菱形性质与判定课件ppt
合集下载
北师大版九年级数学上册教学课件:1.1菱形的性质与判定 (共36张PPT)
拓展点一
拓展点二
拓展点三
拓展点一
拓展点二
拓展点三
拓展点二 菱形判定方法的综合应用 例2 (2016· 沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连 接DE.求证:
(1)∠CEB=∠CBE; (2)四边形BCED是菱形. 分析:(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD, ∠CBE=∠ABD即可. (2)先证明四边形BCED是平行四边形,再根据BC=BD即可判定.
分析:根据AB=AD及AE为∠BAD的平分线可得出∠1=∠2,从而证 得△BAE≌△DAE,这样就得出四边形ABED为平行四边形,然后根据 菱形的判定定理即可得出结论.
知识点一
知识点二
知识点三
证明:如图,∵AE平分∠BAD, ∴∠1=∠2. ∵AB=AD,AE=AE, ∴△BAE≌△DAE.∴BE=DE. ∵AD∥BC,∴∠2=∠3=∠1. ∴AB=BE. ∴AB=BE=DE=AD. ∴四边形ABED是菱形.
1识点二
知识点三
知识点一 菱形的定义 有一组邻边相等的平行四边形叫做菱形. 名师解读 几何中的定义都有两重性:一是可作为一条性质,二是 可作为一条判定. (1)根据菱形的定义,判断一个四边形是菱形必须同时具备两个 条件: ①四边形是平行四边形; ②四边形有一组邻边相等. (2)由菱形的定义可知,一个四边形是菱形,则具有如下性质: ①菱形是平行四边形; ②菱形有一组邻边相等.
知识点一
知识点二
知识点三
例2 (2016· 淮安)已知:如图,在菱形ABCD中,点E,F分别为边 CD,AD的中点,连接AE,CF,求证:△ADE≌△CDF. 分析:由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由 SAS证明△ADE≌△CDF即可. 证明:∵四边形ABCD是菱形, ∴AD=CD, ∵点E,F分别为边CD,AD的中点, ∴AD=2DF,CD=2DE,∴DE=DF,
1.菱形的性质与判定第1课时菱形的性质PPT课件(北师大版)
新知导航
2.如图,菱形ABCD的边长为4 cm,对角线AC,BD 交于O,∠BAD=60°.求对角线AC,BD的长.
解:∵四边形ABCD是菱形, ∴AB=AD,∵∠BAD=60°, ∴△ABD是等边三角形, ∴BD=AB=4 cm ∴BO=2 cm,∴AO=2 3 cm,∴AC=4 3 cm
第1课时 菱形的性质
第1课时 菱形的性质
新知导航
知识点3:对角线平分对角
【例3】如图,菱形ABCD中,O是对角线AC上一点,
连接OB,OD,求证:OB=OD.
【例3】证明:∵四边形ABCD是菱形,
∴AD=AB,∠DAO=∠BAO AD=AB
在△ADO和△ABO中, ∠DAO=∠BAO , AO=AO
∴△ADO≌△ABO(SAS),∴OB=OD.
第1课时 菱形的性质
新知导航
(一)基础呈现 菱形的定义:有一组邻边 相等 的 平行四边形 叫做 菱形. 菱形的性质 (1)菱形具有平行四边形的所有性质; (2)菱形不同于一般平行四边形的性质: ①四条边都 相等 ; ②两条对角线 垂直平分 ,并且每条对角线平分对角. ③菱形是轴对称图形,有 2 条对称轴.
(2)平行四边形的对角
相等
.
(3)平行四边形的对角线 互相平分 .
第1课时 菱形的性质
知识回顾
几何语言 ∵四边形ABCD是平行四边形 ∴(边)__如__A__B_=__C_D_________________________; (角)____∠__A__=__∠__C_________________________; (对角线)__O_A__=__O_C_,__O__B_=__O_D__等______________.
第1课时 菱形的性质
菱形性质与判定优秀课件
(2)若AC=BD,则□ABCD是 矩形;
(3)若∠ABC是直角,则□ABCD是菱 形; (4)若∠BAO=∠DADO,则□ABCD是C 形。
O
A
B
3、选择:
(1).下列命题中正确的是( C)
A.一组邻边相等的四边形是菱形 B.三条边相等的四边形是菱形 C.四条边相等的四边形是菱形 D.四个角相等的四边形是菱形
A
B
D 已知:AB=BC=CD=DA 求证:四边形ABCD是菱形
C
∵AB=CD,BC=AD
∴四边形ABCD是平行四边
形
∵AB=CD
∴四边形ABCD是菱形
(有一组邻边相等的平行
四边形是菱形)
菱形常用的判定方法:
①有一组邻边相等的平行四边形叫做菱形
+邻边相等 =
②对角线互相垂直的平行四边形是菱形
+对角线线互相垂直=
证明 ∵ 四边形ABCD是矩形,
∴ AE∥FC( ①
)
∴ ∠1=∠2.( ② )
∵ EF平分AC,
∴ AO=OC.
又∵ ∠AOE=∠COF=90°,
∴ △AOE≌△COF( ③ ),
∴ EO=FO,
∴ 四边形AFCE是平行四边形( ④ )
又∵EF⊥AC,
∴ 四边形AFCE是菱形( ⑤ )
判定定理3:四条边都相等的四边形是菱形
③有四条边相等的四边形是菱形。
四条边相等+
=
菱形的判定:
判定 法一
文字语言
一组邻边相 等的平行四 边形是菱形
图形语言
A
D
B
C
符号语言
∵在□ABCD中
AB=AD ∴四边形ABCD是菱形
(3)若∠ABC是直角,则□ABCD是菱 形; (4)若∠BAO=∠DADO,则□ABCD是C 形。
O
A
B
3、选择:
(1).下列命题中正确的是( C)
A.一组邻边相等的四边形是菱形 B.三条边相等的四边形是菱形 C.四条边相等的四边形是菱形 D.四个角相等的四边形是菱形
A
B
D 已知:AB=BC=CD=DA 求证:四边形ABCD是菱形
C
∵AB=CD,BC=AD
∴四边形ABCD是平行四边
形
∵AB=CD
∴四边形ABCD是菱形
(有一组邻边相等的平行
四边形是菱形)
菱形常用的判定方法:
①有一组邻边相等的平行四边形叫做菱形
+邻边相等 =
②对角线互相垂直的平行四边形是菱形
+对角线线互相垂直=
证明 ∵ 四边形ABCD是矩形,
∴ AE∥FC( ①
)
∴ ∠1=∠2.( ② )
∵ EF平分AC,
∴ AO=OC.
又∵ ∠AOE=∠COF=90°,
∴ △AOE≌△COF( ③ ),
∴ EO=FO,
∴ 四边形AFCE是平行四边形( ④ )
又∵EF⊥AC,
∴ 四边形AFCE是菱形( ⑤ )
判定定理3:四条边都相等的四边形是菱形
③有四条边相等的四边形是菱形。
四条边相等+
=
菱形的判定:
判定 法一
文字语言
一组邻边相 等的平行四 边形是菱形
图形语言
A
D
B
C
符号语言
∵在□ABCD中
AB=AD ∴四边形ABCD是菱形
菱形性质与判定课件ppt
面积计算
菱形面积的计算公式为
面积 = (对角线1 × 对角线2) / 2。由于菱形的对角线互相垂直且平分,因此可以使用此公式来计算面积。
另一种计算菱形面积的方法是
面积 = 底 × 高。在这里,底是菱形的一条边,高是从这条边到对角顶点的垂直距离。
周长计算
01
菱形的周长计算公式为:周长 = 4 × 边长。由于菱形的四条边都相等, 因此可以使用此公式来计算周长。
建筑学中的应用
建筑设计
菱形结构在建筑设计中常被用作装饰元素,如菱形窗格、菱形图案的墙面等,增加建筑物的美感和独特性。
空间划分
菱形地砖、菱形玻璃等可以用于室内空间划分,创造出独特视觉效果,同时起到引导人流、划分功能区域的作用。
工程学中的应用
结构工程
菱形结构具有较好的稳定性和承重能力,在桥梁、道路、隧道等工程建设中,菱形结构 常被用于增强结构的稳定性和承载能力。
邻边互相垂直且相等判定
邻边互相垂直
菱形的任意一组邻边互相垂直,因此 可以通过测量任意一组邻边的夹角是 否为90度来判断一个四边形是否为菱 形。
邻边长度相等
除了互相垂直外,菱形的任意一组邻 边的长度还相等。这也是菱形的一个 基本性质。
03
菱形与其他四边形的比较
与矩形的关系
01
02
03
边的性质
菱形的对边相等,与矩形 相同;但菱形的邻边也相 等,这是矩形不具备的性 质。
角度关系
两组对角相等,即∠A=∠C,∠B=∠D;邻角互补,即∠A+∠B=180°, ∠B+∠C=180°。
对角线性质
对角线互相垂直: AC⊥BD。
对角线长度关系:对 角线长度不一定相等 ,但满足 AC²+BD²=4AB²。
1.1.1 菱形的性质与判定 课件
∴△ABD是等边三角形
B
∴AB=BD=6
在Rt△AOB中,由勾股定理,得
=
− =
∴AC=2OA=6
− =
A
O
D
C
新知讲解
如图,在菱形ABCD中,对角线AC、BD相交于点O,
BD=12cm,AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形
∴AC⊥BD
1.1.1 菱形的性质与判定
北师版九年级上册
教学目标
1、掌握菱形的的定义,理解菱形与平行四边形的“特殊与一般”的关系。
2、理解并掌握菱形的性质定理; 在证明性质和运用性质解决问题的过程中进
一步发展学生的逻辑推理能力。
新知导入
平行四边形有哪些特征?矩形与平行四边形比较有哪些特殊的特征?
对边平行且相等
菱形的定义:
有一组邻边相等的平行四边形叫做菱形.
新知讲解
有一组邻边相等的平行四边形叫做菱形
几何语言:
A
B
D
C
∵四边形ABCD是平行四边形,
AB=BC,
∴四边形ABCD是菱形.
注意:定义中的“平行四边形”
不能写成“四边形”.
新知讲解
如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?
将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你
平行四
边形
对角相等邻角互补
对角线互相平分
四个角是直角
矩形
对角线相等
新知导入
下面几幅图片中都含有一些平行四边形.观察这些平行四边形,你
能发现它们有什么样的共同特征?
通过观察发现这些平行四边形的邻边都相等,这就是本节课
B
∴AB=BD=6
在Rt△AOB中,由勾股定理,得
=
− =
∴AC=2OA=6
− =
A
O
D
C
新知讲解
如图,在菱形ABCD中,对角线AC、BD相交于点O,
BD=12cm,AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形
∴AC⊥BD
1.1.1 菱形的性质与判定
北师版九年级上册
教学目标
1、掌握菱形的的定义,理解菱形与平行四边形的“特殊与一般”的关系。
2、理解并掌握菱形的性质定理; 在证明性质和运用性质解决问题的过程中进
一步发展学生的逻辑推理能力。
新知导入
平行四边形有哪些特征?矩形与平行四边形比较有哪些特殊的特征?
对边平行且相等
菱形的定义:
有一组邻边相等的平行四边形叫做菱形.
新知讲解
有一组邻边相等的平行四边形叫做菱形
几何语言:
A
B
D
C
∵四边形ABCD是平行四边形,
AB=BC,
∴四边形ABCD是菱形.
注意:定义中的“平行四边形”
不能写成“四边形”.
新知讲解
如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?
将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你
平行四
边形
对角相等邻角互补
对角线互相平分
四个角是直角
矩形
对角线相等
新知导入
下面几幅图片中都含有一些平行四边形.观察这些平行四边形,你
能发现它们有什么样的共同特征?
通过观察发现这些平行四边形的邻边都相等,这就是本节课
1.菱形的性质与判定第2课时 菱形的判定PPT课件(北师大版)
第2课时 菱形的判定
新知导航
变式训练 1.如图,CE是△ABC外角∠ACD的平分线,AF∥CD 交CE于点F,FG∥AC交CD于点G. 求证:四边形ACGF是菱形. 证明:∵AF∥CD,FG∥AC, ∴四边形ACGF是平行四边形,∠2=∠3, ∵CE平分∠ACD,∴∠1=∠2, ∴∠1=∠3,∴AC=AF, ∴四边形ACGF是菱形.
,
∠EOD=∠FOB
∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,
∴四边形EBFD是平行四边形, ∵EF⊥BD,∴四边形BFDE为菱形.
第2课时 菱形的判定
新知导航
3.将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE
(如图所示),点D与点F分别是斜边AB,AE的中点,连接
第2课时 菱形的判定
轻松过招
6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE 垂直平分BC,垂足为D,交AB于点E. 点F在DE的延长线上,且AF=CE. 求证:四边形ACEF是菱形. 证明:∵AC⊥BC,DE垂直平分BC, ∴DE∥AC∴点E是BA中点,∴在Rt△ACB中,CE=AE 又∵∠BAC=60°,∴△ACE是等边三角形 ∴AC=CE=AE,又∵AF=CE,∴AF=AE 又∵DF∥AC,∴∠FEA=∠CAE=60° ∴△AEF为等边三角形,∴EF=AF. ∴CE=AC=AF=EF,∴四边形ACEF是菱形
第2课时 菱形的判定
轻松件是( B )
A. AC=AD B.BA=BC C.∠ABC=90° D.AC=BD
第2课时 菱形的判定
轻松过招
2.(202X·宁夏)如1题图,四边形ABCD的两条对
角线相交于点O,且互相平分.添加下列条件,仍不
《菱形的性质》课件
服更具特色。
其他领域的应用
总结词
除了建筑和服装设计,菱形在艺术、家 居、包装等领域也有广泛的应用。
VS
详细描述
在艺术领域,菱形常被用作创作元素,如 绘画、雕塑等。在家居设计中,菱形图案 的壁纸、地毯等也常被使用,能够营造出 温馨、舒适的氛围。在包装设计中,菱形 形状的包装盒、标签等也十分常见,能够 吸引消费者的注意。
菱形只有一组邻边相 等,而矩形两组邻边 分别相等。
菱形的对角线互相垂 直且平分对方,而矩 形的对角线相等且互 相平分。
THANKS 感谢观看
《菱形的性质》ppt课件
• 菱形的定义与性质 • 菱形的判定方法 • 菱形面积的计算 • 菱形在生活中的应用 • 菱形与平行四边形、矩形的联系
与区别
01 菱形的定义与性质
菱形的定义
总结词
明确菱形的定义
详细描述
菱形是一种四边形,其中两组相对边相等且平行。
菱形的性质
总结词:列举菱形的性质
1. 菱形的两组相对边相等 。
05 菱形与平行四边形、矩形的联系与区别
联系
菱形、平行四边形和矩Hale Waihona Puke 都属于 四边形,具有四边形的共同性质
。
菱形是特殊的平行四边形,具有 平行四边形的对边平行且相等的
性质。
矩形是特殊的平行四边形,具有 平行四边形的两组对边平行且相
等的性质。
区别
菱形的两组对边平行 但不一定相等,而平 行四边形的两组对边 分别相等。
详细描述
在建筑设计中,菱形图案的运用可以增加建筑的视觉效果, 使建筑看起来更加独特和美观。同时,在建筑的结构中,菱 形结构也经常被使用,因为它的稳定性强,能够承受较大的 压力。
服装设计中的应用
其他领域的应用
总结词
除了建筑和服装设计,菱形在艺术、家 居、包装等领域也有广泛的应用。
VS
详细描述
在艺术领域,菱形常被用作创作元素,如 绘画、雕塑等。在家居设计中,菱形图案 的壁纸、地毯等也常被使用,能够营造出 温馨、舒适的氛围。在包装设计中,菱形 形状的包装盒、标签等也十分常见,能够 吸引消费者的注意。
菱形只有一组邻边相 等,而矩形两组邻边 分别相等。
菱形的对角线互相垂 直且平分对方,而矩 形的对角线相等且互 相平分。
THANKS 感谢观看
《菱形的性质》ppt课件
• 菱形的定义与性质 • 菱形的判定方法 • 菱形面积的计算 • 菱形在生活中的应用 • 菱形与平行四边形、矩形的联系
与区别
01 菱形的定义与性质
菱形的定义
总结词
明确菱形的定义
详细描述
菱形是一种四边形,其中两组相对边相等且平行。
菱形的性质
总结词:列举菱形的性质
1. 菱形的两组相对边相等 。
05 菱形与平行四边形、矩形的联系与区别
联系
菱形、平行四边形和矩Hale Waihona Puke 都属于 四边形,具有四边形的共同性质
。
菱形是特殊的平行四边形,具有 平行四边形的对边平行且相等的
性质。
矩形是特殊的平行四边形,具有 平行四边形的两组对边平行且相
等的性质。
区别
菱形的两组对边平行 但不一定相等,而平 行四边形的两组对边 分别相等。
详细描述
在建筑设计中,菱形图案的运用可以增加建筑的视觉效果, 使建筑看起来更加独特和美观。同时,在建筑的结构中,菱 形结构也经常被使用,因为它的稳定性强,能够承受较大的 压力。
服装设计中的应用
菱形的性质与判定-课件ppt
2.如图,已知四边形ABCD是一个平行四边形,则只需 补充 AB=BC就可以判定它是一个菱形.
3.如图,已知菱形ABCD的对角线AC、BD相交于点O,并 且AC=6cm,BD=8cm,则菱形ABCD的周长为 20 cm.
思考与动手: 1.在一张纸上用尺规作图做出边长为10cm的
菱形; 2.想办法用一张长方形纸剪折出一个菱形; 3.利用长方形纸你还能想到哪些制作菱形的
菱形是特殊的平行四边形,它除具有平行四边形 的所有性质外,还有平行四边形所没有的特殊两条对角线互相垂直。
例1
如图1-2,在菱形ABCD中,对角 线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形的 边长AB和对角线AC的长。
随堂练习
如图,在菱形ABCD中,对角 线AC与BD 相交于点O. 已知 AB=5cm,AO=4cm ,求 BD的 长.
菱形的性质与判定(一)
与左图相比较,这种平行四 边形特殊在哪里?你能给菱形 下定义吗?
有一组邻边相等的平行四边形叫做菱形。
想一想
菱形是特殊的平行四边形, 它具有一般平行四边形的所有性质。你 能列举一些这样的性质吗?
菱形的对边平行且相等,对角相等,对角 线互相平分。中心对称图形。
做一做
请同学们用菱形纸片折 一折,回答下列问题:
∴△AOB是直角三角形,∠AOB是直角.
∴AC⊥BD
∴□ABCD是菱形
(对角线垂直的平行四边形是菱形)
1. 通过本节课的学习你有哪些收获?在今后的 学习过程中应该怎么做?
(1)AB=BC=CD=AD; (2)AC⊥BD.
证明: (1)∵四边形ABCD是菱形,
∴AB = CD,AD= BC(菱形的对边相等). 又∵AB=AD
3.如图,已知菱形ABCD的对角线AC、BD相交于点O,并 且AC=6cm,BD=8cm,则菱形ABCD的周长为 20 cm.
思考与动手: 1.在一张纸上用尺规作图做出边长为10cm的
菱形; 2.想办法用一张长方形纸剪折出一个菱形; 3.利用长方形纸你还能想到哪些制作菱形的
菱形是特殊的平行四边形,它除具有平行四边形 的所有性质外,还有平行四边形所没有的特殊两条对角线互相垂直。
例1
如图1-2,在菱形ABCD中,对角 线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形的 边长AB和对角线AC的长。
随堂练习
如图,在菱形ABCD中,对角 线AC与BD 相交于点O. 已知 AB=5cm,AO=4cm ,求 BD的 长.
菱形的性质与判定(一)
与左图相比较,这种平行四 边形特殊在哪里?你能给菱形 下定义吗?
有一组邻边相等的平行四边形叫做菱形。
想一想
菱形是特殊的平行四边形, 它具有一般平行四边形的所有性质。你 能列举一些这样的性质吗?
菱形的对边平行且相等,对角相等,对角 线互相平分。中心对称图形。
做一做
请同学们用菱形纸片折 一折,回答下列问题:
∴△AOB是直角三角形,∠AOB是直角.
∴AC⊥BD
∴□ABCD是菱形
(对角线垂直的平行四边形是菱形)
1. 通过本节课的学习你有哪些收获?在今后的 学习过程中应该怎么做?
(1)AB=BC=CD=AD; (2)AC⊥BD.
证明: (1)∵四边形ABCD是菱形,
∴AB = CD,AD= BC(菱形的对边相等). 又∵AB=AD
菱形的性质与判定ppt课件
四边形
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判定 对角线互相垂直 的平行四边形是 法二 菱形
D
B
A B
C
D C ∵AB=BC=CD=DA
判定 法三
四边相等的四边 形是菱形
∴四边形ABCD是菱形
A
D O C
1.已知菱形的周长是12cm,那 3cm 么它的边长是______. 2.菱形ABCD中∠ABC=60度, 60度 则∠BAC=_______.
由此你能得出菱形的的对称性
D
边
对边平行且相等 四条边都相等
A B
O
C
角 菱形的对角相等,邻角互补
对角线 两条对角线互相平分且垂直 每一条对角线平分一组对角 中心对称:对角线的交点就是对称中心 对称性
轴对称:有两条对称轴 即:两条对角 线所在的直线
相等的线段:
已知四边形ABCD是菱形 AB=CD=AD=BC OA=OC OB=OD
O A B
3、选择:
(1).下列命题中正确的是(C ) A.一组邻边相等的四边形是菱形 B.三条边相等的四边形是菱形 C.四条边相等的四边形是菱形 D.四个角相等的四边形是菱形
(2).对角线互相垂直且平分的四边形是( C ) A.矩形 B.一般的平行四边形 C.菱形 D.以上都不对
(3).下列条件中,不能判定四边形ABCD为菱形的是( C) A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DA C.AB=BC,AD=CD,且AC⊥BD D.AB=CD,AD=BC,AC⊥BD
B
5 6
A
1 2
7
D
8
O
3 4
∠DAB=∠BCD ∠ABC =∠CDA 相等的角:
C
∠AOB=∠DOC=∠AOD=∠BOC =90° ∠1=∠2 =∠3=∠4 ∠5=∠6 =∠7=∠8
等腰三角形有: △ABC △ DBC △ACD △ABD Rt△AOB Rt△BOC Rt△COD 直角三角形有: Rt△DOA
D
O
E
C
S菱形=BC. AE
思考:计算菱形的面积除了上述方法外,利 用对角线能计算菱形的面积吗? 1 S菱形ABCD== SABD SBCD BD AC 2
面积:S菱形=底×高=对角线乘积的一半
菱形判定方法的研究
B
A D
பைடு நூலகம்
C 判定方法1:有一组邻边相等 的平行四边形是菱形 ∵ 四边形ABCD是平行四边形 AB=BC ∴四边形ABCD是菱形
+邻边相等 =
②对角线互相垂直的平行四边形是菱形
+对角线线互相垂直=
③有四条边相等的四边形是菱形。
四条边相等+ =
菱形的判定:
文字语言 判定 法一
一组邻边相 等的平行四 边形是菱形
图形语言
A B
A O C D
符号语言
∵在□ABCD中 AB=AD
∴四边形ABCD是菱形 ∵在□ABCD中 AC⊥BD ∴四边形ABCD是菱形
B
D
3
3、菱形的两条对角线长分别为6cm和8cm A,4 O 则菱形的面积是( )C
A.10 B.7 C. 24 D.48
A
C
4.在菱形ABCD中,AE⊥BC,AF⊥CD, E、F分别为BC,CD的中点,那么 B ∠EAF的度数是( )B
A.75°B.60°C.45°D.30°
E
B
D F
C
6 已知:如图,AD平分∠BAC, DE∥AC交AB于E,DF∥AB交AC于F. 求证:EF⊥AD;
)
判定定理3:四条边都相等的四边形是菱形
A
B C
D
已知:AB=BC=CD=DA 求证:四边形ABCD是菱形
∵AB=CD,BC=AD ∴四边形ABCD是平行四 边形 ∵AB=CD ∴四边形ABCD是菱形 (有一组邻边相等的平行 四边形是菱形)
菱形常用的判定方法:
①有一组邻边相等的平行四边形叫做菱形
△ABD≌△BCD △ABC≌△ACD
全等三角形有: Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
.
例1.在菱形ABCD中,对角线AC,BD相交 . 于点 O, ∠BAC=30°,BD=6.求菱形的 边长和对角线AC的长.
D
O A C
B
牛刀小试 1.菱形具有而矩形不一定有的性质是 (
观察以下由火柴棒摆成的图形:
议一议:(1)三个图形都是平行四边形吗 ? (2)与图1相比,图2与图3有什么共同特点 ?
定义法
有一组邻边相等的平行四边形叫做菱形
一组邻边相等
平行四边形
菱形
一个直角
矩形
菱形具有工整,匀称,美观等许多优点, 常被人们用在图案设计上.
图 片 欣 赏
菱形的性质的研究 菱形是特殊的平行四边形,具有平行四 边形的所有性质. 菱形的性质1:菱形的四条边都相等。
D
∟
(╳ )
(2)对角线互相垂直平分的四边形是菱形;(√ ) (╳ )
A
C
C
D
A
B
B
2、□ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是 菱 (2)若AC=BD,则□ABCD是 形;
矩 形; 矩
(3)若∠ABC是直角,则□ABCD是
D
形;
C
(4)若∠BAO=∠DAO,则□ABCD是 菱 形。
A D AB=BC=CD=AD
B
C
菱形的性质 2 :
菱形的两条对角线互相垂直,每一条对角 线平分一组对角。 已知:在菱形ABCD中,对角线AC,BD
D 相交于点O. A
O
C求证:AC⊥BD, AC平分∠BAD和∠BCD, BD平分∠ABC和∠ADC.
B
四边形ABCD是菱形ABCD DA DC 对角线AC, BD互相平分 O是AC的中点 BD AC, BD平分ADC
(A) 对角线互相平分
B
)
(B) 四条边都相等
(C) 对角相等
(D) 邻角互补
2.已知:如图,在菱形ABCD中,直线AE交边BC 于点E ,直线 AF交CD于点F,且BE=DF A 1 2 求证:
B E C
1 2
D F
【菱形的面积公式】
A B
菱形是特殊的平行四边形, 那么能否利用平行四边形 面积公式计算菱形的面积吗
E
3
12
F D C
课后拓展1:
请你动脑筋
把两张等宽的纸条交叉重叠在一起,你能判断 重叠部分ABCD的形状吗?
A
F
D
B
E
∟
C
课后拓展2:
如图,AD∥BC,BD垂直平分AC, 四边形ABCD一定是菱形吗?若是, 请说明理由。
D
A
┐
O
B
C
提示:
△AOD≌△COB(角边角)
AD=BC
判定定理2对角线互相垂直的平行四边形是菱形 已知 ABCD中,对角线AC、BD互 相垂直, 求证:四边形ABCD是菱形.
证明:在 ABCD 中,OA=OC ( ① ). 又∵AC⊥BD, ∴ BD所在直线是线段AC的垂直平分线, ∴ AB=BC, ∴ 四边形ABCD是菱形 ( ② ).
例 已知:矩形ABCD的对角线AC的垂 直平分线与边AD、BC分别交于点E、 F,求证:四边形AFCE是菱形
6、如图在菱形ABCD中,CE⊥AB,CF⊥AD. 则CE
=
CF,BE
=
DF。
E
A
F
D
B
C
7、已知:如图,AD平分∠BAC,DE∥AC 交AB于E,DF∥AB交AC于F. A 求证:四边形AEDF是菱形.
证明:∵DE∥AC DF∥AB ∴四边形AEDF是平行四边形 ∵ DE∥AC B ∴∠2=∠3 ∵ AD是△ABC的角平分线 ∴ ∠1=∠2 ∴ ∠1=∠3 ∴AE=DE ∴ □AEDF是菱形
A E
3 12
F D C
B
7、如图,E为菱形ABCD边BC上一点, 且AB=AE,AE交BD于O,且 ∠DAE=2∠BAE, 求证:EB=OA;
A O
D
B
E
C
当堂检测:
1、判断下列说法是否正确?为什么?
(1)对角线互相垂直的四边形是菱形; (3)对角线互相垂直,且有一组邻边相等 的四边形是菱形;
证明 ∵ 四边形ABCD是矩形, ∴ AE∥FC( ① ) ∴ ∠1=∠2.( ② ) ∵ EF平分AC, ∴ AO=OC. 又∵ ∠AOE=∠COF=90°, ∴ △AOE≌△COF( ③ ), ∴ EO=FO, ∴ 四边形AFCE是平行四边形( ④ 又∵EF⊥AC, ∴ 四边形AFCE是菱形( ⑤ )