量子力学第二版第六章散射习题复习资料周世勋

合集下载

量子力学第二版(周世勋)

量子力学第二版(周世勋)



= qBnη = nB ⋅ qη


= nBNB ,
其中, M B
=
qη 2µ
是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且
具体到本题,有
∆E = BM B
根据动能与温度的关系式
∆E = 10 × 9 × 10−24 J = 9 × 10−23 J
E = 3 kT 2
以及
1k ⋅ K = 10−3 eV = 1.6 × 10−22 J
∂ ∂r
(1 eikr ) − r
1 eikr r
∂ ∂r
(1 r
e
−ikr
ρ )]r0
=
iη [1 (− 2m r
1 r2
+ ik 1) − 1 (− rr
1 r2

ik
1 r
)]ρr0
可见,
ρ J2
=

ηk mr 2
ρr0
=

ηk mr 3
ρr
与rρ反向。表示向内(即向原点) 传播的球面波。
补充:设ψ (x) = eikx ,粒子的位置几率分布如何?这个波函数能否归一化?
1.3 氦原子的动能是 E = 3 kT (k 为玻耳兹曼常数),求 T=1K 时,氦原子的德布罗意波 2
长。
解 根据
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
知本题的氦原子的动能为
1k ⋅ K = 10−3 eV ,
E = 3 kT = 3 k ⋅ K = 1.5 ×10−3 eV , 22
解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正 负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过 程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到 本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所 对应的波长也就最长,而且,有

周世勋量子力学习题答案(七章全)

周世勋量子力学习题答案(七章全)


h2 2μ
d2 ψ dx2
(x)
+ U (x)ψ
(x)
=

6.62559 ×10−34 × 2.997925 ×108 1.380546 ×10−23
= 2.898 ×10−3 m ⋅ k
[注]
ρν
根据
=
8πhν 3 c3
1

e kT − 1
可求能量密度最大值的频率:
x = hν

kT
ρν
=
Ax3
1 ex −1

A
=
8πk 3T c3h2
3

dρν dν
球面波。
2.3 一粒子在一维势场
⎧∞ U (x) = ⎪⎨0
⎪⎩∞
x<0 0≤ x≤a x>a
中运动,求粒子的能级和对应的波函数。
[解]:由于势函数U (x) 不随时间变化
体系的状态波函数满足定态 Schrödinger 方程
0
a
− h2 ∇2ψ (x) + U (x)ψ (x) = Eψ (x) 2m
vj = ih [ψ (rv)∇ψ *(rv) −ψ *(rv)∇ψ (rv)] 则有: 2μ 即 vj 仅是空间坐标 (x, y, z) 的函数,与时间无关。
2.2 由下列两定态波函数计算几率流密度。
(1)
ψ1
=
1 r
eikr
ψ
(2)
2
=
1 e−ikr r
从所得结果说明ψ1 表示向外传播的球面波,ψ 2 表示向内(即向原点)传播的球面波。
m
= 2.43 ×10−12 m = 2.43 ×10−2 A°

量子力学+周世勋(课件)

量子力学+周世勋(课件)
拓扑学:量子力学的重要数学工具,用于描述量子态的 拓扑性质和拓扑相变
几何学:量子力学的重要数学工具,用于描述量子态的 几何结构和几何相变
量子力学的物理图像
量子力学的基本概念:波函数、概率幅、薛定谔方程等 量子力学的实验基础:双缝干涉实验、电子衍射实验等 量子力学的应用:量子计算、量子通信、量子加密等 量子力学的发展:从经典力学到量子力学的转变,以及量子力学的发 展历程和现状。
周世勋的量子力学课件的局限性及改进方向
内容深度:部分内容过于深奥,不易理解 讲解方式:部分讲解方式较为单一,缺乏互动性 课件设计:部分课件设计不够直观,不易于学生理解 改进方向:增加案例分析,提高互动性,优化课件设计,增加实践操作环节
周世勋的量子力学课件对未来学科发展的影 响
推动了量子力学的普及和发展 激发了学生对量子力学的兴趣和热情 促进了量子力学与其他学科的交叉融合 提高了量子力学在科研和工业领域的应用水平
量子力学的发展历程
1900年,普朗克提出量子概念,量子 力学的萌芽
1913年,玻尔提出玻尔模型,量子力 学的初步建立
1925年,海森堡提出不确定性原理, 量子力学的进一步完善
1926年,薛定谔提出薛定谔方程,量 子力学的成熟
1927年,狄拉克提出狄拉克方程,量 子力学的进一步发展
1935年,爱因斯坦、波多尔斯基和罗森 提出EPR佯谬,量子力学的深入探讨
量子力学+周世 勋全套课件
PPT,a click to unlimited possibilities
汇报人:PPT
目录 /目录
01
量子力学基础
02
周世勋的量子 力学课件介绍
03
周世勋的量子 力学课件详解
04

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

周世勋量子力学习题及解答

周世勋量子力学习题及解答

周世勋量子力学习题及解答1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长?m与温度t成反比,即;? MT=B(常数)并近似计算b的数值,准确到二位有效数字。

该解决方案基于普朗克黑体辐射公式8?hv3?vdv?3?c1ehvktdv,?1(1)五、C以及(2)vdvvd,(3)有dvd??c?dv(?)d??(?)?v?c?????8.hc?5.1ehc?kt,?1在这里??物理意义是黑体中的波长介于λ和λ+dλ之间,辐射能量密度介于。

本题关注的是λ取何值时,??取得极大值,因此,就得要求??对λ的一阶导数为零,由此可求得相应的λ的值,记作?m。

但要注意的是,还需要验证??对λ的二阶导数在?m处的取值是否小于零,如果小于零,那么前面求得的?m就是要求的,具体如下:hc1 6.hc?5.0hc kt Ekt?1.1.Ekt??5.hc?1hc?0kt1?e?kt8?hc15(1?e?hc?kt)?hc?kt1如果你做x=hc?kt,则上述方程为5(1?e?x)?十、这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有hc?mt?xk把x以及三个物理常量代入到上式便知mt?2.9? 10? 3m?K这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射能量分布的峰值向较短的波长移动,这将根据热物体(如遥远的恒星)的发光颜色确定温度。

1.2在0k附近,钠的价电子能量约为3ev,求其德布罗意波长。

根据德布罗意波粒二象性之间的关系,可以看出e=hv,惠普?如果所考虑的粒子是非相对论性的电子(e动ec2),那么p2e?2.E如果我们考察的是相对性的光子,那么e=pc注意到本题所考虑的钠的价电子的动能仅为3ev,远远小于电子的质量与光速平方的乘积,即0.51?106ev,因此利用非相对论性的电子的能量――动量关系式,这样,便有Hp二h2?eehc2?ec2e1.24?10?662?0.51?10?3?0.71?10?9m?0.71nmm在这里,利用hc?1.24?10?6ev?m以及ec20.51106ev最后,是的hc2?ece2从上面的公式可以看出,当粒子的质量较大时,粒子的波长较短,因此粒子的涨落较弱,粒子的性质较强;同样,粒子的动能越大,粒子的波长越短。

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋

解:
= 1
= 0
*
= 0
同理可证其它的正交归一关系。
*
1
综合两方面,两电子组成体系的波函数应是反对称波函数,即
2
独态:
*
三重态:
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
*
解:电子波函数的空间部分满足定态S-方程
*
*
两电子的空间波函数能够组成一个对称波函数和一个反对称波函数,其形式为
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为
式中
02
为归一化因子,即
03
求线性谐振子哈密顿量在动量表象中的矩阵元。
01
解:
02
*
第五章 微扰理论
*
运营计划简约通用模板
《量子力学教程》 习题解答
单击此处添加副标题
《量子力学教程》 习题解答说明 为了满足量子力学教学和学生自学的需要,完善精品课程建设,我们编写了周世勋先生编写的《量子力学教程》的课后习题解答。本解答共分七章,其中第六章为选学内容。 第一章 第二章 第三章 第四章 第五章 第六章 第七章
*
01
第一章 绪论
第七章 自旋和全同粒子
03
第三章 力学量的算符表示
单击此处添加正文
05
第五章 微扰理论
单击此处添加正文
02
第二章 波函数和薛定谔方程
单击此处添加正文
04
第四章 态和力学量的表象
单击此处添加正文

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第4章 态和力学量的表象——第6章

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第4章 态和力学量的表象——第6章
换称为幺正变换。在量子力学中,两个表象之间的变换是幺正变换,如 (x) Sn n (x)
n
中,以 Sn 为矩阵元的矩阵 S 称为变换矩阵。设态 在 A,B 表象中的矩阵表示分别为 a,
b,S 为两表象之间的幺正变换,则态在两表象之间的变换为
b S 1a ,算符在两表象之间的变换为 F ' S 1FS 。
1
(2) 2
动量本征函数,则
C( p,t) 即为该态在动量表象中的波函数。 C( p,t) 的物理意义为: C( p.t) 2 dp 表示在该态
中,测量粒子的动量所得结果在 p 到 p+dp 范围内的几率。
二、幺正变换
1.变换矩阵
满足 S S 1 的矩阵称为幺正矩阵,幺正矩阵不是厄米矩阵。由幺正矩阵所表示的变
1 / 50
圣才电子书 十万种考研考证电子书、题库视频学习平台

a1
(t
)
a2 (t) 函数,则 (x,t) 在力学量 Q 表象中矩阵表示可写为: 。
a
n (t
)
aq (t)
3.算符 F 在 Q 表象中的矩阵表示.
算符 F 在 Q 表象中对应一个矩阵(方阵),矩阵元是 Fnm un* Fumdx ,平均值公式是
3.其他常用关系式
(1)粒子数算符本征方程 N | n n | n ;
(2)哈密顿量本征方程
H
p ( x)
1
i px
1e
(2 ) 2
本征方程
p p'
p ' p'
C( p,t) ( p' p) p ( p p' ) p' ( p p' )
5.一个典型的例子分析

《量子力学教程》周世勋 课后答案

《量子力学教程》周世勋 课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学习题解答-周世勋

量子力学习题解答-周世勋

周世勋《量子力学教程》习题解答第一章 习题解答1.由黑体辐射公式导出维恩位移律:能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ(常数)。

并近似计算b 的数值,准确到两位有效数字。

解:由能量密度的公式:185-⋅=λλλλπλρkT hc ed hcd则由0=λρλd d 解得m λ: 2256181185⎪⎪⎭⎫ ⎝⎛-⋅-⋅--⋅⋅-=λλλλλλπλπλρkT hc kT hckT hc e e kT hc hce hc d d 0511186=⎪⎪⎪⎪⎭⎫ ⎝⎛---⋅=λλλλλπkT hc kT hckT hc e ekT hc e hc 即 051=--λλλkT hckT hce e kT hc 令x kT hcm=λ,则 051=--x xe xe 解得 97.4=x所以 )(29.097.41038.110999.210626.6161027K cm kx hc T m ⋅=⨯⨯⨯⨯⨯==--λ 2.在K 0附近,钠的价电子能量约为eV 3,求其德布罗意波长。

解:01019303409.7)(1009.7106.131091.0210626.62A m mE h P h K=⨯=⨯⨯⨯⨯⨯⨯===----λ3.氦原子的动能是kT E 23=(k 为玻尔兹曼常数),求K T 1=时,氦原子的德布罗意波长。

解:氦原子的动能)(1007.211038.1232323J E --⨯=⨯⨯⨯=,氦原子的质量kg kg M 27271068.61067.14--⨯=⨯⨯=,所以102327346.12)(106.121007.21068.6210626.62A m mEh =⨯=⨯⨯⨯⨯⨯==----λ4.利用玻尔——索末菲量子化条件,求 (1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场T H 10=,玻尔磁子T J M B /10924-⨯=,试计算动能的量子化间隔E ∆,并与K T 4=及K T 100=的热运动能量相比较。

周世勋《量子力学教程》(第2版)-绪论笔记和课后习题(含考研真题)详解(圣才出品)

周世勋《量子力学教程》(第2版)-绪论笔记和课后习题(含考研真题)详解(圣才出品)
2.玻尔假设 (1)电子在原子中不可能沿着经典理论所允许的每一个轨道运动,而只能沿着其中一 组特殊的轨道运动。称沿这组特殊轨道运动的电子处于稳定状态(简称定态)。 (2)电子保持在该状态时,既不吸收也不发出辐射。 (3)只有当电子由一个定态跃迁到另一个定态时,才产生辐射的吸收或发射现象。电
子由能量为 Em 的定态跃迁到能量为 En 的定态时所吸收或发射的辐射频率 满足:
四、微粒的波粒二象性
1.玻尔理论所遇到的困难说明探索微观粒子运动规律的迫切性
在光的波粒二象性的启示下,德布罗意提出微粒具有波粒二象性的假设。
微粒的粒子性(E,p)与波动性( , 或,k )的关系满足
E h
p
h
n
k
这公式称为德布罗意公式,或德布罗意关系。
戴维孙-革末的电子衍射实验 该实验充分说明电子具有波动性,验证了德布罗意波的存在。
vd
v
8hv 3 c3
1
hv
dv ,
e kT 1
以及
(1)
v c ,
(2)
v dv d ,
(3)

dv d
v
()
d
d
c
v () 2
c
8 hc 1
5
hc
ekT 1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零,
的,这样则有
mT
hc xk
把 x 以及三个物理常量代入到上式便知
b mT 2.9 103 m K
这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较

量子力学_第二版_周世勋

量子力学_第二版_周世勋
量子力学
Quantum mechanism Quantum mechanism
宝鸡文理学院物理与信息技术系
1
《量子力学》教材与参考书 教 材
《量子力学教程》周世勋编,高等教育出版社
参考书及学习网站
1.《 量 子 力 学 教 程 》 曾 谨 言 著 , ( 科 学 出 版 社,2003年第一版,普通高等教育十五国家级规划教 材) 2.《量子力学导论》曾谨言著,(北京大学出版 社,1998年第二版) 3.《量子力学导论》熊鈺庆主编,(广东高等教 育出版社,2000年第一版)
目 录
(Content)
第一章 绪论 Ch1. The basic concepts of quantum mechanism 第二章 波函数和薛定谔方程 Ch2. The wave function and SchrÖ dinger’s equation 第三章 量子力学中的力学量 Ch3. The Dynamical variable in Quantum Mechanism
21
§1.2 .光的波粒二象性
Chap.1.绪论 The birth of quantum mechanism
1.普朗克(1900年)对黑体辐射的解释 Planck assumption:
黑体可看作一组连续振动的 带电谐振子,这些谐振子的能 量应取分立值,这些分立值都 是最小能量的整数倍,这些分 立的能量称为谐振子的能级。 可见:黑体与辐射场交换能量 只能以 为单位进行,亦即黑体 吸收或发射电磁辐射能量的方式 是不连续的,只能量子地进行, 每个“能量子”的能量为 h
13
§1.1 经典物理学的困难(续3)
Chap.1.绪论 The birth of quantum mechanism

量子力学教程-周世勋-第六章散射

量子力学教程-周世勋-第六章散射
对于散射态, E =
(6.2-1)
r h2 k 2 为连续谱。令ψ (r ) = Rl (r )Ylm (θ , ϕ ) ,得径向方程为: 2μ
(6.2-2)
⎡ h 2 1 d 2 d l (l + 1)h 2 ⎤ ⎢ − 2 μ r 2 dr r dr + 2μ r 2 + U (r ) ⎥ U l (r ) = ERl (r ) ⎣ ⎦
uu r
ur
u r
u r
uur
uu r
uu r ⎡ uu r⎤ 1 j0 = ⎢α (r , θ , ϕ ) + β (r ,θ , ϕ )θ 0 ⎥ eikr (1−cosθ ) + cc r0 ⎣ ⎦ uu r ur 设 α ( r , θ , ϕ ) 的幅角为 arg x ,则在 j0 的 ro 分量中必含因子
第六章
散射
6.1 两体碰撞和散射截面
两个粒子的碰撞可以分为弹性散射,非弹性散射和反应三种类型。如果两个粒子的内部状态在 碰撞前后都保持不变,则称为弹性散射。弹性散射也就是弹性碰撞,下面将只讨论弹性散射问题。 如果粒子的内部状态在碰撞后有变化(例如激发或电离) ,则称为非弹性散射。如果碰撞后有新粒子 出现,则称为反应。非弹性散射与反应有时并不能严格区分开来。单粒子的衰变也可属于反应。粒 子之间的碰撞与能级跃迁中的频谱(能谱)一样对许多实际问题的研究具有很重要的意义。例如, 贞瑟福(Rutherford)由对 X 粒子被原子散射的研究中发现原子中心有一个重核。又如,电子与原 子碰撞的夫兰克——赫兹(Franck-Herty)实验证明了原子中有定态。 两个粒子的碰撞可以在外场中进行,下面也只讨认没有外场的情况,这时,两个粒子体系 的势能仅由相互作用能 U ( r ) 决定。由§2.7“5”可知,两体问题可以化为一个具有折合质量为 μ 的 粒子在一个固定于质心位置的势场 U ( r ) 中运动。这个静止不动的质心位置被称为散射中心,也称为 靶心。这时,两个粒子的散射便化为粒子被势场的散射。这个粒子的能量 E 是连续谱,在弹性散射 中,能量 E 在散射过程中保持不变。为了简单,设耙心质量比位于 r 处的粒子质量大得多,则这个 具有折合质量的粒子便化为一个真实粒子,而相对运动能量 E 便化为这个真实粒子的能量。 考虑一束粒子沿 Z 轴正方向向散射中心 C 射束,如下图: 在入射粒子未进入势场之前,即当入射粒子距离散射中心很远时,可近似地用平面波描写, 所以穿过垂直于 Z 轴平面的 λ 射粒子是均匀分布的。单位时间内穿过垂直于入射方向单位面积的粒 子数 N 称为入射粒子流强度。粒子被散射后的运动方向与入射方向之间的夹角称为散射角。设以 C 点为球心以 r 为半径的球面上的面积元 ds 对 C 点张开的立体角为 d Ω , 则单位时间内散射到 d Ω 内 的粒子数 dn 应与 d Ω 成正比,也与 N 成正比:

量子力学答案课后 习题答案详解(周世勋)

量子力学答案课后 习题答案详解(周世勋)

量子力学习题及解答第一章 量子理论基础1.1。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学(第二版)周世勋原著课后习题整理版

量子力学(第二版)周世勋原著课后习题整理版

证明在定态中,几率流密度与时间无关。

证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r i e r e r e r e r i i J er t f r t r Et iEt iEt iEt iEtiψψψψμψψψψμμψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ----)()(,可见t J 与无关。

2.4证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x an A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1='3.8.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。

解:由波函数)(x ψ的形式可知一维无限深势阱的分布如图示。

粒子能量的本征函数和本征值为⎪⎩⎪⎨⎧≥≤≤≤a x x a x x an a x ,0 ,0 0 ,sin 2)(πψ 22222a n E n μπ = ) 3 2 1( ,,,=n 动量的几率分布函数为2)(n C E =ω⎰⎰==∞∞-an dx x x an dx x x C 0*)(sin)()(ψπψψ 先把)(x ψ归一化,由归一化条件,⎰⎰⎰+-=-==∞∞-aa dx x ax a x A dx x a x A dx x 022220222)2()()(1ψ⎰+-=adx x ax x a A 043222)2(30)523(525552a A a a a A =+-= ∴530aA =∴⎰-⋅⋅=an dx x a x x a n aa C 05)(sin 302π ]sin sin [1520203x xd a n x x xd a n x a a a a ⎰⎰-=ππ ax a n n a x a n x n a x a n x n a x a n n a x a n x n a a 0333222222323]cos 2sin 2 cos sin cos [152ππππππππππ--++-=])1(1[15433nn --=π∴2662])1(1[240)(n nn C E --==πω⎪⎩⎪⎨⎧=== ,6 ,4 ,205 3 196066n n n ,,,,,π ⎰⎰==∞∞-adx x p x dx x H x E 02)(2ˆ)()(ˆ)(ψμψψψ ⎰--⋅-=adx a x x dx d a x x a 02225)](2[)(30μ)32(30)(303352052a a adx a x x a a-=-=⎰μμ 225aμ = 4.5 设已知在Z L L ˆˆ2和的共同表象中,算符yx L L ˆˆ和的矩阵分别为 ⎪⎪⎪⎭⎫⎝⎛=010******** x L ⎪⎪⎪⎭⎫⎝⎛--=0000022ii i i L y 求它们的本征值和归一化的本征函数。

量子力学-第二版-第六章--散射-习题答案--周世勋

量子力学-第二版-第六章--散射-习题答案--周世勋

第六章 散射1.粒子受到势能为2)(r ar U =的场的散射,求S 分波的微分散射截面。

[解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。

注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在∞→r 时的位相差。

因此要找出相角位移,必须从矢径的波动方程出发。

矢径的波动方程是:0))1()((12222=+--+⎪⎭⎫ ⎝⎛l lR r l l r V k drdR r dr d r其中l R 是波函数的径向部分,而E k r U r V 2222),(2)(μμ==令r r x R l l )(=,不难把矢径波动方程化为02)1(2222=⎪⎭⎫ ⎝⎛-+-+''l l x r r l l k x μα再作变换 )(r f r x l =,得0)(221)(1)(2222=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-+'+''r f r e k r f r r f μα这是一个贝塞尔方程,它的解是)()()(kr BN kr AJ r f p p +=其中222221 μα+⎪⎭⎫ ⎝⎛+=l p 注意到)(kr N p 在0→r 时发散,因而当0→r 时波函数∞→=rN R p l ,不符合波函数的标准条件。

所以必须有0=B故)(1kr J r AR p l =现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求得相角位移l δ,由于:)2sin(1)42sin(1)(l lkr r p kr r r R δπππ+-=+-→∞→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=++-=∴21221224222l d l l p l μππππδ当l δ很小时,即α较小时,把上式展开,略去高次项得到⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-=2122l l μαπδ又因 l i i elδδ212=-故 ∑∞=-+=02)(cos )1)(12(21)(l l i P e l ik f l θθδ∑∞=⎪⎪⎪⎪⎭⎫ ⎝⎛+-+=02)(cos 122)12(21l l P l i l ik θμαπ∑∞=-=02)(cos l l P k θπμα注意到 ⎪⎪⎩⎪⎪⎨⎧≤⎪⎪⎭⎫⎝⎛≥⎪⎪⎭⎫ ⎝⎛=-+=∑∑∞=∞=02121202112121222112)(cos 1)(cos 1cos 211l l l l l lr r P r r r r r P r r r r r r r r 当当θθθ如果取单位半径的球面上的两点来看 则 121==r r ,即有∑∞===-02sin21)(cos )cos 1(21l l P θθθ故2s i n21)(2θπμαθ k f -=微分散射截面为θθαμπθθαμπθθd Ed k d f 2csc 82sin41)(2222242222 ==由此可见,粒子能量E 愈小,则θ较小的波对微分散射截面的贡献愈大;势能常数α愈大,微分散射截面也愈大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 散射1.粒子受到势能为2)(r ar U =的场的散射,求S 分波的微分散射截面。

[解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。

注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在∞→r 时的位相差。

因此要找出相角位移,必须从矢径的波动方程出发。

矢径的波动方程是:0))1()((12222=+--+⎪⎭⎫ ⎝⎛l lR r l l r V k drdR r dr d r其中l R 是波函数的径向部分,而E k r U r V 2222),(2)(ηημμ==令r r x R l l )(=,不难把矢径波动方程化为02)1(2222=⎪⎭⎫ ⎝⎛-+-+''l l x r r l l k x ημα再作变换 )(r f r x l =,得0)(221)(1)(2222=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-+'+''r f r e k r f r r f ημα这是一个贝塞尔方程,它的解是)()()(kr BN kr AJ r f p p +=其中222221ημα+⎪⎭⎫ ⎝⎛+=l p 注意到)(kr N p 在0→r 时发散,因而当0→r 时波函数∞→=rN R p l ,不符合波函数的标准条件。

所以必须有0=B故)(1kr J r AR p l =现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求得相角位移l δ,由于:)2sin(1)42sin(1)(l lkr r p kr r r R δπππ+-=+-→∞→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=++-=∴21221224222l d l l p l ημππππδ当l δ很小时,即α较小时,把上式展开,略去高次项得到⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-=2122l l ημαπδ又因l i i e l δδ212=- 故 ∑∞=-+=02)(cos )1)(12(21)(l l i P e l ik f l θθδ∑∞=⎪⎪⎪⎪⎭⎫ ⎝⎛+-+=02)(cos 122)12(21l l P l i l ik θμαπη∑∞=-=02)(cos l l P k θπμαη注意到 ⎪⎪⎩⎪⎪⎨⎧≤⎪⎪⎭⎫⎝⎛≥⎪⎪⎭⎫ ⎝⎛=-+=∑∑∞=∞=02121202112121222112)(cos 1)(cos 1cos 211l l l l l lr r P r r r r r P r r r r r r r r 当当θθθρ如果取单位半径的球面上的两点来看 则 121==r r ,即有∑∞===-02sin21)(cos )cos 1(21l l P θθθ故2sin21)(2θπμαθηk f -=微分散射截面为θθαμπθθαμπθθd Ed k d f 2csc 82sin41)(2222242222ηη==由此可见,粒子能量E 愈小,则θ较小的波对微分散射截面的贡献愈大;势能常数α愈大,微分散射截面也愈大。

2.慢速粒子受到势能为⎩⎨⎧><=a r a r U r U 当当,0,)(0的场的散射,若0,00><U U E ,求散射截面。

[解] 慢速粒子的德布罗意波长很长,所以只需要考虑S 分波。

在a r >处,方程为2210l l l(l )x k x r +⎡⎤''+-=⎢⎥⎣⎦其中222ηE k μ=在a r <处,则有2210l l l(l )x k x r +⎡⎤'''-+=⎢⎥⎣⎦其中202)(2ηE U k -='μ 而波函数是r x R l l =在a >>λ的情况下,只故虑S 分波,即0=l 的情况,上面两个方程变为0020=+''>x k x ar0020=-''<x k x ar其解分别为当a r >时, )sin(00δ+=kr B x 当a r <时,0x Ashk r A c hk r '''=+由于在0→r 时,r x R 00=有限,但1cos 0−−→−'→r r k 当η故 0='A 即)(0a r rk Ash x <'=在a r =处,波函数0R 及其微商必须连续,因此得出)sin(0δ+='ka B a k Ash)sin()cot(0202δδ+-+='-''ka a Bka k a B a k sh a A a k ch k a A用前式除后式可得)cot(coth 0δ+=''ka k a k k即)(0δ+'='ka tg k k a k tg ηka a k tg k k tg -⎪⎭⎫⎝⎛''=∴-η10δ因此S 分波的辐射截面是⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛''==-ka a k tg k k tg k k Q η1220220sin 4sin 4πδπ当速度较小时,0→k ,可以近似地认为2002ηU k k μ=='这时有0tghka tghk a =000ktghk a ka k δ∴=-20022020144⎪⎪⎭⎫ ⎝⎛-==a k a k tg a k Q ηπδπ假如∞→0U ,相当于在受到球形无限深势阱散射的情况,这时由于121)(100022020200−−−→−⎥⎦⎤⎢⎣⎡-+=⎪⎪⎭⎫ ⎝⎛-∞→k a k a k tg a k a k tg a k a k tg 当ηηη204Q a π∴=3.只考虑S 分波,求慢速粒子受到势能4)(r r U α=的场散射时的散射截面。

[解] 当只考虑0=l ,即S 分波时,令r R α=,则x 满足的方程是:0242=-''r xx ημα为了解此方程,作如下代换,令)()(r f r r x =,由于)(121)(r f r r f r x +'='23)(41)()(-⋅-'+''=''r r f r r f r f r x可将原方程化为0411223272=⎪⎪⎭⎫⎝⎛+-'+''r r d f r f f r ημ即04112242=⎪⎭⎫ ⎝⎛+-'+''r r d f r f f ημ为了化简方程,再作变换,令ξμα12ηi r =注意到22212ξμαξμαξξξηηd df i r i d df dr d d df dr df =-==drd d df i d f d i dr d d df i d d dr f d ξξμαξξμαξξμαξξ222222222ηηη+=⎪⎪⎭⎫ ⎝⎛=232222222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=μαξξξμαξηηi d df i d f d方程可以化为04111222=⎪⎪⎭⎫⎝⎛-++ξξξξd df d f d这是21阶的贝塞尔方程,它的解是⎪⎪⎭⎫ ⎝⎛=r i H r f 12)()1(21ημα式中)1(H表示第一类汉克尔函数,按定义为[])()(sin )()1(ξξπξπp p ip p J J ep iH ---=当1<<ξ时,)1(2)(+=p J p pP Γξξ当0,→∞→ξr 时⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-−−→−--∞→2122322sin )(21212121)1(21ΓξΓξπξi i H r 当 而πΓΓπΓ21212123,21=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==∴r x i H r r f r x ημ2)()1(21当r 很大时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=41241222ηημαμαr x 常数 ⎥⎦⎤⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==r c C r r r x R 21412412212)(常数常数ηημαμα另一方面r kr r kr C kr kr C R )sin()0cos()0sin(021δ-=-+-=常数当1<<kr 时⎪⎭⎫ ⎝⎛+≅r C C R 21常数 其中412241212,2⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=ηημαμαC C01202δμαδ===∴k k C C tg η散射截面222208424k k Q ηηπμαπμαπδ⎪⎪⎭⎫ ⎝⎛==上述解的条件是,1<<kr 即112<<=r i ημαξ亦即要求 k r 12<<<<ημα4.用玻恩近似法求粒子在势能220)(r eU r U α-=场中散射时的散射截面。

[解] 按玻恩近似法计算微分散射截面的公式2)()(θθf q = 而⎰∞--=0222sin 2)(drkre r K f rαμθη [见教材(55-23)式]其中2sin 4222θk K =,θ为入射粒子方向和散射粒子方向之间的夹角。

在本题中220)(re U r U α-=⎰∞--=∴02022sin 2)(drKre r K U f r αμθη⎰∞--+--=02)(2222dre e r K U iiKrr iKrr ααμη⎰⎰∞∞⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛----=2422422222222222drree K U i dr ree K U i iK r K iK r K ααααααμμηη注意到⎰⎰⎰∞∞∞⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=0222222222222222dreiK dr e iK r dr reiK r iK r iK r αααααααα⎰∞-+=+=03224212222απααπααiK iK dx xe x又⎰⎰⎰∞∞∞⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+-=-0002222222222222222dr eiK dr e iK r dr reiK r iK r iK r αααααααα32421απαiK +-=2222432034222)(αααπμαπμθK K e U iK e K U i f ---=⋅=∴ηη而2sin 4222θK K =2226420224)()(ααπμθθK eU f q -==∴η5.利用玻恩近似法求粒子在势能20s Ze r,r a U(r )r b,r a ⎧-<⎪=⎨⎪>⎩场中散射的微分散射截面,式中22sa b Ze =[解] 由势能)(r U 的形状容易看出,计算)(θf 时只需计算由a →0的积分即可。

相关文档
最新文档