焊接裂纹的处理PPT课件
合集下载
常见焊接缺陷PPT课件
![常见焊接缺陷PPT课件](https://img.taocdn.com/s3/m/ad25968d8ad63186bceb19e8b8f67c1cfbd6ee78.png)
焊缝区产生的裂纹。有些焊接结构即使焊
后消除应力热处理过程中不产生裂纹,而 在500~600℃的温度下长期运行中也会产 生裂纹。这些裂纹统称为再热裂纹。
❖ 产生原因:在热处理温度下,由于应力的 松驰产生附加变形,同时在热影响区的粗 晶区析出沉淀硬化相(钼、铬、钒等的碳化 物)造成回火强化,当塑性缺乏以适应附加 变形时,就会产生再热裂纹。
❖ 产生原因:金属材料的中含有较多的非金 属夹杂物,Z向拘束应力大,热影响区的脆 化等。
❖ 防止措施:选用具有抗层状撕裂能力的钢 材,在接头设计和焊接施工中采取措施降 低Z向应力和应力集中。
❖ (3)热裂纹:焊缝和热影响区金属冷却到固 相线附近的高温区产生的焊接裂纹。沿奥 氏体晶界开裂,裂纹多贯穿于焊缝外表, 断口被氧化,呈氧化色。常有结晶裂纹、 液化裂纹、多边化裂纹等。
❖ 防止措施:a.控制基体金属的化学成分(如 钼、钒、铬的含量),使再热裂纹的敏感性 减小。
❖ b.工艺方面改善粗晶区的组织,减少马氏体 组织,保证接头具有一定的韧性。
❖ c.焊接接头:减少应力集中并降低剩余应力, 在保证强度条件下,尽量选用屈服强度低 的焊接材料。
❖ 3、气孔:焊接时,因熔池中的气泡在凝固 时未能逸出,而在焊缝金属内部(或外表)所 形成的空穴,称为气孔。
❖ c.力学因素对热裂纹的影响:焊件的 刚性很大,工艺因素不当,装配工艺 不当以及焊接缺陷等都会导致应力集 中而加大焊缝的热应力,在结晶时形 成热裂纹。
❖ 防止措施:a.控制焊缝金属的化学成 分,严格控制硫、磷的含量,适当提 高含锰量,以改善焊缝组织,减少偏 析,控制低熔点共晶体的产生。
❖ b.控制焊缝截面形状,宽深比要稍大些, 以防止焊缝中心的 偏析。
❖ d.当用碱性焊条施焊时,应保持较低的电 弧长度,外界风大时应采取防风措施。
后消除应力热处理过程中不产生裂纹,而 在500~600℃的温度下长期运行中也会产 生裂纹。这些裂纹统称为再热裂纹。
❖ 产生原因:在热处理温度下,由于应力的 松驰产生附加变形,同时在热影响区的粗 晶区析出沉淀硬化相(钼、铬、钒等的碳化 物)造成回火强化,当塑性缺乏以适应附加 变形时,就会产生再热裂纹。
❖ 产生原因:金属材料的中含有较多的非金 属夹杂物,Z向拘束应力大,热影响区的脆 化等。
❖ 防止措施:选用具有抗层状撕裂能力的钢 材,在接头设计和焊接施工中采取措施降 低Z向应力和应力集中。
❖ (3)热裂纹:焊缝和热影响区金属冷却到固 相线附近的高温区产生的焊接裂纹。沿奥 氏体晶界开裂,裂纹多贯穿于焊缝外表, 断口被氧化,呈氧化色。常有结晶裂纹、 液化裂纹、多边化裂纹等。
❖ 防止措施:a.控制基体金属的化学成分(如 钼、钒、铬的含量),使再热裂纹的敏感性 减小。
❖ b.工艺方面改善粗晶区的组织,减少马氏体 组织,保证接头具有一定的韧性。
❖ c.焊接接头:减少应力集中并降低剩余应力, 在保证强度条件下,尽量选用屈服强度低 的焊接材料。
❖ 3、气孔:焊接时,因熔池中的气泡在凝固 时未能逸出,而在焊缝金属内部(或外表)所 形成的空穴,称为气孔。
❖ c.力学因素对热裂纹的影响:焊件的 刚性很大,工艺因素不当,装配工艺 不当以及焊接缺陷等都会导致应力集 中而加大焊缝的热应力,在结晶时形 成热裂纹。
❖ 防止措施:a.控制焊缝金属的化学成 分,严格控制硫、磷的含量,适当提 高含锰量,以改善焊缝组织,减少偏 析,控制低熔点共晶体的产生。
❖ b.控制焊缝截面形状,宽深比要稍大些, 以防止焊缝中心的 偏析。
❖ d.当用碱性焊条施焊时,应保持较低的电 弧长度,外界风大时应采取防风措施。
焊接冷裂纹
![焊接冷裂纹](https://img.taocdn.com/s3/m/558e18f5fad6195f302ba667.png)
当应力状态恶劣,拉应力水平高时,即使含 氢量比较低,经过不长的孕育期,即有裂纹产生。
.
6
2、三大要素的作用 (1)氢的作用
❖ 氢是引起的冷裂纹具有延迟的特征,称为氢致裂纹。
❖ 氢在钢中分为残余的固溶氢和扩散氢,只有扩散氢 对钢的焊接冷裂纹起直接影响。
1)氢在焊缝中的溶解
❖ 从图4.9中可知,氢在铁中 的溶解度随温度变化很大, 并在凝固点发生突变。由于 熔池很快由液态凝固,多余 的氢来不及逸出,结果就以 过饱和状态存在于焊缝中. 。
二、冷裂纹的特征及产生机理
1、产生延迟裂纹的三个基本要素 ① 钢材的淬硬倾向
② 焊接接头中的氢含量及其分布
③ 焊接接头的拘束应力状态
❖ 产生延迟裂纹的孕育期:
决定于焊缝金属中扩散氢的含量与焊接接头 所处的应力状态的交互作用。
相应于某一应力状态,焊缝金属中含氢量愈 高,裂纹的孕育期愈短,裂纹倾向就愈大。
❖ 裂纹的起源多发生在具有缺口效应的焊接热影响区或物理 化学不均匀的氢聚集的局部地带;
❖ 裂纹的分布与最大应力方向有关。
.
2
2、分类
❖ 焊接生产中由于采用的钢种、焊接材料不同,结构 的类型、刚度以及施工的条件不同,大致分为: 1)淬硬脆化裂纹
❖ 一些淬硬倾向很大的钢种(焊接含碳较高的Ni-CrMo钢、马氏体不锈钢、工具钢,及异种钢等), 焊接时即使没有氢的诱发,仅在拘束应力作用下就 能导致开裂。
❖ 碱性焊条熔敷金属中的扩散氢含量比酸性焊条低, 所以碱性焊条的抗冷裂纹性能大大优于酸性焊条。
❖ 对于重要的低合金高强度钢结构的焊接,原则上 都应选用碱性焊条。
❖ 通常也是焊后立即产生,无延迟现象。
3)延迟裂纹
❖ 焊后不立即出现,有一定孕育期(又叫潜伏期),具 有延迟现象。
.
6
2、三大要素的作用 (1)氢的作用
❖ 氢是引起的冷裂纹具有延迟的特征,称为氢致裂纹。
❖ 氢在钢中分为残余的固溶氢和扩散氢,只有扩散氢 对钢的焊接冷裂纹起直接影响。
1)氢在焊缝中的溶解
❖ 从图4.9中可知,氢在铁中 的溶解度随温度变化很大, 并在凝固点发生突变。由于 熔池很快由液态凝固,多余 的氢来不及逸出,结果就以 过饱和状态存在于焊缝中. 。
二、冷裂纹的特征及产生机理
1、产生延迟裂纹的三个基本要素 ① 钢材的淬硬倾向
② 焊接接头中的氢含量及其分布
③ 焊接接头的拘束应力状态
❖ 产生延迟裂纹的孕育期:
决定于焊缝金属中扩散氢的含量与焊接接头 所处的应力状态的交互作用。
相应于某一应力状态,焊缝金属中含氢量愈 高,裂纹的孕育期愈短,裂纹倾向就愈大。
❖ 裂纹的起源多发生在具有缺口效应的焊接热影响区或物理 化学不均匀的氢聚集的局部地带;
❖ 裂纹的分布与最大应力方向有关。
.
2
2、分类
❖ 焊接生产中由于采用的钢种、焊接材料不同,结构 的类型、刚度以及施工的条件不同,大致分为: 1)淬硬脆化裂纹
❖ 一些淬硬倾向很大的钢种(焊接含碳较高的Ni-CrMo钢、马氏体不锈钢、工具钢,及异种钢等), 焊接时即使没有氢的诱发,仅在拘束应力作用下就 能导致开裂。
❖ 碱性焊条熔敷金属中的扩散氢含量比酸性焊条低, 所以碱性焊条的抗冷裂纹性能大大优于酸性焊条。
❖ 对于重要的低合金高强度钢结构的焊接,原则上 都应选用碱性焊条。
❖ 通常也是焊后立即产生,无延迟现象。
3)延迟裂纹
❖ 焊后不立即出现,有一定孕育期(又叫潜伏期),具 有延迟现象。
《常见焊缺陷》课件
![《常见焊缺陷》课件](https://img.taocdn.com/s3/m/46fbe10bf6ec4afe04a1b0717fd5360cba1a8dd6.png)
机械加工
对焊缝进行机械加工,以去除不合格部分。
补焊
对存在的缺陷进行补充焊接,以消除缺陷。
热处理
对焊缝进行热处理,以改善其力学性能和消 除焊接残余应力。
05
案例分析
案例一:某机械零件的焊接缺陷分析
总结词:机械零件焊接缺陷 总结词:预防措施 总结词:修复方法
详细描述:该案例介绍了某机械零件在焊接过程中出现 的缺陷,如气孔、夹渣、未熔合等,并对其产生的原因 进行了深入分析,如焊接参数不当、操作不规范等。
详细描述
通过建立完善的焊接质量管理体系,制定合理的焊接工艺规范和质量控制标准,加强焊 接过程的监督和检测,可以有效地减少焊接缺陷的产生。同时,采用先进的无损检测技
术,如X射线检测、超声波检测等,可以及时发现和消除焊接缺陷,提高焊接质量。
04
焊接缺陷的检测与修复方法
焊接缺陷的检测方法
外观检测
通过肉眼或使用放大镜观察焊 缝表面,检查是否存在裂纹、
在此添加您的文本16字
总结词:加固措施
在此添加您的文本16字
总结词:修复技术
在此添加您的文本16字
详细描述:对于无法修复的缺陷,该案例采取了各种加固 措施,如增加支撑结构、粘贴钢板等,以提高结构的稳定 性和安全性。
THANKS
感谢观看
气孔与夹渣
气孔和夹渣是焊接过程中常见的缺陷,它们会影响焊接接头的质量。
气孔是由于焊接过程中熔池内的气体在金属冷却过程中未能及时逸出,残留在焊缝内部形成的孔洞。夹渣则是由于焊接过程 中熔池内存在杂质,在金属冷却过程中未能完全熔化或排除,残留在焊缝中的杂质颗粒。气孔和夹渣的存在会降低焊接接头 的致密度和强度。
咬边与烧穿
咬边和烧穿是焊接过程中常见的缺陷 ,它们会导致焊接接头的强度降低。
对焊缝进行机械加工,以去除不合格部分。
补焊
对存在的缺陷进行补充焊接,以消除缺陷。
热处理
对焊缝进行热处理,以改善其力学性能和消 除焊接残余应力。
05
案例分析
案例一:某机械零件的焊接缺陷分析
总结词:机械零件焊接缺陷 总结词:预防措施 总结词:修复方法
详细描述:该案例介绍了某机械零件在焊接过程中出现 的缺陷,如气孔、夹渣、未熔合等,并对其产生的原因 进行了深入分析,如焊接参数不当、操作不规范等。
详细描述
通过建立完善的焊接质量管理体系,制定合理的焊接工艺规范和质量控制标准,加强焊 接过程的监督和检测,可以有效地减少焊接缺陷的产生。同时,采用先进的无损检测技
术,如X射线检测、超声波检测等,可以及时发现和消除焊接缺陷,提高焊接质量。
04
焊接缺陷的检测与修复方法
焊接缺陷的检测方法
外观检测
通过肉眼或使用放大镜观察焊 缝表面,检查是否存在裂纹、
在此添加您的文本16字
总结词:加固措施
在此添加您的文本16字
总结词:修复技术
在此添加您的文本16字
详细描述:对于无法修复的缺陷,该案例采取了各种加固 措施,如增加支撑结构、粘贴钢板等,以提高结构的稳定 性和安全性。
THANKS
感谢观看
气孔与夹渣
气孔和夹渣是焊接过程中常见的缺陷,它们会影响焊接接头的质量。
气孔是由于焊接过程中熔池内的气体在金属冷却过程中未能及时逸出,残留在焊缝内部形成的孔洞。夹渣则是由于焊接过程 中熔池内存在杂质,在金属冷却过程中未能完全熔化或排除,残留在焊缝中的杂质颗粒。气孔和夹渣的存在会降低焊接接头 的致密度和强度。
咬边与烧穿
咬边和烧穿是焊接过程中常见的缺陷 ,它们会导致焊接接头的强度降低。
焊接裂纹
![焊接裂纹](https://img.taocdn.com/s3/m/920aba8ed15abe23482f4de5.png)
0—晶间强度
第五章 焊接裂纹
44
T↑ ↓1 0 ↓ T→ T0 1 = 0
T0—称金属的等强温度
T>T0 时, 1 > 0 发生断裂晶间断裂
若焊缝所受拉伸应力为 2 随温度变化始终 不超过 0 ,则不会产生结晶裂纹 2 < 0
若焊缝的拉伸应力为 1, 1> 0产生结晶裂纹
断裂,也有晶间和穿晶
混合断裂
第五章 焊接裂纹
本节结束19
§5-2 焊接热裂纹
一、结晶裂纹
1、 产生机理
1)产生部位:结晶裂纹大部分都沿焊缝树 枝状结晶的交界处发生和发展的,常见沿焊 缝中心长度方向开裂即纵向裂纹,有时焊缝 内部两个树枝状晶体之间。对于低碳钢、奥 氏体不锈钢、铝合金、结晶裂纹主要发生在 焊缝上某些高强钢,含杂质较多的钢种,除 发生在焊缝之处,还出现在近缝区上。
第五章 焊接裂纹
18
三、热裂纹与冷裂纹的基本特点
裂纹 产生温度 产生部位
热裂纹 高温下产生 焊缝、热影响区
冷裂纹 低温下产生 热影响区、焊缝
宏观特征
沿焊缝的轴向成纵向 分布,也有横向分布, 断口具有发亮的金属光 裂口均有氧化色彩表 泽 面无光泽
微观特征
沿晶粒边界分布,属 晶间断裂,也有穿晶内
于沿晶断裂性质
SL—固体晶粒与残液之间的表面张力
SS—固体晶粒之间的表面张力
—固相与液相的接触角
当 SL 越小 越小
/ SL SS=0.5
=0 残液在固体晶粒以薄膜存在裂↑
=180°残液以球状形态分布裂↓
第五章 焊接裂纹
42
④一次结晶组织形态及组织对结晶裂 纹的影响
晶粒大小:晶粒粗大裂纹的倾向↑
第五章 焊接裂纹
44
T↑ ↓1 0 ↓ T→ T0 1 = 0
T0—称金属的等强温度
T>T0 时, 1 > 0 发生断裂晶间断裂
若焊缝所受拉伸应力为 2 随温度变化始终 不超过 0 ,则不会产生结晶裂纹 2 < 0
若焊缝的拉伸应力为 1, 1> 0产生结晶裂纹
断裂,也有晶间和穿晶
混合断裂
第五章 焊接裂纹
本节结束19
§5-2 焊接热裂纹
一、结晶裂纹
1、 产生机理
1)产生部位:结晶裂纹大部分都沿焊缝树 枝状结晶的交界处发生和发展的,常见沿焊 缝中心长度方向开裂即纵向裂纹,有时焊缝 内部两个树枝状晶体之间。对于低碳钢、奥 氏体不锈钢、铝合金、结晶裂纹主要发生在 焊缝上某些高强钢,含杂质较多的钢种,除 发生在焊缝之处,还出现在近缝区上。
第五章 焊接裂纹
18
三、热裂纹与冷裂纹的基本特点
裂纹 产生温度 产生部位
热裂纹 高温下产生 焊缝、热影响区
冷裂纹 低温下产生 热影响区、焊缝
宏观特征
沿焊缝的轴向成纵向 分布,也有横向分布, 断口具有发亮的金属光 裂口均有氧化色彩表 泽 面无光泽
微观特征
沿晶粒边界分布,属 晶间断裂,也有穿晶内
于沿晶断裂性质
SL—固体晶粒与残液之间的表面张力
SS—固体晶粒之间的表面张力
—固相与液相的接触角
当 SL 越小 越小
/ SL SS=0.5
=0 残液在固体晶粒以薄膜存在裂↑
=180°残液以球状形态分布裂↓
第五章 焊接裂纹
42
④一次结晶组织形态及组织对结晶裂 纹的影响
晶粒大小:晶粒粗大裂纹的倾向↑
焊接裂纹产生机理及其防治
![焊接裂纹产生机理及其防治](https://img.taocdn.com/s3/m/fdd84b9c856a561253d36f70.png)
σcr ——插销试验临界应力(N/mm2);
[H]——扩散氢含量(JIS测氢法)(mL/100g);
t8/5——800~500℃冷却时间(s); t100——由峰值温度冷至100℃冷却时间。
cr (132 .3 27.5lg([H] 1) 0.216 HV 0.0102 t100) 9.8 式中 [H]——扩散氢含量(mL/100g); HV——热影响区的平均最大硬度(维氏).
第1讲 焊接裂纹产生机理及其防治
结晶裂纹产生条件: a.脆性温度区间TB大小; b.脆性温度区间金属塑性Pmin ; c.脆性温度区间应变增长率. 脆性温度区间TB/脆性温度区间金属塑性Pmin 取决于: a.焊缝化学成分; b.偏析程度; c.晶粒大小和方向. 脆性温度区间应变增长率取决于: a.金属热物理性能;a.接头刚度;c.焊接工艺参数
在焊缝结晶过程固相线附近,由于凝固金属收缩, 残余液体金属不足而不能及时填充,在应力作用下发 生沿晶开裂. 特征:a.裂纹断面有氧化彩色;b.焊缝中发生. 结晶裂纹产生原因: a.焊缝含杂质多(含硫、磷、碳、 硅偏高); b.凝固过程产生拉伸应力.
第1讲 焊接裂纹产生机理及其防治
图1 焊缝中的结晶裂纹
b. 减小焊接过程应力; c. 降低温度;
第1讲 焊接裂纹产生机理及其防治
第1讲 焊接裂纹产生机理及其防治
二 冷裂纹(Cold Cracking) 焊后冷至较低温度(马氏体转变温度Ms附近),由 拘束应力/淬硬组织和氢共同作用产生. 特征:a.主要在热影响区;b.焊缝少(横向裂纹). 1. 延迟裂纹 特点:a.具有延迟现象. b.决定于钢种淬硬倾向 /焊 接接头应力状态和熔敷金属中扩散氢含量. 2. 淬硬脆化裂纹 特征:a.钢种淬硬倾向大;b.没有氢诱发/仅拘束应 力作用;c.没有延迟现象;d.出现热影响区或焊缝. 3. 低塑性脆化裂纹 特点:a.低塑性材料;b.无延迟现象.
焊接裂纹课件
![焊接裂纹课件](https://img.taocdn.com/s3/m/9352b2a9b90d6c85ec3ac6d9.png)
34
三、焊接冷裂纹的机理
(2)延迟裂纹与温度的关系 (3)不同的钢种氢的扩散速度不同 (4)应力扩散理论
金属内部缺陷提供裂源,应力作用下开裂。
PPT学习交流
35
三、焊接冷裂纹的机理
氢致裂PPT纹学习的交流扩展过程
36
三、焊接冷裂纹的机理
(三)焊接接头的应力状态 1.不均匀加热及冷却过程中所产生的热应 力 2.金属相变时产生的组织应力
7
(一)冶金因素对产生结晶裂纹的影响
合金状态图与结P晶PT学裂习交纹流 倾向的关系
8
(一)冶金因素对产生结晶裂纹的影响
2.合金元素对产生结晶裂纹的影响 (1)硫化磷
各合金元素对铁结晶温度区间的影响
PPT学习交流
9
(一)冶金因素对产生结晶裂纹的影响
钢中各元素的偏析系数
PPT学习交流
10
(一)冶金因素对产生结晶裂纹的影响
HT80钢对接接头熔合线及焊根处的塑性应变
PPT学习交流
39
四、影响焊接冷裂纹的主要因素及其防治
无预热及无后热焊后10min扩散氢聚集浓度与原始氢浓
度之比PP的T学习分交流布情况
40
四、影响焊接冷裂纹的主要因素及其防治
氢气泡逸出的动态过程
PPT学习交流
41
四、影响焊接冷裂纹的主要因素及其防治
(四)焊接工艺对冷裂纹的影响 1.焊接线能量对冷裂纹的影响 2.预热的影响 3.焊后后热的影响 4.多层焊的影响
3.结构自身拘束条件所造成的应力
PPT学习交流
37
四、影响焊接冷裂纹的主要因素及其防治 (一)钢种的化学成分的影响
采用低碳和添加多种微量合金元素开发的 低合金高强钢,HAZ为低碳贝氏体、低 碳马氏体和自回火马氏体。
焊接热裂纹-凝固裂纹
![焊接热裂纹-凝固裂纹](https://img.taocdn.com/s3/m/2b3de38c4a7302768f99394e.png)
材料连接原理
3.1) 凝固裂纹的特征? 宏观特征:焊缝柱状晶交界处,沿焊缝中心的纵向裂纹 微观特征:表面无金属光泽,常有氧化颜色 产生材料:含杂质较多的碳钢、低合金钢焊缝中和单相
奥氏体钢、镍基合金以及某些铝合金
材料连接原理
3.2) 什么是凝固裂纹?(定义)
温度:固相线附近 拉应力作用
沿晶开裂
材料连接原理
固相 固-液态 液-固态 液相
TS
TL
δmin TB 熔池结晶的阶段及脆性温度区间
δ:塑性 δmin:脆性温度区间的最 低塑性
T:温度 TL:液相线 TS:固相线 TB:脆性温度区间
凝固裂纹的产生原因
液态薄膜
材料连接原理
固-液阶段
液态薄膜—根本原因 拉伸应力—必要条件
材料连接原理
a) 拉伸应力所产生的应变随温度 按直线1变化时,产生的应变量 e1<δmin,不产生凝固裂纹;
θ
b) 按直线2变化时,应变量
e2>δmin,此时必将产生裂纹;
e1
e3
3
1
e2
2
c) 按直线3变化时, 应变量 e3=δmin,处于临界状态。
焊接时产生凝固裂纹的条件
此时的应变增长率成为临界 应变增长率,以CST表示,及 CST=tanθ。
CST综合地反映了材料凝固裂纹的敏感性,为防止产生凝
固裂纹,必须满足下面条件: e <CST T
凝固裂纹实例3
材料连接原理
母 材:不锈钢 焊接方法:手工电弧焊
着色探伤后发现在焊缝中 心存在一些肉眼观察不到 的细小裂纹
凝固裂纹实例4
材料连接原理
母材:6013铝合金 焊接方法:激光焊 激光功率P=5kW 焊接速度V=1.5mm/min 观察方法:高速摄像
5.2-焊接裂纹-热裂纹
![5.2-焊接裂纹-热裂纹](https://img.taocdn.com/s3/m/3990415b02d8ce2f0066f5335a8102d276a26123.png)
另外,母材热影响区在焊接热循环的作用下,由于 热应变,金属中的畸变能增加,同时也会形成多 边化边界。这种多边化的边界,一般情况下并不 与凝固晶界重合,在焊接后的冷却过程中,由于 热塑性降低,导致沿多边化的边界产生裂纹,故 称多边化裂纹。
(二)多边化裂纹的主要特点
这种裂纹多发生在纯金属或单相奥氏体焊缝中, 个别情况下也出现在热影响区中。
裂纹附近常伴随有再结晶晶粒出现,所以多边化 裂纹总是迟于再结晶。
裂纹多发生在重复受热的多层焊层间金属中及热 影响区,其部位并不都靠近熔合区,说明这种裂 纹与晶界液化无关。
断口呈现出高温低塑性开裂。
(三)多边化裂纹的影响因素
1.合金成分的影响 在Ni-Cr系的单相合金中,向 焊缝加入提高多边化激活能的元素(如Mo、W、 Ti、Ta等),则可有效地阻止多边化过程。
2.合金元素对产生结晶裂纹的影响
(1)硫和磷 硫和磷在钢中能形成多种低熔共晶, 使结晶过程极易形成液态薄膜,因而显著增大裂 纹倾向,即使是微量存在,也会使结晶区间大为 增加。
(2)碳 碳在钢中是影响结晶裂纹的主要元素,并 能加剧其他元素的有害作用(如硫、磷等)。
(3)锰 锰具有脱硫作用,能置换FeS为MnS,同 时也能改善硫化物的分布形态,使薄膜状FeS改 变为球状分布,从而提高了焊缝的抗裂性。为了 防止硫引起的结晶裂纹,并随含碳量的增加,则 Mn/S的比值也应随之增加
对于厚板焊接结构,施工时常采用多层焊,裂纹倾向比单 层焊有所缓和,但对各层的熔深应注意控制。另外,在接 头处应尽量避免应力集中(错边、咬肉、未焊透等),也 是降低裂纹倾向的有效办法。
3.焊接次序
尽量使大多数焊缝能在较小刚度的条件下焊接,使焊缝的 受力较小。
四、高温液化裂纹
《常见焊接缺陷》课件
![《常见焊接缺陷》课件](https://img.taocdn.com/s3/m/3b8215193a3567ec102de2bd960590c69fc3d85f.png)
焊接材料:材料选择不当, 材料质量差
焊接环境:温度、湿度、风 速等环境因素影响
操作人员:操作技能不足, 操作不当
焊接缺陷对结构性能的影响
强度降低:焊接缺陷可能导致结构强度降低,影响其承载能力 刚度下降:焊接缺陷可能导致结构刚度下降,影响其稳定性 疲劳寿命缩短:焊接缺陷可能导致结构疲劳寿命缩短,影响其使用寿命 耐腐蚀性降低:焊接缺陷可能导致结构耐腐蚀性降低,影响其耐久性
选择合适的焊接材料,如不锈钢、铝合金等 控制焊接材料的质量,如化学成分、机械性能等 控制焊接材料的厚度,如薄板、厚板等 控制焊接材料的表面处理,如打磨、清洗等
焊接过程监控与检验
焊接前检查:确保 焊接设备、材料、 工艺参数等符合要 求
焊接中监控:实时 监测焊接过程中的 温度、电流、电压 等参数
焊接后检验:对焊 接质量进行检验, 包括外观检查、无 损检测等
热处理修复:通过热处理技术修复缺 陷
复合修复:结合多种修复方法进行修 复
预防性修复:通过预防措施避免缺陷 产生
总结与展望
本次课件内容回顾总结
焊接缺陷的定义和分类
焊接缺陷产生的原因和影 响
焊接缺陷的预防和检测方 法
焊接缺陷的修复和补救措 施
焊接缺陷的案例分析和经 验分享
焊接缺陷的未来发展趋势 和展望
无损检测法
超声波检测:利用超声波 在金属中的传播和反射特 性,检测金属内部的缺陷
射线检测:利用X射线或γ 射线穿透金属,检测金属 内部的缺陷
磁粉检测:利用磁粉在金 属表面的吸附和显示特性, 检测金属表面的缺陷
渗透检测:利用渗透剂在 金属表面的渗透和显示特 性,检测金属表面的缺陷
涡流检测:利用涡流在金 属中的传播和反射特性, 检测金属内部的缺陷
焊接环境:温度、湿度、风 速等环境因素影响
操作人员:操作技能不足, 操作不当
焊接缺陷对结构性能的影响
强度降低:焊接缺陷可能导致结构强度降低,影响其承载能力 刚度下降:焊接缺陷可能导致结构刚度下降,影响其稳定性 疲劳寿命缩短:焊接缺陷可能导致结构疲劳寿命缩短,影响其使用寿命 耐腐蚀性降低:焊接缺陷可能导致结构耐腐蚀性降低,影响其耐久性
选择合适的焊接材料,如不锈钢、铝合金等 控制焊接材料的质量,如化学成分、机械性能等 控制焊接材料的厚度,如薄板、厚板等 控制焊接材料的表面处理,如打磨、清洗等
焊接过程监控与检验
焊接前检查:确保 焊接设备、材料、 工艺参数等符合要 求
焊接中监控:实时 监测焊接过程中的 温度、电流、电压 等参数
焊接后检验:对焊 接质量进行检验, 包括外观检查、无 损检测等
热处理修复:通过热处理技术修复缺 陷
复合修复:结合多种修复方法进行修 复
预防性修复:通过预防措施避免缺陷 产生
总结与展望
本次课件内容回顾总结
焊接缺陷的定义和分类
焊接缺陷产生的原因和影 响
焊接缺陷的预防和检测方 法
焊接缺陷的修复和补救措 施
焊接缺陷的案例分析和经 验分享
焊接缺陷的未来发展趋势 和展望
无损检测法
超声波检测:利用超声波 在金属中的传播和反射特 性,检测金属内部的缺陷
射线检测:利用X射线或γ 射线穿透金属,检测金属 内部的缺陷
磁粉检测:利用磁粉在金 属表面的吸附和显示特性, 检测金属表面的缺陷
渗透检测:利用渗透剂在 金属表面的渗透和显示特 性,检测金属表面的缺陷
涡流检测:利用涡流在金 属中的传播和反射特性, 检测金属内部的缺陷
第4章 焊接裂纹
![第4章 焊接裂纹](https://img.taocdn.com/s3/m/7765df50312b3169a451a4c6.png)
(2) 层状撕裂
层状撕裂示意图
4. 其他焊接裂纹
(3) 应力腐蚀裂纹
产生SCC的δth与钢的δs的关系 APC—应力阳极溶解开裂
HEC—应力阴极氢脆开裂
4. 其他焊接裂纹
起源于焊接热裂纹的应力腐蚀裂纹
a)16Cr23Ni13,80℃×720h,30% MgCl2
b)16Cr23Ni13,80℃×720h,15% MgCl2
3. 焊接冷裂纹
厚板多层焊接残余应力的分布
厚板多层焊扩散氢的分布
4. 其他焊接裂纹
(1) 再热裂纹
不同材料的再热温度与断裂时间的关系
再热裂纹的发生部位和形态 1—22Cr2NiMo 2—25CrNi3MoV 3—25NiMoV 4—20CrNiMoVNbB 5—25Cr2NiMoMnV
4. 其他焊接裂纹
2. 焊接热裂纹
熔池结晶阶段及脆性温度区 δ—塑性 y—流动性 TB—脆性温度区
2. 焊接热裂纹
Al-Mn合金的脆化温度区间
焊接时产生结晶裂纹的条件
1—Al-1.5% Mn
2—Al-1.5% Mn-0.2% Fe
TL—液相线温度 TS—固相线温度 TH—固液 阶段的开始温度 T‘S—固液阶段的结束温度
材料连接原理
第4章 焊接裂纹
主要内容
▲ 焊接裂纹的类型及特点 ▲ 焊接热裂纹 ▲ 焊接冷裂纹 ▲ 其他裂纹
1. 焊接裂纹的类型及特点
焊接裂纹的宏观形态及其分布 1—焊缝中纵向裂纹 2—焊缝中横线裂纹 3—熔合区裂纹 4—焊缝根部裂纹 5—HAZ根部裂纹 6—焊趾纵向裂纹(延迟裂纹) 7—焊趾纵向裂纹(液化裂纹、 再热裂纹) 8—焊道下裂纹(延迟裂纹、液化裂纹、多边化裂纹) 9—层状撕裂
第2章2-4 焊接裂纹
![第2章2-4 焊接裂纹](https://img.taocdn.com/s3/m/8c1589d35fbfc77da369b115.png)
三、层状撕裂 (lamellar tearing)
1、层状撕裂的定义:
轧制的厚钢板角接接头,T形接 头和十字接头中,由于多层焊角焊 缝产生的过大的Z向应力及母材中存 在的层状夹杂,在焊接热影响区及 其附近的母材内引起的沿轧制方向 发展的具有阶梯状的裂纹。
2、层状撕裂的特征
产生部位:
产生温度: 形貌特征: 产生的接头形 式:
第三,选择合理的焊接次序,施工时焊接 次序是很重要的,同样的焊接方法和焊接材料, 只是因焊接次序不同,可能具有不同的结晶裂 纹倾向。总的原则是尽量使大多数焊缝能在较 小刚度的条件下焊接,使焊缝的受力最小。 以上简要地从冶金和工艺方面对防止热裂 纹的措施进行了讨论,实际生产中情况比较复 杂,防止热裂纹的方法也很多,这里无法一一 举例。但最主要的是根据施工具体条件,找出 存在的主要问题,采取相应的措施。同时应当 经济可靠,简便易行。
为什么钢淬硬之后易引发冷裂纹呢?
1) 淬硬会形成脆硬的马氏体组织 这种组织发生断裂时将消耗较低的能量。
2) 淬硬会形成更多的晶格缺陷 成为裂纹源。
(2)氢的作用
焊接接头的含氢量越高,裂纹的敏感性越大 。 氢的应力扩散理论认为,金属内部的缺陷(包括 微孔、微夹杂和晶格缺陷等)提供了潜在裂源,在应 力的作用下,这些微观缺陷的前沿形成了三向应力区, 诱使氢向该处扩散并聚集。当氢的浓度达到一定程度 时,一方面产生较大的应力,另一方面阻碍位错移动 而使该处变脆,当应力进一步加大时,促使缺陷扩展 而形成裂纹。其后氢又不断向新的三向应力区扩展, 达到临界浓度时,又发生新的裂纹扩展。这种过程可 周而复始断续进行,直至成为宏观裂纹。
产生结晶裂纹的条件:
1、冶金因素 ——由低熔共晶形成的液态薄膜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②拉伸应力 液态薄膜—根本原因 拉伸应力—必要条件
第五章 焊接裂纹
28
以低碳钢焊接为例可把熔池的结晶分 为以下三个阶段
①液固阶段:(1区)
②固液阶段:这一区 也称为“脆性温度区” 即图上a、b之间的温 度范围 ③固相阶段:也叫 完全凝固阶段
Tb—称为脆性温度区,在比区间易产生结晶裂纹,杂质较少的金属, Tb 小产生裂纹的可能性也小,杂质多的金属Tb大,产生裂纹的倾向也大
③星形(弧形裂纹) 2、 按裂纹发生部位分
①焊缝金属中裂纹
纵向裂纹
②热影响区中裂纹
③焊缝热影响区贯穿裂纹
第五章 焊接裂纹
8
3 、按产生本质分类
1)、热裂纹 (高温裂纹)
产生:热裂纹(高温裂纹)高温下产生
存在部位:焊缝为主,热影响区
特征:宏观看, 沿焊缝的轴向成纵向分
布(连续或继续)也可看到缝横向裂纹 ,裂口均有较明显的氧化色彩,表面无 光泽,微观看,沿晶粒边界(包括亚晶 界)分布,属于沿晶断裂性质
第五章 焊接裂纹
16
延迟裂纹
第五章 焊接裂纹
17
4)、层状撕裂:
由于轧制母材内部存 在有分层的夹杂物(特 别是硫化物夹杂物) 和焊接时产生的垂直 轧制方向的应力,使 热影响区附近地方产 生呈“台阶”状的层 状断裂并有穿晶发展 。
第五章 焊接裂纹
18
5)、应力腐蚀裂纹:
金属材料在某些特定 介质和拉应力共同作 用下所产生的延迟破 裂现象,称应力腐蚀 裂纹。
第五章 焊接裂纹
3
重点内容
1、裂纹的分类用一般特征 2、结晶裂纹的形成机理、影响因素,及其防
冶措施 3、焊接冷裂纹的形成机理, 4、应力腐蚀裂纹形ຫໍສະໝຸດ 机理 5、层状撕裂产生原因及防止、
6焊接裂纹综合分析及判断,各种裂纹断口形 貌特征。
第五章 焊接裂纹
4
§5-1 概述
一、危害性
焊接结构产生裂纹轻者需要返修,浪 费人力、物力、时间,重者造成焊接结构 报废,无法修补。更严重者造成事故、人 身伤亡。如1969年有一艘5万吨的矿石运输 船在太平洋上航行时,断裂成两段而沉没 ,在压力容器破坏事故中,有很多都是由 于焊接裂纹造成。因此,解决研究焊接裂 纹已成为当前主要课题。
第五章 焊接裂纹
29
第五章 焊接裂纹
30
3)产生结晶裂纹的条件
在TB焊缝的塑性用P表示, P(T)
当在某一瞬时温度 时有一个最小的塑 性值(Pmin) (出现液态薄膜时) 受拉伸应力所产生的变形 用e表示,也是温度的函数 .
第五章 焊接裂纹
31
产生裂纹的条件
在脆性温度区焊缝所承受的拉伸 应力所产生的变形大于焊缝金属所具
第五章 焊接裂纹
5
二、种类
各种不同类型的裂纹
①焊缝中纵向裂纹
②焊缝上横向裂纹
③热影响区纵向裂纹 ④热影响区横向裂纹
⑤火口(弧坑)裂纹 ⑥焊道下裂纹
⑦焊缝内部晶间裂纹 ⑧焊趾裂纹
⑨热影响区焊缝贯穿裂纹⑩焊缝根部裂纹
第五章 焊接裂纹
6
第五章 焊接裂纹
7
分类:
1、 按裂纹分布的走向分
①横向裂纹 ②纵向裂纹
第五章 焊接裂纹
9
1)、热裂纹分类
a. 结晶裂纹:在凝固的过程--结晶过程中产生
b. 高温液化裂纹:在高温下产生,钢材或多层焊
的层间金属含有低熔点化合物经重新溶化, 在收缩应力作用下,沿奥氏体晶间发生开裂
c. 多边化裂纹:产生温度低于固相线温度,存在
晶格缺陷(位错和空位),物理化学的不均匀性, 在应力作用下,缺陷聚集形成多边化边界,使强 度塑性下降,沿多边化边界开裂,多发生纯金属 或单相奥氏体合金焊缝。
第五章 焊接裂纹
第五章 焊接裂纹
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
第五章 焊接裂纹
点击此处输入 相关文本内容
第五章 焊接裂纹
第一节 第二节 第三节 第四节 第五节 第六节 第七节
概述 焊接热裂纹 焊接冷裂纹 再热裂纹 层状撕裂 应力腐蚀裂纹 焊接裂纹综合分析和判断
第五章 焊接裂纹
19
三、热裂纹与冷裂纹的基本特点
裂纹 产生温度 产生部位
热裂纹 高温下产生 焊缝、热影响区
冷裂纹 低温下产生 热影响区、焊缝
宏观特征
沿焊缝的轴向成纵向 分布,也有横向分布, 断口具有发亮的金属光 裂口均有氧化色彩表 泽 面无光泽
微观特征
沿晶粒边界分布,属 晶间断裂,也有穿晶内
于沿晶断裂性质
的脆性断裂特征。 微观看:晶间断裂,但也可穿晶(晶内)断裂, 也可晶间和穿晶混合断裂。
第五章 焊接裂纹
15
冷裂纹分类:
a. 延迟裂纹:特点不在焊后立即出现,有 一段孕育期产生迟滞现象称延迟裂纹。
b. 淬硬脆化裂纹(淬火裂纹):淬硬倾向 大的组织易产生这种裂纹(与氢含量关 系不大)。
c. 低塑性脆化裂纹:在比较低的温度下, 由于收缩应变超过了材料本身的塑性储 备产生的裂纹称低塑性脆化裂纹。
有的塑性时产生裂纹即 es 0
高温阶段晶间塑性变形能力不足以承 受当时所发生塑性应变量。
断裂,也有晶间和穿晶
混合断裂
第五章 焊接裂纹
本节结束20
§5-2 焊接热裂纹
一、结晶裂纹
1、 产生机理
1)产生部位:结晶裂纹大部分都沿焊缝树 枝状结晶的交界处发生和发展的,常见沿焊 缝中心长度方向开裂即纵向裂纹,有时焊缝 内部两个树枝状晶体之间。对于低碳钢、奥 氏体不锈钢、铝合金、结晶裂纹主要发生在 焊缝上某些高强钢,含杂质较多的钢种,除 发生在焊缝之处,还出现在近缝区上。
第五章 焊接裂纹
21
第五章 焊接裂纹
结 晶 裂 纹
22
第五章 焊接裂纹
23
第五章 焊接裂纹
24
第五章 焊接裂纹
25
第五章 焊接裂纹
26
第五章 焊接裂纹
27
2)、熔池各阶段产生结晶裂纹的倾向
在焊缝金属凝固结晶的后期,低熔点共晶物 被排挤在晶界,形成一种所谓的“液态薄膜”, 在焊接拉应力作用下,就可能在这薄弱地带开裂 ,产生结晶裂纹。 产生结晶裂纹原因:①液态薄膜
第五章 焊接裂纹
10
晶 间 裂 纹
HAZ液化裂纹
多边化裂纹
第五章 焊接裂纹
11
第五章 焊接裂纹
12
2)、再热裂纹(消除应力处理裂纹)
由于重新加热(热处理)过程中产生称再热 裂纹—消除应力处理裂纹。
第五章 焊接裂纹
13
第五章 焊接裂纹
14
3)、冷裂纹
产生温度:温度区间在+100℃~-75℃之间 存在部位:多在热影响区,但也有发生在焊缝。 特征(断口):宏观断口具有发亮的金属光泽
第五章 焊接裂纹
28
以低碳钢焊接为例可把熔池的结晶分 为以下三个阶段
①液固阶段:(1区)
②固液阶段:这一区 也称为“脆性温度区” 即图上a、b之间的温 度范围 ③固相阶段:也叫 完全凝固阶段
Tb—称为脆性温度区,在比区间易产生结晶裂纹,杂质较少的金属, Tb 小产生裂纹的可能性也小,杂质多的金属Tb大,产生裂纹的倾向也大
③星形(弧形裂纹) 2、 按裂纹发生部位分
①焊缝金属中裂纹
纵向裂纹
②热影响区中裂纹
③焊缝热影响区贯穿裂纹
第五章 焊接裂纹
8
3 、按产生本质分类
1)、热裂纹 (高温裂纹)
产生:热裂纹(高温裂纹)高温下产生
存在部位:焊缝为主,热影响区
特征:宏观看, 沿焊缝的轴向成纵向分
布(连续或继续)也可看到缝横向裂纹 ,裂口均有较明显的氧化色彩,表面无 光泽,微观看,沿晶粒边界(包括亚晶 界)分布,属于沿晶断裂性质
第五章 焊接裂纹
16
延迟裂纹
第五章 焊接裂纹
17
4)、层状撕裂:
由于轧制母材内部存 在有分层的夹杂物(特 别是硫化物夹杂物) 和焊接时产生的垂直 轧制方向的应力,使 热影响区附近地方产 生呈“台阶”状的层 状断裂并有穿晶发展 。
第五章 焊接裂纹
18
5)、应力腐蚀裂纹:
金属材料在某些特定 介质和拉应力共同作 用下所产生的延迟破 裂现象,称应力腐蚀 裂纹。
第五章 焊接裂纹
3
重点内容
1、裂纹的分类用一般特征 2、结晶裂纹的形成机理、影响因素,及其防
冶措施 3、焊接冷裂纹的形成机理, 4、应力腐蚀裂纹形ຫໍສະໝຸດ 机理 5、层状撕裂产生原因及防止、
6焊接裂纹综合分析及判断,各种裂纹断口形 貌特征。
第五章 焊接裂纹
4
§5-1 概述
一、危害性
焊接结构产生裂纹轻者需要返修,浪 费人力、物力、时间,重者造成焊接结构 报废,无法修补。更严重者造成事故、人 身伤亡。如1969年有一艘5万吨的矿石运输 船在太平洋上航行时,断裂成两段而沉没 ,在压力容器破坏事故中,有很多都是由 于焊接裂纹造成。因此,解决研究焊接裂 纹已成为当前主要课题。
第五章 焊接裂纹
29
第五章 焊接裂纹
30
3)产生结晶裂纹的条件
在TB焊缝的塑性用P表示, P(T)
当在某一瞬时温度 时有一个最小的塑 性值(Pmin) (出现液态薄膜时) 受拉伸应力所产生的变形 用e表示,也是温度的函数 .
第五章 焊接裂纹
31
产生裂纹的条件
在脆性温度区焊缝所承受的拉伸 应力所产生的变形大于焊缝金属所具
第五章 焊接裂纹
5
二、种类
各种不同类型的裂纹
①焊缝中纵向裂纹
②焊缝上横向裂纹
③热影响区纵向裂纹 ④热影响区横向裂纹
⑤火口(弧坑)裂纹 ⑥焊道下裂纹
⑦焊缝内部晶间裂纹 ⑧焊趾裂纹
⑨热影响区焊缝贯穿裂纹⑩焊缝根部裂纹
第五章 焊接裂纹
6
第五章 焊接裂纹
7
分类:
1、 按裂纹分布的走向分
①横向裂纹 ②纵向裂纹
第五章 焊接裂纹
9
1)、热裂纹分类
a. 结晶裂纹:在凝固的过程--结晶过程中产生
b. 高温液化裂纹:在高温下产生,钢材或多层焊
的层间金属含有低熔点化合物经重新溶化, 在收缩应力作用下,沿奥氏体晶间发生开裂
c. 多边化裂纹:产生温度低于固相线温度,存在
晶格缺陷(位错和空位),物理化学的不均匀性, 在应力作用下,缺陷聚集形成多边化边界,使强 度塑性下降,沿多边化边界开裂,多发生纯金属 或单相奥氏体合金焊缝。
第五章 焊接裂纹
第五章 焊接裂纹
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
第五章 焊接裂纹
点击此处输入 相关文本内容
第五章 焊接裂纹
第一节 第二节 第三节 第四节 第五节 第六节 第七节
概述 焊接热裂纹 焊接冷裂纹 再热裂纹 层状撕裂 应力腐蚀裂纹 焊接裂纹综合分析和判断
第五章 焊接裂纹
19
三、热裂纹与冷裂纹的基本特点
裂纹 产生温度 产生部位
热裂纹 高温下产生 焊缝、热影响区
冷裂纹 低温下产生 热影响区、焊缝
宏观特征
沿焊缝的轴向成纵向 分布,也有横向分布, 断口具有发亮的金属光 裂口均有氧化色彩表 泽 面无光泽
微观特征
沿晶粒边界分布,属 晶间断裂,也有穿晶内
于沿晶断裂性质
的脆性断裂特征。 微观看:晶间断裂,但也可穿晶(晶内)断裂, 也可晶间和穿晶混合断裂。
第五章 焊接裂纹
15
冷裂纹分类:
a. 延迟裂纹:特点不在焊后立即出现,有 一段孕育期产生迟滞现象称延迟裂纹。
b. 淬硬脆化裂纹(淬火裂纹):淬硬倾向 大的组织易产生这种裂纹(与氢含量关 系不大)。
c. 低塑性脆化裂纹:在比较低的温度下, 由于收缩应变超过了材料本身的塑性储 备产生的裂纹称低塑性脆化裂纹。
有的塑性时产生裂纹即 es 0
高温阶段晶间塑性变形能力不足以承 受当时所发生塑性应变量。
断裂,也有晶间和穿晶
混合断裂
第五章 焊接裂纹
本节结束20
§5-2 焊接热裂纹
一、结晶裂纹
1、 产生机理
1)产生部位:结晶裂纹大部分都沿焊缝树 枝状结晶的交界处发生和发展的,常见沿焊 缝中心长度方向开裂即纵向裂纹,有时焊缝 内部两个树枝状晶体之间。对于低碳钢、奥 氏体不锈钢、铝合金、结晶裂纹主要发生在 焊缝上某些高强钢,含杂质较多的钢种,除 发生在焊缝之处,还出现在近缝区上。
第五章 焊接裂纹
21
第五章 焊接裂纹
结 晶 裂 纹
22
第五章 焊接裂纹
23
第五章 焊接裂纹
24
第五章 焊接裂纹
25
第五章 焊接裂纹
26
第五章 焊接裂纹
27
2)、熔池各阶段产生结晶裂纹的倾向
在焊缝金属凝固结晶的后期,低熔点共晶物 被排挤在晶界,形成一种所谓的“液态薄膜”, 在焊接拉应力作用下,就可能在这薄弱地带开裂 ,产生结晶裂纹。 产生结晶裂纹原因:①液态薄膜
第五章 焊接裂纹
10
晶 间 裂 纹
HAZ液化裂纹
多边化裂纹
第五章 焊接裂纹
11
第五章 焊接裂纹
12
2)、再热裂纹(消除应力处理裂纹)
由于重新加热(热处理)过程中产生称再热 裂纹—消除应力处理裂纹。
第五章 焊接裂纹
13
第五章 焊接裂纹
14
3)、冷裂纹
产生温度:温度区间在+100℃~-75℃之间 存在部位:多在热影响区,但也有发生在焊缝。 特征(断口):宏观断口具有发亮的金属光泽