)上单调递增,则0m -<,即0m >, 要使21()2f x x mx =-在[2,)+∞上单调递增,则2m ≤, 同时2112222m m ⨯-≥-,解得:43m ≤,综上可知:403m <≤.题型七 求函数的最值或值域【例7】求函数4y x x =+,142x ⎛⎫≤≤ ⎪⎝⎭的最大值与最小值.【答案】最大值172,最小值4 【解析】函数4y x x=+,根据对勾函数的性质可得: 4y x x =+在122⎡⎤⎢⎥⎣⎦,上单调递减,[]2,4上单调递增. 当2x =时取到最小值4. 又当12x =时,117822y =+=,当4x =时,415y =+= 所以当12x =时取到最大值172, 所以函数4y x x=+的最大值172,最小值4【变式7-1】312y x x =+- )A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为312y x x =+-所以1120,2x x -≥∴≤,又312y x x =+-12x ≤时单调递增, 所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:A.【变式7-2】函数23()31x f x x -=+的值域( ) A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭ D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】依题意,2112112(31)2321113333()3131313331x x x f x x x x x +-+--====-⋅++++,其中111331y x =-⋅+的值域为()(),00,∞-+∞U , 故函数()f x 的值域为22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故选D .【变式7-3】若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( ) A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦, 【答案】B【解析】令()f x t =,1y t t=+,则132t ⎡⎤∈⎢⎥⎣⎦,. 当112t ⎡⎫∈⎪⎢⎣⎭,时,1y t t=+单调递减, 当[]13t ∈,时,1y t t=+单调递增, 又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =, 所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .【变式7-4】已知{},min ,,,a a ba b b a b ≤⎧=⎨>⎩设()f x {}2min 2,42x x x =--+-,则函数()f x 的最大值是( ) A .2- B .1 C .2 D .3 【答案】B【解析】当2242x x x -≤-+-,即[]0,3x ∈时,()2f x x =-在[]0,3x ∈上单调递增,所以()max ()3321f x f ==-=,当2242x x x ->-+-,即()(),03,x ∈-∞+∞时,()()224222f x x x x =-+-=--+在(),0x ∈-∞上单调递增,在()3,+∞上单调递减,因为()02f =-,()31f =,所以()()31f x f <=; 综上:函数()f x 的最大值为1,故选:B题型八 函数奇偶性的判断【例8】判断下列函数的奇偶性.(1)()31f x x x=-; (2)()(1f x x =-(3)()f x (4)()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩.【答案】(1)奇函数;(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数;(4)偶函数【解析】(1)()f x 的定义域是()(),00,∞-+∞U ,关于原点对称,又()()()3311f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,所以()f x 是奇函数. (2)因为()f x 的定义域为[)1,1-,不关于原点对称,所以()f x 既不是奇函数也不是偶函数. (3)因为()f x的定义域为{,所以()0f x =,则()f x 既是奇函数又是偶函数.(4)方法一(定义法)因为函数()f x 的定义域为R ,所以函数()f x 的定义域关于原点对称.①当x >1时,1x -<-,所以()()()()22f x x x f x -=-⨯-==; ②当11x -≤≤时,()2f x =;③当1x <-时,1x ->,所以()()()22f x x x f x -=⨯-=-=. 综上,可知函数()f x 为偶函数.方法二(图象法) 作出函数()f x 的图象,如图所示,易知函数()f x 为偶函数.【变式8-1】函数()f x =_________对称.【答案】原点【解析】要使函数有意义,则240330x x ⎧-≥⎪⎨+-≠⎪⎩,得2206x x x -≤≤⎧⎨≠≠-⎩且,解得20x -≤<或02x <≤,则定义域关于原点对称.此时33x x +=+,则函数()f x ==,()()f x f x -==-,∴函数()f x 是奇函数,图象关于原点对称故答案为:原点【变式8-2】判断()||||()f x x a x a a R =+--∈的奇偶性.【答案】当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数 【解析】因为x ∈R ,所以定义域关于原点对称,当0a =时,则()||||0f x x x =-=,所以()f x 既是奇函数,又是偶函数; 当0a ≠时,因为()||||||||()f x x a x a x a x a f x -=-+---=--+=-, 所以()f x 是奇函数.综上所述,当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数.【变式8-3】设函数2()1f x x =+,则下列函数中为奇函数的是( ) A .()1f x + B .(1)f x + C .()1f x - D .(1)f x - 【答案】D 【解析】因为()21f x x =+ . 选项A :()2111f x x +=++,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故A 错. 选项B :()221112f x x x +==+++,定义域为()()22-∞--+∞U ,,,定义域不对称,故B 错. 选项C :()2111f x x -=-+,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故C 错. 选项D :()22111f x x x-==-+,定义域为()()00-∞∞,,+,定义域对称,为奇函数.故D 正确.故选:D.【变式8-4】设()f x 是R 上的任意函数,则下列叙述正确的是( )A .()()f x f x -是奇函数B .()()f x f x -是奇函数 C .()()f x f x --是奇函数 D .()()f x f x +-是奇函数 【答案】C【解析】A 选项:设()()()F x f x f x =-,()()()()F x f x f x F x -=-=,则()()f x f x -为偶函数,A 错误;B 选项:设()()()G x f x f x =-,则()()()G x f x f x -=-,()G x 与()G x -关系不定, 即不确定()()f x f x -的奇偶性,B 错误;C 选项:设()()()M x f x f x =--,则()()()()M x f x f x M x -=--=-, 则()()f x f x --为奇函数,C 正确;D 选项:设()()()N x f x f x =+-,则()()()()N x f x f x N x -=-+=, 则()()f x f x +-为偶函数,D 错误.故选:C.题型九 利用函数的奇偶性求值或求参【例9】若函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,则a b +=___________. 【答案】12-【解析】因为函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,所以320a a ++=,得12a =-,又()()f x f x -=-,即323211()()()22x b x x x bx x -----=-++,即220bx =恒成立,所以0b =,所以12a b +=-. 故答案为:12-.【变式9-1】若函数()()()325x x a f xx +-=为奇函数,则=a ( )A .12 B .23 C .34D .1 【答案】B【解析】根据题意得()()()()()323255x x a x x a f x xx-+---++==--,因为函数()()()325x x a f xx +-=为奇函数,所以()()f x f x -=-,即()()()()323255x x a x x a x x-+++-=-,整理得:()640a x -=,所以640a -=,解得23a =.故选:B【变式9-2】已知函数()()32121f x a x x =-+-是偶函数,则a =______.【答案】1【解析】函数()()32121f x a x x =-+-是偶函数,则()()11f f -=,即()121121a a -+-=-+--,解之得1a = 经检验符合题意. 故答案为:1【变式9-3】已知函数()f x 是定义在R 上的奇函数,当0x >时,()(1)f x x x =+,那么()1f -等于( )A .﹣2B .﹣1C .0D .2 【答案】A【解析】因为0x >时,()(1)f x x x =+,可得()1122f =⨯=,又因为函数()f x 是定义在R 上的奇函数,可得()()112f f -=-=-.故选:A.【变式9-4】设()f x 是定义域为()2,2-的奇函数,当02x ≤<时,()122f x x m x =++-(m 为常数),则()1f -=( )A .53- B .53C .32-D .32【答案】C【解析】因为()f x 是定义域为()2,2-的奇函数,所以()00f =,因为当02x ≤<时,()122f x x m x =++-,所以()1002f m =-+=,解得12m =, 所以当02x ≤<时,()11222f x x x =++-,所以()()13111222f f ⎛⎫-=-=--++=- ⎪⎝⎭.故选:C.【变式9-5】设函数()()23211x x f x x ++=+在区间[]22-,上的最大值为M ,最小值为N ,则()20221M N +-的值为______. 【答案】1【解析】由题意知,()32211x xf x x +=++([]2,2x ∈-), 设()3221x xg x x ++=,则()()1f x g x =+,因为()()3221x xg x g x x ---==-+,所以()g x 为奇函数, ()g x 在区间[]22-,上的最大值与最小值的和为0, 故2M N +=,所以()()202220221211M N +-=-=.题型十 利用函数的奇偶性求解析式【例10】设()f x 为奇函数,且当0x ≥时,2()f x x x =+,则当0x <时,()f x =( ) A .2x x + B .2x x -+ C .2x x - D .2x x -- 【答案】B【解析】设0x <,则0x ->,所以()2f x x x -=-,又()f x 为奇函数,所以()()()22f x f x x x x x =--=--=-+, 所以当0x <时,()2f x x x =-+.故选:B.【变式10-1】函数()f x 为偶函数,当()0,x ∈+∞时,()227f x x x =-,则当(),0x ∈-∞时,()f x =()A .()227f x x x =-+B .()227f x x x =--C .()227f x x x =-D .()227f x x x =+ 【答案】D【解析】设(),0x ∈-∞,则()0,x -∈+∞,则()()()222727f x x x x x -=---=+,因为函数()f x 为偶函数,则当(),0x ∈-∞时,()()227f x f x x x =-=+.故选:D.【变式10-2】已知()f x 是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则当0x <时,()f x =( )A .2x x -B .2x x +C .2x x -+D .2x x -- 【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()00f =,即()010f a =+=,解得1a =-,当0x ≥时,()2f x x x =-,当0x <时,0x ->,则()()22f x x x x x -=-+=+,因为()f x 是奇函数,所以()()2f x f x x x =--=--.故选:D .【变式10-3】若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=(e 为无理数,2.71828e =⋅⋅⋅),则()g x =( )A .e e x x --B .()1e e 2x x -+C .()1e e 2x x --D .()1e e 2x x -- 【答案】D【解析】由()()e xf xg x +=可得()()e x f x g x --+-=,根据()f x 与()g x 的奇偶性可得()()()()e xf xg x f x g x --+-=-=,故()()()()e e x xf xg x f x g x ---+=-⎡⎤⎣⎦.整理得()2e e x xg x --=-,即()()1e e 2x xg x -=-.故选:D.题型十一 利用单调性奇偶性解不等式【例11】定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是( )A .12m <- B .12m > C .112m -≤< D .122m <≤ 【答案】C【解析】∵()f x 是偶函数,()()()f x f x f x ∴=-=,故(1)()f m f m -<可变形为(1)()f m f m -<, ∵()f x 在区间[]0,2上单调递减,故212131222212112m m m m m m m m ⎧⎧⎪⎪-≤-≤-≤≤⎪⎪-≤≤⇒-≤≤⇒-≤<⎨⎨⎪⎪->⎪⎪<⎩⎩.故选:C.【变式11-1】若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是__________. 【答案】[]1,2【解析】因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增,又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥,则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤,所以原不等式的解集为[]1,2. 故答案为:[]1,2【变式11-2】函数()f x 是定义在()1,1-上的奇函数且单调递减,若2(2)(4)0,f a f a -+-<则a 的取值范围是( ) A .)5,3 B .(3)(2,)-∞⋃+∞ C .)3,2 D .()3,2-【答案】C【解析】函数()f x 是定义在()1,1-上的奇函数且单调递减,2(2)(4)0f a f a -+-<可化为2(2)(4)f a f a -<-则2212114124a a a a -<-<⎧⎪-<-<⎨⎪->-⎩2a <故选:C【变式11-3】奇函数()2f x +是定义在()3,1--上的减函数,若()()1320f m f m -+-<,则实数m 的取值范围为______. 【答案】()1,2【解析】由题意知,函数()2f x +的定义域为()3,1--,所以函数()f x 的定义域为()1,1-, 所以1111321m m -<-<⎧⎨-<-<⎩,解得12m <<.又奇函数()2f x +是()3,1--上的减函数,所以()f x 是()1,1-上的奇函数,且在()1,1-上单调递减. 由()()1320f m f m -+-<,得()()132f m f m -<--, 所以()()123f m f m -<-,所以123m m ->-,解得2m <.综上,12m <<. 故答案为:()1,2.【变式11-4】已知函数()f x 是定义在R 上的偶函数,若1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()21210mf m m f m --->的解集为( )A .(),1-∞-B .(),1-∞C .()1,+∞D .()1,-+∞ 【答案】C【解析】令()()g x xf x =,因为函数()f x 是定义在R 上的偶函数,所以()()()()g x xf x xf x g x -=--=-=-,即()g x 是定义在R 上奇函数. 又1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()()()11221212120x f x x f x g x g x x x x x --=<--成立,所以()g x 在[)0,∞+上单调递减,又()g x 是定义在R 上奇函数,所以()g x 在R 上单调递减,所以()()()()()2121210mf m m f m g m g m ---=-->,即()()21g m g m >-, 所以21m m <-,解得1m >.故A ,B ,D 错误.故选:C .题型十二 利用单调性奇偶性比较大小【例12】定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则下列判断正确的是( )A .311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113422f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .311242f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131224f f f ⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A【解析】因为()f x 为偶函数,所以11()()22f f -=,33()()22f f -=, 又113422<<,且()f x 在(0,)+∞上是减函数,所以311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A【变式12-1】已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①()(),x f x f x ∀∈-=R ;②()12,0,x x ∀∈+∞,当12x x ≠时,()()2112120x f x x f x x x ->-.记()1a f =,()33f b -=,()55f c =,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a << 【答案】B【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,()()2112120x f x x f x x x ->-,即()()1212120f x f x x x x x ->-,所以函数()f x x 在(0,)+∞上单调递增. 又x ∀∈R ,()()f x f x -=,所以函数()f x 是R 上的偶函数,所以()()3333f f -=,则有()()()135135f f f <<,所以a b c <<,故选:B .【变式12-2】已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 【答案】B【解析】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >, ∴函数()f x 在(1,)+∞上为单调增函数, ∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B .【变式12-3】已知()f x 对于任意R x ∈都有(2)()f x f x +=,且()f x 在区间[)0,2上是单调递增的,则( 6.5),(1),(0)f f f --的大小关系是( )A .(1)(0)( 6.5)f f f -<<-B .( 6.5)(0)(1)f f f -<<-C .(1)( 6.5)(0)f f f -<-<D .(0)(1)( 6.5)f f f <-<- 【答案】D 【解析】()f x 对于任意R x ∈都有(2)()f x f x +=,∴()f x 周期为2,偶函数()f x 在区间[)0,2上是单调递增,( 6.5)(1.5)f f ∴-=,(1)(1)f f -=,(0)(1)(1.5)f f f ∴<<,即(0)(1)( 6.5)f f f <-<-故选:D题型十三 利用函数的周期性求值【例13】已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255- 【答案】B【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B【变式13-1】已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022 【答案】A 【解析】(2)()(2)()x f x f f f x x -=∴+=-,又()()f x f x -=-,(2)()()f x f x f x ∴+=-=-,∴函数的周期4T =.又函数()f x 是定义域为R 的奇函数,(0)0f ∴=,(2)(0)0f f ∴==,(3)(1)(1)2f f f =-=-=-,(4)(0)0f f == (1)(2)(3)(4)20200f f f f +++=+-+=∴,又202250542=⨯+(1)(2)(3)(2022)5050(1)(2)2f f f f f f ∴++++=⨯++=.故选:A.【变式13-2】已知函数()1y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=当(]0,2x ∈时,()2f x x =+.则()2022f =( )A .1-B .1C .2D .2- 【答案】D【解析】函数()1y f x =+的图象关于直线3x =-对称,∴函数()y f x =的图象关于直线2x =-对称,()()22f x f x ∴-+=--,取2x x =+可得()()2222f x f x -++=--+⎡⎤⎣⎦,∴()()4f x f x =--又对x ∀∈R 有()()2f x f x +-=, 取4x x =--可得()()442f x f x --++=,所以()()()42f x f x f x =--=--.,()()424f x f x --=-+,()()4f x f x ∴+=-,()()()444f x f x f x ⎡⎤∴++=--=⎣⎦,即()()8f x f x +=,()f x ∴的周期8T =()()()()()()()2022252866242222222f f f f f f ∴=⨯+==+=-=-=-+=-.故选:D.【变式13-3】设函数()f x 的定义域为R ,()12f x +-为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()011f f -+=,则20232⎛⎫=⎪⎝⎭f ________. 【答案】34【解析】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,函数()f x 关于点()1,2对称,又定义域为R ,则有()12f =;又()2f x +为偶函数,可得()()22f x f x +=-+,函数()f x 关于直线2x =对称,()()()4242f x f x f x =--=-+,又()()24f x f x +=--,则()()f x f x =-,则()()()222f x f x f x +=-+=-,函数()f x 周期为4,则202311131012422222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-==-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 由上可得()()()()1,041424f f a b f f a b ==+=-=---,则2441a b a b a b +=⎧⎨++--=⎩,解得11a b =⎧⎨=⎩, 则39131244f ⎛⎫=+= ⎪⎝⎭,则2023334224f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:34.题型十四 抽象函数综合问题【例4】函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立.(1)证明函数f (x )的奇偶性;(2)若f (1)= -2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->-- 【答案】(1)证明见解析;(2)4;(3){|2x x <-或1}x >- 【解析】(1)令x =y =0得f (0)=0,再令y =—x 即得f (-x )=-f (x ), ∴()f x 是奇函数.(2)设任意12,R x x ∈,且12x x <,则210x x ->,由已知得21()0f x x -<①,又212121()()()()()f x x f x f x f x f x -=+-=-②, 由①②可知12()()f x f x >,由函数的单调性定义知f (x )在(-∞,+∞)上是减函数,∴x ∈[-2,2]时,[]max ()(2)(2)(11)2(1)4f x f f f f =-=-=-+=-=, ∴f (x )当x ∈[-2,2]时的最大值为4.(3)由已知得:[]2(2)(4)2()(2)f x f x f x f -->--,由(1)知f (x )是奇函数,∴上式又可化为:[]2(24)2(2)(2)(2)(24)f x x f x f x f x f x -->+=+++=+,由(2)知f (x )是R 上的减函数, ∴上式即:22424x x x --<+, 化简得(2)(1)0x x ++>,∴ 原不等式的解集为{|2x x <-或1}x >-.【变式14-1】已知函数()f x 的定义域是()0,∞+,对定义域内的任意12x x , 都有()()()1212f x x f x f x =+,且当01x <<时,()0f x >.(1)证明:当1x >时,()0f x <;(2)判断()f x 的单调性并加以证明;(3)如果对任意的()12,0,x x ∈+∞ ,()()()221212f x x f a f x x +≤+恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)函数()f x 单调递减,证明见解析;(3)(]0,2a ∈ 【解析】(1)(1)(1)(1)(1)0f f f f =+⇒=;1(1)()()0f f x f x=+=;当()0,1x ∈时,()11,x ∈+∞;()10()0f x f x>⇒<;∴当1x >时,()0f x <.(2)单调递减.证明:()1212,0,x x x x ∀∈+∞<,且()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭12x x <,211x x ∴>,210x f x ⎛⎫∴< ⎪⎝⎭,即()()12f x f x > ∴()f x 单调递减(3)函数()f x 的定义域是()0,∞+0a ∴>;()()()()()222212121212f x x f a f x x f x x f ax x +≤+⇒+≤恒成立;由(2),()f x 单调递减,221212x x ax x +≥恒成立,221212x x a x x +≤恒成立,因为22121212212x x x x x x x x +=+≥,当且仅当12x x =时等号成立,所以2a ≤; 又()f a 有意义,所以0a > 综上:(]0,2a ∈.【变式14-2】已知函数()f x 对任意,R x y ∈,都有()()()1f x y f x f y +=+-,且当0x >时,()1f x >. (1)求证:()f x 在R 上是增函数;(2)若关于a 的方程2(75)2f a a +-=的一个实根是1,求(6)f 的值; (3)在(2)的条件下,已知R m ∈,解关于x 的不等式()(2)3f mx f x ->+. 【答案】(1)证明见解析;(2)3;(3)详见解析【解析】(1)依题意()()()1f x y f x f y +=+-,且0x >时,()1f x >,令0x y ==,则()()()()0001,01f f f f =+-=,()()()()()1,2f x x f x f x f x f x -+=-+--+=,任取12x x <,()()()()121211f x f x f x f x x x -=--+()()()()12112111f x f x x f x f x x =--+-=--+⎡⎤⎣⎦,由于210x x ->,所以()211f x x ->,所以()()()()12120,f x f x f x f x -<<,所以()f x 在R 上递增. (2)由(1)知,()f x 在R 上递增,()()217532f f +-==,()()()()6333313f f f f =+=+-=.(3)依题意()()()1f x y f x f y +=+-,()f x 在R 上递增,()(2)3f mx f x ->+.()(2)12f mx f x -->+,()()()22,23f mx x f mx x f +->+->,()23,15mx x m x +->+>,当1m =-时,不等式的解集为空集. 当1m <-时,不等式的解集为5|1x x m ⎧⎫<⎨⎬+⎩⎭. 当1m >-时,不等式的解集为5|1x x m ⎧⎫>⎨⎬+⎩⎭.【变式14-3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且1()12f =-当0x >时,()0.f x <(1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明; (3)如果()(2)2f x f x >-,求x 的取值范围;【答案】(1)0;(2)函数()f x 是定义在R 上的减函数,详见解析;(3)1x >-. 【解析】(1)令0x y ==,则()()()0000f f f -=-,∴()00f =;(2)函数()f x 是定义在R 上的减函数,设12,R x x ∀∈,且12x x >,则120x x ->, ∴()()()1212f x x f x f x -=-,∵当0x >时,()0.f x <∴()120f x x -<,即()()120f x f x -< ∴()()12f x f x <,∴函数()f x 是定义在R 上的减函数; (3)∵()()()f x y f x f y -=-∴()()()00f x f f x -=-,又()00f =, ∴()()f x f x =--, ∴函数()f x 是奇函数,∵()()()f x y f x f y -=-,1()12f =- ∴111112222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫--=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴()()(2)2(2)1(21)f x f x f x f f x >-=--=+, 又函数()f x 是定义在R 上的减函数, ∴21x x <+,即1x >-, ∴x 的取值范围为1x >-.题型十五 幂函数的图象性质【例15】现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( ) A .1 B .2 C .3 D .4 【答案】B【解析】幂函数满足a y x =形式,故3y x =,y x =满足条件,共2个故选:B【变式15-1】(多选)已知幂函数232()(21)m m f x a x -+=-,其中,a m R ∈,则下列说法正确的是( )A .1a =B .()f x 恒过定点(1,1)C .若3m =时,()y f x =关于y 轴对称D .若112m <<时,(2)(1)f f <【答案】ABC【解析】因为232()(21)m m f x a x -+=-为幂函数,所以211a -=,解得1a =,故A 正确; 则232()m m f x x -+=,故恒过定点(1,1),故B 正确;当3m =时,2()f x x =,22()()()f x x x f x -=-==,所以()y f x =为偶函数,则()y f x =关于y 轴对称,故C 正确; 当112m <<时,2320m m -+>,则()f x 在(0,)+∞上为增函数, 所以(2)(1)f f >,故D 错误.故选:ABC【变式15-2】图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是( )A .12,3,1-B .1-,3,12C .12,1-,3D .1-,12,3 【答案】D【解析】由题图知:10α<,201α<<,31α>,所以1α,2α,3α依次可以是1-,12,3.故选:D【变式15-3】当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数,则m =_________.【答案】2【解析】函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减, 可得2230m m --<,可得2m =, 故答案为:2【变式15-4】已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.【答案】4【解析】由题意可得23310m m m ⎧--=⎨>⎩,解得4m =故答案为:4.【变式15-5】已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围.【答案】(1)()3f x x =;(2)2,3⎛⎫-∞ ⎪⎝⎭【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.题型十六 简单函数模型的应用【例16】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0. (1)当020x <≤时,求函数()v x 的表达式;。

中职数学第三章函数复习

中职数学第三章函数复习

第三章 函数复习一、知识点梳理定义:设在某个变化过程中有两个变量x 和y ,变量x 的取值范围是数集D ,如果对于数集D 内的每一 个x 值,按照某个对应法则f ,y 都有唯一确定 的值与它对应,那么,就把y 称为x 的函数。

记作:y=f(x)x 叫做自变量,y 叫做因变量函数值:当0x x =时,函数y=f(x)对应的值0y 叫做1.函数的概念 函数在0x 处的函数值。

定义域:x 取值范围数集D值域:函数值y 的集合{}D x x f ∈=),(y y函数三要素:定义域、值域、对应法则题型:①考察两个函数是否为同一个函数(若函数定义域、对应法则均相同,则它们是相同函数)②考察“某一点”处的函数值,尤其是分段函数在“某一点”处的函数值 ③考察函数的定义域一些常见函数的定义域:(1)一次函数)0≠(+=k b kx y 的定义域为R(2)二次函数)0≠(++=2a c bx ax y 的定义域为R (3)函数xy 1=的定义域为}0≠{x x (4)函数为正偶数)n x y n (=的定义域为}0≥{x x(5)指数函数)1≠0>=a a a y x且(的定义域为R (6)对数函数)1≠0>log =a a x y a 且(的定义域为}0>{x x (7)x y sin =的定义域为R(8)x y cos =的定义域为R (9)x y tan =的定义域为}2+≠{ππk x x解析式法:用等式表示两个变量间的函数关系的方法 2.函数的表示方法 列表法:用列表表示两个变量间的函数关系的方法 图像法:用图像表示两个变量间的函数关系的方法 在区间[a,b]上,若b x x a ≤<≤21 如果有)()(21x f x f <,则f(x)在[a,b]单调递增,[a,b]是递增区间单调性 如果有)()(21x f x f >,则f(x)在[a,b]单调递减,[a,b]是递减区间3.函数的性质 题型举例:判断函数的单调性奇函数:若)(-)(x f x f =-,D x ∈,则函数f(x) 叫做奇函数,其图像关于原点对称奇偶性 偶函数:若)()(x f x f =-,D x ∈,则函数f(x) 叫做偶函数,其图像关于y 轴对称【注】奇、偶函数的定义域关于原点对称周期性(略)题型:判断函数单调性、奇偶性及比较函数值的大小3-1函数单调性的判断方法(1)由定义判断①设21x x ,是定义域区间D 上的任意两个值,且21<x x (注意利用21>x x --); ②作差)()(21x f x f -,并将差的形式化简,目标是有利于判断结果的正负号;③判断)()(21x f x f -的正负;④结论(2)由图像特征进行判断:从左向右看图像图像上升⇔单调增函数图像下降⇔单调减函数(3)复合函数的单调性判断(表3-1)3-2函数的奇偶性1.【知识口诀】由函数奇偶性的定义可知:如果f(-x)与f(x)各项互为相反数时,函数为奇函数;如果f(一x)与f(x)各项都相等时,函数为偶函数.所以,我们常用“奇变偶不变”这五个字来概括函数奇偶性的特点。

中职数学基础模块(上册)基础练习-第三章函数

中职数学基础模块(上册)基础练习-第三章函数

第三章 函数第三章 第一课时 函数的概念【基础知识·一定要看】1.函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有__________的数 f x 和它对应,那么就称:f A B 为从集合A 到集合B 的一个函数.记作: y f x ,x A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {|}f x x A 叫做函数的值域. 2.求函数定义域的常用方法: (1)分母不为零;(2)偶次根式,则被开方数大于或等于零; (3)0的0次没有意义;(4)对数的真数大于零;(还没学)3.相同函数:个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.4.分段函数:如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数. 一、选择题1.在下面四个图中,可表示函数 y f x 的图象的可能是( )A. B. C. D.2.函数1()f x x的定义域是( ) A.[2,0)(0,)B.[2,) C.RD.(,0)(0,)3.下列每组中的两个函数是同一函数的是( )A.1y 与0y x ; B.y y x ;C.y x 与2y;D.y x 与y4. 23,12,1x x f x x x ,则(2)f 等于( )A.-2 B.0C.1D.65.函数 2112f x x x, 0,4x 的值域( )A. 0,4 B. 1,5 C. 1,4D.1,526.已知 2146f x x ,则 5f 的值为( ) A.26B.20C.18D.167.已知函数 2,32,3x x f x x x .则 3f f ( )A.1 B.4 C.9 D.16二、填空题8.函数()1f x 的定义域为 . 9.若 234f x x Bx ,且 112f ,则B = . 10.已知函数()y f x 的表达式4()1f x x,若()2f a ,则实数 a . 11.二次函数 22f x x x , 1,1x ,则函数 f x 在此区间上的值域为 . 三、解答题12.已知函数 1f x ax x过点(1,5),求a 的值.第三章 第二课时 函数的表示方法【基础知识·一定要看】1.函数的三种表示方法:①待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.②换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.常见的几种基本初等函数①正比例函数(0)y kx k ②一次函数(0)y kx b k ③反比例函数(0)ky k x④二次函数2(0)y ax bx c a 一、选择题1.已知(21)44f x x ,则(1)f 的值为( ) A.2B.4C.6D.82.函数 y f x 的图象如图所示,则 9f ( ) A.5 B.4C.3D.23.已知 212f x x x ,则 f x ( ) A.2xB.21xC.21xD.22x4.已知 f x 是反比例函数,且(3)1f ,则 f x 的解析式为( ) A. 3f x xB. 3f x xC. 3f x xD. 3f x x5.若函数 f x 和 g x 分别由下表给出: 则 1g f ( ) A.4 B.3C.2D.16.已知 32f x x ,则 21f x 等于( ) A.32xB.61x C.21xD.65x7.已知()f x 是一次函数,且(1)35f x x ,则()f x 的解析式为( ) A.()32f x xB.()32f x xC.()23f x xD.()23f x x二、填空题8.已知 22143f x x ,则 f x .9.已知函数 f x 对于任意的x 都有 212f x x f x ,则 f x . 10.已知等腰三角形的周长为18,底边长为x ,腰长为y ,则y 关于x 的函数关系式为 . 三、解答题11.已知函数 224f x x x . (1)求 0f ; (2)求 f x 的解析式.第三章 第三课时 函数的性质【基础知识·一定要看】1.函数的单调性 ①单调函数的定义 自左向右看图象是上升的自左向右看图象是下降的②证明函数单调性的步骤第一步:取值.设12x x ,是()f x 定义域内一个区间上的任意两个自变量,且12x x ; 第二步:变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; 第三步:定号.判断差的正负或商与1的大小关系; 第四步:得出结论. 2.函数的奇偶性 ①函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为奇函数. ②奇偶函数的图象与性质偶函数:函数()f x 是偶函数 函数()f x 的图象关于y 轴对称; 奇函数:函数()f x 是奇函数 函数()f x 的图象关于原点中心对称;若奇函数()y f x 在0x 处有意义,则有(0)0f .③用定义判断函数奇偶性的步骤第一步:求函数()f x 的定义域,判断函数的定义域是否_______________,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;第二步:求()f x ,若 f x f x ,则()f x 是奇函数;若()f x =()f x ,则()f x 是偶函数;若()()f x f x ,则()f x 既不是奇函数,也不是偶函数;若()()f x f x 且 f x f x ,则()f x 既是奇函数,又是偶函数.1.若函数 1y a x b ,x R 在其定义域上是增函数,则( ) A.1aB.1aC.0bD.0b2.函数 f x 在R 上是减函数,则有( ) A. 25f fB. 25f fC. 25f fD. 25f f3.下列函数中,既是偶函数又在 0, 上单调递增的函数是( ) A.y xB.1y xC.21y xD.1y x4.若偶函数 f x 在 ,1 上是减函数,则( ) A. 2.513f f f B. 1 2.53f f f C. 3 2.51f f fD. 31 2.5f f f5.函数 f x 是定义在 0, 上的增函数,则满足 1213f x f的x 的取值范围是( ) A.12,33B.12,33C.12,23D.12,236.函数22y x x 单调减区间是( ) A.1,2B. 1,C.1,2D. ,【填空】7.已知 f x 是偶函数, 12f ,则 11f f .8.函数()y f x 是定义在R 上的增函数,且 29f m f m ,则实数m 的取值范围是 .9.函数()y f x 是定义在R 上的奇函数,当0x 时,3()f x x x ,则(2)f .10.已知 y f x 在定义域 0,1上是减函数,且 121f a f a ,则实数a 的取值范围 .11.已知函数2()()2f x x m .(1)若函数()f x 的图象过点(2,2),求函数y ()f x 的单调递增区间; (2)若函数()f x 是偶函数,求m 值.12.已知函数 1f x x x(1)判断 f x 的奇偶性并说明理由; (2)判断 f x 在 0,1上的单调性并加以证明.第三章 第四课时 函数的应用一、选择题1.据调查,某存车处(只存放自行车和电动车)在某天的存车量为400辆次,其中电动车存车费是每辆一次2元,自行车存车费是每辆一次1元.若该天自行车存车量为x 辆次,存车总收入为y 元,则y 关于x 的函数关系式是( ) A. 4000400y x x B. 8000400y x x C. 4000400y x xD. 8000400y x x2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (立方米)的反比例函数,其图像如图所示,则这个函数的解析式为( )A.69P VB.96P VC.69P VD.96P V3.某物体一天中的温度T 是时间t 的函数:3()360T t t t ,时间的单位是小时,温度的单位是C ,0 t 表示中午12时,其后取值为正,其前取值为负,则上午8时的温度为( ) A.18CB.8CC.0CD.4C二、填空题4.若某一品种的练习册每本2.5元,则购买x 本的费用y 与x 的函数关系是 . 5.某社区超市的某种商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x ,那么该商品的日利润最大时,当日售价为 元.三、解答题6.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中数据的探究,发现这种读物的投入成本 (元)是印数 (册)的一次函数,求这个一次函数的解析式(不要求写出的取值范围); (2)如果出版社投入成本48000元,那么能印该读物多少册?x x7.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为 min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?。

3.4 一元二次函数的图象与性质课件-2023届广东省高职高考数学第一轮复习第三章函数

3.4 一元二次函数的图象与性质课件-2023届广东省高职高考数学第一轮复习第三章函数
3.4 一元二次函数的图象与性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.一元二次函数的定义 形如y=ax2+bx+c(a≠0)的函数叫做一元二次函数.它的定义域是 R,图象是一条抛物线.
知识点1 知识点2 知识点3 知识点4 知识点5
2.二次函数y=ax2+bx+c(a≠0)的性质
y=ax2+bx+c
【解析】
(1) 依 题 意 : 抛 物 线 开 口 向 下 , 对 称 轴 为
x

m+n 2

-2+t2-2-t=-2,如图观察得知:f(-1)>f(1).
(2)依题意得对称轴为 x=m+2 n=-12+7=3,则x1+2 x2=3,从而求得
两根之和为 6.
例5 分别求满足下列条件的二次函数y=f(x)的解析式. (1)图象过点(-1,-22),(0,-8),(2,8); (2)顶点为(-1,-8),且过点(0,-6); (3)过点(1,-8),函数与x轴的两个交点坐标分别为(5,0),(-1, 0). 【分析】 本题考查一元二次函数的三种解析式的求法.一般式:y
=ax2+bx+c;顶点式:y=a(x-m)2+n;交点式:y=a(x-x1)(x-x2).
【解】 (1)设二次函数 f(x)=ax2+bx+c,将点(-1,-22),(0,-
8),(2,8)代入解析式:
a-b+c=-22
c=-8
,解得 a=-2,b=12,c=-8,
4a+2b+c=8
所以函数解析式为 f(x)=-2x2+12x-8.
例4 (1)如果函数f(x)=x2+bx+c对任意实数t,都有f(3+t)=f(3
-t),则(
)
A.f(3)<f(1)<f(4) B.f(1)<f(3)<f(4)

(完整版)中职数学第三章习题及答案

(完整版)中职数学第三章习题及答案

第三章:函数一、填空题:(每空2分)11、函数f (x) —的定义域是 _____________________________ 。

x 12、函数f (x) 3x 2的定义域是______________________________ 。

3、已知函数f(x) 3x 2,贝U f (0) _____ , f (2) _______ 。

4、已知函数f (x) x21,则f(0) _______ , f ( 2) _________ 。

5、函数的表示方法有三种,即:______________________________________ 。

6点P 1,3关于x轴的对称点坐标是 ____________ ;点M (2, -3)关于y轴的对称点坐标是_________ ;点N(3, 3)关于原点对称点坐标是______________ 。

7、函数f(x) 2x2 1是 ___________ 函数;函数f(x) x3 x是______________ 函数;8、每瓶饮料的单价为2.5元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示为___________ 。

9、常用对数表中,表示对数与对数值之间的关系采用的是___________ 的方法。

二、选择题(每题3分)1、下列各点中,在函数y 3x 1的图像上的点是( )。

A. (1, 2)B. (3,4)C.(0,1)D.(5,6)2、函数 1y的疋义域为( )。

2x3f 333 f 3A. B. ,£ C., D.-22223、下列函数中是奇函数的是( )。

A. y :x 32B. y x 1C.3y x3D.y x 14、函数y 4x3的单调递增区间是()0A. B. 0, C.,0 D. 0.5、点P(-2,1) 关于x轴的对称点坐标是( )。

A. (-2, 1)B. (2, 1)C.(2,-1)D.(-2, -1)6、点P(-2,1) 关于原点0的对称点坐标是( )0A. (-2, 1)B. (2, 1)C.(2,-1)D.(-2, -1)7、函数y 23x的定义域是( )。

中职数学第三章函数-函数章末复习

中职数学第三章函数-函数章末复习

第23课时 章末复习与小结(一)【目标导航】1.通过整理全章知识的过程,掌握本章的基本知识,基本的数学思想及方法;2.掌握本章的基本的数学题型,解题思路,熟练解题技巧。

【要点整理】 (一)函数的概念1、概念: 在某一个变化过程中有两个变量x 和y ,设变量x 的取值范围为数集D ,如果对于D 内的 值,按照某个对应法则f ,y 都有 值与它 ,那么,把x 叫做 ,把y 叫做x 的 .2.表示: 将上述函数记作 .变量x 叫做自变量,数集D 叫做函数的 .3.函数值的概念: 函数值.记作 .4.函数的定义域: 。

5.定义域的求法:(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;6.函数的值域:函数值的集合(){}|,y y f x x D =∈叫做函数的值域.7.基本初等函数的值域的求法: 。

8. 同一函数的理解:(1)函数的三要素:1) ;2) ;3) 。

2)什么是同一函数: 。

(二)函数的表示 1. 函数的三种表示:(1) ;(2) ;(3) 。

2. “描点法”画图的基本步骤:(1) ;(2) ;(3) 。

3.三种表示法的优缺点比较:(1)常见解析式的设法:一次函数: ;正比例函数 ;反比例函数: ;二次函数: 。

(2)待定系数法求解析式的一般步骤:1)设; 。

2)列; 。

3)解; 。

4)写; 。

(3)简单的抽象函数的解析式的求法:① ② 。

(三)函数的性质 1.单调性:(1)单调增函数的定义: 在区间(),a b 内,随着 的增加,函数值 ,图像呈 趋势.即对于 的()12,,x x a b ∈,当 时,都有 成立.这时把函数()f x 叫做区间(),a b 内的 ,区间(),a b 叫做函数()f x 的 .此时,区间(,)a b 叫做函数()f x 的 。

(2)单调减函数的定义:在区间(),a b 内,随着 的增加,函数值 ,图像呈 趋势.即对于 的()12,,x x a b ∈,当 时,都有 成立.这时把函数()f x 叫做区间(),a b 内的 ,区间(),a b 叫做函数()f x 的 . (2)单调性的概念:①单调性: 。

2021高职高考数学复习第三章函数:考题直通

2021高职高考数学复习第三章函数:考题直通

A.[ 3 , ) 4
B.[ 4 , ) 3
C.(, 3] 4
D.(, 4] 3
【答案】C 由3 4x 0得 : x ,选C.
8.(2019年)函数y=lg(x+2)的定义域是 ( )
A.(-2,+∞)
B.[-2,+∞)
C.(-∞,-2)
D.(-∞,-2]
【答案】A 要使函数有意义,只要x+2>0,求得x>-2.∴函数y=lg(x+2)的定 义域为(-2,+∞),故选A.
12.(2015年)已知函数f(x)是奇函数,且f(2)=1,则[f(-2)]3= ( )
A.-8
B.-1
C.1
D.8
【答案】B ∵函数是奇函数,且f(2)=1, ∴f(-2)=-1, [f(-2)]3=(-1)3=-1.
13.(2016年)函数f(x)是偶函数,y=f(x)的图象经过点(2,-5),则下 列等式恒成立的是 ( ) A.f(-2)=5 B. f(-2)=-5 C. f(-5)=2 D. f(-5)=-2
考题直通
一、选择题
1.(2018年)已知函数f
(
x)
x x
3, x 0 2 1, x 0
,
设c
f (2),则f (c)
A.1
B.0
C. 1
D. 2
【答案】 B Q 2 0,c f (2) 2 3 1,Q 1 0, f (c) f (1) (1)2 1 0,选B.
A.4
B.-4
C.2
D.-2
【答案】C 由题意可知, f(x)=3x2+bx-1是偶函数,则b=0, 所以f(x)=3x2-1
f(-1)=3×(-1)2-1=2,故选C.

函数单元测试卷高一数学上学期高教版中职数学基础模块上册

函数单元测试卷高一数学上学期高教版中职数学基础模块上册

第三章 函数 单元测试卷一、单选题(每题3分)1.函数()1f x x =- )A .{}|1x x ≥B .{|1}x x ≤C .{}|1x x >D .{}|1x x < 2.与函数1y x =+相等的函数是( )A .()01y x =+B .1y t =+C .21y x =+D .1y x =+3.设函数f (x )=21,1,2,1,x x x x ⎧+≤⎪⎨>⎪⎩则f (3)=( )A .15 B .3 C .23 D .1394.函数()12x f x x -=-的定义域为( )A .()1,+∞B .[)1,+∞C .[)1,2D .[)()1,22,⋃+∞ 5.已知函数()223f x x x =-- )A .{1x x ≥或}3x ≤-B .{}|13x x -≤≤C .{3x x ≥或}1x ≤-D .{}3|1x x -≤≤6.已知函数()24,0,0x x f x x x ->=≤⎪⎩,则f (f (4))=( )A .-2B .0C .4D .16 7.已知函数3()4f x ax bx =++(a ,b 不为零),且(5)10f =,则(5)f -等于( ) A .-10 B .-2 C .-6 D .14 8.设函数2()2(4)2f x x a x =+-+在区间(,3]-∞上是减函数,则实数a 的取值范围是( )A .7a ≥-B .7a ≥C .3a ≥D .7a ≤-9.已知函数21,0()2,0x x f x x x ⎧+≤=⎨->⎩,若()5f x =,则x 的值是( ).A .-2B .2或52-C .2或-2D .2或-2或52- 10.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-711.如果偶函数()f x 在区间(0,1)上是减函数且最大值为3,则()f x 在区间(-1,0)上是( )A .增函数且最大值为3B .增函数且最小值为3C .减函数且最大值为3D .减函数且最小值为3二、填空题(每空3分)12.点(-1,-3)关于y 轴的对称点为___________.13.已知函数()622-=x x f ,则f (3)=__________. 14.判断下列函数的奇偶性:(1)()3f x x =___________(2)()225f x x =-___________(3)()f x x =___________(4)()3f x x =+___________15.设(1)2,f x x +=-则()f x =___________. 16.函数235y x x =+-的值域为___________.17.函数()3422+-=x x x f 的单调减区间为____________.三、解答题(每题8分)18.设函数()221,20,3,0 3.x x f x x x +-<≤⎧⎪=⎨-<<⎪⎩(1)求函数的定义域;(2)求()1,(0),(2)f f f -.19.判断下列函数的奇偶性:(1)()f x x =; (2)()232f x x =-+20.如图是定义在区间[5-,5]上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间内的单调性.21.利用函数的单调性定义,证明函数23+=x y 的单调性.22.邢台市出租车的票价按下列规则制定:(1)2公里以内(含2公里),票价6元;(2)超过2公里,每公里收费1.6元.请根据题意,写出票价与里程之间的函数关系式.。

中专 技校 职高单招 对口升学数学总复习第三章 函数

中专 技校 职高单招 对口升学数学总复习第三章 函数
高职高考数学总复习
目录
1
集合与逻辑用语
2
不等式
3
函数
4
指数函数与对数函数
5
数列
6
三角函数
7
平面向量
8
平面解析几何
9
概率与统计初步
第三章 函数
第一节 函数及其表示 第二节 基本性质 第三节 二次函数
知识结构
考纲要求
知识内容
函数的概念、定义及记号 函数的三种表示法 增函数、减函数、单调区间的概念 判断简单函数的单调性 函数的奇偶性 判断简单函数的奇偶性 二次函数的图像和性质及其简单应用
的图像,则图像上的任意 点的坐标都满足函数的关 系式, 反之满足函数关系 式的点都在图像上.这种 由图形表示函数的方法叫 作图像法.
图像法
如果在函数y = f ( x ) (x ∈A ) 中,f ( x ) 是用代数式来表达
的,这种方法叫作解析式法.
解析法
典例精解
例1 与y=x表示相同函数的是( ).
是求二次函数值域最基本的方法之一,即把函数通过 配方转化为能直接看出其值域 的方法
通过简单的换元把一个函数变为简单函数,然后通过 求函数的值域,间接地求解原函数的值域
利用几个重要不等式及推论 来求得最值,进而求得值域.
典例精解
例4
解析
技巧点拨
此题y = f (x )表达式满足直接代入求值的条 件,将x 分别替换为2 ,- 3, a即可求出相应值.
(2)因为
时 所以函数的值域为(-1,1).
典例精解
技巧点拨
求函数的值域,应根据解析式的结构特点法
对于一些比较简单的函数,根据函数的定义域、性 质的观察,结合函数的解析式, 求得函数的值域.

3.3 函数的奇偶性课件-2023届广东省高职高考数学第一轮复习第三章函数

3.3 函数的奇偶性课件-2023届广东省高职高考数学第一轮复习第三章函数

4.奇函数、偶函数的常用运算规律 奇函数±奇函数=奇函数;偶函数±偶函数=偶函数;奇函数±偶函数 =非奇非偶函数; 奇函数×奇函数=偶函数;奇函数×偶函数=奇函数;偶函数×偶函数 =偶函数.
5.用定义判断函数奇偶性的步骤 先求定义域,看是否关于原点对称(不对称则没有奇偶性).再求f(- x),判断f(-x)与f(x)的关系. 若f(-x)=f(x),则f(x)是偶函数; 若f(-x)=-f(x),则f(x)是奇函数; 若f(-x)≠f(x),且f(-x)≠-f(x),则f(x)是非奇非偶函数; 若f(-x)=f(x),且f(-x)=-f(x),则f(x)既是奇函数又是偶函数.
偶函数,故选 B.
4.已知 f(x)是定义在 R 上的奇函数,若 f(-2)=3,f(3)=-1,则 f(2) +f(-3)+ f(0)=___-__2__. 【解析】 ∵f(x)为奇函数,且 f(-2)=3,f(3)=-1,则 f(-2)=-f(2) =3,∴f(2)=-3,f(-3)=-f(3)=1,f(0)=0,∴f(2)+f(-3)+f(0) =-3+1+0=-2.
A.-8
B.-1
C.1
D.8
【解析】 因为函数 f(x)是偶函数,则 f(-2)=f(2)=1,则[f(-2)]3=13
=1,故选 C.
2.设函数 f(x)=|x|,那么 f(x)是( B )
A.奇函数
B.偶函数
C.既是奇函数,又是偶函数 D.既不是奇函数,又不是偶函数 【解析】 由函数的定义域 R,f(-x)=|-x|=|x|=f(x),则 f(x)是偶函
数,故选 B.
3.已知 R 上的奇函数 f(x),且 f(3)>f(1),则下列各式中一定成立的
1.若 f(x)是 R 上的奇函数,f(-1)=6,则 f(1)=( C )

职高高一数学第三章函数复习题精编版

职高高一数学第三章函数复习题精编版

职高高一数学第三章函数复习题精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】复习题3第三章函数班级__________姓名___________学号________一、 选择题:1、函数2231)(x x x f -+=的定义域是()A 、{x|-2<x<2}B 、{x|-3<x<3}C 、{x|-1<x<2}D 、{x|-1<x<3}2、已知函数11)(-+=x x x f ,则f(-x)=() A 、)(1x f B 、-f(x)C 、-)(1x f D 、f(x) 3、函数f(x)=342+-x x ()A 、在(2,∞-)内是减函数B 、在(4,∞-)内是减函数C 、在(0,∞-)内是减函数D 、在(+∞∞-,)内是减函数4、下列函数中既是奇函数又是偶函数的是()A 、y=3xB 、y=x 1C 、22x y =D 、x y 31-= 5、奇函数y=f(x)(x ∈R)的图像必经过的点是()A(-a,-f(a))B(-a,f(a)) C(a,-f(a))D(a,)(1a f ) 二、填空题 (1)设f(x)=,0,32,0,3{2>+≤-x x x x 则f(-2)=_______________. (2)函数y=21x -的定义域为_______________.(3)设f(x)=542-x ,则f(2)=______________,f(x+1)=_______________.(4)函数y=22-x 的增区间为____________________.(5)已知f(x)=,0,3,0,3{3>-≤-x x x x 则f(-2)=____________,f(2)=_______________.3.设函数f (x )=722-x ,求f(-1),f(5),f(a),f(x+h)的值.4.求下列函数的定义域:(1)f(x)=112-+x x ;(2)f(x)=x x 322+. 5.讨论下列函数的奇偶性:(1)f(x)=3-52x ;(2)g(x)=212+-x x (3)f(x)=x(2x +1)6.设f(x)=⎪⎪⎩⎪⎪⎨⎧--,23,2,2x x .0,01,1≥<≤--<x x x(1)写出函数的定义域;(2)求f(-2),f (-21),f(3)的值; (3)作出函数f (x )的图像.7.为了鼓励居民节约用水,某市改革居民用水的计费方法,每月的收费标准如下:月用水量不超过203m 时,按2元/3m 计费,每月用水量超过203m 时,其中的203m 按2元/3m 计费,超过的部分按元/3m 计费,设每户月用水量为x 3m ,应交水费为y 元。

完整版)中职数学第三章函数测试题

完整版)中职数学第三章函数测试题

完整版)中职数学第三章函数测试题第三章单元测试试卷姓名。

班别:一、选择题1.下列函数中,定义域是[0,+∞)的函数是().A.y=2x B.y=log2x C.y= D.y=x22.下列函数中,在(-∞,0)内为减函数的是().A.y=-x2+2 B.y=7x+2 C.y= D.y=2x2-13.下列函数中的偶函数是().A.y=x+1 B.y=-3x² C.y=∣x-1∣ D.y=4.4.下列函数中的奇函数是().A.y=3x-2 B.y= C.y=2x2 D.y=x2-x5.下列函数中,在(0,+∞)内为增函数的是().A.y= -x2/x B.y=3x C.y=2x2 D.y=1/2x6.下列图象表示的函数中,奇函数是().AyyyOxOxOxOxDCBA二、填空题7.已知函数f(x)的图象(如图),则函数f(x)在区间(-1,0)内是函数(减),在区间(0,1)内是函数(增).8.根据实验数据得知,在不同大气压下,水的沸点T(单位:℃)与大气压P((单位:10Pa)之间的函数关系如下表所示:P 0.5 1.0 2.0 5.0 10T 81 100 121 152 1791)在此函数关系中,自变量是P,因变量是T;2)当自变量的值为2.0时,对应的函数值为121;3)此函数的定义域是[0,+∞)。

9.已知g(x) = (2x+1)/(x+5),则g(2)=5/9,g(0)=1/5,g(-1)=-3/5.10.函数y=1/(x-1)的定义域是x≠1.11.设函数f(x)在区间(-∞,+∞)内为增函数(如上第11图),则f(4)>f(2)。

12.设函数f(x)在区间(-3,3)内为减函数(如上第12图),则f(2)<f(-2)。

三、解答题13.求下列函数的定义域:1)f(x)=log2(5x-2),5x-2>0,即x>2/5;2)f(x)=√(x+3),x+3≥0,即x≥-3;3)f(x)=1+2x/(1-x),1-x≠0,即x≠1;4)f(x)=x2-1,定义域为(-∞,+∞)。

高教版中职数学《数学基础模块上册》章节复习题3函数

高教版中职数学《数学基础模块上册》章节复习题3函数

《数学基础模块上册》复习题3:函数【知识巩固】一、选择题.1.与函数y =x 表示同一个函数的是( ).A.y =x 2xB.y =√x 2C.y =(√x 3)3D.y =x (x ≥0)2.函数f (x )={−1, x >00, x =01, x <0的图像是图3-37中的( ). A. B. C. D.3.在(0,+∞)上为减函数的是( ).A.y =x 2B.y =2x −1C.y =1xD.y =x 2−2x4.若二次函数y =(m +1)x 2+(m 2−1)x +4在(−∞,0)上是减函数,在(0,+∞)上是增函数,则m=( ).A.-1B.1C.1D.05.在定义域内,下列函数既是奇函数,又是增函数的是( ).A.y =3xB.y =2xC.y =x 2D.y =√x6.设点(3,4)为奇函数y=f(x)图像上的一点,则下列各点中,也在该函数图像上的是( ).A.(−3,4)B.(3,−4)C.(−3,−4)D.(−4,−3)7.奇函数y =f(x)在[3,7]上的图像如图3-38所示,则以下关于函数y =f(x)在[−7,−3]上单调性和最值的说法中,正确的是( ).A.增函数且最小值为-5B.增函数且最大值为-5C.减函数且最小值为-5D.减函数且最大值为-58.若偶函数fx)在(-co,0)上是减函数,则( ).A.f(1)>f(2)B.f(1)<f2)C.f(1)=f(2)D.不能确定f(1)与f(2)的大小9.已知函数f (x )=x 2+4x +1,则f(2)=______________.10.已知函数f (x )={x 2+1, x ≥0−x +1, x <0,则f[f(−1)]=______________.11.函数y=√1−x2的定义域为________________.12.函数y=3x2−2的增区间为________________.13.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时匀速出发,设两车行驶的时间为x(h),两车之间的距离为y(km),y与x的函数关系如图3-39所示.则(1)甲、乙两地相距________________km;(2)慢车的速度为________________km/ℎ,快车的速度为________________km/ℎ;(3)线段BC所表示的y与x之间的函数关系式为________________.14.已知函数f(x)=kx+5,且f(2)=3,求fx)>0时x的取值范围.15.求下列函数的定义域:(1)y=√2x−4+√9−3x−7;(2)y=.√x2−x16.判断下列函数的奇偶性:(1)f(x)=x+5; _______________________(2)f(x)=3; _______________________x(3)f(x)=1−2x2; _______________________(4)f(x)=x+|x|. _______________________17.作出以下函数的图像,并结合图像判断函数在定义域上的单调性:(1)y =−x +3; (2)y =x 2−4x +6.18.已知函数f (x )={−2, −1≤x <03x −2, x ≥0. (1)求函数f(x)的定义域;(2)作出函数f(x)的图像.【能力提升】1.求函数f (x )=√x 2−4+1x−3,的定义域________________.2.已知函数y =x 2−2x .(1)求函数的值域;(2)判断函数在(−∞,1)上的单调性.3.已知函数f(x)是定义在(−5,7)上的减函数,若f(m −1)>f(2m −1),求实数m 的取值范围.4.已知偶函数f(x)在[0,+∞)上是增函数,且f(2)=0.(1)当x为何值时,f(x)>0?(2)当x为何值时,f(x)≤0?5.用长为12m的篱笆材料,并利用已有的一面墙(设长度够用)作为一边,围出一块矩形园地,如图3-40所示.问矩形的长和宽各是多少米时,矩形园地的面积最大?最大面积是多少?图3-40。

职高高一数学第三章函数复习题

职高高一数学第三章函数复习题

复习题3 第三章函数班级__________姓名___________学号________一、选择题:1、函数2231)(x x x f -+=的定义域是( )A 、{x|-2<x<2}B 、{x|-3<x<3}C 、{x|-1<x<2}D 、{x|-1<x<3}2、已知函数11)(-+=x x x f ,则f(-x)=( ) A 、)(1x f B 、 -f(x) C 、 -)(1x f D 、 f(x) 3、函数f(x)=342+-x x ( )A 、 在(2,∞-)内是减函数B 、 在(4,∞-)内是减函数C 、在(0,∞-)内是减函数D 、 在(+∞∞-,)内是减函数4、下列函数中既是奇函数又是偶函数的是( )A 、 y=3xB 、 y=x 1C 、22x y =D 、 x y 31-= 5、奇函数y=f(x)(x ∈R)的图像必经过的点是( )A (-a,-f(a) )B (-a,f(a) )C (a,-f(a) )D (a, )(1a f ) 二、填空题(1)设f(x)=,0,32,0,3{2>+≤-x x x x 则f(-2)=_______________. (2)函数y=21x -的定义域为_______________.(3)设f(x)=542-x ,则f(2)=______________,f(x+1)=_______________. (4)函数y=22-x 的增区间为____________________.(5)已知f(x)= ,0,3,0,3{3>-≤-x x x x 则f(-2)=____________,f(2)=_______________. 3.设函数f (x )=722-x ,求f(-1),f(5),f(a),f(x+h)的值.4.求下列函数的定义域:(1)f(x)=112-+x x ; (2)f(x)=x x 322+.5.讨论下列函数的奇偶性:(1)f(x)=3-52x ; (2)g(x)=212+-x x (3)f(x)=x(2x +1)6.设f(x)=⎪⎪⎩⎪⎪⎨⎧--,23,2,2x x .0,01,1≥<≤--<x x x(1)写出函数的定义域;(2)求f(-2),f (-21),f(3)的值; (3)作出函数f (x )的图像.7.为了鼓励居民节约用水,某市改革居民用水的计费方法,每月的收费标准如下:月用水量不超过203m按2元/3m时,其中的203m计m计费,每月用水量超过203m时,按2元/3费,超过的部分按2.6元/3m,应交水费为y元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习题3 第三章函数
班级__________姓名___________学号________
一、选择题:
1、函数2231
)(x x x f -+=的定义域是( )
A 、{x|-2<x<2}
B 、{x|-3<x<3}
C 、{x|-1<x<2}
D 、{x|-1<x<3}
2、已知函数11)(-+=
x x x f ,则f(-x)=( ) A 、)(1x f B 、 -f(x) C 、 -)
(1x f D 、 f(x) 3、函数f(x)=342+-x x ( )
A 、 在(2,∞-)内是减函数
B 、 在(4,∞-)内是减函数
C 、在(0,∞-)内是减函数
D 、 在(+∞∞-,)内是减函数
4、下列函数中既是奇函数又是偶函数的是( )
A 、 y=3x
B 、 y=x 1
C 、22x y =
D 、 x y 3
1-= 5、奇函数y=f(x)(x ∈R)的图像必经过的点是( )
A (-a,-f(a) )
B (-a,f(a) )
C (a,-f(a) )
D (a, )
(1a f ) 二、填空题
(1)设f(x)=,
0,32,0,3{2>+≤-x x x x 则f(-2)=_______________. (2)函数y=21x -的定义域为_______________.
(3)设f(x)=542-x ,则f(2)=______________,f(x+1)=_______________.
(4)函数y=22-x 的增区间为____________________.
(5)已知f(x)= ,0,3,
0,3{3>-≤-x x x x 则f(-2)=____________,f(2)=_______________.
3.设函数f (x )=722-x ,求f(-1),f(5),f(a),f(x+h)的值.
4.求下列函数的定义域:
(1)f(x)=
112-+x x ; (2)f(x)=x x 322+.
5.讨论下列函数的奇偶性:
(1)f(x)=3-52x ; (2)g(x)=212+-x x (3)f(x)=x(2
x +1)
6.设f(x)=⎪⎪⎩
⎪⎪⎨⎧--,23,2,
2x x .0,01,1≥<≤--<x x x
(1)写出函数的定义域;
(2)求f(-2),f (-2
1),f(3)的值; (3)作出函数f (x )的图像.
7.为了鼓励居民节约用水,某市改革居民用水的计费方法,每月的收费标准如下:月用水量不超过203m 时,按2元/3m 计费,每月用水量超过203m 时,其中的203m 按2元/3m 计费,超过的部分按2.6元/3m 计费,设每户月用水量为x 3m ,应交水费为y 元。

(1)求y 与x 的函数表达式。

(2)小明家第二季度缴纳水费的情况如下:
问小明家第二季度共用水多少立方米?。

相关文档
最新文档