高等数学-第七章-微分方程ppt课件
合集下载
高等数学-第七章-微分方程
工程应用
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
7.1微分方程的概念
例1. 曲线过(0,1),且曲线上每个点处的切线斜率 等于该点的横坐标,求此曲线方程.
初始条件 设曲线方程为 y = y(x), 则 y x,
x2 y xdx c 2
c 1
y | x 0 1
一阶线性 微分方程
x y 1 2
2
通解
特解
一 、 微 分 方 程 的 概 念
如: y
x 1
2 可以确定 y x C 中的C
2
一阶常微方程的初始条件为 y ( x 0 ) y 0 ,其中
x 0 , y 0 是两个已知数.
y ( x0 ) y0 , 二阶微分方程的初始条件为 . y ( x 0 ) y 0
一 、 微 分 方 程 的 概 念
x 2x y C e C e , y ( 0 ) 0 由初始条件 代入 1 2
得 C1 C2 0 x 2x y C e 2 C e , y ( 0 ) 1 由初始条件 代入 1 2 得 C1 2C2 1.
C1 1 C2 1 于是,满足所给初始条件的特解为
常微分方程. 偏微分方程.
z x y x
y x
dy xy dx
本章内容
一 、 微 分 方 程 的 概 念
例1:下列方程中,哪些是微分方程?哪些不是?
(1) y 4 y 3 y 1
(2) y
d y (4) 2 1 x dx
一 、 微 分 如:以下方程1,2,4是二阶,3是一阶。 方 程 (1) y 4 y 3 y 1 的 概 念 (2) y 2 4 y 3 0
(3)dy cos xdx
d y (4) 2 1 x dx
高数微分方程PPT课件
通解中的对应项
(C0 C1 x Ck1 xk1 )erx
若是k重共轭
复根 i
[(C0 C1x Ck1xk1)cosx (D0 D1x Dk1xk1 )sinx]ex
湘潭大学数学与计算科学学院
11
第11页/共53页
注意 n次代数方程有n个根, 而特征方程的每一个 根都对应着通解中的一项, 且每一项各一个 任意常数.
Pm ( x)ex cos x, Pm ( x)ex sin x,
难点:如何求特解? 方法:待定系数法.
湘潭大学数学与计算科学学院
21
第21页/共53页
设非齐方程特解为 y Q( x)ex 代入原方程
Q( x) (2 p)Q( x) (2 p q)Q( x) Pm ( x) (1) 若不是特征方程的根,2 p q 0,
这说明 y1 为方程 ③ 的特解 .
湘潭大学数学与计算科学学院
28
第28页/共53页
机动 目录 上页 下页 返回 结束
第三步 求原方程的特解
原方程
y py qy e x Pl (x) cos x P~n (x)sin x
利用第二步的结果, 根据叠加原理, 原方程有特解 :
y* y1 y1
5
第5页/共53页
二阶常系数齐次微分方程求通解的一般步骤:
(1)写出相应的特征方程; (2)求出特征根; (3)根据特征根的不同情况,得到相应的通解.
(见下表)
湘潭大学数学与计算科学学院
6
第6页/共53页
y py qy 0 r2 pr q 0
特征根的情况
实根r1 r2 实根r1 r2
特征根为 r1 i , r2 i ,
y1 e , ( i ) x
高等数学-第7章 微分方程
将上式两端积分,并由
中的函数可写成的函数,即
(引进新的未知函数(
代入方程(),便得方程
分离变量,得两端积分,得
代替
解方程
因此是齐次方程。
令,则
两端积分,得
以代入上式中的
方程
离变量后得,两端积分,得
,这是对应的齐次线性方程(
把上式代入(
.
以除)的两端,再通过上述代换得线性方程
型的微分方程
(
..
,那末而方程就成为
但是,因此又得到一个一阶微分方程
)的通解为
(3)
合函数的求导法则把化为对
)就成为
通解为
)的通解为
如果函数均是方程的解,那末
我们所求得的解是不是方程的通解呢?
,那末称此两函数在区间,否则,即
如果
就是该方程的通解,其中
的任一特解,
就是方程的通解。
.如果
的解,那末
(
的系数(
和它的各阶导数都只相差一个常数因子。
将
把代入方程(
(
)的两个根。
特征方程微分方程
(
型,
(是与
不是特征方程的根,
若
型
,
,)其中、
)的重复次数。
高等数学微分方程总结ppt课件.pptx
y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0
高等数学上册第七章课件.ppt
y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
高数微分方程PPT
应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。
第七章-微分方程1
* y 其中 为非齐次方程的特解,可设 0 非根 * k x y x e Qm ( x ) k 1 单根 2 重根
( 复 习 )
Y 为对应齐次方程的通解
华侨大学 厦门工学院 高等数学教学系 制作
上一张 下一张 返 回
高 等 数 学 ( 下 )
例11 解
求 y '' 5 y' 6 y xe 2 x 通解
华侨大学 厦门工学院 高等数学教学系 制作
上一张
下一张
返 回
高 等 数 学 ( 下 )
二、一阶线性微分方程
一阶线性微分方程的标准形式:
dy P ( x ) y Q( x ) dx
当Q( x ) 0, 上面方程称为齐次的.
( 复 习 )
当Q( x ) 0, 上面方程称为非齐次的.
华侨大学 厦门工学院 高等数学教学系 制作
*
1 b0 , b1 1 2
2x
( 复 习 )
y xe
原方程的通解为
1 ( x 1) 2
3x
y c1e
2x
c2 e
xe
2x
1 ( x 1) 2
上一张 下一张 返 回
华侨大学 厦门工学院 高等数学教学系 制作
高 等 数 学 ( 下 )
例12 解
求y '' 3 y' 2 y 3 xe x 通解
高 等 数 学 ( 下 )
一、可分离变量的微分方程
g ( y )dy f ( x )dx
可分离变量的微分方程.
4 4 dy 例如 2 x 2 y 5 y 5 d y 2 x 2d x , dx 解法 设函数 g( y ) 和 f ( x ) 是连续的,
( 复 习 )
Y 为对应齐次方程的通解
华侨大学 厦门工学院 高等数学教学系 制作
上一张 下一张 返 回
高 等 数 学 ( 下 )
例11 解
求 y '' 5 y' 6 y xe 2 x 通解
华侨大学 厦门工学院 高等数学教学系 制作
上一张
下一张
返 回
高 等 数 学 ( 下 )
二、一阶线性微分方程
一阶线性微分方程的标准形式:
dy P ( x ) y Q( x ) dx
当Q( x ) 0, 上面方程称为齐次的.
( 复 习 )
当Q( x ) 0, 上面方程称为非齐次的.
华侨大学 厦门工学院 高等数学教学系 制作
*
1 b0 , b1 1 2
2x
( 复 习 )
y xe
原方程的通解为
1 ( x 1) 2
3x
y c1e
2x
c2 e
xe
2x
1 ( x 1) 2
上一张 下一张 返 回
华侨大学 厦门工学院 高等数学教学系 制作
高 等 数 学 ( 下 )
例12 解
求y '' 3 y' 2 y 3 xe x 通解
高 等 数 学 ( 下 )
一、可分离变量的微分方程
g ( y )dy f ( x )dx
可分离变量的微分方程.
4 4 dy 例如 2 x 2 y 5 y 5 d y 2 x 2d x , dx 解法 设函数 g( y ) 和 f ( x ) 是连续的,
第7常微分方程1-PPT精品文档
称它为微分方程的积分曲线.也被称为微分方程 初值问题的几何意义.
通解是一组平行的曲线簇.
d x 例1 验 证 x C1 cos kt C2 sin kt 是 2 k 2 x 0 的 dt
2
解,其中 C1 , C2 为任意常数.并求满足初始条件
dx 0 的特解. x t 0 A , dt t 0 dx 解: k1 C sin k tk 2 C cos kt dt 2 dx 2 2 2 k C cos kt k C sin kt k C cos kt C sin kt 1 2 1 2 2 dt d2x d 2x 2 将 2 , x 代入方程 2 k x 0 得: dt dt 2 2 k C c o s k t C s i n k t 0 k C cos kt C sin kt 1 2 1 2
t 0
M0
又由 M
t 0
M 0 得: C M 0
所以所求变化规律为: M M 0 e t .
2、齐次方程
若一阶微分方程 y f x, y 中的函数 f x, y y y y 可化为 的函数 ,即: f x, y ,称 x x x 该方程为齐次方程.
故 ln y x2 C1
y e
x2C 1
C1 x2
x2
e e
Ce
即方程的通解为 y Ce
x2
例3 求微分方程 x xy 2 dx x 2 y y dy 0 满足
1 的特解. x y 解:原方程变形为: 2 d x d y 2 x 1 1y 1 x2 1 1 2 1 2 ln x 1 ln y 1 C C 1 ln 2 1 2 2 2 y 1 2 即: x 1 C y2 1 1 y |x 1 C 0 2 x2 1 1 故所求特解为: 2 y 1 2
高等数学第七章常微分方程
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
高等数学
第七章 常微分方程
因此y=eλ1x是原方程的解。 函数y=C1eλ1x+C2eλ2x的一阶导数和二阶导数分别为 y′=C1λ1eλ1x+C2λ2eλ2x y″=C1λ12eλ1x+C2λ22eλ2x 代入原方程,则 (C1λ12eλ1x+C2λ22eλ2x)-(λ1+λ2)(C1λ1eλ1x+C2λ2eλ2x)+λ1λ2( C1eλ1x+eλ2x)≡0 说明y=C1eλ1x+C2eλ2x也是原方程的解。
微分方程的概念 一阶微分方程 可降阶的高阶微分方程 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程
第一节 微分方程的概念
一、 微分方程的基本概念
例1 已知一条曲线经过点(2,1),且该曲线上任一点
P(x,y)处切线斜率为x,求该曲线的方程.
解 设所求曲线方程为y=y(x).由导数的概念及几何意义
F(x,f(x),f′(x),…,f(n)(x))≡0 则称y=f(x)为微分方程 (7-1-1) 在区间I上的解。
第一节 微分方程的概念
例2 验证函数y=eλ1x和y=C1eλ1x+C2eλ2x均为方程 y″-(λ1+λ2)y′+λ1λ2y=0的解。
解 y=eλ1x的一阶导数和二阶导数分别为 y′=λ1eλ1x, y″=λ12eλ1x 将y,y′,y″代入原方程中,则 λ12eλ1x-(λ1+λ2)λ1eλ1x+λ1λ2eλ1x≡0
dx
高数下册第七章第五节一阶线性方程全微分方程
标准形式
通过适当的变量代换,一阶线性微 分方程可化为标准形式 $y' + p(x)y = q(x)$,其中 $p(x)$ 和 $q(x)$ 是 已知函数。
一阶线性方程全微分方程的解的存在性与唯一性定理
1 2
解的存在性
如果一阶线性微分方程中的 $P(x)$ 和 $Q(x)$ 在某区间上连续,那么在该区间内必定存在原方 程的解。
解的唯一性
如果一阶线性微分方程满足初始条件 $y(x_0) = y_0$,那么在给定区间内,原方程的解是唯一的。
3
解的连续性与可微性
一阶线性微分方程的解在其定义域内是连续且可 微的。
一阶线性方程全微分方程的通解与特解
通解
一阶线性微分方程的通解是包含 任意常数的解,它表示了原方程
所有可能的解。
特解
满足特定初始条件 $y(x_0) = y_0$ 的解称为特解,它是通解
次方程 $y' + P(x)y = 0$ 的通解,然后将通解中的常数变为函数,通过
求导和代入原方程求解。
02
常数变易法的步骤
设齐次方程的通解为 $y = Ce^{-int P(x)dx}$,其中 $C$ 为常数。将
$C$ 变为 $x$ 的函数 $u(x)$,得到 $y = u(x)e^{-int P(x)dx}$,求导
高阶线性微分方程的解法
高阶线性微分方程的解法包括降阶法、特征根法、常数变易法等,其中降阶法是通过变量 代换将高阶方程化为低阶方程来求解。
高阶线性微分方程的性质
高阶线性微分方程具有线性性、叠加性、齐次性等性质,这些性质在求解过程中起着重要 作用。
非线性微分方程简介
非线性微分方程的定义
非线性微分方程是指微分方程中未知函数或其导数出现高次幂、 乘积、分式等非线性形式的方程。
通过适当的变量代换,一阶线性微 分方程可化为标准形式 $y' + p(x)y = q(x)$,其中 $p(x)$ 和 $q(x)$ 是 已知函数。
一阶线性方程全微分方程的解的存在性与唯一性定理
1 2
解的存在性
如果一阶线性微分方程中的 $P(x)$ 和 $Q(x)$ 在某区间上连续,那么在该区间内必定存在原方 程的解。
解的唯一性
如果一阶线性微分方程满足初始条件 $y(x_0) = y_0$,那么在给定区间内,原方程的解是唯一的。
3
解的连续性与可微性
一阶线性微分方程的解在其定义域内是连续且可 微的。
一阶线性方程全微分方程的通解与特解
通解
一阶线性微分方程的通解是包含 任意常数的解,它表示了原方程
所有可能的解。
特解
满足特定初始条件 $y(x_0) = y_0$ 的解称为特解,它是通解
次方程 $y' + P(x)y = 0$ 的通解,然后将通解中的常数变为函数,通过
求导和代入原方程求解。
02
常数变易法的步骤
设齐次方程的通解为 $y = Ce^{-int P(x)dx}$,其中 $C$ 为常数。将
$C$ 变为 $x$ 的函数 $u(x)$,得到 $y = u(x)e^{-int P(x)dx}$,求导
高阶线性微分方程的解法
高阶线性微分方程的解法包括降阶法、特征根法、常数变易法等,其中降阶法是通过变量 代换将高阶方程化为低阶方程来求解。
高阶线性微分方程的性质
高阶线性微分方程具有线性性、叠加性、齐次性等性质,这些性质在求解过程中起着重要 作用。
非线性微分方程简介
非线性微分方程的定义
非线性微分方程是指微分方程中未知函数或其导数出现高次幂、 乘积、分式等非线性形式的方程。
大学课件高等数学微分方程
rx
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
高等数学第七章第九节常系数非齐次线性微分方程课件.ppt
这说明 y1 为方程 ③ 的特解 .
第三步 求原方程的特解 原方程
y py qy e x Pl (x) cos x P~n (x)sin x
利用第二步的结果, 根据叠加原理, 原方程有特解 :
y* y1 y1
xk e x Qm ei x Qm ei x xke x Qm (cos x i sin x)
b0
1 ,
b1
1 3
例2.
的通解.
解: 本题 2, 特征方程为 r 2 5 r 6 0 , 其根为
对应齐次方程的通解为
设非齐次方程特解为 y* x (b0 x b1) e2 x
代入方程得 2b0 x b1 2b0 x
比较系数, 得
b0
1 2
,
b1
1
因此特解为
y*
x
(
1 2
Qm (cos x i sin x) xke x Rm cos x R~m sin x
其中 R m , R~m 均为 m 次多项式 .
第四步 分析 y的特点
y y1 y1
xke x Rm cos x R~m sin x
因
y y1 y1 y1 y1
y1 y1
y*
所以 y本质上为实函数 , 因此 Rm , R~m 均为 m 次实
③
设 i 是特征方程的 k 重根 ( k = 0, 1), 则 ② 有
特解:
y1 xkQm (x) e(i) x (Qm (x)为m次多项式)
故 ( y1) p ( y1) q y1 Pm (x) e(i) x
等式两边取共轭 :
y1 p y1 q y1 Pm (x) e(i) x
形式e为xPym*(x)e xQm (x) .
微分方程ppt课件
F(x, y, y) 0
(1.8)
如果在(1.8)中能将 y 解出,则得到方程
y f (x, y)
(1.9)
或
M (x, y)dx N(x, y)dy 0
(1.10)
(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微 分形式的一阶方程.
14
机动 目录 上页 下页 返回 结束
推得
c1 v0
c2 H
于是,得到满足上述初值条件的特解为
xx(t()t)H12gt122 gt2c1t v0ct 2
(1.14)
22
机动 目录 上页 下页 返回 结束
它描述了初始高度为H,初始速度为v0的自由落体运 动规律.
求微分方程满足初值条件的解的问题称为初值 问题.
于是我们称(1.14)是初值问题
4
机动 目录 上页 下页 返回 结束
目
录
第一章 初等积方法 第二章 基本定理 第三章 一阶线性微分方程组 第四章 n阶线性微分方程 第五章 定性与稳定性理论简介 第六章 一阶偏微分方程初步
5
机动 目录 上页 下页 返回 结束
第一讲
第一章 初等积分法
1.1 微分方程和解
300多年前,由牛顿(Newton,1642-1727)和 莱布尼兹(Leibniz,1646-1716)所创立的微积分学, 是人类科学史上划时代的重大发现,而微积分 的产生和发展,又与求解微分方程问题密切相 关.这是因为,微积分产生的一个重要动因来自 于人们探求物质世界运动规律的需求.
12
机动 目录 上页 下页 返回 结束
例如下面的方程都是常微分方程
dy 2x dx
(1.4)
高等数学第7章(第8节)
原方程通解为
y C 1 e x C 2 e x x e x
x e
k x
i x i x
第四步 分析 y 的特点
y y1 y1 k x
x e
因
~ Rm cos x Rm sin x
y1 y1
y
y1 y1
y1 y1
y*
~ 所以 y 本质上为实函数 , 因此 Rm , Rm 均为 m 次实
因此特解为 y* x ( 1 x 1) e 2 x . 2
所求通解为
1 ( 2
x 2 x ) e2 x .
y 3 y 2 y 1 例3. 求解初值问题 y (0) y (0) y (0) 0
解: 本题 0 , 特征方程为
y* e x [ Q ( x) Q ( x) ] y* e x [ 2 Q ( x) 2 Q ( x) Q ( x) ]
代入原方程 , 得
(1) 若 不是特征方程的根, 则取 x e为[ m 次待定系数多项式 ( x) (2 p q ) Q ( x) ] Q ( x) ( 2 p ) Q Q (x) 从而得到特解
x
i 为特征方程的 k (=0, 1 )重根, 则设特解为
y* x e
k x
~ [ Rm ( x) cos x Rm ( x) sin x]
3. 上述结论也可推广到高阶方程的情形.
思考与练习
1 . (填空) 设
时可设特解为
y* x (a x b) cos x (cx d )sin x
y p y q y Pm ( x) e( i ) x
y C 1 e x C 2 e x x e x
x e
k x
i x i x
第四步 分析 y 的特点
y y1 y1 k x
x e
因
~ Rm cos x Rm sin x
y1 y1
y
y1 y1
y1 y1
y*
~ 所以 y 本质上为实函数 , 因此 Rm , Rm 均为 m 次实
因此特解为 y* x ( 1 x 1) e 2 x . 2
所求通解为
1 ( 2
x 2 x ) e2 x .
y 3 y 2 y 1 例3. 求解初值问题 y (0) y (0) y (0) 0
解: 本题 0 , 特征方程为
y* e x [ Q ( x) Q ( x) ] y* e x [ 2 Q ( x) 2 Q ( x) Q ( x) ]
代入原方程 , 得
(1) 若 不是特征方程的根, 则取 x e为[ m 次待定系数多项式 ( x) (2 p q ) Q ( x) ] Q ( x) ( 2 p ) Q Q (x) 从而得到特解
x
i 为特征方程的 k (=0, 1 )重根, 则设特解为
y* x e
k x
~ [ Rm ( x) cos x Rm ( x) sin x]
3. 上述结论也可推广到高阶方程的情形.
思考与练习
1 . (填空) 设
时可设特解为
y* x (a x b) cos x (cx d )sin x
y p y q y Pm ( x) e( i ) x
微分方程ppt课件
❖ 这里a和N为正参数,a为x较小时的总量增长 率,而N代表一种“理想”总量或“承载 量”。 验证: 当x较小时, ax(1-x/N) ≈1,即x΄=ax。 当x>N时,则有x΄<0,满足假设。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
8
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
❖ 方程简化为x΄= f(a x)=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x)是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
9
解微分方程x΄=ax(1-x)。t=0时x=x(0)。
❖
微分方程的通解为
4
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,lim keat =- 。 t
t
2)若a=0,keat 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
11
从 f(a x)=ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x)>0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x)<0,故解将减小。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
8
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
❖ 方程简化为x΄= f(a x)=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x)是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
9
解微分方程x΄=ax(1-x)。t=0时x=x(0)。
❖
微分方程的通解为
4
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,lim keat =- 。 t
t
2)若a=0,keat 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
11
从 f(a x)=ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x)>0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x)<0,故解将减小。
高等数学第三版第七章课件
y′′ + y = 0,
(2)特解: 解的图象: 通解的图象: 初始条件:
通解 y = Ce x ;
通解 y = C1 sin x + C 2 cos x;
初值问题: 求微分方程满足初始条件的解的问题.
例 3 验证:函数 x = C1 cos kt + C 2 sin kt 是微分 方程
确定了通解中任意常数以后的解. 微分方程的积分曲线. 积分曲线族.
故
5 −2 ⎛ ⎞ y = ( x + 1)2 ⎜ ∫ ( x + 1) 2 dx + C ⎟ ⎝ ⎠ 3 ⎞ 2⎛ 2 = ( x + 1) ⎜ ( x + 1) 2 + C ⎟ ⎝3 ⎠
y=e
− P ( x ) dx − P ( x ) dx y′ = u′( x )e ∫ , + u( x )[ − P ( x )]e ∫
16
两边积分,得 u − ln | u | + C = ln | x |,
例 4 求解微分方程
或
ln|ux |= u + C , ln | y |= y +C x
所求通解为
y y ( x − y cos )dx + x cos dy = 0. x x 解 令u = y , 则 dy = xdu + udx,
du = ln C1 x , f ( u) − u
dy dy + y 2 = xy . dx dx
解 方程可写为
(ϕ ( u ) = ∫
du ) f ( u) − u
⎛ y⎞ ⎜ x⎟ dy y2 = = ⎝ ⎠, 2 y dx xy − x −1 x
y ϕ( ) y 得通解 x = Ce x , 代入, x 当 ∃u0 , 使 f ( u0 ) − u0 = 0, 则 u = u0是新方程的解 ,
(2)特解: 解的图象: 通解的图象: 初始条件:
通解 y = Ce x ;
通解 y = C1 sin x + C 2 cos x;
初值问题: 求微分方程满足初始条件的解的问题.
例 3 验证:函数 x = C1 cos kt + C 2 sin kt 是微分 方程
确定了通解中任意常数以后的解. 微分方程的积分曲线. 积分曲线族.
故
5 −2 ⎛ ⎞ y = ( x + 1)2 ⎜ ∫ ( x + 1) 2 dx + C ⎟ ⎝ ⎠ 3 ⎞ 2⎛ 2 = ( x + 1) ⎜ ( x + 1) 2 + C ⎟ ⎝3 ⎠
y=e
− P ( x ) dx − P ( x ) dx y′ = u′( x )e ∫ , + u( x )[ − P ( x )]e ∫
16
两边积分,得 u − ln | u | + C = ln | x |,
例 4 求解微分方程
或
ln|ux |= u + C , ln | y |= y +C x
所求通解为
y y ( x − y cos )dx + x cos dy = 0. x x 解 令u = y , 则 dy = xdu + udx,
du = ln C1 x , f ( u) − u
dy dy + y 2 = xy . dx dx
解 方程可写为
(ϕ ( u ) = ∫
du ) f ( u) − u
⎛ y⎞ ⎜ x⎟ dy y2 = = ⎝ ⎠, 2 y dx xy − x −1 x
y ϕ( ) y 得通解 x = Ce x , 代入, x 当 ∃u0 , 使 f ( u0 ) − u0 = 0, 则 u = u0是新方程的解 ,
高等数学-第七章-微分方程ppt课件全篇
求它落到地面时的速度和所需时间
两端积分得
因此有
注意“-”号
由于 y = R 时
由原方程可得
因此落到地面( y = R )时的速度和所需时间分别为
内容小结
1. 一阶线性方程
方法1 先解齐次方程 , 再用常数变易法微分方程的解法
—— 降阶法
逐次积分
令
令
思考与练习
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
1. 方程
如何代换求解 ?
答: 令
或
一般说, 用前者方便些.
均可.
有时用后者方便 .
例如,
2. 解二阶可降阶微分方程初值问题需注意哪些问题 ?
答: (1) 一般情况 , 边解边定常数计算简便.
(2) 遇到开平方时, 要根据题意确定正负号.
例6
例7
作业
P309 2 (2); P315 1 (3), (6); 2 (5); P323 1 (5), (7); 2 (3); 4
运动,
在开始时刻
随着时间的增大 , 此力 F 均匀地减
直到 t = T 时 F(T) = 0 .
如果开始时质点在原点,
解: 据题意有
t = 0 时
设力 F 仅是时间 t 的函数: F = F (t) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所求通解: ln (1 ex y ) y C ( C 为任意常数 )
例4. 已知放射性元素铀的衰变速度与当时未衰变原
子的含量 M 成正比, 已知 t = 0 时铀的含量为 M 0 , 求在
衰变过程中铀含量 M(t) 随时间 t 的变化规律.
y(x0 ) y0 , y(x0 ) y0 , , y(n1) (x0 ) y0(n1)
引例1
通解: 特解:
dy dx
2x
y x1 2
引例2
y x2 C
y x2 1
d2s d t2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
s 0.2t 2 20t
转化
解分离变量方程 g( y)dy f (x)dx
分离变量方程的解法:
g(y)dy f (x)dx
①
设 y= (x) 是方程①的解, 则有恒等式
g( (x))(x) dx f (x) dx
两边积分, 得 g( y) dy f (x) dx
设左右两端的原函数分别为 G(y), F(x), 则有
第七章 微分方程
已知 y f (x), 求 y — 积分问题 推广
已知含 y 及其若干阶导数的方程 , 求 y — 微分方程问题
第一节
第七章
微分方程的基本概念
几何问题 引例
物理问题
微分方程的基本概念
引例1. 一曲线通过点(1,2) ,在该曲线上任意点处的 切线斜率为 2x , 求该曲线的方程 .
练习: 求方程 dy ex y 的通解. dx
解法 1 分离变量 e ydy exdx
积分
ey ex C
即
(exC)ey1 0 ( C < 0 )
解法 2 令u x y, 则u 1 y
故有
u 1 eu
积分
1
d
u eu
x
C
(1 eu ) eu 1 eu
du
u ln (1 eu ) x C
解: 设所求曲线方程为 y = y(x) , 则有如下关系式:
dy 2x
①
dx
y dx x2 C (C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 y x2 1.
引例2. 列车在平直路上以 20 m s 的速度行驶, 制动时
获得加速度 a 0.4 m s2 , 求制动后列车的运动规律.
例1. 验证函数 x C1 cos kt C2 sin kt (C1,C2为常数)
是微分方程
d2 x dt2
k2x
0 的通解, 并求满足初始条件
x
t0
A,
dx dt
t
0 0 的特解 .
解:
d2x dt2
C1k
2
cos
kt
C2k 2 sin kt
k 2 (C1 cos k t C2 sin k t ) k 2 x
由②确定的隐函数 x=(y) 也是①的解.
称②为方程①的隐式通解, 或通积分.
例1. 求微分方程 dy 3x2 y 的通解.
dx
解: 分离变量得 dy 3x2 dx 说明: 在求解过程中
y
每一步不一定是同解
两边积分
dy y
3
x
2
d
x
变形, 因此可能增、 减解.
得 ln y x3 C1
或
即
y e x 3 C1 eC1ex 3 令C eC1
或 y(n) f (x, y, y, , y(n1) ) ( n 阶显式微分方程)
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.
n 阶方程的初始条件(或初值条件):
说明: 利用这一规律可求出制动后多少时间列车才
能停住 , 以及制动后行驶了多少路程 .
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容)
分类 偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
F (x, y, y, , y(n) ) 0
ln y x3 ln C
y Cex3
( C 为任意常数 )
( 此式含分离变量时丢失的解 y = 0 )
x ydx ( x2 1) dy 0
例2. 解初值问题 y(0) 1
解: 分离变量得
dy y
1
x x
2
dx
两边积分得 ln y ln 1 ln C x2 1
即
y x2 1 C ( C 为任意常数 )
解: 如图所示, 点 P(x, y) 处的法线方程为
Y
y
1 (X y
x)
令 Y = 0 , 得 Q 点的横坐标
X x yy
y P
x yy x, 即 yy 2x 0
Q O xx
第二节
第七章
可分离变量微分方程
可分离变量方程
M1(x)M 2 ( y) dx N1(x) N2 ( y) dy 0
这说明 x C1 cos kt C2 sin kt 是方程的解 .
C1 ,C2 是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得: C1 A,C2 0 , 故所求特解为
x Acos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q
且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
由初始条件得 C = 1, 故所求特解为
y x2 1 1
例3. 求下述微分方程的通解:
y sin2 (x y 1) 解: 令 u x y 1, 则
u 1 y
故有
1 u sin2 u
即
sec2 u du dx
解得
tan u x C
所求通解: tan(x y 1) x C ( C 为任意常数 )
解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) .
已知
d2 dt
s
2
0.4 d
s
s t0 0 , d t
t
0 20
由前一式两次积分, 可得 s 0.2 t 2 C1 t C2
利用后两式可得
C1 20, C2 0
因此所求运动规律为 s 0.2 t 2 20 t
G(y) F(x) C
②
方程①的解满足关系式②。
分离变量方程的解法:
g(y)dy f (x)dx
G(y) F(x) C
① ②
反之,当G(y)与F(x) 可微且 G (y) g(y) 0 时,
说明由②确定的隐函数 y= (x) 是①的解.
同样, 当 F (x) = f (x)≠0 时,