【外】氧自由基吸收能力测定乳酸菌的抗氧化能力(多次提到无细胞提取物)

合集下载

具抗氧化活性乳酸菌的筛选

具抗氧化活性乳酸菌的筛选

具抗氧化活性乳酸菌的筛选张凤敏;田丰伟;陈卫;赵建新;张根义【期刊名称】《中国乳品工业》【年(卷),期】2007(035)002【摘要】以体外过氧化氢耐受能力为指标,从发酵食品中筛选出2株能够耐受1 mmol/L浓度过氧化氢的乳酸菌,两株细菌的耐过氧化氢能力与L.rhamnosus GG 的耐过氧化氢能力相当.研究了两株乳酸菌完整细胞和无细胞提取物的DPPH自由基和羟自由基清除能力.结果表明,菌体浓度为109mL-1的L1001完整细胞和无细胞提取物的DPPH自由基清除率分别为36.2%和37.9%,同样浓度的F12完整细胞和无细胞提取物对DPPH自由基的清除率分别为24.4%和27.0%;清除羟自由基实验表明,细胞浓度为109mL-1的细胞清除羟自由基能力与同体积的浓度为1 mmol/L抗坏血酸相当,L1001的羟自由基清除能力优于F12.利用API鉴定系统L1001菌株被鉴定为植物乳杆菌Lactobacillus plantarum L1001.【总页数】4页(P4-7)【作者】张凤敏;田丰伟;陈卫;赵建新;张根义【作者单位】江南大学食品学院教育部食品科学与安全重点实验室,江苏,无锡,214036;江南大学食品学院教育部食品科学与安全重点实验室,江苏,无锡,214036;江南大学食品学院教育部食品科学与安全重点实验室,江苏,无锡,214036;江南大学食品学院教育部食品科学与安全重点实验室,江苏,无锡,214036;江南大学食品学院教育部食品科学与安全重点实验室,江苏,无锡,214036【正文语种】中文【中图分类】TS2【相关文献】1.1株具抑菌和抗氧化活性乳酸菌的筛选及鉴定 [J], 张香美;赵玉星;闫晓晶;崔娜2.酸奶中高抗氧化活性乳酸菌的筛选及性能研究 [J], 孙志华3.具抑菌活性乳酸菌筛选及抑菌活性物质分析 [J], 路则宝;王靓贤;姬志林;刀娅;潘梦丽;罗义勇4.自然发酵泡菜中高体外抗氧化活性乳酸菌的筛选及其对模拟胃肠道环境的耐受性[J], 王帅; 贺羽; 贺斌5.鱼肠道中抗氧化活性乳酸菌的筛选及鉴定 [J], 丁丽丽;吕欣然;高永悦;崔晓玲;王小咪;白凤翎;仪淑敏;郭晓华因版权原因,仅展示原文概要,查看原文内容请购买。

乳酸菌高抗氧化活性菌株的筛选及鉴定

乳酸菌高抗氧化活性菌株的筛选及鉴定

乳酸菌高抗氧化活性菌株的筛选及鉴定吴祖芳洪松虎沈锡权王岩陆华英(宁波大学应用海洋生物技术教育部重点实验室生命科学与生物工程学院浙江宁波315211)摘要乳酸菌的抗氧化性已得到体内体外试验的证实。

从4种食物样品中初步筛选得到20株乳酸菌菌株。

以VC 作阳性对照,超氧阴离子自由基清除率及抗脂质过氧化率为指标复筛,得到2株优良菌株H15和H17;经16S rDNA 序列分析鉴定及鼠李糖发酵试验,得出H15为戊糖乳杆菌(Lactobacillus pentosus ),H17为植物乳杆菌(Lactobacillus plantarum )。

通过乳酸菌菌悬液及无细胞提取物的抗氧化性能比较研究,推测出乳酸菌的抗氧化性能是因其不同且相对独立的抗氧化机制所致;乳酸菌菌体表面的某些成分同样具有一定的抗氧化性,然而这些物质的抗氧化性能随菌体及自由基的不同而不同。

关键词乳酸菌;抗氧化;筛选;鉴定文章编号1009-7848(2010)01-0073-06氧化作用对绝大多数生命有机体来说是必需的,然而其同样破坏生物大分子,对生命体带来很大的危害[1]。

水产品等的化学变质发生在水产品的脂类部分[2],以自动氧化为主。

水产品变质是指引起水产品组织变褐、变黄的过氧化物形成,它们进一步氧化分解产生醛和酮,进而产生强烈的油哈喇味。

目前预防食品氧化主要通过添加一些抗氧化剂,如BHA 、BHT 、PG 、TBHQ 和V E 等,但存在使用成本高,抗氧化性能弱以及近年来在毒理研究中确认的安全性问题等[3]。

此外,在实际生产应用中,加热等处理方法可导致抗氧化剂分解或挥发等损耗,故只能在加工后加入抗氧化剂。

然而许多产品的脂肪氧化在加工过程中就已经开始[4]。

因此,开发安全无毒、价格低廉并且可贯穿整个加工过程的优质天然抗氧化物成为研究热点。

乳酸菌的抗氧化活性已经得到体内及体外试验的证实[5]。

乳酸菌具有天然无毒、保健的特性,在相关食品加工过程中应用广泛,势必成为人们首选的新型抗氧化剂。

5种乳酸菌及其灭活态体外抗氧化能力的比较研究

5种乳酸菌及其灭活态体外抗氧化能力的比较研究

5种乳酸菌及其灭活态体外抗氧化能力的比较研究陈漪汶;方若楠;朱剑锋;庞旭;徐健;胡文锋【摘要】以总抗氧化活性(T-AOC)、总超氧化物歧化酶(T-SOD)活力、羟自由基清除率(OH-·)、超氧阴离子清除率(O2-·)、还原活性为测定指标,对5株乳酸菌灭活前后发酵上清液、完整细胞悬液、胞内提取物的抗氧化能力进行比较研究,并筛出抗氧化能力相对较强的3株乳酸菌进行复配.结果表明:5种乳酸菌灭活前后的发酵上清液、完整细胞悬液、胞内提取物具有不同的抗氧化能力,其中嗜酸乳杆菌灭活前和灭活后的发酵上清液的总抗氧化活性最好,分别为45.9、35.0 U/mL.菊糖芽孢乳杆菌未灭活的发酵上清液的超氧阴离子自由基清除率较强为21.03%.嗜热链球菌的灭活胞内提取物的总超氧化物歧化酶活力最强为456.7 U/mL,其未灭活的胞内提取物的羟自由基清除率最强为79.26%.唾液乳杆菌的灭活发酵上清液的还原活性最强.复配结果表明,灭活完整细胞悬液的超氧阴离子清除率(O2-·)较单一菌株强;菊糖芽孢乳杆菌和嗜酸乳杆菌复配后灭活完整细胞悬液的羟自由基清除率(OH-·)最强,为82.40%;而菌株复配后的总抗氧化活性(T-AOC)、总超氧化物歧化酶(T-SOD)活力与单菌差异不显著.不同乳酸菌菌株的抗氧化能力存在差异,且其发挥抗氧化作用的活性物质存在的部位也因菌株不同而具有较大的差异性.【期刊名称】《食品工业科技》【年(卷),期】2019(040)011【总页数】7页(P85-90,97)【关键词】乳酸菌;抗氧化能力;发酵上清液;完整细胞悬液;胞内提取物【作者】陈漪汶;方若楠;朱剑锋;庞旭;徐健;胡文锋【作者单位】华南农业大学食品学院,广东广州510642;华南农业大学食品学院,广东广州510642;生物源生物技术(深圳)股份有限公司,广东深圳518118;广州无两生物科技有限公司,广东广州510640;广州柏芳生物科技有限公司,广东广州510640;华南农业大学食品学院,广东广州510642【正文语种】中文【中图分类】TS201.1氧化应激是机体细胞内促氧化成分(如超氧化物、过氧化氢等)与抗氧化成分(超氧化物歧化酶、过氧化氢酶、谷胱甘肽等)之间平衡失调,体内氧自由基生成过多无法被清除,引起机体过度氧化,造成机体组织功能损害的一系列适应性的反应[1-2]。

化妆品抗氧化功效评价方法研究进展

化妆品抗氧化功效评价方法研究进展

化妆品抗氧化功效评价方法研究进展戴结玲;杨琼利;孙红梅【摘要】氧化应激会引起皮肤衰老和皮肤病的发生,抗氧化是从清除自由基、提高抗氧化酶活性与减少脂质代谢产物、保护细胞重要的细胞器、调控细胞信号转导通路抑制细胞凋亡等途径发挥作用.本文结合抗氧化作用机制,分别对化学法、细胞法、皮肤模型等体外评价方法及人体评价方法进行综述,为抗氧化化妆品的功效评价和研发提供借鉴.【期刊名称】《化工管理》【年(卷),期】2018(000)019【总页数】3页(P57-59)【关键词】抗氧化;自由基;皮肤模型;功效评价【作者】戴结玲;杨琼利;孙红梅【作者单位】无限极(中国)有限公司, 广东广州 510623;无限极(中国)有限公司, 广东广州 510623;无限极(中国)有限公司, 广东广州 510623【正文语种】中文【中图分类】TQ658衰老和抗衰老是永恒的话题,随着现代科学的发展,人们提出了很多衰老学说,其中活性氧自由基学说得到较多的支持[1]。

人体正常生理代谢和环境影响如紫外线照射、环境污染等都会导致活性氧(ROS)的产生。

ROS含量超过人体清除的能力,打破了氧化与抗氧化的平衡,就会引起氧化应激,皮肤作为人体最外层的组织,直接暴露于环境,更容易引起氧化应激造成氧化损伤[2]。

ROS导致的氧化损伤包括对细胞膜、DNA、蛋白质的损伤,除了造成皮肤衰老,还会引发皮肤肿瘤、光老化、红斑狼疮等皮肤病[1-5]。

抗氧化机制从细胞水平大致分为清除自由基,提高抗氧化酶活性与减少脂质代谢产物,保护细胞重要的细胞器,调控细胞信号转导通路抑制细胞凋亡。

由于抗氧化作用往往是多种机制互相协调共同作用的结果[6],因此,采用不同的自由基清除剂或抗氧化剂复合研制的化妆品,能达到延缓皮肤老化的效果,这类化妆品也深受消费者欢迎。

目前大多数抗氧化测试方法也把清除自由基、降低ROS水平、提高抗氧化酶活性等作为评价依据。

本文对体外评价方法和人体评价方法分别进行综述,为抗氧化化妆品的功效评价和研发提供借鉴。

乳酸菌抗氧化性及其作用机制研究进展

乳酸菌抗氧化性及其作用机制研究进展

乳酸菌抗氧化性及其作用机制研究进展赵彤;钟宜科;荀一萍;张栋;王永霞;朱宏;王世杰【期刊名称】《中国食品添加剂》【年(卷),期】2018(0)9【摘要】乳酸菌是人体肠道中的重要微生物菌群,其抗氧化功能已被国内外多项试验证明,但是作用机制仍未被详细阐述.近些年,有专家指出氧化应激与慢性病和衰老密切相关,乳酸菌作为一种天然的抗氧化剂,其抗氧化功能一直是益生菌研究的热点之一.文章整理了部分具有抗氧化功能的菌株;详细介绍了乳酸菌的抗氧化机制,包括硫醇类物质和抗氧化酶类抵抗氧胁迫作用、调控信号通路途径、清除自由基系统、抑制脂质过氧化和过渡金属离子影响;简述了乳酸菌的抗氧化能力评价方法,包括体外评价模型和体内评价模型,并对其未来几年的发展趋势进行了展望,为乳酸菌抗氧化性的深入探索提供参考.【总页数】8页(P202-209)【作者】赵彤;钟宜科;荀一萍;张栋;王永霞;朱宏;王世杰【作者单位】河北工程大学,邯郸056001;河北工程大学,邯郸056001;河北君乐宝乳业有限公司,石家庄050221;河北君乐宝乳业有限公司,石家庄050221;河北工程大学,邯郸056001;河北君乐宝乳业有限公司,石家庄050221;河北君乐宝乳业有限公司,石家庄050221【正文语种】中文【中图分类】TS202.1;TS201.1【相关文献】1.乳酸菌发酵提高果蔬抗氧化性的研究进展 [J], 段希宇;王蓉蓉;王晶晶;刘成国;罗扬;邓放明;周辉2.益生乳酸菌对肉鸡骨骼发育的影响及作用机制研究进展 [J], 崔耀明;管军军;王金荣;齐广海3.乳酸菌改善糖尿病代谢作用机制研究进展 [J], 罗龙龙;陈士恩;任卫合;蔡林海;列斯汝;乌拉木别克·对谢喀德尔;Sharizah Alimat;丁功涛;宋礼;罗丽4.乳酸菌抑菌作用机制的研究进展 [J], 胡爱心;刘金松;许英蕾;吴艳萍5.乳酸菌益生功能的作用机制及研究进展 [J], 臧明丽;曹庆;汪华;魏文雅因版权原因,仅展示原文概要,查看原文内容请购买。

泡菜中乳酸菌的分离鉴定及其抗氧化能力的比较研究

泡菜中乳酸菌的分离鉴定及其抗氧化能力的比较研究

泡菜中乳酸菌的分离鉴定及其抗氧化能力的比较研究凌洁玉;龚文秀;包梦莹;高丽【期刊名称】《中国调味品》【年(卷),期】2015(000)007【摘要】从自制泡菜中,分离出三株乳酸菌,经鉴定,三株菌分别为植物乳杆菌、戊糖片球菌和干酪乳杆菌干酪亚种。

分别在有氧和厌氧条件下培养这三株乳酸菌,评价其发酵上清液和胞内提取物的抗氧化能力。

结果表明:三株乳酸菌均在厌氧条件下呈现出较高抗氧化能力,厌氧培养对清除羟自由基影响最大;对于清除羟自由基及脂过氧化自由基,三株乳酸菌的发酵上清液较胞内提取物均体现出更高的水平;对于清除超氧阴离子自由基,三株乳酸菌的胞内提取物效果更佳。

对比三株乳酸菌,戊糖片球菌清除羟自由基的能力最强,植物乳杆菌清除超氧阴离子自由基的能力最强,而干酪乳杆菌抗脂质过氧化能力较另外两株菌强。

【总页数】5页(P32-36)【作者】凌洁玉;龚文秀;包梦莹;高丽【作者单位】华中农业大学楚天学院食品与生物科技学院,武汉 430205;安徽农业大学生命科学学院,合肥230036;华中农业大学楚天学院食品与生物科技学院,武汉 430205;华中农业大学楚天学院食品与生物科技学院,武汉 430205【正文语种】中文【中图分类】TS255.54【相关文献】1.贵州泡菜中乳酸菌的分离鉴定及其在泡菜发酵中的应用 [J], 赵山山;杨园园;周玉岩;刘贵巧;郝光飞2.低温长杆白菜泡菜中乳酸菌的分离鉴定与应用 [J], 窦芳娇;苏昊;邓冬莲;何志刚;林晓姿3.宁夏自然发酵泡菜中乳酸菌的分离鉴定及其在枸杞汁发酵中的应用 [J], 李旭阳;刘慧燕;潘琳;胡明珍;方海田;王彤;王艳萍4.江西酸芋荷中乳酸菌的分离鉴定及在泡菜发酵中的应用 [J], 赵山山;杨晓艳;杜秋玲;张莎莎;王磊;邸一桓;赵国忠;郝光飞5.自然发酵泡菜中乳酸菌的分离鉴定及其在金刺梨汁发酵中的应用 [J], 施渺筱;洪蕴;汤鑫鑫;肖洋;姚蒋庞;陈云坤因版权原因,仅展示原文概要,查看原文内容请购买。

乳酸菌的抗氧化特性及其利用的研究

乳酸菌的抗氧化特性及其利用的研究

乳酸菌的抗氧化特性及其利用的研究近年来,乳酸菌在食品工业、医药和农业领域的应用越来越广泛。

除了其在制作酸奶等发酵食品中的作用外,乳酸菌还被发现具有重要的抗氧化特性,对人体健康有着积极的影响。

本文将探讨乳酸菌的抗氧化特性及其利用的研究。

一、乳酸菌的抗氧化特性1. 抗氧化物质含量高乳酸菌含有大量的抗氧化物质,例如维生素C、E、β-胡萝卜素、类胡萝卜素等,这些物质能够与自由基反应,从而减少氧化反应的发生。

2. 可以产生抗氧化酶乳酸菌具有产生多种抗氧化酶的能力,这些酶能够降解自由基,减少氧化反应的产生。

其中,超氧化物歧化酶、过氧化氢酶和催化酶是三种最主要的抗氧化酶。

3. 可以生成类黄酮乳酸菌还能够通过代谢产生类黄酮,这些物质也具有较强的抗氧化能力。

同时,一些乳酸菌还能够合成黄酮醇,这也是一种重要的抗氧化物质。

二、乳酸菌的利用研究1. 食品添加剂利用乳酸菌的抗氧化特性可以作为一种食品添加剂,用于增加食品的保鲜期和稳定性。

这种方法已经在香肠、面包、肉制品等食品中得到了广泛应用。

2. 抗氧化保健食品利用乳酸菌的抗氧化特性可以制备一些具有较强抗氧化能力的保健食品。

此类产品已经成为了市场上的主要产品之一,其主要成分是乳酸菌或其代谢产物。

3. 四氢吡喃的生产四氢吡喃是一种广泛用于医药领域的化合物,具有较强的抗氧化和免疫调节作用。

近年来,人们已经利用乳酸菌通过发酵生产四氢吡喃,这种方法在医药领域有着很大的潜力。

4. 化妆品添加剂乳酸菌也可以作为化妆品添加剂,用于防止氧化反应的发生,从而延长化妆品的保质期。

近年来,国内外已经开始使用乳酸菌作为化妆品添加剂,这种方法已经得到了广泛关注。

结语乳酸菌的抗氧化特性及其利用的研究已经成为了当前的热点研究领域之一。

未来,人们可以利用乳酸菌的抗氧化特性,开发更多的高附加值产品,从而提高其在产业上的应用价值。

高抗氧化乳酸菌的筛选鉴定

高抗氧化乳酸菌的筛选鉴定

高抗氧化乳酸菌的筛选鉴定刘珊春;赵欣;李键;张甫生;张玉;钟金锋;索化夷【摘要】为了寻找天然的抗氧化剂,对18株乳酸菌的菌体细胞和无细胞提取物的DPPH自由基清除能力、羟自由基的清除能力、超氧阴离子自由基的清除能力、还原能力、抗脂质过氧化能力等5项抗氧化指标进行比较,并对高抗氧化活性的乳酸菌进行抗性筛选,鉴定出符合要求的菌株.结果表明:18株乳酸菌具有不同的抗氧化能力,编号为L4、L5、L8、L14、L18的菌株具有较高的抗氧化活性,其中,菌株L14抗人工胃液和胆盐的能力较强,有作为天然抗氧化剂的应用前景.结合生化特性鉴定和16S rDNA鉴定,确定其为类干酪乳杆菌类干酪亚种(Lactobacillus paracasei subsp.paracasei).%In order to obtain the natural antioxidant,intact cells and cell-free extracts of 18 lactic acid bacteria were evaluated based on their DPPH free radical scavenging ability,hydroxyl radical scavenging ability,superoxide anion radical scavengingability,reducing capacity and inhibitory rate of lipid peroxidation.And the strains with high antioxidant activity were screened through resistance selection to obtain strains meet the requirements.The results showed that the 18 strains of lactic acid bacteria had different antioxidant capacities,and the strains L4,L5,LS,L14 and L18 had higher antioxidant activity.Among them,strain L14 had better tolerance for gastric acid and bile salts,which would have an application prospect as a natural antioxidant in the future.Strain L14 was identified as Lactobacillus paracasei subsp.paracasei by biochemical characterization and 16S rDNA identification.【期刊名称】《食品与发酵工业》【年(卷),期】2017(043)008【总页数】8页(P59-66)【关键词】乳酸菌;抗氧化活性;抗性;鉴定【作者】刘珊春;赵欣;李键;张甫生;张玉;钟金锋;索化夷【作者单位】西南大学食品科学学院,重庆,400715;西南大学,重庆市特色食品工程技术研究中心,重庆,400715;重庆第二师范学院,重庆市功能性食品协同创新中心,重庆,400067;重庆第二师范学院,重庆市功能性食品协同创新中心,重庆,400067;西南民族大学生命科学与技术学院,四川成都,610041;西南大学食品科学学院,重庆,400715;西南大学食品科学学院,重庆,400715;西南大学食品科学学院,重庆,400715;西南大学食品科学学院,重庆,400715;西南大学,重庆市特色食品工程技术研究中心,重庆,400715【正文语种】中文机体在新陈代谢过程中会产生羟自由基、超氧阴离子自由基、过氧化氢等多种活性氧[1],自由基的产生和内在抗氧化系统的消减不平衡可能会引起癌症、动脉粥样硬化、肝硬化、关节炎、心血管等多种疾病[2-3]。

不同乳酸菌菌株抗氧化能力的比较研究

不同乳酸菌菌株抗氧化能力的比较研究

不同乳酸菌菌株抗氧化能力的比较研究王曦;罗霞;许晓燕;余梦瑶;喻春莲;江南;曾瑾;杨志荣【期刊名称】《食品科学》【年(卷),期】2010(031)009【摘要】目的:比较不同乳酸菌菌株的抗氧化能力,为其天然抗氧化剂的开发提供理论依据.方法:通过羟自由基清除实验,超氧阴离子自由摹清除实验,DPPH自由基清除实验以及还原能力测定实验,对35株乳酸菌的菌体、无细胞提取物以及胞外分泌物的抗氧化能力进行研究.结果:比较发现La 5和La 29两株乳酸菌抗氧化能力相对较高.结论:不同来源的乳酸菌菌株还原能力不同,且在羟自由基、超氧阴离子自由基和DPPH自由基的清除能力方面存在差异;且其发挥抗氧化作用的活性物质存在的部位也因菌株的不同而具有较大的差异性.【总页数】5页(P197-201)【作者】王曦;罗霞;许晓燕;余梦瑶;喻春莲;江南;曾瑾;杨志荣【作者单位】四川大学生命科学学院,生物资源与生态环境教育部重点实验室,四川成都,610065;四川省中医药科学院,四川,成都,610041;四川省中医药科学院,四川,成都,610041;四川省中医药科学院,四川,成都,610041;四川省农业科学院,四川,成都,610066;四川省中医药科学院,四川,成都,610041;四川省中医药科学院,四川,成都,610041;四川大学生命科学学院,生物资源与生态环境教育部重点实验室,四川成都,610065【正文语种】中文【中图分类】Q949.91【相关文献】1.4种乳酸菌体外抗氧化能力的比较研究 [J], 刘洋;郭宇星;潘道东2.泡菜中乳酸菌的分离鉴定及其抗氧化能力的比较研究 [J], 凌洁玉;龚文秀;包梦莹;高丽3.5种乳酸菌及其灭活态体外抗氧化能力的比较研究 [J], 陈漪汶;方若楠;朱剑锋;庞旭;徐健;胡文锋4.不同乳酸菌菌株及混合菌株体外降胆固醇的研究 [J], 印伯星;瓦云超;黄玉军;徐广新;顾瑞霞5.不同乳酸菌对发酵桑葚汁酚类物质含量及抗氧化能力的影响 [J], 孙百虎因版权原因,仅展示原文概要,查看原文内容请购买。

抗氧化乳酸菌L4的SOD活性及其发酵乳的抗氧化作用

抗氧化乳酸菌L4的SOD活性及其发酵乳的抗氧化作用

抗氧化乳酸菌L4的SOD活性及其发酵乳的抗氧化作用
抗氧化乳酸菌L4的SOD活性及其发酵乳的抗氧化作用
从30株乳酸菌中筛选出的抗氧化活性相对较高的乳酸菌L3和L4进行实验,发现乳酸菌L4的抗H2O2的能力明显要高于乳酸菌L3和保加利亚乳杆菌.并检测到乳酸菌L4无细胞提取物SOD活性为(73.70±1.77)U/mg.但未检测到乳酸菌L3和L4具有GSH-Px活性.利用PCR技术扩增了乳酸菌L4的SOD基因,通过DNA序列测定,发现乳酸菌L4的SOD基因与E.coli的Mn-SOD基因有高度的同源性.并发现乳酸菌L4发酵乳的还原活性和螯合Fe2+作用均明显高于未发酵乳.
作者:张江巍曹郁生刘晓华徐波 ZHANG Jiang-wei CAO Yu-sheng LIU Xiao-hua XU Bo 作者单位:南昌大学中德联合研究院,食品科学教育部重点实验室,江西,南昌,330047 刊名:中国乳品工业ISTIC PKU英文刊名:CHINA DAIRY INDUSTRY 年,卷(期):2006 34(11) 分类号:Q936 关键词:乳酸菌超氧化物歧化酶发酵乳抗氧化。

氧自由基吸收能力测定方法的研究进展

氧自由基吸收能力测定方法的研究进展

基金项目:中央级公益性科研院所基本科研业务费专项资金资助项目(ITBB2D2008-4-07)作者简介:宋立霞(1982-),女(汉),硕士研究生,研究方向:植物抗氧化剂的高通量筛选。

*通讯作者宋立霞1,2,王向社1,2,吴紫云2,3,李明芳1,刘兴地1,郑学勤1,*(1.中国热带农业科学院生物技术研究所,海南海口571101;2.海南大学农学院,海南儋州571737;3.中国热带农业科学院橡胶研究所,海南儋州571737)氧自由基吸收能力测定方法的研究进展ADVANCE IN OXYGEN RADICAL ABSORBANCE CAPACITYSONG Li-xia 1,2,WANG Xiang-she 1,2,WU Zi-yun 2,3,LI Ming-fang 1,LIU Xing-di 1,ZHENG Xue-qin 1,*(1.Institute of Tropical Bioscience and Biotechnology,Chinese Academy of Tropical Agricultural Sciences,Haikou 571101,Hainan,China;2.College of Agriculture of Hainan University,Danzhou 571737,Hainan,China;3.Rubber Research Institute,Chinese Academy of Tropical Agricultural Sciences,Danzhou 571737,Hainan,China)Abstract:The principle,reactive mechanism,advantage and disadvantage of oxygen radical absorbance capaci -ty (ORAC)were revealed.The advance of ORAC at home and abroad was described.The significance of ORAC was explained.Key words:oxygen radical absorbance capacity;antioxidant activity;antioxidant;free radical摘要:介绍氧自由基吸收能力(ORAC )法的原理、反应机制及其优缺点,综述ORAC 法在国内外的研究进展,阐明ORAC 法在抗氧化剂评价中的研究意义。

国内团队:乳酸菌的氧化应激耐受性和抗氧化能力的研究现状(综述)热心肠日报

国内团队:乳酸菌的氧化应激耐受性和抗氧化能力的研究现状(综述)热心肠日报

国内团队:乳酸菌的氧化应激耐受性和抗氧化能力的研究现状(综述)热心肠日报Gut Microbes[IF:7.74]Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review乳酸菌作为益生菌的氧化应激耐受性和抗氧化能力:一项系统评价10.1080/19490976.2020.180194408-14, ReviewAbstract & Authors:展开Abstract:收起Lactic acid bacteria (LAB) are the most frequently used probiotics in fermented foods and beverages and as food supplements for humans or animals, owing to their multiple beneficial features, which appear to be partially associated with their antioxidant properties. LAB can help improve food quality and flavor and prevent numerous disorders caused by oxidation in the host. In this review, we discuss the oxidative stress tolerance, the antioxidant capacity related herewith, and the underlying mechanisms and signaling pathways in probiotic LAB. In addition, we discuss appropriate methods used to evaluate the antioxidant capacity of probiotic LAB. The aim of the present review is to provide an overview of the current state of the research associated with the oxidative stress tolerance and antioxidant capacity of LAB.First Authors:Tao FengCorrespondence Authors:Jing WangAll Authors:Tao Feng,Jing Wang。

乳酸菌对自由基清除能力的研究

乳酸菌对自由基清除能力的研究

乳酸菌对自由基清除能力的研究
张天博;宁喜斌
【期刊名称】《中国乳品工业》
【年(卷),期】2007(035)004
【摘要】研究了52株乳酸茵的细胞和无细胞提取物清除DPPH自由基的能力,从中筛选出了3株对DPPH自由基清除率较高的乳酸茵,并对它们清除超氧阴离子自由基、羟自由基的能力及其还原能力做了进一步研究.结果表明,ZS-2的无细胞提取物对DPPH的清除率最高(46.53%),对羟自由基具有较高的清除率(48.72%),但对超氧阴离子自由基没有清除作用;而FS-3和BCX-9细胞对羟自由基的清除率均高于它们的无细胞提取物,同时也具有较强的清除超氧阴离子的能力.其中,FS-3无细胞提取物对超氧阴离子自由基的清除率最高,3株菌均有一定的还原能力.研究表明,乳酸菌的细胞和无细胞提取物在体外实验中对各种自由基具有不同的清除能力.【总页数】4页(P10-12,19)
【作者】张天博;宁喜斌
【作者单位】上海水产大学,食品学院,上海,200090;上海水产大学,食品学院,上海,200090
【正文语种】中文
【中图分类】TS201.3
【相关文献】
1.葡萄籽多肽制备及其自由基清除能力的研究 [J], 李文慧;刘飞;刘江;赵巧玲;董娟
2.牦牛酸乳分离植物乳杆菌YS1发酵豆奶的体外自由基清除能力研究 [J], 孙鑫; 张宇; 张静
3.黄秋葵花饮料的研制及DPPH自由基清除能力研究 [J], 乔冬;王芬;成少宁;郭俊花;张增帅
4.牦牛酸乳分离植物乳杆菌YS1发酵豆奶的体外自由基清除能力研究 [J], 孙鑫;张宇;张静
5.桑葚、蓝莓和红薯复配物的自由基清除能力研究 [J], 邹仕昱;潘瑶;陈璇;张兵;邓泽元;李红艳
因版权原因,仅展示原文概要,查看原文内容请购买。

乳酸菌抗氧化机制-概述说明以及解释

乳酸菌抗氧化机制-概述说明以及解释

乳酸菌抗氧化机制-概述说明以及解释1.引言1.1 概述乳酸菌是一类益生菌,具有调节肠道微生态平衡、增强免疫力、促进消化吸收等多种益处。

氧化是生物体内不可避免的代谢过程,但过多的氧化会导致体内自由基增加,从而损伤细胞和组织,促进老化和疾病的发生。

乳酸菌具有抗氧化的能力,可以清除体内自由基,从而保护细胞免受氧化损伤。

本文将深入探讨乳酸菌的抗氧化机制和其在预防疾病、促进健康中的作用,以期为乳酸菌在保健食品和药物方面的应用提供参考依据。

1.2 文章结构:本文主要包括引言、正文和结论三个部分。

在引言部分,首先概述了乳酸菌抗氧化机制的重要性,介绍了乳酸菌在人体健康中的作用。

然后简要说明了文章的结构,即正文将分为乳酸菌的特点和作用、氧化过程及其对人体的影响以及乳酸菌的抗氧化机制三个部分进行详细阐述。

正文部分将首先介绍乳酸菌的特点和作用,包括乳酸菌的生理特性、分类、生长环境等方面的内容。

然后会详细阐述氧化过程及其对人体的影响,包括氧化的定义、影响因素以及氧化导致的相关健康问题。

最后重点探讨乳酸菌的抗氧化机制,包括通过哪些方式进行抗氧化和如何保护人体健康。

在结论部分,将对乳酸菌在抗氧化中的潜力进行分析和展望,并探讨其在未来的应用前景。

最后对全文进行总结,强调乳酸菌在抗氧化领域的重要性和价值。

1.3 目的乳酸菌作为一种具有益生菌功能的微生物,其在人体健康领域具有重要的作用。

本文旨在深入探讨乳酸菌抗氧化机制,探究其在抗氧化过程中的作用机制及相关影响。

通过研究乳酸菌的抗氧化机制,可以更好地了解其在维护人体健康方面的作用,为乳酸菌的应用提供更加科学的依据。

同时,本文也旨在展示乳酸菌在抗氧化中的潜力,为未来乳酸菌在保健食品领域的应用提供参考和展望。

通过本文的研究和探讨,可以为深入理解乳酸菌抗氧化机制及其应用前景提供一定的参考价值。

2.正文2.1 乳酸菌的特点和作用乳酸菌是一类革兰氏阳性菌,通常被发现在发酵食品中,如酸奶、奶酪、泡菜等。

新疆传统乳品中乳酸菌的抗氧化能力

新疆传统乳品中乳酸菌的抗氧化能力

新疆传统乳品中乳酸菌的抗氧化能力蒋琰洁;李宝坤;李开雄;卢士玲;王庆玲;蒋彩虹;樊哲新;朱敏【摘要】实验用菌为从新疆传统乳制品酸奶和干酪中分离出的7株乳酸菌,分别是乳酸片球菌(Pediococcus acidilactici)1株、植物乳杆菌(Lactobacillus plantarum)3株、耐久肠球菌(Enterococcus durans)1株、魏斯氏菌(Weissella cibaria)1株和面包乳杆菌(Lactobacillus panis)1株.对其清除DPPH自由基、超氧阴离子自由基、羟自由基、还原能力以及亚铁离子螯合能力进行了研究.结果表明:7株乳酸菌具有不同的抗氧化能力,其中植物乳杆菌亚铁离子螯合能力最强,乳酸片球菌超氧阴离子自由基清除能力相对较高,魏斯氏菌的DPPH自由基清除能力较强,面包乳杆菌的羟自由基清除能力和还原能力最强.%In this study,7 strains of Lactobacillus respectively identified as Pediococcusacidilactici,Lactobacillus plantarum,Enterococcus durans,Enterococcus durans and Lactobacillus panis were purified from yogurt and cheese in Xinjiang.Their scavenging activities against DPPH and superoxide anion and their capacities of reducing and chelating Fe2+ were studied.The results showed that different lactic acid bacteria had different antioxidant ctobacillus plantarum had the highest Fe2+ chelatingability,while Pediococcus acidilactici had higher superoxide anion scavenging activity.In addition,Weissella cibaria had higher DPPH radical scavenging activity.Moreover,Lactobacillus panis had the highest hydroxyl radical scavenging activity and reducing power.【期刊名称】《食品与发酵工业》【年(卷),期】2015(041)001【总页数】5页(P55-59)【关键词】乳酸菌;抗氧化;无细胞提取物;筛选【作者】蒋琰洁;李宝坤;李开雄;卢士玲;王庆玲;蒋彩虹;樊哲新;朱敏【作者单位】石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000;石河子大学食品学院,新疆石河子,832000【正文语种】中文乳酸菌具有抗癌、降低胆固醇、增强免疫力、治疗慢性尿道感染以及延缓衰老等功效[1],这主要是由乳酸菌的抗氧化这一特性发挥作用。

清除自由基能力的研究概况

清除自由基能力的研究概况

清除自由基能力的研究概况陶涛(西南林业大学林学院农学(药用植物)昆明 650224)摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。

乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。

就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。

关键词:自由基;乳酸茵;抗氧化.Study on the scavenging ability of lactic acid bacteriaon free radicalbstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic andforeign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future.引言氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。

一种快速评价乳酸菌缓解细胞氧化损伤能力的方法及应用[发明专利]

一种快速评价乳酸菌缓解细胞氧化损伤能力的方法及应用[发明专利]

专利名称:一种快速评价乳酸菌缓解细胞氧化损伤能力的方法及应用
专利类型:发明专利
发明人:刘鹏,迟涛,方景泉
申请号:CN201510496177.X
申请日:20150813
公开号:CN105063211A
公开日:
20151118
专利内容由知识产权出版社提供
摘要:本发明涉及一种快速评价乳酸菌缓解细胞氧化损伤能力的方法及应用,属于生物技术领域。

本发明所提供的方法为将乳酸菌和氧化损伤的细胞共培养,提取细胞RNA,检测与氧化应激相关的基因的表达情况。

本发明方法简单快速,为快速筛选和评价乳酸菌新资源提供了理论基础,也为乳酸菌抗氧化作用的机制探究提供了新方法,增强了我国新型功能性乳酸菌食品的开发基础。

申请人:黑龙江省乳品工业技术开发中心
地址:150028 黑龙江省哈尔滨市松北区科技创新城创新一路2727号
国籍:CN
代理机构:北京爱普纳杰专利代理事务所(特殊普通合伙)
代理人:张勇
更多信息请下载全文后查看。

氧自由基吸收能力测定仪器及方法的考察

氧自由基吸收能力测定仪器及方法的考察

氧自由基吸收能力测定仪器及方法的考察邵卫梁;杭晓敏;胡天喜;张蔚;戴颜韵【期刊名称】《安徽医药》【年(卷),期】2011(015)004【摘要】目的利用国产多功能荧光分析仪,开发建立氧自由基吸收能力(oxygen radical absorbance capacity,ORAC)分析测定方法.方法分别考察了荧光剂FL、过氧自由基启动剂AAPH、抗氧化剂标准品Trolox的测定浓度以及浓度与荧光衰减曲线下积分面积(AUC)的线性关系;仪器稳定性方面做了批内和批间稳定性试验.结果 FL、AAPH、Trolox测定浓度范围分别为0.000 63~0.006 3 μmol·L-1、3.50~5.25 μmol·L-1和0.002~0.005 μmol·L-1.其中Trolox的浓度与AUC呈很好的线性关系.批间稳定性试验的变异系数为7.7%.符合美国农业部许可的ORAC分析结果误差的变异系数≤15%要求.结论建立了以国产多功能荧光测定仪进行ORAC分析测定的方法,测定结果符合ORAC分析要求,可信度较高.【总页数】5页(P414-418)【作者】邵卫梁;杭晓敏;胡天喜;张蔚;戴颜韵【作者单位】上海交大昂立股份有限公司,上海,200233;上海交大昂立股份有限公司,上海,200233;上海交大昂立股份有限公司,上海,200233;上海交大昂立股份有限公司,上海,200233;上海交大昂立股份有限公司,上海,200233【正文语种】中文【相关文献】1.氧自由基吸收能力测定方法的研究进展 [J], 宋立霞;王向社;吴紫云;李明芳;刘兴地;郑学勤2.荧光分光光度法对黄酒氧自由基吸收能力检测方法的建立 [J], 黄玥;陆文蔚;唐立伟;黄灵洁;白晨3.芦丁和黄芩甙在清除α-羟乙基过氧自由基过程中生成的过氧化氢的测定方法(1) [J], 张福根;尹毅宁;吴季兰4.荧光动力学分析新方法测定超氧自由基抑制剂的抗氧活性 [J], 赫春香;卢丽男;曹璨;聊俊娜;张淑敏5.人造金刚石质量评价的好方法,新仪器——磁化率测定方法与磁化率测定仪 [J], 傅凤理;彭振宇因版权原因,仅展示原文概要,查看原文内容请购买。

乳酸菌的抗氧化作用机制

乳酸菌的抗氧化作用机制

乳酸菌的抗氧化作用机制段希宇;叶陵;刘成国;王蓉蓉;周辉【期刊名称】《微生物学杂志》【年(卷),期】2017(037)003【摘要】乳酸菌可以作为发酵剂、保鲜剂用于发酵食品的生产和保藏.由于无法进行呼吸产能,乳酸菌在生长过程中会面临氧化胁迫.研究表明,乳酸菌具有一定的抗氧化能力,能清除体内的活性氧分子,并使其保持相对稳定.综述了乳酸菌的抗氧化作用机制,主要从抗氧化酶、维持细胞还原状态、金属离子螯合等方面进行了介绍,以期为深入了解乳酸菌的抗氧化机制以及改善乳酸菌的环境生存能力提供一定的理论参考.%Lactic acid bacteria (LAB) could be used as leavening agents and preservative in the production and preservation of fermented food.Due to the inability of breathing and energy producing capacity during the growth,LAB will face with oxidative coercion.Studies have shown that,LAB possess a certain antioxidant capacity,it can scavenging active oxygen molecule (AOM) within the cell,and keep it in relatively stable.This review provided the antioxidative mechanisms of LAB,mainly from the introduction of antioxidant enzymes,the maintenance of cellular redox status,and the chelation of metal ions and other aspects,so as to get the insight of the antioxidative mechanisms of LAB and provide certain theoretical references of the improvement of the environmental viability of LAB.【总页数】5页(P111-115)【作者】段希宇;叶陵;刘成国;王蓉蓉;周辉【作者单位】湖南农业大学食品科技学院,湖南长沙410128;湖南农业大学食品科技学院,湖南长沙410128;湖南农业大学食品科技学院,湖南长沙410128;湖南农业大学食品科技学院,湖南长沙410128;湖南农业大学食品科技学院,湖南长沙410128【正文语种】中文【中图分类】Q939.11+7【相关文献】1.食用菌抗氧化活性成分及其抗氧化作用机制研究进展 [J], 肖星凝;袁娅;廖霞;王丽颖;石芳;明建2.抗氧化乳酸菌L4的SOD活性及其发酵乳的抗氧化作用 [J], 张江巍;曹郁生;刘晓华;徐波3.α-硫辛酸抗氧化作用机制及其在动物生殖细胞和早期胚胎中抗氧化作用的研究进展 [J], 黄自强;庞云渭;郝海生;王彦平;朱化彬4.利用线虫模型评价乳酸菌体内抗氧化能力及其与体外抗氧化参数的对比 [J], 倪彩新;陈卫;金星;周炜;陈晓华;印伯星;房东升;王刚;赵建新;张灏5.乳酸菌抗氧化性及其作用机制研究进展 [J], 赵彤;钟宜科;荀一萍;张栋;王永霞;朱宏;王世杰因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J.Dairy Sci.88:1352–1357American Dairy Science Association,2005.Antioxidative Activity of Lactobacilli Measured by Oxygen Radical Absorbance Capacity*J.A.O.Saide†and S.E.GillilandDepartment of Animal Science and Food and Agricultural Products Center,Oklahoma State University,Stillwater 74078ABSTRACTThe reducing ability and antioxidative activity of some species of Lactobacillus were compared under in vitro conditions.Cultures of Lactobacillus delbrueckii ctis ,Lactobacillus delbrueckii ssp.bulgaricus ,Lactobacillus acidophilus ,and Lactobacillus casei were grown at 37°C in de Man,Rogosa,Sharpe (MRS)broth supplemented with 0.5%2,3,5triphenyl tetrazolium chloride (TTC)to evaluate reducing activity.Reduced TTC was extracted from the cultures with acetone,and the intensity of the red color measured colorimetrically at 485nm was an indication of reducing activity.The lactobacilli varied significantly in relative ability to re-duce TTC when grown in MRS broth for 15h.The relative amounts of growth as indicated by pH values at 18h appeared to influence the amount of reduction.Antioxidative activity was evaluated by the ability of the whole cells or the cell-free extracts from cultures to protect a protein from being attacked by free radicals.These analyses were performed using the oxygen radi-cal absorbance capacity method.All cultures tested ex-hibited some degree of antioxidative activity.Among the treatments,the cell-free extracts from cells grown in MRS broth exhibited significantly higher values than did whole cells.There was no apparent relationship between the reducing and antioxidative activities of the cultures evaluated.The results from this study show that these cultures can provide a source of dietary anti-oxidants.Furthermore,selection of cultures that pro-duce antioxidants as starters could provide yet another health or nutritional benefit from cultured or culture-containing dairy products.(Key words:antioxidative,reductase,lactobacilli)Abbreviation key:AAPH =2,2’-azobis(2-amidinopro-pane)dihydrochloride,MRS =de Man,Rogosa,Sharpe,Received June 16,2004.Accepted December 4,2004.Corresponding author:S.E.Gilliland;e-mail:seg@.*Approved for publication by the Director,Oklahoma Agricultural Experiment Station.This project was supported under Project H-2293and Sitlington Endowment Funds.†Current address:R.Antonio Jose de Almeida 169R/C esq.,B.R.U.,Maputo,Mozambique.1352ORAC =oxygen radical absorbance capacity,ROS =reactive oxygen species,TTC =2,3,5triphenyl tetrazo-lium chloride.INTRODUCTIONThe interest in reactive oxygen species (ROS )in biol-ogy and medicine is evident because of their strong relationship with phenomena such as aging and disease processes (Cao et al.,1995).The concept of ROS com-prises not only oxygen-centered radicals such as O ؒ−2and OH,but also nonradical derivatives of oxygen such as H 2O 2and hypochlorous acid.It is well known that free radicals and other ROS are continuously being pro-duced in living organisms.As a consequence,defense mechanisms have evolved to deactivate these free radi-cals and repair the damage caused by their reactivity (Halliwell and Chirico,1993).However,these systems are not always sufficiently active to disarm the totality of metabolically produced or exogenous free radicals.Most lactic acid bacteria have systems to cope with oxygen radicals.According to Stecchini et al.(2000)the most common systems are superoxide dismutase and high internal concentrations of Mn 2+.Knauf et al.(1992)also reported that some species of lactobacilli produced a heme-dependent catalase,which can de-grade H 2O 2at a very high rate,blocking the formation of peroxyl radicals.The ability of lactic acid bacteria to create low oxidation-reduction potential needed for their optimum growth probably is related to some of these systems.Reducing activity can be measured by the ability of the organisms to reduce 2,3,5-triphenyl tetrazolium chloride (TTC )(Laxminarayana and Iya,1954).Free radical scavenger properties of starter cultures would be useful in the food manufacturing industry.They could beneficially affect the consumer by provid-ing another dietary source of antioxidants (Ouwehand and Salminen,1998)or by providing probiotic bacteria with the potential of producing antioxidants during growth in the intestinal tract.Some species of lactoba-cilli and bifidobacteria have been reported to produce antioxidative activity (Zaizu et al.,1993;Korpela et al.,1997;Lin and Yen,1999c;Kullisar et al.,2002).TheLACTOBACILLI AND OXYGEN RADICAL ABSORBANCE1353intensity of antioxidative activity varied among cul-tures in each study.Most of these studies based the results on evaluation of cell-free extracts of the bacteria.There are many methods to assess free radical scav-enging ability,such as Trolox-equivalent antioxidant capacity and ferric-reducing ability (Cao and Prior,1998).Most of these methods assess one of the 2compo-nents of the antioxidative process,measuring time to reach a fixed degree of inhibition or the extent of inhibi-tion at a fixed time (Cao et al.,1995).The oxygen radical absorbance capacity (ORAC )assay is,to date,the only method combining both vari-ables (Wang et al.,1996;Cao and Prior,1998;Cao et al.,1998).The ORAC assay is based on the protection by the antioxidant of a target compound exposed to an oxidant.It is measured by the change in fluorescence caused by oxidation of the target compound.The assay permits measurement of the total antioxidant capacity of the sample being tested.This is basically a process whereby the reaction between a ROS,such as hydroxyl or peroxyl radicals,and a target molecule,such as low-density lipoprotein or β-phycoerythrin,can be moni-tored (Handelman et al.,1999).In the case of β-phycoer-ythrin,the structural change is reflected in the decrease of fluorescence.The objective of this study was to compare the antioxi-dative activity of various species of lactobacilli used as yogurt starter cultures or as probiotic bacteria.A second objective was to determine whether reducing activity,based on the reduction of TTC could be used to predict relative antioxidative activity of these organisms.MATERIALS AND METHODSSource and Maintenance of CulturesThe cultures used in this study (Lactobacillus acido-philus ,Lactobacillus delbrueckii ctis ,Lactobacil-lus delbrueckii ssp.bulgaricus ,and Lactobacillus casei )were obtained from the stock culture collection of the Food Microbiology Laboratory in the Food and Agricul-tural Products Research and Technology Center at Oklahoma State University.Cultures were maintained by subculture in de Man,Rogosa,Sharpe (MRS )broth (Difco Laboratories,Detroit,MI)using 1%inocula and incubation for 18h at 37°C.Between uses,cultures were stored at 5°C.To make freshly prepared cultures for experiments,immediately before use,they were sub-cultured 3times on successive days in MRS broth.Plate CountsThe total numbers of lactobacilli in the cultures were determined using the pour plate method (with overlay)on MRS agar.The samples were diluted in 0.1%peptoneJournal of Dairy Science Vol.88,No.4,2005(Sigma Chemical Co.,St.Louis,MO)dilution blanks (99mL)containing 0.01%silicone antifoamer (Sigma Chemical Co.).Duplicate plates of the appropriate dilu-tions were prepared and incubated at 37°C for 48h.The colonies were counted with the aid of a Quebec colony counter (American Optical Co.,Buffalo,NY),and the colony-forming units per milliliter were determined.Screening Cultures for Reducing ActivityA stock solution of TTC (Sigma Chemical Co.)was prepared by dissolving 50mg in 10mL of distilled water and passing it through a sterile membrane filter (0.45-µm pore diameter;Gelman Laboratory,Ann Arbor,MI)into a sterile tube.The solution was pre-pared fresh daily and kept in the dark by wrapping the tube in aluminum foil.For the screening of reducing activity,tubes con-taining 9-mL volumes of sterile modified MRS broth (without beef extract;as it interfered with the assay)supplemented with 1mL of 0.5%(wt/vol)TTC (added just before use)were inoculated with 0.1mL of freshly prepared cultures and incubated for 18h at 37°C.After the incubation,0.8-mL aliquots were removed from each tube and dispensed into 1.8-mL microcentrifuge tubes along with an equal volume of acetone (Pharmaco,Brookfield,CT)and shaken vigorously for 30s.The microcentrifuge tubes were placed in an ice-water bath for 3h to allow maximum extraction of the formazan.Then,the tubes were centrifuged at 12,000×g for 10min.One milliliter of the supernatant in each tube was collected with a 1-mL pipette and dispensed into a 1-mL cuvette.Then,the absorbance at 485nm was read using a spectrophotometer (Spectronic 21D;Milton Roy Co.,Rochester,NY)against a blank of deionized water.The remaining portions of the initial 9mL of cultures were checked for pH.Antioxidative Activity of Broth CulturesFreshly prepared cultures were used to inoculate (1%)50-mL volumes of sterile MRS broth followed by incubation for 18h at 37°C.After incubation,the cul-tures were centrifuged at 12,000×g for 10min at 4°C.The supernatant was discarded,and the pellet was washed by resuspending it in 50mL of deionized water and centrifuging it again under the same conditions.This wash procedure was repeated 3times.Finally,each washed pellet was resuspended in 50mL of 0.2M potassium phosphate buffer (pH 7.0)and aseptically dispensed (in 25-mL aliquots)into 2sterile vials to prepare the samples corresponding to whole cells and cell-free extracts.The suspension of whole cells was incubated at 37°C for 30min.The cell-free extract was obtained by son-SAIDE AND GILLILAND 1354icating the cells suspended in buffer at setting4(Sonic Dismembranator;Heat Systems Ultrasonics,New York,NY)for5min.To avoid temperature damage during sonication,tubes were maintained in an ice-water mixture.At the end of the incubation period,the whole cells and the sonicated cells were centrifuged as previously described for removal of cells or cell debris,and the supernatants were collected for evaluation of antioxida-tive activity.Buffer(0.2M phosphate buffer;pH7.0) solution without cells was used as the control. Measuring the Antioxidative ActivityAssay for antioxidative activity.The antioxidative activity of the samples from the cultures was measured according to the method described by Cao et al.(1995). For convenience,the protocol is described here.The stock solution ofβ-phycoerythrin(Sigma Chemical Co.) was prepared by dissolving1mg into5.6mL of phos-phate buffer(0.2M;pH7.0).This stock solution was kept under refrigeration.The working solution was made by mixing300µL of the stock solution with13.4 mL of phosphate buffer just before use.A solution of2,2’-azobis(2-amidinopropane)dihydrochloride (AAPH;Waco Chemical USA,Richmond,VA)was pre-pared fresh immediately before running the assay.For this,60mg of AAPH was weighed and dissolved in5 mL of phosphate buffer.A solution of6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid(Trolox;Aldrich Chem,Inc.,Milwaukee,WI)was prepared by dissolving 5mg of the substance in200mL of0.2M phosphate buffer as a stock solution(100µM).To obtain a working solution,1mL of the stock solution was mixed with9 mL of phosphate buffer.The stock solution was stored at2°C.Phosphate buffer was prepared by mixing0.75 M solutions of K2HPO4and NaH2PO4in a61.6:38.9 vol/vol ratio.The mixture was then diluted1:9with distilled water,and the pH was adjusted to pH7.This working solution(0.2M)was stored at2°C.In the assay,the substrate(β-phycoerythrin)was subjected to oxidative attack from the radical generator (AAPH).To assess the antioxidative capacity of the cultures,diluted(100×)aliquots of the samples and the buffer control were added to the reaction mixture,and the degree of protection against the oxidation ofβ-phy-coerythrin was quantified by measuring the relative fluorescence emitted at595nm after excitation of the protein at535nm over a70-min period(Glazer,1990; Cao et al.,1995).In this assay,total ORAC(Trolox equivalents)of a sample was directly proportional to the area under the kinetic curve of the plotted relativefluorescence values against time.To correct any deviation caused by instru-Journal of Dairy Science Vol.88,No.4,2005ment drifting,reagents,or any other assay conditions, the value of the analyzed samples was expressed with reference to known amounts and concentrations of Tro-lox and presented as Trolox equivalents(Cao et al., 1995).All reactions were carried out in a Falcon48-well plate(Becton Dickinson Labware;Becton Dickinson and Company,Franklin Lakes,NJ).To each well of the plate wasfirst dispensed20µL of the respective sample to be analyzed followed by160µL of the working solu-tion ofβ-phycoerythrin.Immediately before initiating the measurements,20µL of AAPH were added to each well to initiate the reaction.The plate was covered and placed into the analyzer.In the assay,the ability of compounds to protectβ-phycoerythrin from oxidation was monitored by its de-cay curve.The quantification was achieved by de-termining the net protection area under the quenching curve ofβ-phycoerythrin in the presence of AAPH.The following equation was used to calculate the ORAC val-ues(Cao et al.,1998):ORAC value=X K(S sample−S blank)/(S trolox−S blank) where X is the sample volume in microliters,K is the dilution coefficient,and S is the area under the curve of the corresponding subscript.Statistical AnalysesFor statistical analyses,the GLM procedures from SAS(1985)were used to determine whether there was any significant interaction between strains and treat-ments and whether any significant differences occurred among strains and treatments.Least squares means were used to separate the means.RESULTSReducing ActivitiesReducing activity of cultures grown in modified MRS.The reducing activities exhibited by the cultures when grown in modified MRS broth(without beef ex-tract)supplemented with TTC are shown in Table1. Based on results from preliminary experiments(data not shown),the cultures reached their maximum activ-ity at12to15h of incubation.The statistical analysis of the results revealed no interaction for reducing activity between the strains and time.Thus,only the data for the15-h incubation are ctobacillus del-brueckii ctis(RM2-5and RM5-4),L.acidophilus (O16and L-1),and L.casei(E10)exhibited the highest reducing activity in the respective species and among all analyzed cultures.These cultures also showed theLACTOBACILLI AND OXYGEN RADICAL ABSORBANCE1355Table 1.Reduction of 2,3,5-triphenyl tetrazolium chloride by cultures of lactobacilli during growth in MRS broth.1SpeciesStrainpH 2A 485nm 2Lactobacillus delbrueckii ctisRM2-5 3.7 1.036A RM5-4 3.70.912AB RM6-53.60.819B Lactobacillus acidophilusO16 3.6 1.098A L-1 3.6 1.000A NCFM4.00.802B Lactobacillus delbrueckii ssp.bulgaricus18 6.30.338A 10442 6.40.045B Y-236.40.019B Lactobacillus caseiE10 3.7 1.104A 9018 4.30.688B E56.10.030CA,B,CNumbers with the same superscripts within the same species are not different (P >0.05).1Following 15h at 37°C.2Each value is an average of 3replications.highest production of acid as indicated by the pH reach-ing values well below pH 4.0,indicating the degree of reduction was related to growth.None of the L.del-brueckii ssp.bulgaricus exhibited much reductase ac-tivity during the 15-h incubation.The pH values for these strains exhibited minimal decrease during the incubation,indicating minimal growth.Antioxidative Capacity/ActivityThe same cultures used in the previous section (re-ducing activity)were studied for antioxidative activity.Their activities were assessed after growth in MRS broth for 18h at 37°C using the ORAC method (Cao et al.,1995).Antioxidative activity of cells grown in MRS broth.Washed cells of each culture were resuspended in potassium phosphate buffer and incubated at 37°C for 30min to permit leakage of some intracellular anti-oxidant materials or for it to become dislodged from the cell surface.The supernatant was analyzed for antioxi-dative activity.Washed cells resuspended in buffer were sonicated,and the cell-free extracts were tested.The results of the antioxidative activity of both the whole cells and the cell-free extracts are presented in Table 2.The results are expressed as Trolox equivalents per 109cells.Both whole cells and cell-free extracts exhibited antioxidative capacity.For L.delbrueckii ctis RM5-4,L.acidophilus NCFM,L.delbrueckii ssp.bulgaricus (all strains),and L.casei 9018,cell-free ex-tracts exhibited higher (P <0.05)total antioxidative capacity than did the intact cells.In the remaining cases,although the total antioxidant capacity of theJournal of Dairy Science Vol.88,No.4,2005cell-free extracts was numerically higher,they were not statistically different (P >0.05).Lactobacillius del-brueckii ssp.bulgarius (Y-23)exhibited by far the high-est activities when compared with the remaining cul-tures.Values for L.delbrueckii ctis RM5-4,L.acidophilus L-1,L.delbrueckii ssp.bulgaricus Y-23,and L.casei 9018and E5were higher (P <0.05)than other strains in their respective species.The results from the TTC reductase tests were not indicative of the levels of antioxidant activity as mea-sured by the ORAC assays for the cultures -parison of the data in Tables 1and 2shows no apparent relationship between relative intensities of reductase activity and amounts of antioxidant produced.Thus,the reductase activity was not useful in predicting the antioxidant activity of the cultures.DISCUSSIONTetrazolium chloride has been used in a number of studies to test cell viability or reductase activity (Lax-minarayana and Iya,1953;Eidus et al.,1959;Bhupath-iraju et al.,1999).According to Seidler (1991),the wa-ter-soluble tetrazolium chloride is reduced to a water-insoluble red compound (formazan),which is trapped inside the cell.In our study,the assessment of the re-ducing capacity of cultures of lactobacilli was made by growing the cultures in modified MRS broth supple-mented with 0.5%TTC.The use of a suitable concentra-tion of TTC was essential,as it can be suppressive (bacteriostatic influence)toward cell growth when in excess.The concentration used in the present study was well below the maximum (2%)used by May et al.(1960),which caused no inhibition.The cultures grown in MRS broth reached their maxi-mum reducing activity between 12and 15h.In most cases,reducing values between the 2sampling periods did not show statistical ctobacillus del-brueckii ctis (RM2-5and RM5-4),Lactobacillus acidophilus (O16and L-1),and Lactobacillus casei (E10)exhibited the maximum reducing activities in the studied period.This result coincided with maximum growth for these cultures (data not shown),indicating that the degree of reduction for each culture was related to its growth.The ORAC has been found to be a relatively simple,reliable,and sensitive method of quantifying the anti-oxidative capacity of foods and food products by protec-tion of a protein from radical damage (Cao et al.,1993,1995).In our study,the antioxidative activity of our cultures was assessed by quantifying the protection of β-phycoerythrin from attack by AAPH in the reaction mixture.Similar to other methods used for antioxida-tive assessment,the ORAC method gives the total anti-SAIDE AND GILLILAND1356a,b Means in the same row followed by the same lowercase superscript letter are not different(P>0.05).A,B,C Numbers followed by the same uppercase superscripts in the same column within the same speciesare not different(P>0.05).1Cultures were grown in MRS;cfu/mL at18h.2Trolox eq./109cells=µmol Trolox/L equivalents×109 .3Whole/intact washed cells;each value is an average of3replications. 4Each value is an average of3replications.oxidative capacity of the analyzed sample rather than the capacity of the individual components of the system, but it also differs in some other aspects.It is the only method including the variables inhibition time and de-gree of inhibition in one system.It also allows the auto-mated analysis of enormous number of samples at the same time and in a relatively short time period. Various researchers have reported similarfindings when working with whole cells and cell-free extracts of lactic acid bacteria but using different methods.Lin and Yen(1999a,b,c)reported that the cell-free extracts of all19cultures(L.acidophilus,L.delbrueckii ssp. bulgaricus,and Streptococcus thermophilus)included in their studies showed some degree of antioxidative activity when assessed by inhibition of ascorbate autox-idation.Lin and Chang(2000)reported that whole cells and cell-free extracts of L.acidophilus and Bifidobact-erium longum exhibited some antioxidative capacity when tested using the thiobarbituric acid method. Based on the higher Trolox equivalents of the cell-free extracts compared with the intact cells observed in our study,it is possible that these cultures,once consumed, would release antioxidants into the gut after being ex-posed to bile salts.In related experiments(data not shown),we attempted to determine whether addition of bile salts to the cells would increase the release of antioxidants.However,the bile salts caused too much Journal of Dairy Science Vol.88,No.4,2005interference with the ORAC assay so that results were inconclusive.The results of this study show that lactobacilli pos-sess an antioxidative capacity that can be assessed quantitatively through their ability to protectβ-phy-coerythrin from radical oxidation.The greatest degree of antioxidant capacity was associated with the cell-free extracts of the cultures,which suggests that they may be important in delivering antioxidants to the in-testines where they could be released when cells of the cultures encounter bile.Bile is known to alter the permeability of the organisms to enhance passage of substances into and out of the cells(Noh and Gilliland, 1993).Consumption of foods containing lactic acid bac-teria may be encouraged and may also contribute to the health effects associated with dietary antioxidants.REFERENCESBhupathiraju,V.K.,M.Hernandez,ndfear,and L.Alvarez-Cohen.1999.Application of tetrazolium dye as an indicator of viability in anaerobic bacteria.J.Microbiol.Methods37:231–243. Cao,G.,H.M.Alessio,and R.G.Cutler.1993.Oxygen-radical ab-sorbance capacity assay for antioxidants.Free Radic.Biol.Med.14:303–311.Cao,G.,and parison of different analytical methods for assessing total antioxidant capacity of human serum.Clin.Chem.44:1309–1315.Cao,G.,S.L.Booth,J.A.Sadowski,and R.L.Prior.1998.Increases in human plasma antioxidant capacity after consumption of con-LACTOBACILLI AND OXYGEN RADICAL ABSORBANCE1357trolled diets high in fruit and vegetables.Am.J.Clin.Nutr.68:1081–1087.Cao,G.,C.P.Verdon,A.B.H.Wu,H.Wang,and R.L.Prior.1995.Automated assay of oxygen radical absorbance capacity with the COBAS FARA II.Clin.Chem.41:1738–1744.Eidus,L.,B.B.Diena,and L.Greenberg.1959.Observations on theuse of tetrazolium salts in the vital staining of bacteria.Can.J.Microbiol.5:245–250.Glazer,A.N.1990.Phycoerythrin fluorescence-based assay for reac-tive oxygen species.Methods Enzymol.186:161–168.Halliwell,B.,and S.Chirico.1993.Lipid peroxidation:Its mechanism,measurement and significance.Am.J.Clin.Nutr.57(Suppl):715S–725S.Handelman,G.J.,G.Cao,M.F.Walter,Z.D.Nightingale,G.L.Paul,R.L.Prior,and J.B.Blumberg.1999.Antioxidant capacity of oat (Avena sativa L.)extracts.1.Inhibition of low-density lipo-protein oxidation and oxygen radical.J.Agric.Food Chem.47:4888–4893.Knauf,H.J.,R.F.Vogel,and W.P.Hammes.1992.Cloning,sequenc-ing,and phenotypic expression of katA,which encodes the cala-lase of Lactobacillus sake LTH667.Appl.Environ.Microbiol.58:832–839.Korpela,R.,K.Peuhkuri,hteenmaki,E.Sievi,M.Saxelin,andctobacillus rhamnosus GG shows antioxi-dative properties in vascular endothelial cell chwis-senschaft 52:503–505.Kullisar,T.,M.Zilmer,M.Mikelsaar,T.Vikalemm,H.Annuk,C.Kairane,and A.Kilk.2002.Two antioxidative lactobacilli strains as promising probiotics.Int.J.Food Microbiol.72:215–224.Laxminarayana,H.,and K.K.Iya.1953.Studies on the reductionof tetrazolium by lactic acid bacteria.Indian J.Dairy Sci.6:75–xminarayana,K.,and K.K.Iya.1954.Studies on the reductionof tetrazolium chloride by lactic acid bacteria.Part II.OxidationJournal of Dairy Science Vol.88,No.4,2005reduction potentials in relation to dye reduction.Indian J.Dairy Sci.8:32–38.Lin,M.-Y.,and F.-J.Chang.2000.Antioxidative effect of intestinalbacteria Bifidobacterium longum ATCC 15708and Lactobacillus acidophilus ATCC 4356.Dig.Dis.Sci.45:1617–1622.Lin,M.-Y.,and C.-L.Yen.1999a.Inhibition of lipid peroxidation byLactobacillus acidophilus and Bifidobacterium longum .J.Agric.Food Chem.47:3661–3664.Lin,M.-Y.,and C.-L.Yen.1999b.Reactive oxygen species and lipidperoxidation product-scavenging ability of yogurt organisms.J.Dairy Sci.82:1629–1634.Lin,M.-Y.,and C.-L.Yen.1999c.Antioxidative ability of lactic acidbacteria.J.Agric.Food Chem.47:1460–1466.May,P.S.,J.W.Winter,G.H.Fried,and W.Antopol.1960.Effectof tetrazolium salts on selected bacterial species.Proc.Soc.Exp.Biol.Med.69:364–365.Noh,D.O.,and S.E.Gilliland.1993.Influence of bile on cellularintergrity and β-galactosidase activity of Lactobacillus acido-philus .J.Dairy Sci.76:1253–1259.Ouwehand,A.C.,and S.J.Salminen.1998.The health effects ofcultured milk products with viable and non-viable bacteria.Int.Dairy J.8:749–758.SAS Institute.1985.SAS Procedures Guide for Personal Computers,Version 6Edition.SAS Inst.,Inc.,Cary,NC.Seidler,E.1991.Page 2in The Tetrazolium-Formazan System:De-sign and Histochemistry.G.Fischer,ed.Verlag,Stuttgart,Germany.Stecchini,M.L.,M.Del Torre,and M.Munari.2000.Determination ofperoxy radical-scavenging of lactic acid bacteria.Int.J.Microbiol.64:183–188.Wang,H.,G.Cao,and R.L.Prior.1996.Total antioxidant capacityof fruits.J.Agric.Food Chem.44:701–705.Zaizu,H.,M.Sasaki,H.Nakajima,and Y.Suzuki.1993.Effect ofantioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E.J.Dairy Sci.76:2493–2499.。

相关文档
最新文档