乳液聚合合成及生产工艺.
苯丙乳液聚合工艺流程
![苯丙乳液聚合工艺流程](https://img.taocdn.com/s3/m/742d38f168dc5022aaea998fcc22bcd127ff4249.png)
苯丙乳液聚合工艺流程苯丙乳液是一种重要的合成树脂,具有优良的抗风化性能、耐热性能和耐候性能。
下面将介绍一种苯丙乳液的聚合工艺流程。
1. 原料准备:将丙烯酸丁酯、苯乙烯和一定量的水、表面活性剂和稳定剂等原料准备好。
其中,丙烯酸丁酯是主要的单体,可以提供苯丙乳液的耐候性能。
苯乙烯是共聚单体,可以提供苯丙乳液的强度和硬度。
2. 反应釜调配:将一定量的水倒入反应釜中,并加热至60-70摄氏度。
同时,加入适量的表面活性剂和稳定剂,使得反应液形成一个稳定的乳液。
3. 单体加入:将预先准备好的丙烯酸丁酯和苯乙烯逐渐加入到反应釜中,保持反应液的温度在60-70摄氏度,并不断搅拌。
4. 聚合反应:通过加入引发剂,触发聚合反应。
聚合反应是一个自由基聚合反应,丙烯酸丁酯和苯乙烯中的双键将逐渐开环,形成高分子链。
5. 控制反应温度:在聚合反应过程中,需要控制反应液的温度在60-70摄氏度范围内。
过高的温度会导致聚合反应速度过快,产生大量的副产物;而过低的温度则会导致聚合反应速度过慢,影响产量和品质。
6. 过滤和除去杂质:聚合反应结束后,需要通过过滤的方式去除反应中产生的杂质,以提高苯丙乳液的纯度和透明度。
7. 乳液稳定处理:将过滤后的苯丙乳液进行稳定处理,添加一定量的稳定剂和抗氧剂,以增加其长期贮存稳定性。
8. 包装和储存:将稳定处理后的苯丙乳液装入适当的容器中,进行封装和储存。
在储存过程中,需要避免阳光直射和高温环境,以保持苯丙乳液的品质。
以上就是苯丙乳液聚合工艺流程的简要介绍。
通过合理的工艺控制,可以获得高质量的苯丙乳液,广泛应用于涂料、粘合剂、塑料等行业中。
乙酸乙烯酯的乳液聚合实验报告
![乙酸乙烯酯的乳液聚合实验报告](https://img.taocdn.com/s3/m/9b833958c381e53a580216fc700abb68a882ad49.png)
乙酸乙烯酯的乳液聚合实验报告实验目的,通过乳液聚合实验,掌握乙酸乙烯酯的乳液聚合反应原理和操作方法,了解乳液聚合技术在合成树脂中的应用。
实验原理,乳液聚合是指在水相中悬浮有机物质,通过引发剂的作用,在水相中形成胶体颗粒,从而实现有机物质的聚合反应。
在乳液聚合乙酸乙烯酯时,首先将乙酸乙烯酯、乳化剂和引发剂混合悬浮在水相中,通过搅拌使其均匀分散,然后加热反应,引发剂引发乙酸乙烯酯的聚合反应,最终得到乳液聚合乙酸乙烯酯。
实验步骤:1. 准备实验器材和试剂,乙酸乙烯酯、乳化剂、引发剂、搅拌器、恒温水浴等。
2. 配制乳化液,将乳化剂溶解在适量水中,得到乳化液。
3. 悬浮乙酸乙烯酯,将乙酸乙烯酯加入乳化液中,通过搅拌使其均匀分散。
4. 加入引发剂,将引发剂加入搅拌均匀的乳液中。
5. 反应聚合,将混合液置于恒温水浴中加热,观察乳液的变化,直至聚合反应完成。
6. 分离产品,将反应后的乳液进行分离,得到乙酸乙烯酯的乳液聚合产物。
实验结果与分析,通过实验操作,成功得到了乙酸乙烯酯的乳液聚合产物。
观察发现,产物呈乳白色乳液状,具有良好的分散性和稳定性。
通过红外光谱分析,确认产物为乙酸乙烯酯的聚合物。
实验结果表明,乳液聚合是一种有效的合成乙酸乙烯酯树脂的方法,产物具有良好的分散性和稳定性,适用于涂料、粘合剂等领域。
实验结论,乙酸乙烯酯的乳液聚合实验取得了成功,通过实验操作掌握了乳液聚合的原理和操作方法,了解了乳液聚合技术在合成树脂中的应用。
乳液聚合是一种有效的合成方法,产物具有良好的性能,具有广泛的应用前景。
实验中遇到的问题及解决方法,在实验过程中,由于乳液聚合反应需要在恒温水浴中进行,需要控制温度和搅拌速度,因此需要仔细操作,避免产生温度不均匀或乳液分散不良的情况。
在实验中,通过调整恒温水浴的温度和搅拌器的速度,成功解决了这一问题。
实验改进方向,在今后的实验中,可以尝试引入不同类型的乳化剂和引发剂,探究其对乳液聚合反应的影响,以及优化反应条件,提高产物的质量和产率。
乳液聚合体系及合成工艺
![乳液聚合体系及合成工艺](https://img.taocdn.com/s3/m/34a005ede009581b6bd9ebea.png)
乳液聚合体系及合成工艺(2007-03-12 14:35:13)转载分类:现代水性涂料一、构成乳液聚合体系的组分乳液聚合体系的主要组分有单体、乳化剂、引发剂和介质,另外根据需要加入其他组分,如助乳化剂、分子量调节剂、pH缓冲剂、抗冻剂、螯合剂、增塑剂、保护胶体、消泡剂等。
1.单体(1)在乳液聚合中单体用量一般控制在40%-50%之间。
(2)乳液的最低成膜温度(MFT)主要决定于乳液聚合物的玻璃化温度(Tg),涂料用聚合物乳液的玻璃化温度,一般在15~25度之间,低于室温。
硬单体(玻璃化温度高的单体)有甲基丙烯酸甲酯(Tg 105)、苯乙烯(Tg 105)丙烯腈(Tg 100)氯乙烯(Tg 75)甲基丙烯酸乙酯(Tg 65)偏二氯乙烯(Tg 52)软单体(玻璃化温度低的单体)有丙烯酸-2-乙基己酯(Tg -85)丙烯酸丁酯(Tg -54)丙烯酸异丁酯(Tg -17)丙烯酸乙酯(Tg -22)丁二烯(Tg -20)氯二丁烯(Tg -45)玻璃化温度适中的单体有醋酸乙烯酯(Tg 29)丙烯酸甲酯(Tg 8)甲基丙烯酸丁酯(Tg 20)(3)线性聚合物进行交联,以生成网状结构聚合物。
有自交联和外交联两种。
二、乳化剂1。
阴离子型、阳离子型、两性和非离子型乳化剂。
2。
乳化剂的选择原则:(1)所选择的乳化剂的HLB值应和所要进行反应的乳液聚合体系相匹配。
(2)所选用的离子型乳化剂的三相点应低于反应温度(3)所选用的非离子型乳化剂的浊点应高于反应温度(4)对离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能小;对非离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能大(5)应选用临界胶束浓度尽量小的乳化剂(6)应选用增溶度大的乳化剂(7)离子型乳化剂和非离子型乳化剂有协同效应,即两者联合使用比各自单独使用效果都要好。
(8)选择与单体化学结构类似的乳化剂可获得较好的乳化效果(9)亲水性较大和亲水性较大的乳化剂联合使用时乳化效果较好。
实验五 苯乙烯乳液聚合
![实验五 苯乙烯乳液聚合](https://img.taocdn.com/s3/m/1c62edede009581b6bd9eb28.png)
高分子化学实验报告实验五苯乙烯乳液聚合苯乙烯乳液聚合一、实验目的1、通过实验对比不同量乳化剂对聚合反应速度和产物的相对分子质量的影响,从而了解乳液聚合的特点,了解乳液聚合中各组分的作用,尤其是乳化剂的作用;2、掌握制备聚苯乙烯胶乳的方法,以及用电解质凝聚胶乳和净化聚合物的方法。
二、实验原理所谓乳液聚合就是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、水、乳化剂及溶于水的引发刑四种基本组分组成。
首先在乳液聚台体系中.乳化剂以四种形式存在:①以单分子的形式存在于水中.形成真溶液;②以胶束的形式存在于溶液中;③被吸附在单体球滴表面上,使单体珠滴稳定地悬浮在介质中;④吸附在乳胶粒表面上顺聚合物乳液体系稳定。
其次,乳胶粒主要是由胶束形成的,叫作乳胶粒形成的胶束机理。
乳液聚合的聚合反应实际上发生在乳胶粒中。
乳液聚合分为四个阶段:①分三阶段;②乳胶粒生成阶段;③乳胶粒长大阶段;④聚合完成阶段。
乳液聚合的优点是:①聚合速度快、产物相对分子质量高;②由于使用水作介质,易于散热、温度容易控制、费用也低;③由于聚合形成稳定的乳液体系粘度不大,故可直接用于涂料、粘合剂、织物浸渍等。
如需要将聚合物分离,除使用高速离心外,亦可将胶乳冷冻,或加入电解质将聚合物凝聚,然后进行分离,经净化干燥后,可得固体状产品。
乳液聚合的缺点是:聚合物中常带有未洗净的乳化剂和电解质等杂质,从而影响成品的透明度、热稳定性、电性能等。
尽管如此,乳液聚合仍是工业生产的重要方法,特别是在合成橡胶工业中应用得最多。
三、实验药品及仪器药品:苯乙烯、过硫酸钾、十二烷基磺酸钠、蒸馏水、氯化钠仪器:三口瓶、回流冷凝管、电动搅拌器、恒温水浴锅、温度计、量筒、烧杯、布氏漏斗、抽滤瓶、水泵、电子天平实验装置如下图:四、实验步骤及现象步骤现象分析在装有温度计、搅拌器、水冷凝管的150 mL三颈瓶中加入50 mL去离子水(或蒸馏水)、0.3000g乳化剂(用十二烷基磺酸钠)。
乙酸乙烯酯的乳液聚合实验报告
![乙酸乙烯酯的乳液聚合实验报告](https://img.taocdn.com/s3/m/0ad36428f08583d049649b6648d7c1c709a10b4c.png)
乙酸乙烯酯的乳液聚合实验报告
乙酸乙烯酯是一种常用的合成树脂,广泛应用于涂料、胶粘剂、纤维、塑料等领域。
其中,乳液聚合是一种重要的制备方法。
本实验旨在通过乳液聚合制备乙酸乙烯酯聚合物,并对其结构和性质进行分析。
实验过程如下:首先,在500mL三口瓶中加入乙酸乙烯酯、十二烷基硫酸钠、烷基苯磺酸钠、水、氨水等原料,制备出一定浓度的乳液;接着,将瓶子放入恒温水浴中,保持温度在60℃左右,开始聚合反应。
反应过程中,需要注意搅拌速度、氧气含量、pH值等因素的控制。
反应结束后,离心分离液相,用水洗涤沉淀,最终得到乙酸乙烯酯聚合物。
对所得聚合物进行结构和性质分析,可以采用多种测试手段。
例如,可以使用傅里叶变换红外光谱仪(FTIR)对样品进行光谱分析,进一步确定聚合物结构和化学键的类型。
同时,可以利用热重分析仪(TGA)或差示扫描量热仪(DSC)测定聚合物的热稳定性、玻璃化转变温度等热学性质。
对聚合物的粒径、分子量分布等物理性质也可以进行测试。
乳液聚合是一种相对简单、易于控制的聚合方法,具有以下优点:一是反应物易于纯化,不需要高真空或惰性气体保护;二是反应过程中产生的热量较少,避免了聚合物分解或副反应的发生;三是制
备出来的聚合物颗粒大小均匀,分散性好,具有良好的应用性能。
因此,乳液聚合已经成为一种重要的聚合制备方法。
乙酸乙烯酯的乳液聚合是一种较为成熟的制备方法,在涂料、胶粘剂、纤维、塑料等领域具有广泛的应用前景。
通过实验对其结构和性质进行分析,有助于我们更加深入地理解聚合反应机理,为实际生产提供有益的参考。
丙烯酸酯类乳液的合成工艺
![丙烯酸酯类乳液的合成工艺](https://img.taocdn.com/s3/m/0df3a5cdf71fb7360b4c2e3f5727a5e9856a273c.png)
丙烯酸酯类乳液的合成工艺丙烯酸酯类乳液是一种常用的水性胶粘剂,广泛应用于涂料、胶黏剂、印刷油墨等领域。
下面将介绍丙烯酸酯类乳液的合成工艺,希望对相关领域的从业人员有所指导和帮助。
首先,丙烯酸酯类乳液的合成工艺通常包括以下几个步骤:单体预聚合、乳化、稀释及调节pH值、包装。
一、单体预聚合单体预聚合是丙烯酸酯类乳液合成的第一步。
通常使用甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸乙酯(EA)等单体进行预聚合反应。
该步骤中,单体需与引发剂进行反应,生成一定程度的高分子聚合物。
二、乳化乳化是将预聚合物与乳化剂进行混合,并加入适量的去离子水,通过机械或物理的方法使其均匀分散在水相中,形成胶体溶液。
乳化剂能够使预聚合物分散稳定,并提高乳液的粘度和黏附性能。
三、稀释及调节pH值在乳化过程中,乳液常常需要稀释以达到所需的固含量。
稀释过程中可以根据需要加入适量的助剂,如泡沫抑制剂、增稠剂、抗菌剂等。
此外,还需要根据具体要求调节乳液的pH值,一般范围在5-9之间。
四、包装在完成稀释及调节pH值后,乳液需要进行包装,常见的包装方式有塑料桶、配料罐等。
在包装的过程中需要注意保持环境的卫生和干燥,避免杂质进入乳液。
以上是丙烯酸酯类乳液的合成工艺。
在实际生产过程中,还需要根据具体要求进行工艺参数的调整和优化,以获得所需的产品性能。
此外,丙烯酸酯类乳液的合成工艺存在一定的变化和改进空间,需要根据具体情况灵活应用。
综上所述,丙烯酸酯类乳液的合成工艺涉及单体预聚合、乳化、稀释及调节pH值、包装等步骤。
准确掌握合成工艺对于生产高质量的丙烯酸酯类乳液至关重要。
希望本文能够为相关从业人员提供有益的指导和参考。
醋酸乙烯酯乳液聚合
![醋酸乙烯酯乳液聚合](https://img.taocdn.com/s3/m/34342b49852458fb770b56e2.png)
醋酸乙烯酯乳液聚合-白乳胶的制备一、实验目的学习聚醋酸乙烯酯乳胶的合成原理和方法,加深对乳液聚合的理解。
二、实验原理乳液聚合是聚合反应方法之有,它是借助乳化剂(本实验OP-10)的作用和机械搅拌将单体(醋酸乙烯酯)分散在介质(聚乙烯醇水溶液)中形成乳状液。
并在引发剂(过硫酸铵)作用下进行的聚合反应。
本实验的反应产物即为聚醋酸乙烯酯,不必分离即可用作粘合剂。
反应式:nCH 2=CH (CH 2 CH)nOCOCH 3OCOCH 3(引发剂)过硫酸铵三、实验仪器与药品电热套、三颈烧瓶、水浴锅、恒压滴压漏斗、直形冷凝管、电动搅拌器、温度计、锥形瓶、滴管、小烧杯。
四、物理常数名称 分子量 熔点/℃沸点/℃折光率/n20比重 颜色和形态溶解度 醋酸乙烯酯740.8-93.2 72.2 1.3953 0.940 无色易燃液体,有甜的醚香味。
与乙醇混溶,能溶于乙醚、丙酮、氯仿、四氯化碳等有机溶剂,不溶于水。
易聚合。
五、实验装置图六、实验步骤(1)安装仪器。
(参见上图)(2)加料。
在三颈烧瓶中加入8%聚乙烯醇溶液 30mL 、OP-10 乳化剂 1mL 后,不断搅拌。
水浴加热至 70℃。
(此时或有乳白色出现!)(3)从回流冷凝管上口加入第一批引发剂(10%过硫酸钾)0.4mL 。
然后以每分钟10滴的速度加入醋酸乙烯酯单体,不断搅拌,70℃保温,直至单体加完为止。
(加完单体需用时 1.5h 左右!)(4)引发剂采用间歇滴加方式投料,每隔 0.5h 加 2 滴,以保证聚合反应正常进行。
(5)单体加完后,缓慢升温至80℃,不断搅拌,再保温 0.5h。
再升温至90℃,保温 0.5 h,最后升温至95摄氏度,再保温 20min。
(6)将水泵接通冷凝管上口,抽吸排除未聚合的残留单体,冷却后即可出料。
七、实验注意事项1.整个实验过程,机械搅拌不能停顿,否则聚醋酸乙烯酯会凝结成块团析出。
2.选用聚乙烯醇十分重要,如果聚乙烯醇水解度过高,则乳液体系不稳定,聚醋酸乙烯酯易结块析出。
乳液聚合法合成聚合物材料
![乳液聚合法合成聚合物材料](https://img.taocdn.com/s3/m/7eea0082ec3a87c24028c4ea.png)
乳液聚合法合成聚合物材料(2007-03-08 16:11:42)转载分类:现代水性涂料乳液聚合作为一种重要的制造聚合物的方法,可通过将聚合物乳液破乳、盐析、水洗、干燥等工艺过程制造橡胶、塑料及树胶等。
(1)用乳液聚合法可大量地生产合成橡胶丁苯橡胶、丁腈橡胶、氯丁橡胶、丁吡橡胶、聚硫橡胶、聚丙烯酸酯橡胶丁吡橡胶:又称丁二烯-乙烯基吡啶橡胶。
一种合成橡胶。
是丁二烯与乙烯基吡啶或其衍生物的共聚物。
通常是丁二烯与2-甲基-5-乙烯基吡啶的共聚物。
有乙烯基吡啶的臭气。
玻璃化温度是-65~-75℃。
其特点是耐温性能优越。
其硫化胶具有较高的拉伸强度、伸长率、耐屈挠和耐撕裂等性能。
用于制造在高温下与各种溶剂接触的垫片、密封圈等橡胶制品。
可由丁二烯与2-甲基-5-乙烯基吡啶于50℃下经乳液聚合制得。
聚硫橡胶:聚硫橡胶属特种合成橡胶。
其硫化制品有优良的耐油、耐溶剂、耐碱、耐海水腐蚀、耐紫外光和高能辐射、耐冲击、低透汽率、良好的低温挠曲性,电绝缘性和对金属非金属材料的粘结性及良好的施工性能。
因而在国防工业和工农业生产中获得广泛应用。
我院自20世纪50年代即开始研究。
产品分固态、液态、水分散体三大类。
国外聚硫橡胶主要品种我院均能生产,质量水平相当,并可根据不同使用要求协商试制。
聚硫橡胶主要用作固体火箭推进剂、粘合剂、航空耐油密封材料、粘接密封剂、耐油涂料、填缝材料、灌注密封料、树脂增韧剂等,在航空、石油、化工、船舶、汽车、建筑、机电、仪表、农机、水利电力和铁路等部门广泛应用。
(2)用乳液聚合法可以大量的生产合成塑料、合成树脂及聚合物乳液乳液法聚氯乙烯树脂(又称糊树脂)、ABS树脂、聚三氟氯乙烯树脂、聚四氟乙烯、聚丙烯酸酯及其聚合物乳液等。
高分子化学第四章乳液聚合
![高分子化学第四章乳液聚合](https://img.taocdn.com/s3/m/23fa1651b52acfc789ebc98a.png)
体液滴体积大 比表面小。
增容胶束?
是油溶性单体和 水溶性引发剂相 遇的场所;
胶束内[M]很 高,比表面大, 提供了自由基易 扩散进入引发聚
合的条件。
增容胶束是进行聚合的主要场所。
2.成核机理
乳胶粒:含有聚合物的胶束。 成核:形成乳胶粒的过程,称为成核。
➢胶束成核(micellar nucleation)
散热易,产物呈 固态时要后处 理,也可直接使 用。
含有少量乳化 剂。
间歇, 连续
生产实例
有机玻璃 聚苯乙烯
聚乙烯
丙烯酸树脂 聚丙烯腈 聚醋酸乙烯酯
聚氯乙烯 聚苯乙烯
丁苯橡胶 丙烯酸酯类乳
液
Thank you
●—单体分子, ○—乳化剂分子, ~~聚合物
第Ⅰ阶段:存在单 体液滴,胶束及乳 胶粒子。
第Ⅱ阶段:胶束消 失,含乳胶粒及单 体液滴;乳胶粒体 积不断增大。
第Ⅲ阶段:单体 液滴消失,乳胶 粒体积不断缩小。
乳液聚合阶段示意图
二. 乳液聚合机理
乳化剂:大部分形成胶束,
(直径4~5nm,
聚
少量溶解于水中。
➢ 反相乳液聚合(inverse emulsion polymerization); 油相为连续相,单体是水溶性,即W/O(油包水)。
➢ 核壳乳液聚合(core-shell emulsion polymerization); 先后加入两种不同单体进行聚合,形成核壳结构的乳胶粒。
➢ 无皂乳液聚合(non-soap emulsion polymerization); 不加乳化剂,乳胶粒径单分散性好。
底料入烧瓶 升温至78℃;取组分2的8%-10%打底,升温至84℃, 并加入初加KPS;待兰光出现,回流不明显时开始同时滴加预乳 液及引发剂,约4h滴完;保温1h;降温为65℃,后消除,并保温 30min;降至40℃,调PH为7-8,过滤出料。
粘合剂的合成工艺有哪些
![粘合剂的合成工艺有哪些](https://img.taocdn.com/s3/m/2cb5ef1a4a35eefdc8d376eeaeaad1f3469311f2.png)
粘合剂的合成工艺有哪些
粘合剂的合成工艺主要包括以下几种:
1. 乳液聚合法:通过乳液聚合的方法合成,将合成的单体溶解在水中,然后通过乳化剂的添加使单体形成乳液,经过聚合反应形成胶体粒子,最后通过去溶剂或固化剂的添加使乳液凝胶成粘合剂。
2. 溶剂法:将合成单体溶解在适量的有机溶剂中,加入引发剂后进行聚合反应,最后通过去溶剂或固化剂的添加使溶液凝胶成粘合剂。
3. 热固化法:将合成的单体加热至一定温度下进行聚合反应,形成液态粘合剂,然后通过加热或添加固化剂使其固化成粘合剂。
4. 辐射固化法:通过紫外线、电子束或其他辐射源对含有光敏引发剂的单体进行辐射,使其发生聚合反应形成固化的粘合剂。
5. 反应注塑法:将合成的单体或预聚物加热至熔点或流动态,注入到模具中,经过一定时间的反应和固化,形成固态的粘合剂。
6. 压缩固化法:将合成的单体或预聚物加热至半固态或流动态,然后加入固化剂,经过一定时间的压缩和固化,形成固态的粘合剂。
不同的粘合剂根据其化学特性和要求选择不同的合成工艺。
高分子----乳液聚合
![高分子----乳液聚合](https://img.taocdn.com/s3/m/b5fb4584cc22bcd126ff0c19.png)
乳液聚合
当增溶物与疏水基相容性好时,则为夹心型; 相容性次之的为栏栅型; 再次之的为吸附型。 当增溶物亲水性较大时,则在亲水基氧乙烯链之间 (a)夹心型;(b)栏栅型(其中1为浅伸入;2为深伸入);(c)吸附型; (d)在亲水基氧乙烯链之间增溶 增溶。
‹#›
5.5.3乳化剂和乳化作用
乳化剂分类
乳液聚合
乳化剂的分类 乳化剂的作用
乳液聚合
阳离子型 降低水的表面张力 极性基团为胺盐,乳化能力不足,乳液聚合一般不用.
降低油水的界面张力 乳化作用(利用亲油基团和亲水基团将单体分散 两性型 在水中) 兼有阴、阳离子基团,如氨基酸盐 分散作用(利用吸附在聚合物粒子表面的乳化剂 分子) 环氧乙烷聚合物,或与环氧丙烷共聚物 非离子型 增溶作用(利用亲油基团溶解单体) PVA(聚乙烯醇) 发泡作用(降低了表面张力的乳状液容易扩大表 对pH变化不敏感,比较稳定,乳化能力不如阴离子型 面积 ) 一般不单独使用,常与阴离子型乳化剂合用
‹#›
5.5.3乳化剂和乳化作用
临界胶束浓度
乳液聚合
能够形成胶束的最低乳化剂浓度叫做临界胶束浓度
(CRITICAL MICELLE CONCENTRATION,简称CMC)。
一种乳化剂的 CMC值低,则在相同浓度下其胶束浓
度就大。
这与乳化剂在水中的溶解度有关,乳化剂的种类和
温度不同则CMC值不同。
‹#›
5.5.1 概述
缺点
乳液聚合
需要固体产品时,胶乳需经凝聚、洗涤、脱水、干
燥等工序、成本高。
产品中留有乳化剂,有损电能。
‹#›
5.5.1 概述
应用
乳液聚合
合成橡胶:丁苯橡胶、氯丁橡胶、丁腈橡胶等。 合成树脂:聚氯乙烯及其共聚物、聚醋酸乙烯及其
乳液聚合法
![乳液聚合法](https://img.taocdn.com/s3/m/e2f5c96a32687e21af45b307e87101f69e31fbb6.png)
乳液聚合法乳液聚合法是一种工艺,是在原料混合后,利用化学反应发生变化而形成新物质的方法。
乳液聚合发生的基本过程是,由原料水溶液中的组分分子利用特定的能量,经过聚合反应,形成一种与原料有相同或不同的物质。
乳液聚合法的原料是一些溶液,它可以是水溶液,也可以是溶剂混合物溶液。
乳液聚合的反应属于一种化学反应,在反应中所释放的能量被利用来使分子聚合,形成新的物质。
在乳液聚合中,除了反应热以外,外加能量也是必要条件。
通常,反应温度通常在温和范围内,以便于控制反应过程,以便达到期望的结果。
乳液聚合技术有着重要的应用,如制备高分子液晶胶、胶水、油漆等,并可用于防腐保护、制造纤维增强材料、造纸/印刷、涂料和染料等行业。
这种技术可分为两个主要步骤,即乳液合成和乳液聚合。
在乳液合成步骤中,根据原料的活性能量与表面张力,以及内部分子间张力等因素,物质间分子发生结合,形成乳液。
乳液聚合是指在乳液合成步骤之后,加入外加能源,通过物质间的化学反应,改变乳液的结构形成新的物质的过程。
乳液聚合法具有很多优势,如反应温度低及反应环境温和,不会产生有害物质,有利于节省原料成本和经济性,制备的产品性能稳定,表面洁净等优点。
乳液聚合法既可以用于制备高分子材料,也可以在分子水平上用于合成有机小分子,这在控制分子结构、促进分子间相互作用以及提高产品性能等方面都有着广泛的应用。
例如,乳液聚合可以用于制备水凝胶,糊精液晶胶等高分子材料,以及用于有机合成的树脂中。
另外,乳液聚合可以应用于有机染料的合成,以及有机氟化物和阻燃剂等特种材料的制备。
从上述内容可以看出,乳液聚合法不仅可以用于制备高分子材料,还可以用于制备多种有机小分子材料,应用十分广泛。
乳液聚合法的进一步发展有望使这项技术在更多领域得到更多的应用,从而为人类社会发展带来更多的利益。
【华东理工大学】《乳液聚合》课件——第十二章工业合成
![【华东理工大学】《乳液聚合》课件——第十二章工业合成](https://img.taocdn.com/s3/m/1ee6e62c4b35eefdc8d33345.png)
一 间歇乳液聚合 优点:乳液的乳胶粒直径分布窄,有利于改善聚合
物乳液的流动性和成膜性;设备简单,操作方便,
生产灵活性大,因此在进行小批量、多品质的精细 产品生产时,可以考虑选用该工艺。
缺点:
① 间歇乳液聚合过程会出现前期和后期反应不均衡,常常会导 致反应失控; ② 对于乳液聚合来说,各种单体的竞聚率不同,竞聚率大的单 体过早地被消耗掉,而留下竞聚率小的单体,这样势必导致反 应前期和后期所得到的聚合物组成不同,严重影响产品的质量; ③由于间歇乳液聚合在反应开始时把单体一次投入聚合釜中在 搅拌和乳化剂的作用下分散成单体珠滴。 ④从能量利用的角度来看,间歇乳液聚合也有不尽合理之处。 反应开始需要升温;反应开始后需要降温冷却;在过程后期反 应接近完成,反应速率放慢,此时又需要升温。 ⑤ 一般来说,间歇乳液聚合只能制备具有均相乳胶粒结构的聚 合物乳液。而欲得异形结构的则需其他工艺。
6 操作弹性大,但生产周期比间歇法长,故生产效率较低。若 用半饥饿法,可缩短生产周期,提高效率。
7 加料中若带入阻聚剂,其对以上两种的影响顾虑不同。 前者会出现诱导期,对于后者会见地自由基浓度和聚合反应速 率,但物料加完后可能会出现一个聚合高峰。 8 采用半连续补加乳化剂可时体系始终处于较高的稳定状 态,因此可以制造高浓度乳液。
特点: 1 在采用饥饿态加单体时,单体加料速率和实际的聚合反应速
率相等。
2 采用饥饿态加单体时可以有效地控制聚合物的共聚组成。 3 所得聚合物的分子量比间歇法的偏小,且分子量分布偏宽。 4 自由基易向聚合物链转移,所得聚合物支化度偏高。 5 由于在单体饥饿态半连续乳液聚合体系中无单体珠滴存在,
且无大的温度波动,故乳液聚合体系稳定性高。
影响反应器的传热。
乳液聚合制备氨基硅油乳液及微乳液的工艺探讨
![乳液聚合制备氨基硅油乳液及微乳液的工艺探讨](https://img.taocdn.com/s3/m/07b1012d03020740be1e650e52ea551810a6c9ee.png)
乳液聚合制备氨基硅油乳液及微乳液的工艺
探讨
乳液聚合制备氨基硅油乳液及微乳液
氨基硅油乳液是一种复杂的混合乳液,是由多种有机金属和无机盐组
成的离子混合物,具有良好的加工性能和润滑性能,被广泛应用于液
压驱动、悬浮剂、增塑剂、表面活性剂等。
本文通过乳液聚合方法制
备氨基硅油乳液和微乳液,并对制备过程进行探讨。
步骤一:首先,将氨基硅油、含水醇类和其它有机溶剂混合溶解,反
复搅拌使之保持均匀混合。
步骤二:其次,加入表面活性剂,再用离心机不断地调节pH值,调节
到所需的值。
步骤三:然后,按一定比例加入合成乳化剂,并采用离心法均匀搅拌,来形成显著的乳液聚合。
步骤四:最后,采用加压粉碎法制备出微乳液,对乳液进行加压破碎,使其分散形态变小,由氨基硅油乳液聚合制备的微乳液粒度可以达到
1-50μm之间。
通过乳液聚合制备氨基硅油乳液和微乳液,具有制备成本低、成膜形
式灵活、分散性可控等优点,可以有效替代传统制备方法。
由于氨基
硅油乳液具有良好的多功能性和润滑性能,因此,该乳液聚合制备方
法也可以应用于其他乳液系统中,在制备润滑剂、悬浮剂、增塑剂、
表面活性剂等领域有很大的发展潜力。
综上所述,利用乳液聚合方法制备氨基硅油微乳液的工艺具有良好的加工性能和成膜形式控制,并且可以在短时间内大量生产出高粒度的微乳液,这对于工业生产具有非常重要的意义。
丁苯橡胶乳液聚合生产工艺
![丁苯橡胶乳液聚合生产工艺](https://img.taocdn.com/s3/m/4f18a7dfdc88d0d233d4b14e852458fb760b386e.png)
聚合时间的控制
总结词
聚合时间是丁苯橡胶乳液聚合生产工艺的关键参数之一,控制聚合时间可以调节 反应程度和产物性能。
详细描述
聚合时间的长短直接影响到反应程度和产物分子量。较短的聚合时间可能导致反 应不完全,而较长的聚合时间可能导致过度反应和分子量降低。因此,需要选择 适当的聚合时间,以获得最佳的产物性能。
乳液聚合得到的丁苯橡 胶乳液具有较好的稳定 性,可长期保存。
丁苯橡胶乳液聚合产品 可广泛应用于轮胎、鞋 材、输送带等橡胶制品 的制造。
与其他聚合方法相比, 乳液聚合具有较低的能 耗和污染排放,是环保 型的生产工艺。
03
丁苯橡胶乳液聚合生产工艺流程
配方设计
乳化剂选择
根据聚合反应需要,选择合适的乳化剂,如阴离子 型、非离子型或两性型乳化剂,以降低油水界面张 力,促进乳液稳定。
在建筑行业中,丁苯橡胶乳液 聚合生产工艺用于生产防水材 料、密封材料等,提高建筑物 的防水性能和耐久性。
农业领域
丁苯橡胶乳液聚合生产工艺在 农业领域的应用包括农用薄膜 、灌溉管道等,有助于提高农 作物的产量和品质。
丁苯橡胶乳液聚合生产工艺的展望
技术创新
随着科技的不断进步,丁苯橡胶乳液聚合生产工 艺将不断进行技术创新,提高生产效率和产品质 量。
05
丁苯橡胶乳液聚合生产工艺优化
聚合温度的控制
总结词
聚合温度是影响丁苯橡胶乳液聚合生产工艺的重要因素,控制聚合温度可以调节反应速率和产物性能 。
详细描述
在丁苯橡胶乳液聚合过程中,聚合温度的高低直接影响到反应速率和分子量。较高的温度可以加速反 应,但可能导致分子量降低;而较低的温度则减缓反应速率,但有助于提高分子量。因此,需要选择 适当的聚合温度,以获得最佳的产物性能。
阐述乳液聚合生产及后处理工艺的流程
![阐述乳液聚合生产及后处理工艺的流程](https://img.taocdn.com/s3/m/3315b1369a6648d7c1c708a1284ac850ac020449.png)
阐述乳液聚合生产及后处理工艺的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!乳液聚合生产与后处理工艺的深度解析乳液聚合是一种重要的高分子合成方法,广泛应用于各种聚合物的制备,如丙烯酸酯、苯乙烯等。
关于ABS的乳液聚合合成工艺学流程简介
![关于ABS的乳液聚合合成工艺学流程简介](https://img.taocdn.com/s3/m/5c1bb42f2af90242a895e51d.png)
• 固体丁腈橡胶+固体SAN树脂共混 • 丁腈乳胶+SAN乳胶共凝聚
• 乳液聚合接枝 • 乳液-本体聚合接枝 • 本体-悬浮聚合接枝 • 连续本体聚合接枝
• 乳聚接枝ABS胶乳+乳聚SAN胶乳共凝聚 • 乳聚接枝ABS粉料+悬浮聚合SAN粒料共混 • 乳聚接枝ABS粉料+本体聚合SAN粒料共混
优点:橡胶用量不受限制,便于生产高抗冲产品;接枝率易控制,产品性能较稳定; 产品质量较经典乳聚接枝产品纯净;调节ABS粉料与SAN粒料混合比例课进行多牌 号产品生产;采用悬浮聚合或本体聚合法生产SAN能耗低。 缺点:需要两套流程和设备,生产ABS粉料后处理过程比较多,操作复杂;仍未完 全消除乳化剂、凝聚剂等给产品带来的杂质。
?固体丁腈橡胶固体san树脂共混?丁腈乳胶san乳胶共凝聚?乳液聚合接枝?乳液本体聚合接枝?本体悬浮聚合接枝?连续本体聚合接枝?乳聚接枝abs胶乳乳聚san胶乳共凝聚?乳聚接枝abs粉料悬浮聚合san粒料共混?乳聚接枝abs粉料本体聚合san粒料共混此法于1954年由borgwarner公司的子公司morbon公司首先实现工业化
优点:接枝率容易控制;可以进行多品种生产。 缺点:此法存在着经典乳液聚合接枝法的同样缺点,并且还需要两套聚 合设备。
此法由日本东丽公司所开发,1977年工业化装置正式投入生产。此法 先使BD进行乳液聚合制备PBL,其次和少量ST、AN进行乳液接枝聚 合得到橡胶含量高的ABSL。然后,将此ABSL在专用的挤压脱水机中 进行凝聚、脱水。脱水后的物料用其余的ST,AN溶解后送入两个串 联的聚合釜进行本体聚合。在聚合过程中,利用ST、AN和ABSL凝聚 物带来的少量水分形成共沸物自聚合釜中蒸出,经冷凝分离出水分后, ST、AN返回聚合釜,借此除去大部分反应热。聚合完了后脱除未反 应单体、造粒得到ABS产品。工艺流程如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乳液聚合班级:高分0942 姓名:冯会科学号:200910211239乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。
乳液聚合是高分子合成过程中常用的一种合成方法。
乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。
所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。
乳液聚合的发展自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。
乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。
30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。
后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。
此后乳液聚合成为研究热点。
随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。
关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。
另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。
从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。
乳液聚合—聚合机理从历史上看,乳液聚合机理主要有以下三个:1,1945年W.D.Harkins提出的胶束理论。
在当时的情况下,对于乳液聚合机理有两种看法,即机械搅拌形成的单体液滴聚合形成粒子以及单体相与水相界面形成粒子。
W.D. Harkins担任美国橡胶研究所的所长,在他的组织下,首先实验证明了普通的机械搅拌不可能使油性苯乙烯形成乳液聚合后大小的聚苯乙烯粒子,同时从能量的角度考虑,理论上普通机械搅拌也不可能提供足够维持那么小粒子所需的表面能。
其次,他们做了一个将苯乙烯蒸汽通过含引发剂(H2O2)水溶液的实验,发现也可以形成粒径较大的粒子。
他们认为苯乙烯蒸汽与水溶液之间不存在界面,因而,界面形成粒子的说法是错误的。
同时由于生成的粒子较大,所以,他们得出结论单体液滴形成的粒子粒径一定很大。
在此基础上,W.D. Harkins提出了胶束理论,即当乳化剂分子浓度超过临界胶束浓度时,则从水相中沉淀出来形成胶束。
W.D. Harkins认为乳液聚合后的粒子是胶束中的单体聚合形成的。
聚合过程(见图1)是:在单体相与水相之间存在一个扩散层;胶束进入扩散层,单体分子扩散进入胶束;胶束捕获水相中的自由基聚合。
图1但是,Harkins没有给出其动力学模型,因而,该机理没有引起太多的议论,直到1948年,Smith-Ewart依据Harikins的胶束理论建立了一系列的计算粒子数及聚合动力学模型后,该机理才被广泛讨论,并命名为Harkins胶束成核理论。
但是,其原来的说法也被篡改成图2中的说法(也是教科书书中常见的说法),即,取消了界面扩散而代之以单体分子从单体相扩散进入水相,然后,水相中的单体分子扩散进入胶束。
这种说法在热力学上是非常有争议的,尤其是象苯乙烯这种难溶性单体,依靠扩散,它在水相中浓度不可能支持粒子中所需的高单体浓度。
另外,Smith-Ewart将乳液聚合动力学分成三个阶段,即成核阶段(Interval I)、等速聚合阶段(Interval II)以及减速聚合阶段(Interval III),聚合动力学模型也主要处理等速聚合阶段的动力学问题。
但是,现在的实验结果证明,以前认为的等速阶段可能是实验误差造成的,在绝大多数情况下,聚合过程没有等速过程,而是存在两个最大速度(图3)。
图2图 3 2, Tsai和Fitch的均相成核机理(又称水相发生机理)。
这个机理是在1970年代无皂乳液聚合成功后提出的,因为无皂乳液聚合前,体系中没有传统的乳化剂分子,因而胶束成核机理受到了挑战。
他们认为,溶解在水相中的单体分子被同在水相中的引发剂分子引发、聚合形成低聚物,这些低聚物在水中的溶解度随分子链的增长而降低,当达到临界链长时便从水相中沉淀出来形成前驱体(precursor),然后,这些前驱体相互凝聚形成稳定的核。
其后,聚合过程完全与胶束成核机理相同。
顺便提一下,由于有了均相成核机理,所以,前面的胶束成核机理又被称作为异相成核机理。
支持这一机理的唯一实验证据就是光散射结果:在聚合前期,粒子数急剧增加,达到某个峰值后,急剧减少,然后粒子数恒定。
3,Ni Henmei等2001年提出的(亚)微液滴成核机理。
如图4所示,他们认为,所有通过聚合方法得到的微粒子,如乳液聚合、沉淀/分散聚合、悬浮聚合、微乳液聚合等等都是由单体(亚)微液滴中单体聚合形成的。
在单体相与水相之间的界面受到扰动,或者溶解在水相中的单体由于温度或其他因素变化的影响,溶解度降低,都可产生单体(亚)微液滴(图4 b,II)。
这些单体液滴在通常情况下由于Ostwald成熟效应会再次回到单体相(c,IV),但是,在有预先添加的乳化剂分子或者当时形成的表面活性低聚物存在的情况下,这些液滴会吸附这些分子,或者被这些分子吸收从而得到一定的热力学安定性(d,III)。
这时,如果存在短链自由基的话,那么,即可引发单体液滴聚合形成核。
单体的传递是依赖于粒子与单体微液滴结合(e,VI),以及粒子与单体相的直接碰撞(V)。
另外,该机理还指出,当单体相液滴的粒径减小到界面的扰动不足以产生单体微液滴的情况下,单体液滴可以直接捕获自由基形成粒子。
这个机理支持的实验基础是准静态无皂乳液聚合的实验结果。
在非常微弱的搅拌条件下,水相中不能形成微粒子;初始的聚苯乙烯微粒子是在单体与水相的界面形成,然后,沉降到水相中。
在聚合一段时间后,界面会形成一层聚合物膜层,阻止了单体向水相中的扩散,粒子生成及其中的聚合因均停止。
另外,该机理与化工萃取等的物质传输过程理论也是一致的。
图 4典型的乳液聚合生产工艺及设备糊状聚氯乙烯的生产工艺与设备:聚氯乙烯树脂最古老的生产方法就是远在1931年德国法本公司采用的乳液聚合法,聚氯乙烯的工业化生产甚至在1950年仍然是以乳液法为主要生产方法,悬浮法是后来发展起来的。
目前,乳液聚合的聚氯乙稀占聚氯乙稀总量约10%左右。
氯乙烯乳液聚合主要特征是:(1)聚氯乙烯乳胶粒径一般在0.2μm以下,分散极细,在工业上发展了乳液种子聚合方法,可以达到使乳胶粒径增大的目的。
(2)乳胶粒的数目随乳化剂浓度的变化而急剧变化,但与聚合速率的变化相对而言则很小。
(3)粒子数目与引发剂浓度无关,但反应速度随引发剂浓度的增加而增加。
(4)乳液聚合产物的分子量与相同反应条件下悬浮聚合法产物的分手量相似,主要与反应温度有关。
(5)聚合转化率达到70~80%左右时,一般会有自动加速效应产生(通常称为翘尾巴),从而得到高分子量的高聚物。
氯乙烯种子乳液聚合法的原理:种子乳液聚合法——在乳液聚合系统中,如果已经有已生成的高聚物胶乳微粒存在,当物料配比和反应条件控制适当时,单体原则上仅在已生成的为了上聚合,而不生成新的微粒,即仅增大原来微粒的体积,而不增加反应体系中微粒的数目,在这种情况下,原来的微粒好似种子,因此这种聚合方法称为“种子乳液聚合法”。
氯乙烯种子乳液聚合法的物料组成;利用种子乳液聚合法法制造聚氯乙烯糊状树脂常常利用二种规格的乳液作为种子,即第一代种子和第二代种子。
所制成的聚合物乳液直径呈双峰分布,这样即可以降低增塑剂的吸收量,又可改善树脂的加工性能。
用不加种子的乳液聚合法制成的乳液称为第一代种子,而在第一代种子的基础上继续聚合所制成的乳液成为第二代种子。
1、制备第一代种子乳液和第二代种子乳液的配方氯乙烯种子乳液聚合的配方:2、氯乙烯种子乳液聚合的工艺和设备:(1)物料准备与配制十二烷基硫酸钠用软水在50℃下配制并泵送至计量槽待用;过硫酸钾用软水在不超过30 ℃下配制并泵送至计量槽待用;氢氧化钠用软水常温下配制并泵送至计量槽待用;软水及单体泵送至计量槽待用(2)种子的制备从计量槽向种子釜中分别加入软水、乳化剂溶液,开动搅拌使其混合;从计量槽向种子釜加入部分单体,使其充分乳化;向种子釜夹套通入热水,升温至50℃;向种子釜加入引发剂,滴加单体并控制滴加速率来控制反应温度;单体滴加完后保温一段时间,即得到第一代或第二代种子乳液,将种子乳液分别送至乳液贮槽。
(3)种子乳液聚合软水、乳化剂由计量槽加入聚合釜,用碱液调pH值为9~10.5,再泵送第一、第二代种子进入聚合釜;聚合系统抽真空并充氮气,反复三次;规定量的单体由计量槽泵送至聚合釜中,开动搅拌,乳化30min;聚合釜夹套通热水在1h内均衡地升温至反应温度,反应开始,体系压力下降,此时滴加剩余单体和乳化剂溶液,控制反应温度在(48~52)℃±0.5℃。