(新课标)2020版高考数学总复习第九章第五节椭圆课件文新人教A版

合集下载

新教材老高考适用2023高考数学一轮总复习第九章平面解析几何第五节椭圆pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第九章平面解析几何第五节椭圆pptx课件北师大版
解得|PF1||PF2|=12.由三角形面积公式可得△F1PF2的面积为
1
|PF1||PF2|sin
2
1
√3
60°= ×12× =3√3.
2
2
考向3.利用椭圆定义求最值
典例突破
2 2
例 3.已知椭圆 8 + 2 =1 的左、右焦点分别为 F1,F2,过 F1 的直线 l 交椭圆于
A,B 两点,则|AF2|+|BF2|的最大值为(
解析 (1)设过两点 P
3
,-4
5
2
2
(3) + =1
20
4
和Q
4
- ,3
5
的椭圆标准方程为
mx2+ny2=1(m>0,n>0,m≠n),
代入 P,Q 坐标得,
2

x2+ =1.故选
25
A.
9

25
16

25
+ 16 = 1,
+ 9 = 1,
解得
= 1,
=
1 所以所求椭圆方程为
,
25
(2)因为方程(k-1)x2+(9-k)y2=1 表示椭圆,
△1 2 =
1
1
|PF1||PF2|= ×8×6=24.故选
2
2
A.
名师点析解决焦点三角形问题常利用椭圆的定义、正弦定理或余弦定理,
其中|PF1|+|PF2|=2a两边平方是常用技巧.
对点训练2已知P是椭圆
2 2
+
16 9
=1上的点,F1,F2是椭圆的两个焦
点,∠F1PF2=60°,则△F1PF2的面积为

最新精编高中人教版A版高考数学理科一轮复习8.5 椭圆公开课优质课教学设计

最新精编高中人教版A版高考数学理科一轮复习8.5 椭圆公开课优质课教学设计

第五节椭圆1.椭圆的标准方程掌握椭圆的定义、几何图形、标准方程.2.椭圆的几何性质掌握椭圆的简单性质.知识点一椭圆的定义易误提醒当到两定点的距离之和等于|F1F2|时,动点的轨迹是线段F1F2;当到两定点的距离之和小于|F1F2|时,动点的轨迹不存在.[自测练习]1.已知椭圆x225+y216=1上一点P到椭圆一个焦点F1的距离为3,则P到另一个焦点F2的距离为( )A.2 B.3C.5 D.7解析:∵a2=25,∴2a=10,∴由定义知,|PF1|+|PF2|=10,∴|PF2|=10-|PF1|=7.答案:D知识点二椭圆的标准方程和几何性质易误提醒注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中用到,也是容易被忽略而导致求最值错误的原因.必记结论 (1)当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.(2)以椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,注意以下公式的灵活运用:①|PF 1|+|PF 2|=2a ;②4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ; ③S △PF 1F 2=12|PF 1||PF 2|·sin θ.[自测练习]2.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m =________.解析:因为焦点在x 轴上,所以0<m <2,所以a 2=2,b 2=m ,c 2=a 2-b 2=2-m .椭圆的离心率为e =12,所以e 2=14=c 2a 2=2-m 2,解得m =32.答案:323.椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点P 到两焦点的距离之和为6,且椭圆的离心率为13,则椭圆方程为________.解析:由题意得2a =6,故a =3.又离心率e =c a =13.所以c =1,b 2=a 2-c 2=8,故椭圆方程为x 29+y 28=1.答案:x 29+y 28=14.椭圆Γ:x 2a +y 2b=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y=3(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.解析:依题意得∠MF1F2=60°,∠MF2F1=30°,∠F1MF2=90°,设|MF1|=m,则有|MF2|=3m,|F1F2|=2m,该椭圆的离心率是e=|F1F2||MF1|+|MF2|=3-1.答案:3-1考点一椭圆的定义及方程|1.已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为( )A.x264-y248=1 B.x248+y264=1C.x248-y264=1 D.x264+y248=1解析:设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16,∴M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,故所求的轨迹方程为x264+y248=1.答案:D2.(2016·大庆模拟)如图,已知椭圆C:x2a2+y2b2=1(a>b>0),其中左焦点为F(-25,0),P为C上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C的方程为( )A.x225+y25=1 B.x236+y216=1C.x 230+y 210=1 D.x 245+y 225=1 解析:设椭圆的焦距为2c ,右焦点为F 1,连接PF 1,如图所示. 由F (-25,0),得c =2 5.由|OP |=|OF |=|OF 1|,知PF 1⊥PF . 在Rt △PF 1F 中,由勾股定理,得|PF 1|=|F 1F |2-|PF |2=52-42=8.由椭圆定义,得|PF 1|+|PF |=2a =4+8=12,从而a =6,得a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.答案:B3.若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 1|=4,则∠F 1PF 2=( )A.π6B.π3C.2π3D.5π6解析:由题意得a =3,c =7,则|PF 2|=2. 在△F 2PF 1中,由余弦定理可得 cos ∠F 2PF 1=42+22-722×4×2=-12.又∵∠F 2PF 1∈(0,π),∴∠F 2PF 1=2π3.答案:C椭圆定义应用的两个方面一是利用定义求椭圆的标准方程;二是利用定义求焦点三角形的周长、面积及弦长、最值和离心率等.考点二 椭圆的几何性质|(1)(2015·高考广东卷)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9(2)如图,已知椭圆E 的左、右焦点分别为F1,F 2,过F 1且斜率为2的直线交椭圆E 于P ,Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( )A.53 B.23 C.23D.13[解析] (1)由4=25-m 2(m >0)⇒m =3,故选B. (2)由题意可知,∠F 1PF 2是直角,且tan ∠PF 1F 2=2,∴|PF 2||PF 1|=2.又|PF 1|+|PF 2|=2a ,∴|PF 1|=2a 3,|PF 2|=4a 3.根据勾股定理得⎝ ⎛⎭⎪⎫2a 32+⎝ ⎛⎭⎪⎫4a 32=(2c )2,所以离心率e =c a =53.[答案] (1)B (2)A求解直线与椭圆位置关系问题的常规思路(1)求解与椭圆几何性质有关的问题时要结合图形进行分析,既不画出图形,思考时也要联想到图形.当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.(2)求椭圆离心率问题,应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的等式或不等式,从而求出e 的值或范围.离心率e 与a ,b的关系.e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2⇒ba=1-e 2.1.如图,已知F1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1 B .2- 3 C.22D.32解析:因为过F 1的直线MF 1是圆F 2的切线,所以可得∠F 1MF 2=90°,|MF 2|=c .因为|F 1F 2|=2c ,所以可得|MF 1|=3c .由椭圆定义可得|MF 1|+|MF 2|=c +3c =2a ,可得离心率e =c a =21+3=3-1.答案:A考点三 直线与椭圆的位置关系|已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆的一个焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.[解] (1)设F (c,0),由题意k AF =2c =233,∴c =3,又∵离心率e =c a =32,∴a =2,b =a 2-c 2=1, 故椭圆的方程为x 24+y 2=1.(2)由题意知,直线l 的斜率存在,设直线l 的斜率为k ,方程为y =kx -2,联立直线与椭圆方程,得⎩⎨⎧x 24+y 2=1,y =kx -2,化简,得(1+4k 2)x 2-16kx +12=0. ∵Δ=16(4k 2-3)>0,∴k 2>34.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=16k 1+4k 2,x 1·x 2=121+4k 2,∴|PQ |=1+k 2|x 1-x 2|=1+k 2·44k 2-31+4k 2.坐标原点O 到直线l 的距离d =2k 2+1.S △OPQ =121+k 2·44k 2-31+4k 2·2k 2+1=44k 2-31+4k 2.令t =4k 2-3(t >0),则S △OPQ =4t t 2+4=4t +4t.∵t +4t ≥4,当且仅当t =4t,t =2时,等号成立,∴S △OPQ ≤1,故当t =2,即4k 2-3=2,k =±7时,△OPQ 的面积最大,从而直线l 的方程为y =±72x -2.2.(2016·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝ ⎛⎭⎪⎫-22,32,离心率为22,点F 1,F 2分别为其左、右焦点.(1)求椭圆C 的标准方程.(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP→⊥OQ →?若存在,求出该圆的方程;若不存在,请说明理由.解:(1)由题意,得c a =22,得b =c .因为⎝ ⎛⎭⎪⎫-222a 2+⎝ ⎛⎭⎪⎫322b 2=1(a >b >0),得c =1,所以a 2=2,所以椭圆C 方程为x 22+y 2=1.(2)假设满足条件的圆存在,其方程为x 2+y 2=r 2(0<r <1).当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b ,由⎩⎨⎧y =kx +b ,x22+y 2=1,得(1+2k 2)x 2+4bkx +2b 2-2=0.令P (x 1,y 1),Q (x 2,y 2),x 1+x 2=-4bk1+2k 2,x 1x 2=2b 2-21+2k 2.∵OP →⊥OQ →,∴x 1x 2+y 1y 2=0,∴+k 2b 2-1+2k 2-4k 2b 21+2k2+b 2=0,∴3b 2=2k 2+2. 此时Δ=323k 2+83>0恒成立.∵直线PQ 与圆相切,∴r 2=b 21+k 2=23,∴存在圆x 2+y 2=23.当直线PQ 的斜率不存在时,也存在圆x 2+y 2=23满足题意.综上所述,存在圆心在原点的圆x 2+y 2=23满足题意.26.几何法求解椭圆离心率范围问题【典例】 (2015·山西大学附中月考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23 B.⎝ ⎛⎭⎪⎫12,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫13,12∪⎝ ⎛⎭⎪⎫12,1[思维点拨] 利用对称性分|PF 1|=|F 1F 2|,|PF 2|=|F 1F 2|两种性质讨论,结合几何特征建立相关不等式求解.[解析] 6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称左右对称.不妨设P 在第一象限,|PF 1|>|PF 2|,当|PF 1|=|F 1F 2|=2c 时,|PF 2|=2a -|PF 1|=2a -2c ,即2c >2a -2c ,解得e =c a >12.因为e <1,所以12<e <1.当|PF 2|=|F 1F 2|=2c 时,|PF 1|=2a -|PF 2|=2a -2c ,即2a -2c>2c,且2c+2c>2a-2c,解得13<e<12.综上可得13<e<12或12<e<1,故选D.[答案] D[方法点评] 椭圆的离心率范围求法是考查的热点,常见的方法有利用几何特征建立不等式或建立目标函数求解.利用几何法建立不等关系式时注意根据题目中隐含的几何特性(如两边之和大于第三边),同时注意定义应用.[跟踪练习] 已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使asin∠PF1F2=csin∠PF2F1,则该椭圆的离心率的取值范围为________.解析:由asin∠PF1F2=csin∠PF2F1,得ca=sin∠PF2F1sin∠PF1F2.又由正弦定理得sin∠PF2F1sin∠PF1F2=|PF1||PF2|,所以|PF1||PF2|=ca,即|PF1|=ca|PF2|.又由椭圆定义得|PF1|+|PF2|=2a,所以|PF2|=2a2a+c,|PF1|=2aca+c.因为|PF2|是△PF1F2的一边,所以有2c-2aca+c<2a2a+c<2c+2aca+c,即c2+2ac-a2>0,所以e2+2e-1>0(0<e<1),解得椭圆离心率的取值范围为(2-1,1).答案:(2-1,1)A组考点能力演练1.点F为椭圆x2a2+y2b2=1(a>b>0)的一个焦点,若椭圆上存在点A使得△AOF为正三角形,那么椭圆的离心率为( )A.22B.32C.3-12D.3-1解析:由题意,可设椭圆的焦点F 的坐标为(c,0),因为△AOF 为正三角形,则点⎝ ⎛⎭⎪⎫c 2,3c 在椭圆上,代入得c 24a 2+3c 24b 2=1,即e 2+3e 21-e 2=4,得e 2=4-23,解得e =3-1,故选D.答案:D2.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点为M (1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 解析:k AB =0+13-1=12,k OM =-1,由k AB ·k OM =-b 2a 2,得b 2a 2=12,∴a 2=2b 2.∵c=3,∴a 2=18,b 2=9,椭圆E 的方程为x 218+y 29=1.答案:D3.(2016·厦门模拟)椭圆E :x 2a 2+y 23=1(a >0)的右焦点为F ,直线y =x +m 与椭圆E 交于A ,B 两点,若△FAB 周长的最大值是8,则m 的值等于( )A .0B .1 C. 3D .2解析:设椭圆的左焦点为F ′,则△FAB 的周长为AF +BF +AB ≤AF +BF +AF ′+BF ′=4a =8,所以a =2,当直线AB 过焦点F ′(-1,0)时,△FAB 的周长取得最大值,所以0=-1+m ,所以m =1.故选B.答案:B4.已知F 1,F 2是椭圆x 225+y 29=1的两个焦点,P 是该椭圆上的任意一点,则|PF 1|·|PF 2|的最大值是( )A .9B .16C .25D.252解析:设P (x ,y ),则|PF 1→|=a -ex ,|PF 2→|=a +ex ,∴|PF 1→|·|PF 2→|=(a -ex )(a +ex )=a 2-e 2x 2. 当x =0时,|PF 1→|·|PF 2→|取最大值a 2=25. 答案:C5.已知F 1,F 2是椭圆的左、右焦点,若椭圆上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫55,1B.⎣⎢⎡⎭⎪⎫22,1 C.⎝⎛⎦⎥⎤0,55D.⎝⎛⎦⎥⎤0,22解析:设P (x ,y ),PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),由PF 1⊥PF 2,得PF 1→·PF 2→=0,即(-c -x ,-y )·(c -x ,-y )=x 2+y 2-c 2=x 2+b 2⎝ ⎛⎭⎪⎫1-x 2a 2-c 2=c 2x 2a 2+b 2-c 2=0,∴x 2=a 2c 2-b 2c 2≥0,∴c 2-b 2≥0,∴2c 2≥a 2,∴e ≥22.又∵e <1,∴椭圆的离心率e 的取值范围是⎣⎢⎡⎭⎪⎫22,1.答案:B6.(2016·黄山质检)已知圆(x -2)2+y 2=1经过椭圆x 2a 2+y2b2=1(a >b >0)的一个顶点和一个焦点,则此椭圆的离心率e =________.解析:因为圆(x -2)2+y 2=1与x 轴的交点坐标为(1,0),(3,0),所以c =1,a=3,e =c a =13.答案:137.(2015·泰安模拟)若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________.解析:设切点坐标为(m ,n ),则n -1m -2·nm =-1,即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0,即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点,∴2c -4=0,b -4=0,解得c =2,b =4,所以a 2=b 2+c 2=20,所以椭圆方程为x 220+y 216=1.答案:x 220+y 216=18.(2016·保定模拟)直线l 过椭圆C :x 22+y 2=1的左焦点F ,且与椭圆C 交于P ,Q 两点,M 为弦PQ 的中点,O 为原点,若△FMO 是以线段OF 为底边的等腰三角形,则直线l 的斜率为________.解析:因为△FMO 是以线段OF 为底边的等腰三角形,所以直线OM 与直线l 的斜率互为相反数.设直线l 的斜率为k ,则有k ·(-k )=-12,解得k =±22.答案:±229.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解:(1)由已知|AB |=5|BF |,即a 2+b 2=5a,4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2,∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎨⎧2x -y +2=0,x 24b 2+y2b2=1,消去y ,得x 2+4(2x +2)2-4b 2=0,即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP→·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而-4b 217-12817+4=0,解得b =1,满足b >21717,∴椭圆C 的方程为x 24+y 2=1.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)若动点P 在直线x =-1上,过P 作直线交椭圆C 于M ,N 两点,且P 为线段MN 中点,再过P 作直线l ⊥MN .证明:直线l 恒过定点,并求出该定点的坐标.解:(1)因为点⎝ ⎛⎭⎪⎫1,32在椭圆C 上,所以1a 2+94b 2=1.又椭圆C 的离心率为12,所以c a =12,即a =2c ,所以a 2=4,b =3,所以椭圆C 的方程为x 24+y23=1.(2)设P (-1,y 0),y 0∈⎝ ⎛⎭⎪⎫-32,32,①当直线MN 的斜率存在时,设直线MN 的方程为y -y 0=k (x +1),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧3x 2+4y 2=12,y -y 0=k x +,得(3+4k 2)x 2+(8ky 0+8k 2)x +(4y 20+8ky 0+4k 2-12)=0,所以x 1+x 2=-8ky 0+8k 23+4k 2.因为P 为MN 中点,所以x 1+x 22=-1,即-8ky 0+8k 23+4k 2=-2,所以k =34y 0(y 0≠0).因为直线l ⊥MN ,所以k l =-4y 03,所以直线l 的方程为y -y 0=-4y 03·(x +1),即y =-4y 03⎝ ⎛⎭⎪⎫x +14,显然直线l 恒过定点⎝ ⎛⎭⎪⎫-14,0. ②当直线MN 的斜率不存在时,直线MN 的方程为x =-1, 此时直线l 为x 轴,也过点⎝ ⎛⎭⎪⎫-14,0.综上所述,直线l 恒过定点⎝ ⎛⎭⎪⎫-14,0.B 组 高考题型专练1.(2015·高考福建卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1 解析:设椭圆的左焦点为F 1,半焦距为c ,连接AF 1,BF 1,则四边形AF 1BF 为平行四边形,所以|AF 1|+|BF 1|=|AF |+|BF |=4.根据椭圆定义,有|AF 1|+|AF |+|BF 1|+|BF |=4a .所以8=4a ,解得a =2.因为点M 到直线l :3x -4y =0的距离不小于45,即4b 5≥45,b ≥1,所以b 2≥1,所以a 2-c 2≥1,4-c 2≥1,解得0<c ≤3,所以0<c a ≤32,所以椭圆的离心率的取值范围为⎝⎛⎦⎥⎤0,32.故选A.答案:A2.(2015·高考浙江卷)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c,0)关于直线y =bc x的对称点Q 在椭圆上,则椭圆的离心率是________.解析:设左焦点为F 1,由F 关于直线y =bc x 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,所以F 1Q ⊥QF ,不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a =ck +bk ,由以上二式可得2ca =k =2ab +c ,即c a =ab +c,即a 2=c 2+bc ,所以b =c ,e =22.答案:223.(2015·高考陕西卷)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.解:(1)由题设知c a =2,b =1,结合a 2=b 2+c 2,解得a = 2.所以椭圆的方程为x 22+y 2=1.(2)证明:设直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0.由已知Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4kk -1+2k 2,x 1x 2=2kk -1+2k 2.从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4kk -2kk -=2k -2(k -1)=2.4.(2015·高考天津卷)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解:(1)由已知有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =3.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝ ⎛⎭⎪⎫c ,233c .由|FM |=c +c2+⎝ ⎛⎭⎪⎫233c -02=43,解得c =1, 所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即y =t (x +1)(x ≠-1),与椭圆方程联立得⎩⎨⎧y =t x +,x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6.又由已知,得t =6-2x 2x +2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =yx ,即y =mx (x ≠0),与椭圆方程联立,整理可得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233.②当x ∈(-1,0) 时,有y =t (x +1)>0,因此m <0,于是m =-2x 2-23,得m ∈⎝ ⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.。

高考数学复习第九章解析几何9.8.1直线与圆锥曲线文市赛课公开课一等奖省优质课获奖课件

高考数学复习第九章解析几何9.8.1直线与圆锥曲线文市赛课公开课一等奖省优质课获奖课件

由xy22=+-y2m= 1 x1+,b
消去 y,得
12+m12x2-2mbx+b2-1=0.
39/43
因为直线 y=-m1 x+b 与椭圆x22+y2=1 有两个不同的交点,
所以 Δ=-2b2+2+m42>0.①
将线段 AB 中点 Mm22m+b2,mm2+2b2代入直线方程 y=mx+12解 得 b=-m22m+22.②
6/43
[典题 1] (1)[2017·甘肃兰州检测]若直线 mx+ny=4 和
圆 O:x2+y2=4 没有交点,则过点(m,n)的直线与椭圆x92+y42
=1 的交点个数为( B )
A.至多一个 B.2
C.1
D.0
7/43
[解析] ∵直线 mx+ny=4 和圆 O:x2+y2=4 没有交点,∴
解得 k=-12.
31/43
故此弦所在的直线方程为 y-1=-12(x-1), 即 x+2y-3=0. 解法二:易知此弦所在直线的斜率存在,所以设斜率为 k, A(x1,y1),B(x2,y2), 则xx441222+ +yy222221= =11, ,① ② ①-②得x1+x24x1-x2+y1+y22y1-y2=0,
24/43
(1)求椭圆 C 的方程; (2)当△AMN 的面积为 310时,求 k 的值.
a=2, 解:(1)由题意得ac= 22,
a2=b2+c2, 解得 b= 2,所以椭圆 C 的方程为x42+y22=1.
y=kx-1, (2)由x42+y22=1,
25/43
得(1+2k2)x2-4k2x+2k2-4=0.
35/43
[解析] 设 A(x1,y1),B(x2,y2), 抛物线方程为 y2=2px, 则yy1222==22ppxx21., 两式相减可得 2p=yx11- -yx22×(y1+y2) =kAB×2=2,解得 p=1, ∴抛物线 C 的方程为 y2=2x.

2020版高考数学 47 椭圆的定义、标准方程及其性质 理(含解析)新人教A版

2020版高考数学 47 椭圆的定义、标准方程及其性质 理(含解析)新人教A版

课后限时集训(四十七)椭圆的定义、标准方程及其性质(建议用时:60分钟)A组基础达标一、选择题1.已知方程错误!+错误!=1表示焦点在y轴上的椭圆,则实数k的取值范围是( )A。

错误!B.(1,+∞)C.(1,2) D.错误!C [由题意得错误!解得1<k<2.故选C。

]2.(2018·惠州二模)设F1,F2为椭圆x29+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为( )A.错误!B。

错误!C。

错误! D.错误!D [如图,设线段PF1的中点为M,因为O是F1F2的中点,所以OM∥PF2,可得PF2⊥x轴,|PF2|=错误!=错误!,|PF1|=2a-|PF2|=错误!,错误!=错误!,故选D.]3.如图,底面直径为12 cm的圆柱被与底面成30°角的平面所截,截口是一个椭圆,则这个椭圆的离心率为( )A.错误!B.错误!C.错误!D。

错误!A [由题意得2a=错误!=8错误!(cm),短轴长即2b为底面圆直径12 cm,∴c=错误!=2错误!cm,∴e=错误!=错误!。

故选A.]4.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A.1 B.错误!C.2 D.2错误!D [设a,b,c分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,错误!×2cb=1⇒bc=1,2a=2错误!≥2错误!=2错误!,当且仅当b=c =1时,等号成立.故选D.]5.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为( ) A.错误!+错误!=1 B.错误!-错误!=1C.x23-错误!=1 D。

错误!+错误!=1D [由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=23>|AF|=2,∴点P的轨迹是以A,F为焦点的椭圆,且a =错误!,c=1,∴b=错误!,∴动点P的轨迹方程为错误!+错误!=1,故选D.]二、填空题6.(2018·全国卷Ⅰ改编)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为________.错误![由题意可知a2-4=4,∴a2=8,即a=2错误!。

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)
人教A版数学(理科)一轮
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例

2020版高考数学大一轮复习第九章平面解析几何第11讲定点、定值、探索性问题课件理新人教A版

2020版高考数学大一轮复习第九章平面解析几何第11讲定点、定值、探索性问题课件理新人教A版

所以1λ+μ1=1-1yM+1-1yN =(kx-1-1)1 x1+(kx-2-1)1 x2 =k-1 1·2x1x2-x(1xx21+x2) =k-1 1·k22+21kk-2 4=2.
k2
所以1λ+μ1为定值.
圆锥曲线中的定值问题的常见类型及解题策略 (1)求代数式为定值:依题意设条件,得出与代数式参数有关的 等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值:利用点到直线的距离公式得出距 离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值:利用长度公式求得解析式,再依据条 件对解析式进行化简、变形即可求得.

MN
的中点为
E,则点
E

的坐标为0,-

k2,则以
MN
为直
径的圆的方程为

x2+y+

k22=2(1+k22k2),即
x2+y2+2
k
2 y
=4.
令 y=0 得 x=2 或 x=-2,即以 MN 为直径的圆经过两定点
P1(-2,0),P2(2,0).
圆锥曲线中的探索性问题 [典例引领]
【解】 (1)由于 P3,P4 两点关于 y 轴对称,故由题设知 C 经过 P3,P4 两点. 又由a12+b12>a12+43b2知,C 不经过点 P1,所以点 P2 在 C 上. 因此ba1122= +413b,2=1,解得ab22= =41, . 故 C 的方程为x42+y2=1. (2)证明:设直线 P2A 与直线 P2B 的斜率分别为 k1,k2. 如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,可得 A,B 的坐标分别为t, 42-t2,t,- 42-t2.

新高考数学复习基础知识专题讲义43 椭圆(解析版)

新高考数学复习基础知识专题讲义43 椭圆(解析版)

新高考数学复习基础知识专题讲义知识点43 椭圆知识理解一.椭圆的定义平面内与两个定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,这两个定点F1,F2叫做椭圆的焦点.二.椭圆的标准方程(1)中心在坐标原点,焦点在x轴上的椭圆的标准方程为x2a2+y2b2=1(a>b>0).(2)中心在坐标原点,焦点在y轴上的椭圆的标准方程为y2a2+x2b2=1(a>b>0).焦点在x轴上⇔标准方程中x2项的分母较大;焦点在y轴上⇔标准方程中y2项的分母较大. 三.椭圆的几何性质-a≤x≤a -b≤x≤b四.直线与椭圆的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离. 五.弦长的求解方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)当直线的斜率存在时,斜率为k 的直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两个不同的点,则弦长公式的常见形式有如下几种:①|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]; ②|AB |=1+1k2|y 1-y 2|(k ≠0)=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. 考向一 椭圆的定义及应用考向分析【例1-1】(2021·全国课时练习)下列命题是真命题的是________.(将所有真命题的序号都填上)①已知定点12(1,0),(1,0)F F -,则满足|PF 1|+|PF 2|的点P 的轨迹为椭圆; ②已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段; ③到定点12(3,0),(3,0)F F -的距离相等的点的轨迹为椭圆. 【答案】②【解析】①中,因为12(1,0),(1,0)F F -,可得122F F =2,所以点P 的轨迹不存在;②中,因为12124PF PF F F +==,所以点P 的轨迹是线段12F F ;③中,由定点12(3,0),(3,0)F F -的距离相等的点的轨迹是线段12F F 的垂直平分线,即0x =. 故答案为:②【例1-2】.(2021·上海市奉贤中学)若过椭圆2211612y x +=上焦点1F 的直线交椭圆于点A ,B ,2F 为椭圆下焦点,则三角形2F AB 的周长为___________. 【答案】16【解析】在椭圆2211612y x +=中,4a =由椭圆的定义得12122,2AF AF a BF BF a +=+=所以12124,AF AF BF BF a +++=即22+416AF BF AB a +== 故答案为:16【例1-3】(2021·安徽六安市·六安一中高三月考(理))已如12,F F 是椭圆2212449x y +=的两个焦点,P是椭圆上一点,1234PF PF =,则12PF F △的面积等于( )A .24B .26C ..【答案】A【解析】由椭圆方程可得焦点在y 轴上,7a =,b =5c ==, 由椭圆定义可得12214PF PF a +==,又1234PF PF =,则可解得128,6PF PF ==,12210F F c ==,满足2221212PF PF F F +=,则12PF PF ⊥,121212186242PF F PF P SF ⋅=⨯⨯∴==.故选:A. 【举一反三】1.(2021·广西桂林市)设P 是椭圆2222143x y +=上的动点,则P 到该椭圆的两焦点距离之和为_____.【答案】8【解析】由2222143x y +=,得4a =,由椭圆的定义可得P 到该椭圆的两个焦点的距离之和为28a =.故答案为:82.(2021·浙江高三其他模拟)已知椭圆2224x y +=上一点P 到其左焦点F 的距离为1,则PF 的中点M 到坐标原点O 的距离为( ) A .3B .32C .1D .12【答案】B【解析】易知椭圆的标准方程为22142x y +=.设椭圆的长轴长为2a ,则2a =,设椭圆的右焦点为1F ,连接1PF ,则由椭圆的定义得123PF a PF =-=.在1PFF 中,易知OM 为1PFF 的中位线,所以11322OM PF ==,故选:B . 3.(2021·黑龙江哈尔滨市·哈九中)已知P 是椭圆22193x y +=上的任意一点,若12PF =,则2PF =___________. 【答案】4【解析】由椭圆的方程22193x y +=知:3,a b ==,由椭圆的定义知:1226PF PF a +==,12PF = 所以2164PF PF =-= 故答案为:44.(2021·陕西安康市)已知点(3,A -,P 为椭圆22:143x y C +=上的动点,B 是圆221:(1)1C x y -+=上的动点,则||||PB PA -的最大值为___________.【答案】2【解析】由椭圆22:143x y C +=,可得2,1a b c ===,设右焦点为()'1,0F -,因为P 为椭圆22:143x y C +=上的动点,B 是圆221:(1)1C x y -+=上的动点,所以'||||1||||12||||PB PA PF PA a PF PA -≤+-=+--()'5||||PF PA =-+,3PF PA AF +≥=''=,当且仅当',,A P F 共线时取等号,()52PB PA PF PA -≤-+≤',故答案为:2.5.(2021·全国课时练习)已知P 是椭圆2214x y +=上的一点,1F 、2F 是椭圆的两个焦点,且1260F PF ∠=,则12F PF △的面积是______.【解析】在椭圆2214x y +=中,2a =,1b =,c =由椭圆的定义可得1224PF PF a +==,12F F = 在12F PF △中,1260F PF ∠=, 由余弦定理可得()22221212121212122cos603F F PF PF PF PF PF PF PF PF ==+-⋅=+-⋅12163PF PF =-⋅,解得1243PF PF ⋅=,因此,121213sin 602PF F S PF PF =⋅=△故答案为:考向二 椭圆的标准方程【例2-1】(2021·全国单元测试)已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是( )A .221167x y +=B .221167y x +=C .2212516x y +=D .221259y x +=【答案】B【解析】∵椭圆的焦点在y 轴上,∴可设它的标准方程为22221(0)y x a b a b+=>>.∵28,a ==∴a =4,又c =3,∴b 2=a 2-c 2=16-9=7,故所求的椭圆的标准方程为221167y x +=.故选:B .【例2-2】(2021·黑龙江大庆市)已知方程221221x y k k +=--表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .1,22⎛⎫⎪⎝⎭B .(2,)+∞C .1,12⎛⎫⎪⎝⎭D .(1,2)【答案】D【解析】依题意程221221x y k k +=--表示焦点在y 轴上的椭圆列不等式,所以2120k k ->->,解得12k <<,所以实数k 的取值范围是()1,2.故选:D 【举一反三】1.(2021·全国课时练习)经过点P (3,0),Q (0,2)的椭圆的标准方程为( )A .22194x y +=B .22194y x +=C .22194x y -=D .22194y x -=【答案】A【解析】依题意可知3,2a b ==且椭圆焦点在x 轴上,故椭圆方程为22194x y+=.故选:A2.(2021·黑龙江哈尔滨市·哈九中)若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1) 【答案】D【解析】因为方程222x ky +=,即22122+=x y k表示焦点在y 轴上的椭圆, 所以22>k,即01<<k ,所以实数k 的取值范围是(0,1).故选:D .3.(2021·湖南岳阳市·岳阳一中)椭圆221y x k+=的一个焦点是(,那么k =( )A .6-B .6C1D.1【答案】B【解析】因为椭圆221y x k+=上的一个焦点为,在y 轴上,所以1k >,所以15k -=则6k =.故选:B4.(2021·浙江丽水市)“01t <<”是“曲线2211x y t t+=-表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】因为曲线2211x yt t +=-为椭圆,所以0101t t t t>⎧⎪->⎨⎪≠-⎩,解得01t <<且12t ≠,所以“01t <<”是“01t <<且12t ≠”的必要而不充分条件.故选:B考向三 直线与椭圆的位置关系【例3】(2021·全国课时练习)已知椭圆2241x y +=与直线y x m =+有公共点,则实数 m 的取值范围是 _______ .【答案】m ≤≤【解析】由2241x y y x m⎧+=⎨=+⎩,得225210x mx m ++-=.因为直线与椭圆有公共点,所以()2242010m m ∆=--≥, 即254m ≤,解得m ≤≤.故答案为:m ≤≤. 【举一反三】1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是________.【答案】 [1,5)∪(5,+∞)【解析】方法一 由于直线y =kx +1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0. 由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴m ≥1且m ≠5.2.直线y =kx +k +1与椭圆x 29+y 24=1的位置关系是________.【答案】相交【解析】由于直线y =kx +k +1=k (x +1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.3.(2021·安徽省泗县第一中学)已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围. 【解析】(1)由已知得2a =c =a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=. (2)由2213y x m x y =+⎧⎪⎨+=⎪⎩,解方程组并整理得2246330x mx m ++-=,有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->. 解不等式得22m -<<.考向四 弦长【例4】(2021·上海市进才中学高二月考)过椭圆22:143x y C +=的左焦点,斜率为1的直线被椭圆C截得的弦长为________. 【答案】247【解析】设直线与椭圆相交的两个交点坐标为()()1122,,,x y x y椭圆22:143x y C +=的左焦点为()1,0-所以直线的方程为1y x =+则22217880143y x x x x y =+⎧⎪⇒+-=⎨+=⎪⎩所以121288,77x x x x +=-=-247=故答案为:247【举一反三】1.(2021·全国课时练习)求过点(3,0)且斜率为45的直线被椭圆2212516x y +=所截得的线段的长度. 【答案】415【解析】过点(3,0)且斜率为45的直线方程为()435y x =-,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),将直线方程代入椭圆方程得()22312525x x -+=, 即x 2-3x -8=0.∴x 1+x 2=3,x 1x 2=-8.∴415AB ===. 2.(2021·安徽省泗县第一中学)已知椭圆的长轴长是(),).(1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于A 、B两不同的点,若AB =,求m 的值.【答案】(1)2213x y +=;(2)1m =±. 【解析】(1)由已知得2a =,则a =c =2221b a c =-=所以椭圆的标准方程2213x y +=(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩消除y 得2246330x mx m ++-= 因为有两个不同的交点,所以()222(6)44(33)1240m m m ∆=-⨯⨯-=--> 得m 的取值范围为()2,2-由韦达定理得:126342m m x x --+== ,212334m x x -=所以2AB ===解得1m =± 考向五 离心率【例5】(2021·全国课时练习)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( )A .12BC【答案】A【解析】不妨设椭圆的左、右焦点分别为F 1,F 2,B 为椭圆的上顶点. 依题意可知,△BF 1F 2是正三角形.∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°, ∴1cos602c a ︒==,即椭圆的离心率12e =.故选:A【举一反三】1.(2021·全国高三月考(文))已知点(M 是椭圆22221x y a b+=()0a b >>上的一点,1F ,2F 是椭圆的左、右焦点,若△12MF F 为等腰三角形,则该椭圆的离心率为( )A .23B .24C .12或23D .23 【答案】D【解析】由△12MF F 为等腰三角形知:当112||||2F M F F c ==,而1(,0)F c -,则22(3)154c c ++=,整理得2280c c --=,解得4c =或2c =-(舍),而242228F M a c a ===-=-,故6a =,此时23c e a ==; 当212||||2F M F F c ==,而2(,0)F c ,则22(3)154c c -+=,整理得2280c c +-=,解得2c =或4c =-(舍),而12224F M a c a ===-=-,故2a =+,此时23c e a ==; 故选:D.2.(2021·浙江高三其他模拟)已知椭圆22221x y a b+=(0a b >>)的左、右焦点分别是1F ,2F ,点P在椭圆上,O 是坐标原点,12123F PF FOP π∠=∠=,则椭圆的离心率是( ) AB【答案】D【解析】根据12123F PF FOP π∠=∠=以及121PF F OF P ∠=∠,得121PFO F F P ∽△△,于是11121PF F O F F PF =,所以1PF =,又122PF PF a +=,所以22PF a =.在21F FP △中,由余弦定理,得)()()22214222()2c a a =+-⨯-,即2220c a +-=,所以220e -=,因为01e <<,所以椭圆的离心率e =D 3.(2021·江苏启东市)已知椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则该椭圆的离心率是( )A.10B.3C.2D【答案】A【解析】由题意可知:223bc =,即3b c =,所以a ==所以离心率10c e a ===.故选:A1.(2021·江西高三其他模拟(文))如图,P 是椭圆22194x y +=上的一点,F 是椭圆的右焦点且PQ FQ =-,2OQ =,则PF =( )强化练习A .2B .3D .4 【答案】A【解析】由22194x y +=可得:3a =因为PQ FQ =-,所以点Q 是线段PF 的中点, 设椭圆的右焦点为F ',则O 是FF '的中点, 所以24PF OQ '==, 由椭圆的定义可知:26PF PF a '+==,所以2PF =, 故选:A.2.(2021·全国课时练习)已知椭圆2211612x y +=的左焦点是F 1,右焦点是F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|∶|PF 2|=( ) A .3∶5B .3∶4C .5∶3D .4∶3 【答案】C【解析】由2211612x y +==1可知216a =,212b =,所以22216124c a b =-=-=,所以F 1(-2,0),F 2(2,0),∵线段PF 1的中点M 在y 轴上,且原点O 为线段12F F 的中点, 所以2//PF MO ,所以2PF x ⊥轴,∴可设P (2,y ),把P (2,y )代入椭圆2211612x y +=,得29y =.∴|PF 1|5=,|PF 2|=3.∴12||5||3PF PF =. 故选:C3.(2021·上海市莘庄中学)平面内有两个定点12,F F 和一动点M ,设命题甲:12||||MF MF +是定值,命题乙:点M 的轨迹是椭圆,则命题甲是命题乙的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】若点M 的轨迹是以12,F F 为焦点的椭圆,则根据椭圆的定义可知动点M 到两定点12,F F 的距离之和12|||2|MF MF a =+(0a >,且a 为常数)成立是定值.若动点M 到两定点12,F F 的距离之和12|||2|MF MF a =+(0a >,且a 为常数),当122||a F F ,此时的轨迹不是椭圆.∴甲是乙的必要不充分条件.故选:B .4.(2021·重庆)已知椭圆()222210x y a b a b+=>>在第一象限上的一点P 与椭圆的左、右焦点1F 、2F 恰好构成顶角为120的等腰三角形,则椭圆的离心率为()A B .12C .2D 【答案】A【解析】因为点P 是椭圆()222210x y a b a b+=>>上位于第一象限的点,12PF PF >,所以,12PF F ∠为锐角,因为12PF F △是顶角为120的等腰三角形,但1221PF F PF F ∠<∠,故21120PF F ︒∠=,所以,2212PF F F c ==,由余弦定理可得12PF ==,由椭圆定理可得1222PF PF c a +=+=,故12c a -==. 故选:A.5.(2021·江苏南通市)设1F ,2F 是椭圆22:13x y C m +=的两个焦点,若椭圆C 上存在点M 满足12120F MF ∠=︒,则m 的取值范围是( )A .[)3044⎛⎤⋃+∞ ⎥⎝⎦,,B .[)9044⎛⎤⋃+∞ ⎥⎝⎦,,C .[)30,12,4⎛⎤⋃+∞ ⎥⎝⎦D .[)90124⎛⎤⋃+∞ ⎥⎝⎦,,【答案】C【解析】由题意可知,若焦点在x 轴上,223,(0)==>a b m m ,则23=-c m ,椭圆C 上存在点M满足12120F MF ∠=︒,如图所示,则160∠≥︒F MO ,即1tan tan 60∠=≥︒cF MO b,所以≥c ,即33-≥m m ,得34m ≤;若焦点在y 轴上,22,3(3)==>a m b m ,则23c m =-,则160∠≥︒F MO ,即1tan tan 60∠=≥︒cF MO b,所以≥c ,即39-≥m ,得12m ≥; 所以m 的取值范围是[)30,12,4⎛⎤⋃+∞ ⎥⎝⎦.故选:C.6.(2021·江西高三其他模拟(文))若椭圆22: 15x y C m+=的一个焦点坐标为(1,0)-,则实数m 的值为( ) A .9B .6C .4D .1 【答案】C【解析】因为椭圆的焦点(1,0)-在x 轴上, 所以25a =,2b m =,所以2225c a b m =-=-, 所以51m -=,解得4m =. 故选:C7.(2021·福建龙岩市)已知椭圆22212x y a +=的一个焦点为()F ,则这个椭圆的方程是( ) A .22132x y +=B .22142x y +=C .22152x y +=D .22162x y +=【答案】C【解析】解:椭圆22212x y a +=的一个焦点为(F ,22b ∴=,c =222325a b c ∴=+=+=,∴椭圆方程为22152x y +=.故选:C . 8.(2021·江西赣州市)已知椭圆222116x y m+=的右焦点为(2,0),则m =( )A ...±.±【答案】C【解析】因为右焦点为(2,0),故焦点在x 轴上且2164m -=,故m =±,故选:C.9.(2021·广西百色市)“0m >”是“方程22112x y m m+=+表示焦点在x 轴的椭圆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】由题意,方程22112x y m m+=+表示焦点在x 轴上的椭圆,则满足120m m +>>,解得01m <<;又由当01m <<则必有0m >,但若0m >则不一定有01m <<成立,所以“0m >”是“方程22112x y m m+=+表示焦点在x 轴上的椭圆”的必要非充分条件.故选:B .10.(2021·河南郑州市)设1F 、2F 分别是椭圆22:1259x y C +=的左、右焦点,O 为坐标原点,点P在椭圆C 上且满足4OP =,则12PF F △的面积为( )A .3B ..6D .9【答案】D【解析】在椭圆22:1259x y C +=中,5a =,3b =,则4c =,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D.11.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,若椭圆上存在点P ,使得120PF PF ⋅=,则该椭圆的离心率的取值范围是( )A .,12⎫⎪⎪⎣⎭B .2⎛ ⎝⎦C .12⎡⎢⎣⎦D .22⎣⎦【答案】A【解析】由120PF PF ⋅=得:12PF PF ⊥,∴点P 在以()()12,0,,0F c F c -为直径端点的圆上,由此可得该圆的半径r c b =≥,2222c b a c ∴≥=-,即222c a ≥,22212c e a ∴=≥,12e ∴≤<.故选:A.12.(2021·江苏)若椭圆22x a +22y b =1(a >b >0)的焦距为2,且其离心率为2,则椭圆的方程为( )A .22+=142x yB .22+=121x yC .22143+=x yD .22+=184x y【答案】B【解析】由题意可知:22c =,即1c =,由椭圆的离心率2c e a ==,解得:a = 2221b a c =-= ∴椭圆的标准方程:2212x y +=故选:B13.(2021·全国课时练习)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .22134x y +=B .2214x +=C .22143x y +=D .2214x y +=【答案】C【解析】依题意知,所求椭圆的焦点位于x 轴上,且11,2,2c c e a b a ===⇒=== 因此椭圆的方程是22143x y +=.故选:C14.(多选)(2021·山东滨州市·高三一模)已知椭圆22:12520x y M +=的左、右焦点分别是1F ,2F ,左、右顶点分别是1A ,2A ,点P 是椭圆上异于1A ,2A 的任意一点,则下列说法正确的是( ) A .125PF PF +=B .直线1PA 与直线2PA 的斜率之积为45- C .存在点P 满足1290F PF ∠=︒D .若12F PF △的面积为P 的横坐标为【答案】BD【解析】由题意5,a b c ===,1(F ,2F ,1(5,0)A -,2(5),0A ,短轴一个顶点2B ,12210PF PF a +==,A 错;设(,)P x y ,则2212520x y +=,2220(1)25x y =-,所以1222221420(1)552525255PA PAy y y x k k x x x x =⨯==-⨯=-+---,B 正确;因为22221tan 12OF OB F OB ∠===<,所以22045OB F ︒<∠<︒,从而12222290F B F OB F ∠=∠<︒,而P 是椭圆上任一点时,当P 是短轴端点时12F PF ∠最大,因此不存在点P 满足1290F PF ∠=︒,C 错;(,)P x y,1212132PF F P P S F F y y ===△4P y =,则21612520P x +=,P x =D 正确. 故选:BD .15.(多选)(2021·武冈市第二中学)已知点(),2P a a -在直线730x ay ++=上,则圆锥曲线221x y a+=的离心率为( ) ABD.2【答案】AC【解析】∵(),2P a a -在直线730x ay ++=上,所以27230a a -++=, 即22730a a -+=,解得3a =或12a =, 当3a =时,圆锥曲线2213x y +=,为中心在原点,焦点在x轴上的椭圆,离心率e ==, 当12a =时,圆锥曲线22112x y +=,为中心在原点,焦点在y轴上的椭圆,2e ==, 故选:AC.16.(多选)(2021·山东聊城市)已知五个数1,p ,m ,q ,16成等比数列,则曲线221x y p m+=的离心率可以是( )A B .2C 【答案】AC【解析】由题意416p =,2p =±,4m =,曲线方程为22124x y +=或22124x y +=-,方程为22124x y +=时,离心率为22e ==,方程为22124x y +=-,离心率为22e ==. 故选:AC .17.(2021·陕西西安市·高三月考(理))已知椭圆()2222:10x y C a b a b +=>>左、右焦点分别为1F 、2F ,过1F 且倾斜角为30的直线1l 与过2F 的直线2l 交于P 点,点P 在椭圆上,且1290F PF ∠=.则椭圆C 的离心率e =________.1 【解析】如下图所示:由已知条件可知,在12Rt PF F 中,1290F PF ∠=,1230PF F ∠=,21212PF F F c ∴==,则1PF ==,由椭圆的定义可得122PF PF a +=,即12c a ,1c e a ∴===.1.18.(2021·安徽芜湖市·)已知F 1,F 2为椭圆22C :14x y +=的左、右焦点,点P 在椭圆C 上,1260F PF ∠=︒,则12PF PF ⋅=___________. 【答案】43【解析】由椭圆定义可得|PF 1|+|PF 2|=4,利用余弦定理可得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°=|F 1F 2|2, 所以22121212()312PF PF PF PF F F +-⋅==,解得3|PF 1|·|PF 2|=4,即12PF PF ⋅=43, 故答案为:4319.(2021·上海市西南位育中学)已知Р为椭圆22195x y +=上的点,1F 、2F ,是椭圆的两个焦点,且1260F PF ∠=︒,则12PF PF =_____ 【答案】203【解析】由椭圆22195x y +=,可得()12,0F -、()22,0F由条件可得1226PF PF a +== 由余弦定理可得2221212122cos60F F PF PF PF PF =+-︒所以()21212163PF PF PF PF =+-,即1216363PF PF =-所以12PF PF =203故答案为:20320.(2021·江苏南通市)已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,点()4,4M ,若点P 为椭圆C 上的一个动点,则1PM PF -的最小值为____________. 【答案】1【解析】由已知得222224,3,1a b c a b ===-=,2(1,0)F , 因为2124PF PF a +==,所以124PF PF =-, 所以()12244PM PF PM PF PM PF -=--=+-, 所以当三点2M P F 、、共线时,24PM PF +-最小,即224441PM PF MF +-=-==.故答案为:1.21.(2021·广西百色市)已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.1【解析】设直线)y x c =-的倾斜角为α,则tan α=0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则211,MF MF ===由椭圆定义得122||||1a MF MF =+=∴椭圆的离心率212c e a ===.1.22.(2021·内蒙古赤峰市·高三期末(理))已知椭圆C 的两个焦点分别为1(2,0)F -,2(2,0)F ,离心率为12e =,点P 在椭圆C 上,且1230F PF ∠=,则12F PF △的面积为__________.【答案】24-【解析】由已知得12,2c e ==,所以4a =, 由椭圆定义得12248F P PF +=⨯=,由余弦定理得222121212123cos cos302F P PF F F F PF F P PF +-∠===⨯, 即()2121212216F P PF FP PF P PF +-⨯-=⨯,12F P PF⨯=,则12F PF △的面积为12111sin 3024222S F P PF =⨯⨯=⨯=-故答案为:24-23.(2021·广东梅州市)已知过点31,2M ⎛⎫- ⎪⎝⎭的椭圆C 的焦点分别为()11,0F -,()21,0F ,则椭圆C 的标准方程是___________.【答案】22143x y +=【解析】由题意24a ==,2a =,所以b =,所以椭圆方程为22143x y +=.故答案为:22143x y +=.24.(2021·安徽省临泉第一中学)椭圆22134x y+=的离心率等于______.【答案】12【解析】由题意2,a b ==,所以1c ==,离心率为12c e a ==.故答案为:12.25.(2021·湖南常德市一中高三月考)写一个离心率是椭圆2211612x y +=的离心率4倍且焦点在x 轴上的双曲线标准方程:___________.【答案】2213y x -=(答案不唯一)【解析】有椭圆方程可知216a =,212b =,则216124c =-=,所以椭圆的离心率2142c e a ===,则双曲线的离心率2e =,则双曲线中22cc a a=⇒=,即22224c a a b ==+,得223b a =,令21a =,则23b =,所以满足条件的一个双曲线方程是2213y x -=.故答案为:2213y x -=(答案不唯一)26.(2021·全国高三专题练习)过点(1,2)-的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 的斜率为__________. 【答案】12-【解析】根据题意,圆222210x y x y +--+=的标准方程为22(1)(1)1x y -+-=,其圆心为(1,1),半径1r =,过点(1,2)-的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 经过圆的圆心, 故直线l 的斜率1211(1)2k -==---;故答案为:12-. 27.(2021·六安市裕安区新安中学)已知椭圆的两个焦点坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭. (1)求椭圆的标准方程;(2)若直线1y x =+与椭圆交于A 、B 两点,求AB 中点的坐标.【答案】(1)221106x y +=;(2)53,88⎛⎫- ⎪⎝⎭. 【解析】(1)由于椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>,由椭圆定义知2c =,2a ==所以a =,所以222104b a c =-=-, 所求椭圆标准方程为221106x y +=.(2)设直线与椭圆的交点为()11,A x y ,()22,B x y ,联立方程2211061x y y x ⎧+=⎪⎨⎪=+⎩,得2810250x x +-=,得1254x x +=-,12258x x =-. 设AB 的中点坐标为()00,x y ,则120528x x x +==-,038y =, 所以中点坐标为53,88⎛⎫- ⎪⎝⎭.28.(2021·河南高三月考(文))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,离33⎛⎫- ⎪ ⎪⎝⎭在C 上. (1)求椭圆C 的标准方程;(2)设过2F 的直线l 与C 交于A ,B 两点,若1110·3AF BF =,求AB . 【答案】(1)2212x y +=;(2)||3AB =.【解析】解:(1)因为椭圆C过点33⎛⎫- ⎪ ⎪⎝⎭, 所以2241133a b +=.① 又椭圆C2212c a =,故2222222112b ac c a a a -==-=.② 联立①②得2222411,331,2a b b a ⎧+=⎪⎪⎨⎪=⎪⎩解得222,1,a b ⎧=⎨=⎩故椭圆C 的标准方程为2212x y +=.(2)当直线l的斜率不存在时,2222b AF BF a ===,所以211910223AF BF ⋅==≠, 故直线l 的斜率存在,设直线()()1122:(1),,,,l y k x A x y B x y =-.联立22(1),1,2y k x x y =-⎧⎪⎨+=⎪⎩消去y 并整理得()2222214220k x k x k +-+-=, 则22121222422,2121k k x x x x k k -+==++.1AF ====,同理1||BF =. 因为()2121211242182102423x x x x k AF BF k ++++⋅===+,解得21k =,所以11AF BF +==又因为11||AF BF AB++=||3AB =. 29.(2021·吉林长春市·高三二模(文))已知椭圆()22122:10x y C a b a b+=>>的左右焦点分别为12,F F ,离心率为12,过椭圆右焦点的直线交椭圆于,A B 两点,1AF B △的周长为8,O 为坐标原点, (1)求椭圆的方程;(2)求面积AOB 的最大值.【答案】(1)22143x y +=;(2)32. 【解析】(1)设椭圆半焦距为,c 由题意可知48,2a a ==, 由离心率有21,3c b ==,所以椭圆方程为22143x y +=,(2)设直线:1AB x ty =+,联立方程组221431x y x ty ⎧+=⎪⎨⎪=+⎩, 消去x 得()2243690tyty ++-=,设()()1122,,,A x y B x y , 有12122269,4343t y y y y t t --+==++, 由21OF =,所以OAB的面积2121612S OF y y =⋅-==⨯,函数1()3f x x x=+[)1,x ∈+∞,令121x x >≥, 则()1212121212123111()()33x x f x f x x x x x x x x x ⎛⎫⎛⎫--=+-+=- ⎪ ⎪⎝⎭⎝⎭, 因为121x x >≥,所以()121212310x x x x x x -->,12())0(f x f x ->。

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

2022北师大版文科数学高考总复习教师用书:9-5椭圆 Word版含答案

2022北师大版文科数学高考总复习教师用书:9-5椭圆 Word版含答案

第5讲椭圆最新考纲 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.把握椭圆的定义、几何图形、标准方程及简洁几何性质.知识梳理1.椭圆的定义我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F 2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2诊断自测1.推断正误(在括号内打“√”或“×”)精彩PPT呈现(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)椭圆既是轴对称图形,又是中心对称图形.()(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(5)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()解析(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.(2)由于e=ca=a2-b2a=1-⎝⎛⎭⎪⎫ba2,所以e越大,则ba越小,椭圆就越扁.答案(1)×(2)×(3)√(4)√(5)√2.(2021·广东卷)已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2 B.3 C.4 D.9解析依题意有25-m2=16,∵m>0,∴m=3.选B.答案 B3.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为33,过F2的直线l 交C于A,B两点.若△AF1B的周长为43,则C的方程为()A.x23+y22=1 B.x23+y2=1C.x212+y28=1 D.x212+y24=1解析由椭圆的定义可知△AF1B的周长为4a,所以4a=43,故a=3,又由e=ca=33,得c=1,所以b2=a2-c2=2,则C的方程为x23+y22=1,故选A.答案 A4.(2022·全国Ⅰ卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13 B.12C.23D.34解析 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12,故选B.答案 B5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________. 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1考点一 椭圆的定义及其应用【例1】 (1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆(2)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且∠F 1PF 2=60°,S △PF 1F 2=33,则b =________. 解析 (1)连接QA . 由已知得|QA |=|QP |.所以|QO |+|QA |=|QO |+|QP |=|OP |=r .又由于点A 在圆内,所以|OA |<|OP |,依据椭圆的定义,点Q 的轨迹是以O ,A 为焦点,r 为长轴长的椭圆.故选A. (2)由题意得|PF 1|+|PF 2|=2a , 又∠F 1PF 2=60°,所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=|F 1F 2|2, 所以(|PF 1|+|PF 2|)2-3|PF 1||PF 2|=4c 2, 所以3|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=43b 2,所以S △PF 1F 2=12|PF 1||PF 2|sin 60°=12×43b 2×32= 33b 2=33,所以b =3. 答案 (1)A (2)3规律方法 (1)椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、弦长、最值和离心率等. (2)椭圆的定义式必需满足2a >|F 1F 2|.【训练1】 (1)已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( ) A. 2 B .2 C .2 2 D. 3(2)(2021·南昌调研)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.解析 (1)由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 为直角,所以S △PF 1F 2=12|F 1F 2||PF 2|=12×22×1= 2.(2)设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1. 答案 (1)A (2)x 225+y 216=1 考点二 椭圆的标准方程【例2】 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆方程为________.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________. 解析 (1)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ). 由⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110. ∴椭圆方程为y 210+x26=1.(2)法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5. 由c 2=a 2-b 2可得b 2=4.所以所求椭圆的标准方程为y 220+x 24=1.法二 设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k =1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1. 答案 (1)y 210+x 26=1 (2)y 220+x 24=1规律方法 求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后依据条件建立关于a ,b 的方程组,假如焦点位置不确定,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),求出m ,n 的值即可.【训练2】 (1)(2021·湖南省东部六校联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1 D.x 24+y 2=1(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.解析 (1)依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.(2)依题意,设椭圆C :x 2a 2+y 2b 2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A ⎝ ⎛⎭⎪⎫1,32必在椭圆上,∴1a 2+94b 2=1.①又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1. 答案 (1)A (2)x 24+y 23=1 考点三 椭圆的几何性质【例3】 (1)(2022·全国Ⅲ卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.34(2)(2021·福建卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( ) A.⎝⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1解析 (1)设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=ma +c,所以a =3c ,所以e =13. (2)设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4,∴a =2. 设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32. 答案 (1)A (2)A规律方法 (1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式直接求解.②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.【训练3】 (1)(2022·合肥模拟)已知椭圆:x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________. (2)已知椭圆x 2a 2+y 2b 2=1(a >b >c >0,a 2=b 2+c 2)的左、右焦点分别为F 1,F 2,若以F 2为圆心,b -c 为半径作圆F 2,过椭圆上一点P 作此圆的切线,切点为T ,且|PT |的最小值不小于32(a -c ),则椭圆的离心率e 的取值范围是________.解析 (1)由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a =3.所以b 2=3,即b = 3.(2)由于|PT |=|PF 2|2-(b -c )2(b >c ),而|PF 2|的最小值为a -c ,所以|PT |的最小值为(a -c )2-(b -c )2.依题意,有(a -c )2-(b -c )2≥32(a -c ),所以(a -c )2≥4(b -c )2,所以a -c ≥2(b -c ),所以a +c ≥2b ,所以(a +c )2≥4(a 2-c 2),所以5c 2+2ac -3a 2≥0,所以5e 2+2e -3≥0.① 又b >c ,所以b 2>c 2,所以a 2-c 2>c 2,所以2e 2<1.② 联立①②,得35≤e <22. 答案 (1)3 (2)⎣⎢⎡⎭⎪⎫35,22考点四 直线与椭圆的位置关系【例4】 (2022·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. (1)证明 由于|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).规律方法 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题经常用“点差法”解决,往往会更简洁.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提示 利用公式计算直线被椭圆截得的弦长是在方程有解的状况下进行的,不要忽视判别式. 【训练4】 (2021·沈阳质量监测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 的中点横坐标为14,且AF→=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)求实数λ的值.解 (1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3, ∴椭圆C 的标准方程是x 24+y 23=1.(2)由AF →=λFB →,可知A ,B ,F 三点共线,设点A (x 1,y 1),点B (x 2,y 2). 若直线AB ⊥x 轴,则x 1=x 2=1,不符合题意. 当AB 所在直线l 的斜率k 存在时, 设方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.①由①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12)=144(k 2+1)>0. ∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0, 解得x =1±354.又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, λ=1-x 1x 2-1,又λ>1,∴λ=3+52.[思想方法]1.椭圆的定义揭示了椭圆的本质属性,正确理解、把握定义是关键,应留意定义中的常数大于|F 1F 2|,避开了动点轨迹是线段或不存在的状况.2.求椭圆的标准方程,常接受“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是依据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n ). [易错防范]1.推断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.在解关于离心率e 的二次方程时,要留意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.3.椭圆的范围或最值问题经常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求椭圆相关量的范围时,要留意应用这些不等关系.基础巩固题组(建议用时:40分钟) 一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( ) A .5 B .3 C .5或3 D .8解析 当m >4时,m -4=1,∴m =5;当0<m <4时,4-m =1,∴m =3. 答案 C2.“2<m <6”是“方程x 2m -2+y 26-m =1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 若x 2m -2+y 26-m=1表示椭圆.则有⎩⎨⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m =1表示椭圆”的必要不充分条件.答案 B3.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A.36 B.13 C.12 D.33解析 在Rt △PF 2F 1中,令|PF 2|=1,由于∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.故e =2c2a =|F 1F 2||PF 1|+|PF 2|=33.故选D.答案 D4.(2021·全国Ⅰ卷)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12解析 抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由于离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B. 答案 B5.(2022·江西师大附中模拟)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba 的值为( ) A.32 B.233 C.932 D.2327解析 设A (x 1,y 1),B (x 2,y 2),则ax 21+by 21=1,ax 22+by 22=1,即ax 21-ax 22=-(by 21-by 22),by 21-by 22ax 21-ax 22=-1, b (y 1-y 2)(y 1+y 2)a (x 1-x 2)(x 1+x 2)=-1,∴b a ×(-1)×32=-1,∴b a =233,故选B. 答案 B 二、填空题6.焦距是8,离心率等于0.8的椭圆的标准方程为________. 解析 由题意知⎩⎪⎨⎪⎧2c =8,c a=0.8,解得⎩⎨⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,∴b =3.当焦点在x 轴上时,椭圆方程为x 225+y 29=1, 当焦点在y 轴上时,椭圆方程为y 225+x29=1. 答案 x 225+y 29=1或y 225+x 29=17.(2021·南昌质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25. ∴点P 的坐标为(-3,0)或(3,0). 答案 (-3,0)或(3,0)8.(2021·乌鲁木齐调研)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,① 将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2,∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.答案 ⎣⎢⎡⎦⎥⎤33,22三、解答题9.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解 (1)依据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12. (2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则 ⎩⎨⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28, 故a =7,b =2 7.10.(2021·宝鸡月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△P AB 的面积.解 (1)由已知得⎩⎪⎨⎪⎧6a 2+2b 2=1,ca =63,a 2=b 2+c 2,解得⎩⎨⎧a 2=12,b 2=4.故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0). 由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m ,即D ⎝ ⎛⎭⎪⎫-34m ,14m .由于AB 是等腰三角形P AB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32,所以△P AB 的面积为S =12|AB |·d =92. 力量提升题组 (建议用时:25分钟)11.(2022·高安模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A.12 B.3-12 C.32 D.3-1解析 设F (-c,0)关于直线3x +y =0的对称点A (m ,n ), 则⎩⎪⎨⎪⎧n m +c ·(-3)=-1,3·⎝ ⎛⎭⎪⎫m -c 2+n2=0,∴m =c 2,n =32c ,代入椭圆方程可得c 24a 2+34c2b 2=1,并把b 2=a 2-c 2代入,化简可得e 4-8e 2+4=0,解得e 2=4±23,又0<e <1,∴e =3-1,故选D.答案 D12.(2021·海沧试验中学模拟)已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,55 B.⎝ ⎛⎦⎥⎤0,255 C.⎝ ⎛⎦⎥⎤0,355 D.⎝ ⎛⎦⎥⎤0,455 解析 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455, 解得d 2≤165.又由于d =21+k 2,所以11+k 2≤45,解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45,解得0<e ≤255.故选B. 答案 B13.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x24<0,即34x 2<2,∴x 2<83.解得-263<x <263,∴x ∈⎝ ⎛⎭⎪⎫-263,263. 答案 ⎝⎛⎭⎪⎫-263,263 14.(2021·西安质监)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值;(3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解 (1)由题意得c =3,依据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16. 所以椭圆的标准方程为x 225+y216=1.(2)法一 由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =24x ,得⎝ ⎛⎭⎪⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a2,由AB ,F 1F 2相互平分且共圆,易知,AF 2⊥BF 2,由于F 2A →=(x 1-3,y 1),F 2B →=(x 2-3,y 2),所以F 2A →·F 2B →=(x 1-3)(x 2-3)+y 1y 2=⎝ ⎛⎭⎪⎫1+18x 1x 2+9=0.即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8,结合b 2+9=a 2,解得a 2=12,∴e =32.法二 设A (x 1,y 1),又AB ,F 1F 2相互平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得⎩⎪⎨⎪⎧x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1,将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32.(3)由(2)的结论知,椭圆方程为x 212+y 23=1,由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=3⎝ ⎛⎭⎪⎫1-x 2012-3⎝ ⎛⎭⎪⎫1-x 2112x 20-x 21=-14. 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 故直线PB 的斜率k 2的取值范围是⎝ ⎛⎭⎪⎫18,14.。

3.1.2椭圆的简单几何性质课件(第2课时)-高二上学期数学人教A版(2019)选择性必修第一册

3.1.2椭圆的简单几何性质课件(第2课时)-高二上学期数学人教A版(2019)选择性必修第一册

2
2
相应的准线方程分别为 = − 和 = .


|1 |
|2 |
=



= .
由椭圆第二定义得 2
2
+ 0
− 0
a2
l : x
c
a2
l:x
c
y
P


F1
O
|1 | = + 0 ,|2 | = − 0 .
说明:|1|, |2|称为椭圆的焦半径,此公式称为焦半径公式.
(2)当 Δ=0,即 m=±3 2 时,直线 l 与椭圆 C 有且只有一个公共点.
方法总结
方法总结:判断直线与椭圆的位置关系的方法
[注意]:方程组解的个数与直线与椭圆的公共点的个数之间是等价关系.
练习巩固
变式7-2: 求下列直线与椭圆的交点坐标:
2 2
2 2

+
= 1​.​
(1)​​3 + 10 − 25 = 0​,
复习导入
第三章
圆锥曲线的方程
3.1.2椭圆的简单几何性质
(第2课时)
练习巩固
例5:如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的
曲面)的一部分.过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点1 上,
片门位于另一个焦点2 上.由椭圆一个焦点1 发出的光线,经过旋转椭圆面反射后集中
|F1 B|2 + |F1 F2 |2 = 2.82 + 4.52 .
由椭圆的性质知,|F1 B| + |F2 B| = 2a.
所以a =
1
(|F1 B|
2

9.2椭圆-高考数学总复习历年(十年)真题题型归纳+模拟预测(原卷版)

9.2椭圆-高考数学总复习历年(十年)真题题型归纳+模拟预测(原卷版)

第9章 解析几何9.2 椭圆从近三年高考情况来看,椭圆的定义、标准方程、几何性质一直是高考命题的热点,尤其是离心率问题是高考考查的重点,多在选择题、填空题中出现,考查直线与椭圆的位置关系,常与向量、圆等知识相结合,多以解答题的形式出现,解题时,以直线与椭圆的位置关系为主,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.1.(2022•新高考2)已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x 轴、y 轴分别相交于M ,N 两点,且|MA |=|NB |,|MN |=2√3,则l 的方程为 . 2.(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22 C .12D .133.(2022•甲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→•BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1C .x 23+y 22=1D .x 22+y 2=1题型一.椭圆的标准方程与几何性质1.(2018•新课标Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .√22D .2√232.(2015•新课标Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点.且圆心在x 轴的正半轴上.则该圆标准方程为 .3.(2016•新课标Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .344.(2014•大纲版)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为√33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为4√3,则C 的方程为( ) A .x 23+y 22=1 B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=15.(2019•新课标Ⅰ)已知椭圆C 的焦点为F 1(﹣1,0),F 2(1,0),过点F 2的直线与椭圆C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A .x 22+y 2=1 B .x 23+y 22=1C .x 24+y 23=1 D .x 25+y 24=16.(2019•新课标Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为 . 7.(2021•甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为 . 8.(2013•新课标Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为(1,﹣1),则E 的方程为( ) A .x 245+y 236=1 B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1题型二.椭圆的离心率1.(2018•新课标Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1−√32 B .2−√3 C .√3−12D .√3−12.(2013•四川)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A .√24B .12C .√22D .√323.(2012•新课标)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12B .23C .34D .454.(2018•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .23B .12C .13D .145.(2017•新课标Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx ﹣ay +2ab =0相切,则C 的离心率为( ) A .√63B .√33C .√23D .136.(2016•新课标Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .347.(2013•辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率为( ) A .35B .57C .45D .678.(2018•北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2−y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 .题型三.取值范围问题1.(2017•新课标Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,√3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,√3]∪[4,+∞)2.(2021•乙卷)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB |的最大值为( ) A .52B .√6C .√5D .23.(2021•乙卷)设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P都满足|PB |≤2b ,则C 的离心率的取值范围是( )A .[√22,1)B .[12,1)C .(0,√22]D .(0,12]4.(2021•新高考Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|•|MF 2|的最大值为( ) A .13B .12C .9D .61.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为35,直线2x +y +10=0过椭圆的左顶点,则椭圆方程为( ) A .x 25+y 24=1 B .x 225+y 29=1 C .x 216+y 29=1D .x 225+y 216=12.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为( ) A .√32B .√22C .12D .√333.设椭圆y 2a 2+x 2b 2=1(a >b >0)的一个焦点为F 1(0,1),M (3,3)在椭圆外,点P为椭圆上的动点,若|PM |﹣|PF 1|的最小值为2,则椭圆的离心率为( ) A .23B .√34C .12D .144.已知动点M 在以F 1,F 2为焦点的椭圆x 2+y 24=1上,动点N 在以M 为圆心,半径长为|MF 1|的圆上,则|NF 2|的最大值为( ) A .2B .4C .8D .165.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (c ,0),上顶点为A (0,b ),直线x =a 2c 上存在一点P 满足(FP →+FA →)⋅AP →=0,则椭圆的离心率取值范围为( ) A .[12,1)B .[√22,1)C .[√5−12,1)D .(0,√22](多选)6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(﹣c ,0),F 2(c ,0)(c >0),下顶点为B .过点F 1的直线l 与曲线C 在第四象限交于点M ,且与圆A :(x +2c)2+y 2=14c 2相切,若MF 2→⋅F 1F 2→=0,则下列结论正确的是( ) A .椭圆C 上不存在点Q ,使得QF 1⊥QF 2 B .圆A 与椭圆C 没有公共点C .当a =3时,椭圆的短轴长为2√6D .F 2B ⊥F 1M.。

高考数学一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆教学案 理 新人教A版-新

高考数学一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆教学案 理 新人教A版-新

第2课时 直线与椭圆直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值X 围是( )A.m >1B.m >0C.0<m <5且m ≠1D .m ≥1且m ≠5 答案 D解析 方法一 由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴5k 2+m -1≥0, ∴m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.弦长及中点弦问题命题点1 弦长问题例1斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A.2B.455C.4105D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=2|x 1-x 2| =2x 1+x 22-4x 1x 2=2⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15=425·5-t 2, 当t =0时,|AB |max =4105.命题点2 中点弦问题例2已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________________. 答案 x +2y -3=0解析 方法一 易知此弦所在直线的斜率存在,∴设其方程为y -1=k (x -1),弦所在的直线与椭圆相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k x -1,x 24+y22=1,消去y 得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, ∴x 1+x 2=4k k -12k 2+1,又∵x 1+x 2=2, ∴4kk -12k 2+1=2,解得k =-12. 经检验,k =-12满足题意.故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.方法二 易知此弦所在直线的斜率存在,∴设斜率为k ,弦所在的直线与椭圆相交于A ,B 两点, 设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,①x 224+y 222=1,②①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2](k 为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式. 跟踪训练1(1)已知椭圆两顶点A (-1,0),B (1,0),过焦点F (0,1)的直线l 与椭圆交于C ,D 两点,当|CD |=322时,则直线l 的方程为________. 答案2x -y +1=0或2x +y -1=0.解析 由题意得b =1,c =1. ∴a 2=b 2+c 2=1+1=2. ∴椭圆方程为y 22+x 2=1.若直线l 斜率不存在时,|CD |=22,不符合题意. 若l 斜率存在时,设l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,y 2+2x 2=2,得(k 2+2)x 2+2kx -1=0.Δ=8(k 2+1)>0恒成立.设C (x 1,y 1),D (x 2,y 2). ∴x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. ∴|CD |=1+k 2|x 1-x 2| =1+k 2x 1+x 22-4x 1x 2=22k 2+1k 2+2.即22k 2+1k 2+2=322,解得k 2=2,∴k =± 2.∴直线l 方程为2x -y +1=0或2x +y -1=0.(2)(2019·某某模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),点F 为左焦点,点P 为下顶点,平行于FP的直线l 交椭圆于A ,B 两点,且AB 的中点为M ⎝⎛⎭⎪⎫1,12,则椭圆的离心率为( )A.22B.12C.14D.32答案 A解析 设A (x 1,y 1),B (x 2,y 2).∵AB 的中点为M ⎝⎛⎭⎪⎫1,12,∴x 1+x 2=2,y 1+y 2=1.∵PF ∥l ,∴k PF =k l =-b c =y 1-y 2x 1-x 2.∵x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ∴x 1+x 2x 1-x 2a 2+y 1+y 2y 1-y 2b2=0,∴2a 2+-bc b2=0,可得2bc =a 2,∴4c 2(a 2-c 2)=a 4,化为4e 4-4e 2+1=0, 解得e 2=12,又∵0<e <1,∴e =22. 直线与椭圆的综合问题例3(2019·某某)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 解 (1)设椭圆的半焦距为c ,依题意知,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0).设直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以,直线PB 的斜率为2305或-2305.思维升华(1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y (或x )得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形. 跟踪训练2已知椭圆C 的两个焦点分别为F 1(-1,0),F 2(1,0),短轴的两个端点分别为B 1,B 2. (1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P ,Q 两点,且F 1P →⊥F 1Q →,求直线l 的方程.解 (1)由题意知,△F 1B 1B 2为等边三角形,则⎩⎨⎧c =3b ,c =1,即⎩⎪⎨⎪⎧a 2-b 2=3b 2,a 2-b 2=1,解得⎩⎪⎨⎪⎧a 2=43,b 2=13,故椭圆C 的方程为3x 24+3y 2=1.(2)易知椭圆C 的方程为x 22+y 2=1,当直线l 的斜率不存在时,其方程为x =1,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧y =k x -1,x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2(k 2-1)=0,Δ=8(k 2+1)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-12k 2+1,F 1P →=(x 1+1,y 1),F 1Q →=(x 2+1,y 2),因为F 1P →⊥F 1Q →,所以F 1P →·F 1Q →=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0,解得k 2=17,即k =±77,故直线l 的方程为x +7y -1=0或x -7y -1=0.1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A.至多为1B.2C.1D.0 答案 B 解析 由题意知,4m 2+n2>2,即m 2+n 2<2, ∴点P (m ,n )在椭圆x 29+y 24=1的内部, 故所求交点个数是2.2.直线y =kx +1,当k 变化时,此直线被椭圆x 24+y 2=1截得的最大弦长是( )A.2B.433C.4D.不能确定答案 B解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x ,y ), 则弦长为x 2+y -12=4-4y 2+y 2-2y +1=-3y 2-2y +5,当y =-13时,弦长最大为433.3.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.43B.53C.54D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43,不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53, 故选B.4.已知椭圆x 236+y 29=1以及椭圆内一点P (4,2),则以P 为中点的弦所在直线的斜率为( )A.12B.-12C.2D.-2 答案 B解析 设弦所在直线的斜率为k ,弦的端点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4,⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y229=1,两式相减,得x 1+x 2x 1-x 236+y 1+y 2y 1-y 29=0,所以2x 1-x 29=-4y 1-y 29,所以k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意.故弦所在直线的斜率为-12.故选B.5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点,若AB 的中点为M (1,-1),则椭圆E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案 D解析 k AB =0+13-1=12,k OM =-1,由k AB ·k OM =-b 2a 2,得b 2a 2=12,∴a 2=2b 2.∵c =3,∴a 2=18,b 2=9,椭圆E 的方程为x 218+y 29=1.6.(2019·某某模拟)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba的值为( ) A.32B.233 C.932 D.2327答案 B解析 方法一 设A (x 1,y 1),B (x 2,y 2), 则ax 21+by 21=1,ax 22+by 22=1, 即ax 21-ax 22=-(by 21-by 22),则by 21-by 22ax 21-ax 22=-1,b y 1-y 2y 1+y 2a x 1-x 2x 1+x 2=-1,由题意知,y 1-y 2x 1-x 2=-1, 过点⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22与原点的直线的斜率为32,即y 1+y 2x 1+x 2=32, ∴b a×(-1)×32=-1, ∴b a =233,故选B. 方法二 由⎩⎪⎨⎪⎧y =1-x ,ax 2+by 2=1消去y ,得(a +b )x 2-2bx +b -1=0, 可得AB 中点P 的坐标为⎝ ⎛⎭⎪⎫b a +b ,a a +b ,∴k OP =a b =32,∴b a =233. 7.直线y =kx +k +1与椭圆x 29+y 24=1的位置关系是________.答案 相交解析 由于直线y =kx +k +1=k (x +1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.8.设F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为__________. 答案x 29+y 26=1 解析 ∵△F 2AB 是面积为43的等边三角形,∴AB ⊥x 轴,∴A ,B 两点的横坐标为-c ,代入椭圆方程,可求得|F 1A |=|F 1B |=b 2a.又|F 1F 2|=2c ,∠F 1F 2A =30°,∴b 2a =33×2c .① 又2F AB S △=12×2c ×2b2a=43,②a 2=b 2+c 2,③由①②③解得a 2=9,b 2=6,c 2=3, ∴椭圆C 的方程为x 29+y 26=1.9.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O为坐标原点),则△F 1PF 2的面积是________. 答案 1解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n , 则m +n =4,m 2+n 2=12, ∴2mn =4,mn =2, ∴12F PF S △=12mn =1.10.(2020·某某部分重点中学联考)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且|AF 1|=3|BF 1|,|AB |=|BF 2|,则椭圆C 的离心率为________. 答案105解析 设|BF 1|=k ,则|AF 1|=3k ,|BF 2|=4k .由|BF 1|+|BF 2|=|AF 1|+|AF 2|=2a ,得2a =5k ,|AF 2|=2k .在△ABF 2中,cos∠BAF 2=4k 2+2k 2-4k 22×4k ×2k=14, 又在△AF 1F 2中,cos∠F 1AF 2=3k 2+2k 2-2c22×3k ×2k =14, 所以2c =10k ,故离心率e =ca =105. 11.已知椭圆C :x 22+y 24=1,过椭圆C 上一点P (1,2)作倾斜角互补的两条直线PA ,PB ,分别交椭圆C 于A ,B 两点,则直线AB 的斜率为________.答案 2 解析 设A (x 1,y 1),B (x 2,y 2),同时设PA 的方程为y -2=k (x -1),代入椭圆方程化简,得(k 2+2)x 2-2k (k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解,因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2, 由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2, 所以y 2-y 1x 2-x 1= 2. 故直线AB 的斜率为 2. 12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,E 的离心率为22,点(0,1)是E 上一点.(1)求椭圆E 的方程;(2)过点F 1的直线交椭圆E 于A ,B 两点,且BF 1→=2F 1A →,求直线BF 2的方程.解 (1)由题意知,b =1,且e 2=c 2a 2=a 2-b 2a 2=12, 解得a 2=2,所以椭圆E 的方程为x 22+y 2=1. (2)由题意知,直线AB 的斜率存在且不为0,故可设直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ x 22+y 2=1,x =my -1,得(m 2+2)y 2-2my -1=0,则y 1+y 2=2m m 2+2,① y 1y 2=-1m 2+2,② 因为F 1(-1,0),所以BF 1→=(-1-x 2,-y 2),F 1A →=(x 1+1,y 1),由BF 1→=2F 1A →可得,-y 2=2y 1,③由①②③可得B ⎝ ⎛⎭⎪⎫-12,±144, 则2BF k =146或-146, 所以直线BF 2的方程为14x -6y -14=0或14x +6y -14=0.13.(2019·全国100所名校联考)已知椭圆C :x 2+y 2b 2=1(b >0,且b ≠1)与直线l :y =x +m 交于M ,N 两点,B 为上顶点.若|BM |=|BN |,则椭圆C 的离心率的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎣⎢⎡⎭⎪⎫22,1C.⎝ ⎛⎭⎪⎫63,1D.⎝⎛⎦⎥⎤0,63 答案 C解析 设直线y =x +m 与椭圆x 2+y 2b 2=1的交点为M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =x +m ,x 2+y 2b 2=1,得(b 2+1)x 2+2mx +m 2-b 2=0, 所以x 1+x 2=-2m b 2+1,x 1x 2=m 2-b 2b 2+1, Δ=(2m )2-4(b 2+1)(m 2-b 2)=4b 2(b 2+1-m 2)>0.设线段MN 的中点为G ,知G 点坐标为⎝ ⎛⎭⎪⎫-m b 2+1,b 2m b 2+1, 因为|BM |=|BN |,所以直线BG 垂直平分线段MN ,所以直线BG 的方程为y =-x +b ,且经过点G ,可得b 2m b 2+1=m b 2+1+b ,解得m =b 3+b b 2-1. 因为b 2+1-m 2>0,所以b 2+1-⎝ ⎛⎭⎪⎫b 3+b b 2-12>0, 解得0<b <33, 因为e 2=1-b 2,所以63<e <1. 14.(2019·某某调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),斜率为-12的直线l 与椭圆C 交于A ,B 两点.若△ABF 1的重心为G ⎝ ⎛⎭⎪⎫c 6,c 3,则椭圆C 的离心率为________.答案 63解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, 两式相减得x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b 2=0.(*) 因为△ABF 1的重心为G ⎝ ⎛⎭⎪⎫c 6,c 3, 所以⎩⎪⎨⎪⎧ x 1+x 2-c 3=c 6,y 1+y 23=c 3,故⎩⎪⎨⎪⎧ x 1+x 2=3c 2,y 1+y 2=c ,代入(*)式得3x 1-x 2c 2a 2+y 1-y 2c b 2=0, 所以y 1-y 2x 1-x 2=-3b 22a 2=-12,即a 2=3b 2, 所以椭圆C 的离心率e =63. 15.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则椭圆在其上一点A (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b2=1(a >b >0),其焦距为2,且过点⎝ ⎛⎭⎪⎫1,22,点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( ) A.22B.2C.3D.2 答案 B解析 由题意可得2c =2,即c =1,a 2-b 2=1,将点⎝ ⎛⎭⎪⎫1,22代入椭圆方程,可得1a 2+12b 2=1, 解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B (x 2,y 2), 则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1, 令x =0,得y D =1y 2,令y =0,可得x c =2x 2, 所以S △OCD =12·1y 2·2x 2=1x 2y 2, 又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1, 即有1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2, 即S △OCD ≥2,当且仅当x 222=y 22=12, 即点B 的坐标为⎝ ⎛⎭⎪⎫1,22时,△OCD 面积取得最小值2,故选B. 16.已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝ ⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程; (2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0), 由题意可得⎩⎪⎨⎪⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧ a 2=4,b 2=1.故椭圆C 的标准方程为x 24+y 2=1. (2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4, 所以x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75. 又|AB |=1+34x 1+x 22-4x 1x 2=72·4-m 2, O 到直线AB 的距离d =|m |1+34=|m |72, 所以S △AOB =12·|AB |·d =12×72×4-m 2×|m |72=9110.。

2024年高考数学一轮复习(新高考版)《椭圆》课件ppt

2024年高考数学一轮复习(新高考版)《椭圆》课件ppt

A.x62+y52=1
√B.x52+y42=1
C.x32+y22=1
D.x42+y32=1
如图,不妨设A(x0,y0)在第一象限,由椭圆的左焦 点F1(-1,0),点C,F1是线段AB的三等分点, 得C为AF1的中点,F1为BC的中点, 所以x0=1, 所以a12+by202=1, 解得 y0=ba2,即 A1,ba2, 所以 C0,2ba2 ,B-2,-2ba2 ,
(2)(2022·全国甲卷)椭圆 C:ax22+by22=1(a>b>0)的左顶点为 A,点 P,Q 均 在 C 上,且关于 y 轴对称.若直线 AP,AQ 的斜率之积为14,则 C 的离心 率为
√A.
3 2
1 C.2
2 B. 2
1 D.3
设P(m,n)(n≠0),
则Q(-m,n),易知A(-a,0),
常用结论
(3)|PF1|max=a+c,|PF1|min=a-c. (4)|PF1|·|PF2|≤|PF1|+2 |PF2|2=a2. (5)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos θ. (6)焦点三角形的周长为2(a+c).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.
b4 将点 B 的坐标代入椭圆方程得a42+4ba22=1, 即a42+4ba22=1,
结合a2-b2=c2=1,解得a2=5,b2=4, 所以椭圆的标准方程是x52+y42=1.
题型三 椭圆的几何性质
命题点1 离心率 例 4 (1)(2022·太原模拟)设 F1,F2 是椭圆 E:ax22+by22=1(a>b>0)的左、右

高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新

高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新

§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。

(黄冈名师)2020版高考数学大一轮复习9.5空间直角坐标系、空间向量及其运算课件理新人教A版

(黄冈名师)2020版高考数学大一轮复习9.5空间直角坐标系、空间向量及其运算课件理新人教A版

(2)中点公式:
设点P(x,y,z)为P1(x1,y1,z1),P2(x2,y2,z2)的中点,则
x
=
x1
+ 2
x2
,
y
=
y1
+ y2 2
,
z
=
z1
+ 2
z2
.
__________
3.空间向量的有关概念
名称 空间向量 相等向量 相反向量
共线向量 (或平行向 量) 共面向量
定义 在空间中,具有_大__小__和_方__向__的量 方向_相__同__且模_相__等__的向量 方向_相__反__且模_相__等__的向量
3
2
32
322
2.在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若
AB a, AD b, AA1 c, 则下列向量中与 MB1 相等的向量 是( )
A.- 1 a+ 1 b+c
22
C. 1
2
a-
1 2
b+c
B. 1 a+ 1 b+c
22
D.- 1 a- 1 b+c
22
(3)空间向量基本定理:如果三个向量a,b,c_不__共__面__, 那么对空间任一向量p,存在有序实数组{x,y,z},使得 _p_=_x_a_+_y_b_+_z_c_.其中, _{_a_,_b_,_c_}_叫做空间的一个基底.
【常用结论】 1.零向量不可以作为基向量. 2.基底选定后,空间的所有向量都可由基底唯一表示. 3.空间向量的线性运算和数量积运算可类比平面向量 的线性运算和数量积运算.
表示空间向量的有向线段所在的直线 互相_平__行__或__重__合__的向量

2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质

2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质

)
A.m>1
B.m>0
C.0<m<5 且 m≠1 D.m≥1 且 m≠5
【解析】选
D.方法一:由于直线
y=kx+1
恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则
1 0<m
≤1 且
m≠5,故 m≥1 且 m≠5.
y=kx+1, 方法二:由
消去 y 整理得(5k2+m)x2+10kx+5(1-m)=0.
【解析】(1)由题意知 e=ac =21 ,2a=4.又 a2=b2+c2,解得 a=2,b= 3 ,所以椭圆方程为x42 +y32 =1. (2)①当两条弦中一条弦所在直线的斜率为 0 时,另一条弦所在直线的斜率不存在,由题意知|AB|+|CD|=7,不满足条件.
②当两弦所在直线的斜率均存在且不为 0 时,设直线 AB 的方程为 y=k(x-1),A(x1,y1),B(x2,y2),则直线 CD 的方程为 y=
第2课时 椭圆的几何性质
第九章 平面解析几何
考点探究·悟法培优
考点探究·悟法培优
考点一 椭圆的几何性质 多维探究
高考考情:椭圆的几何性质是历年高考的重点,其中离心率的求解常出现在小题中,直线与椭圆的交点问题
几乎每年必考,难度较大.
·角度 1 求椭圆的离心率的值(范围) [典例 1](1)已知 F1,F2 是椭圆 C:ax22 +by22 =1(a>b>0)的左、右焦点,A 是 C 的左顶点,点 P 在过 A 且斜
·角度 2 与椭圆有关的范围(最值)问题 [典例 2]已知椭圆ax22 +by22 =1(a>b>0)的右焦点为 F2(3,0),离心率为 e.
(1)若 e=
3 2
,求椭圆的方程;

高考数学总复习第八章解析几何8.5椭圆理新人教A版

高考数学总复习第八章解析几何8.5椭圆理新人教A版

4.理解数形结合的思想. 以解答题的形式呈现,具有
一定的综合性.
课堂探究 考点突破
真题模拟演练
课堂探究 考点突破
考点一 椭圆的定义及标准方程
(1)已知椭圆 C:x42+y32=1,M,N 是坐标平面内的两点,
且 M 与 C 的焦点不重合.若 M 关于 C 的焦点的对称点分别为 A,B,
线段 MN 的中点在 C 上,则|AN|+|BN|=( B )
解:设弦的端点为 P(x1,y1),Q(x2,y2),其中点是 M(x,y).
x221+y21=1,① x222+y22=1,②
①-②得yx22--yx11=-2xy22++xy11=-2xy,
所以-2xy=yx--12, 化简得 x2-2x+2y2-2y=0(包含在椭圆x22+y2=1 内部的部
圆 E 的方程为 x2+32y2=1 .
解析:设点 B 的坐标为(x0,y0). ∵x2+by22=1, ∴F1(- 1-b2,0),F2( 1-b2,0). ∵AF2⊥x 轴,设点 A 在 x 轴上方, 则 A( 1-b2,b2).
∵|AF1|=3 1-b2,y0). ∴x0=-53 1-b2,y0=-b32. ∴点 B 的坐标为-53 1-b2,-b32. 将 B-53 1-b2,-b32代入 x2+by22=1, 得 b2=23.
B.

32-1,12
D.0,12
解析:由题意可得,|PF2|2=|F1F2|2+|PF1|2-2|F1F2|·|PF1|cos
∠ PF1F2 = 4c2 + 4c2 - 2·2c·2c·cos ∠ PF1F2 , 即 |PF2| = 2 2
c· 1-cos∠PF1F2 , 所 以
1.椭圆定义的应用技巧 (1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角 形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周 长和面积问题. 2.椭圆方程的求解方法 (1)求椭圆的标准方程多采用定义法和待定系数法. (2)利用定义法求椭圆方程,要注意条件 2a>|F1F2|;利用待 定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为 mx2 +ny2=1(m>0,n>0,m≠n)的形式.

课标A版--高考数学一轮复习---§9.4 椭圆及其性质--(附答案)

课标A版--高考数学一轮复习---§9.4 椭圆及其性质--(附答案)

§9.4椭圆及其性质考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.五年高考考点一椭圆的定义及其标准方程1.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.答案x2+y2=12.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以,椭圆的方程为+=1. (2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-,或k≥.所以,直线l的斜率的取值范围为∪.3.(2015陕西,20,12分)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d==,由d=c,得a=2b=2,解得离心率=.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意得,圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意得,点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则+4=4b2,+4=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1≠x2,所以AB的斜率k AB==.因此直线AB的方程为y=(x+2)+1,代入②得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.教师用书专用(4)4.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案12考点二椭圆的几何性质1.(2017浙江,2,5分)椭圆+=1的离心率是()A. B. C. D.答案B2.(2017课标全国Ⅲ,10,5分)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A. B. C. D.答案A3.(2016课标全国Ⅲ,11,5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D.答案A4.(2016浙江,19,15分)如图,设椭圆+y2=1(a>1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,由得(1+a2k2)x2+2a2kx=0,故x1=0,x2=-.因此|AP|=|x1-x2|=·.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知,|AP|=,|AQ|=,故=,所以(-)[1+++a2(2-a2)]=0.由于k1≠k2,k1,k2>0得1+++a2(2-a2)=0,因此=1+a2(a2-2),①因为①式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a>.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤,由e==得,所求离心率的取值范围为0<e≤.教师用书专用(5—9)5.(2013浙江,9,5分)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是()A. B. C. D.答案D6.(2016江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.答案7.(2013福建,14,4分)椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.答案-18.(2015安徽,20,13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB 上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解析(1)由题设条件知,点M的坐标为,又k OM=,从而=.进而得a=b,c==2b.故e==.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为.又点T在直线AB上,且k NS·k AB=-1,从而有解得b=3.所以a=3,故椭圆E的方程为+=1.9.(2014天津,18,13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切.求直线l的斜率.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=·|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为+=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有·=0,即(x0+c)c+y0c=0.又c≠0,故有x0+y0+c=0.①又因为点P在椭圆上,故+=1.②由①和②可得3+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入①得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1==-c,y1==c,进而圆的半径r==c.设直线l的斜率为k,依题意,直线l的方程为y=kx.由l与圆相切,可得=r,即=c,整理得k2-8k+1=0,解得k=4±.所以直线l的斜率为4+或4-.考点三直线与椭圆的位置关系1.(2016课标全国Ⅰ,20,12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.解析(1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.(2分)由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).(4分)(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).由得(4k2+3)x2-8k2x+4k2-12=0.则x1+x2=,x1x2=.所以|MN|=|x1-x2|=.(6分)过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2=4.故四边形MPNQ的面积S=|MN||PQ|=12.(10分)可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).(12分)2.(2017天津,19,14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.解析(1)设F的坐标为(-c,0).依题意,=,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P,故Q.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=.由点B异于点A,可得点B.由Q,可得直线BQ的方程为(x+1)-=0,令y=0,解得x=,故D.所以|AD|=1-=.又因为△APD的面积为,故××=,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-y-3=0.教师用书专用(3—5)3.(2015江苏,18,16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.解析(1)由题意,得=且c+=3,解得a=,c=1,则b=1,所以椭圆的标准方程为+y2=1.(2)当AB⊥x轴时,AB=,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=,C的坐标为,且AB===.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k≠0,故直线PC的方程为y+=-,则P点的坐标为,从而PC=.因为PC=2AB,所以=,解得k=±1.此时直线AB方程为y=x-1或y=-x+1.4.(2015山东,20,13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知2a=4,则a=2.又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ面积为3S,所以△ABQ面积的最大值为6.5.(2013北京,19,14分)已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.解析(1)椭圆W:+y2=1的右顶点B的坐标为(2,0).因为四边形OABC为菱形,所以AC与OB相互垂直平分.所以可设A(1,m),代入椭圆方程得+m2=1,即m=±.所以菱形OABC的面积是|OB|·|AC|=×2×2|m|=.(2)假设四边形OABC为菱形.因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为y=kx+m(k≠0,m≠0).由消y并整理得(1+4k2)x2+8kmx+4m2-4=0.设A(x1,y1),C(x2,y2),则=-,=k·+m=.所以AC的中点为M.因为M为AC和OB的交点,所以直线OB的斜率为-.因为k·≠-1,所以AC与OB不垂直.所以OABC不是菱形,与假设矛盾.所以当点B不是W的顶点时,四边形OABC不可能是菱形.三年模拟A组2016—2018年模拟·基础题组考点一椭圆的定义及其标准方程1.(2018河南豫南豫北二联,8)若F(c,0)是椭圆+=1的右焦点,F与椭圆上点的距离的最大值为M,最小值为m,则椭圆上与F点的距离等于的点的坐标是()A. B.C.(0,±b)D.不存在答案C2.(2018广东清远一模,8)曲线C1:+(m>n>0),曲线C2:-=1(a>b>0).若C1与C2有相同的焦点F1、F2,且P同在C1、C2上,则|PF1|·|PF2|=()A.m+aB.m-aC.m2+a2D.m2-a2答案B3.(人教A选2-1,二,2-2-1,1,变式)平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是()A.[1,4]B.[2,6]C.[3,5]D.[3,6]答案C4.(2017江西九江模拟,8)F1,F2是椭圆+=1的左、右焦点,A为椭圆上一点,且∠AF1F2=45°,则△AF1F2的面积为()A.7B.C.D.答案C5.(2017湖南东部六校4月联考,15)设P,Q分别是圆x2+(y-1)2=3和椭圆+y2=1上的点,则P、Q两点间的最大距离是.答案考点二椭圆的几何性质6.(2018四川凉山州模拟,4)以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.答案D7.(2018四川达州模拟,7)以圆x2+y2=4与x轴的交点为焦点,以抛物线y2=10x的焦点为一个顶点且中心在原点的椭圆的离心率是()A. B. C. D.答案C8.(2017河南4月质检,11)已知椭圆C:+=1(a>b>0)的右焦点为F2,O为坐标原点,M为y轴上一点,点A是直线MF2与椭圆C的一个交点,且|OA|=|OF2|=2|OM|,则椭圆C的离心率为()A. B. C. D.答案D考点三直线与椭圆的位置关系9.(2018安徽合肥模拟,8)已知椭圆C:+y2=1,若一组斜率为的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为()A.-2B.2C.-D.答案A10.(2018广东广州模拟,10)已知点M(-1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“椭型直线”的是()A.①③B.①②C.②③D.③④答案C11.(2017湖南百校联盟4月联考,10)已知椭圆+=1(a>b>0)的右顶点和上顶点分别为A、B,左焦点为F.以原点O为圆心的圆与直线BF相切,且该圆与y轴的正半轴交于点C,过点C的直线交椭圆于M、N两点.若四边形FAMN是平行四边形,则该椭圆的离心率为()A. B. C. D.答案A12.(2017湖南益阳调研,20)已知椭圆+=1(a>b>0)的离心率e=,点P(0,)在椭圆上,A、B分别为椭圆的左、右顶点,过点B作BD⊥x 轴交AP的延长线于点D,F为椭圆的右焦点.(1)求椭圆的方程及直线PF被椭圆截得的弦长|PM|;(2)求证:以BD为直径的圆与直线PF相切.解析(1)∵椭圆过点P(0,),∴b=,∵e=,∴=,结合a2=b2+c2,得a=2,c=1,∴椭圆的方程为+=1.则F(1,0),结合P(0,),可得直线PF的方程为y=-(x-1),与椭圆方程联立,得消去y,得5x2-8x=0,解得x1=0,x2=.由弦长公式得|PM|=|x1-x2|=.(2)证明:易得A(-2,0),B(2,0),∴直线AP的方程为y=(x+2),直线BD的方程为x=2,两方程联立,求得D(2,2),所以以BD为直径的圆的圆心为(2,),半径R=,圆心到直线PF的距离d==,所以以BD为直径的圆与直线PF相切.B组2016—2018年模拟·提升题组(满分:50分时间:50分钟)一、选择题(每小题5分,共15分)1.(2018四川德阳模拟,9)设点P为椭圆C:+=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为()A.24B.12C.8D.6答案C2.(2018广东清远模拟,11)已知m、n、s、t∈R*,m+n=3,+=1,其中m、n是常数且m<n,若s+t的最小值是3+2,满足条件的点(m,n)是椭圆+=1的一条弦的中点,则此弦所在直线的方程为()A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0答案D3.(2017河南八市2月联考,9)已知F1,F2分别是椭圆+=(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,O为坐标原点,直线OA的斜率为,·=||2,则椭圆的离心率为()A. B. C. D.答案A二、填空题(共5分)4.(2017安徽安庆二模,15)已知椭圆+=1(a>b>0)短轴的端点为P(0,b)、Q(0,-b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA、PB的斜率之积等于-,则P到直线QM的距离为.答案三、解答题(共30分)5.(2018广东茂名模拟,20)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF 的中点为M,线段BF的中点为N,且·=.(1)求弦AB的长;(2)当直线l的斜率k=,且直线l'∥l时,l'交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.解析(1)由题意可知2c=2,c=,设F(,0),A(x0,y0),B(-x0,-y0),则M,N,由·==,则+=5,则|AB|=2=2.(2)证明:直线l的斜率k=,l:y=x,设l':y=x+m(m≠0),y0=x0,由+=5,得A(2,1),由c=,代入椭圆方程解得a=2,b=,∴椭圆的方程为+=1,联立整理得x2+2mx+2m2-4=0,Δ=4m2-4(2m2-4)>0,即m∈(-2,0)∪(0,2).设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2-4=0,可得x1+x2=-2m,x1x2=2m2-4,k1+k2=+=====0,即k1+k2=0.∴直线AP,AQ与x轴围成一个等腰三角形.6.(2017江西红色七校一联,21)已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.解析(1)设椭圆方程为+=1(a>b>0),根据题意得b=c=1,所以a2=b2+c2=2,所以椭圆的方程为+y2=1.(2)根据题意得直线l的方程为y=x-1,联立得P,Q的坐标为(0,-1),,∴|PQ|=,易得点O到直线PQ的距离为,所以S△OPQ=.(3)存在.假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形,因为直线l与x轴不垂直,所以直线l的斜率存在,可设直线l的方程为y=k(x-1)(k≠0),P,Q的坐标分别为(x1,y1),(x2,y2),则=(x1-m,y1),=(x2-m,y2),由得(1+2k2)x2-4k2x+2k2-2=0,∴x1+x2=,x1·x2=,由于以MP,MQ为邻边的平行四边形是菱形,∴||=||,设PQ的中点为N,则N,又k·k MN=-1,∴m==,∴0<m<.C组2016—2018年模拟·方法题组方法1求椭圆的标准方程的方法1.(2017河南部分重点中学联考,11)如图,已知椭圆C的中心为原点O,F(-2,0)为C的左焦点,P为C上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C的方程为()A.+=1B.+=1C.+=1D.+=1答案C2.(2018四川南充模拟,20)已知椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率e=.(1)求椭圆的标准方程;(2)若P是椭圆上的任意一点,求·的取值范围.解析(1)∵|F1F2|=2,椭圆的离心率e=,∴c=1,a=2,∴b=,∴椭圆的标准方程为+=1.(2)设P(x,y),∵A(-2,0),F1(-1,0),∴·=(-1-x)(-2-x)+y2=x2+3x+5,由椭圆方程得-2≤x≤2,二次函数图象开口向上,对称轴为x=-6<-2,当x=-2时,取到最小值0,当x=2时,取到最大值12.∴·的取值范围是[0,12].方法2椭圆的几何性质的应用策略3.(2018河北衡水金卷二模,7)我国自主研制的第一个月球探测器——“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是,(如图所示),则“嫦娥一号”卫星轨道的离心率为()A. B. C. D.答案A4.(2017福建四地六校模拟,15)已知椭圆C:+=1(a>b>0)和圆O:x2+y2=b2,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率的取值范围为.答案5.(2017河南开封一模,20)已知平面直角坐标系xOy中,椭圆的中心为坐标原点,焦点在x轴上,其左、右焦点分别为F1,F2,过椭圆右焦点F2且斜率为1的直线交椭圆于A,B两点,且+与a=(3,-1)共线.(1)求椭圆的离心率;(2)若椭圆短轴的一个端点到右焦点的距离为,直线l与椭圆C交于P,Q两点,坐标原点O到直线l的距离为,求△POQ面积的最大值.解析(1)设椭圆的方程为+=1(a>b>0),右焦点F2(c,0)(c>0),则直线AB的方程为y=x-c.设A(x1,y1),B(x2,y2).由得(b2+a2)x2-2a2cx+a2c2-a2b2=0,∴x1+x2=,x1x2=,∴y1+y2=x1-c+x2-c=-,由+与a=(3,-1)共线,得3(y1+y2)+(x1+x2)=0,∴3×+=0,即a2=3b2,a=b,∴c=b,∴e=.(2)由椭圆短轴的一个端点到右焦点的距离为及(1),得a=,b=1,故椭圆的方程为+y2=1.①当PQ⊥x轴时,|PQ|=;②当PQ与x轴不垂直且不与x轴平行时,设直线l的方程为y=kx+m(k≠0),由=得m2=(k2+1),把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0,设P(x3,y3),Q(x4,y4),则x3+x4=,x3x4=,∴|PQ|2=(1+k2)(x4-x3)2=(1+k2)[(x4+x3)2-4x3x4]=(1+k2)·==3+=3+≤3+=4,当且仅当9k2=,即k=±时等号成立.③当PQ与x轴平行,即k=0时,|PQ|=,综上,|PQ|max=2.∴当|PQ|最大时,△POQ的面积取得最大值,为×2×=.方法3解决直线与椭圆位置关系问题的方法6.(2017湖南六校4月联考,16)过椭圆+=1(a>b>0)上的动点M作圆x2+y2=的两条切线,切点分别为P和Q,直线PQ与x轴和y轴的交点分别为E和F,则△EOF面积的最小值是.答案7.(2018四川凉山州模拟,20)若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方的两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.解析(1)设AB的中点为M,则M,由得+(y1-y2)(y1+y2)=0,∴(x1-x2)+(y1-y2)=0⇒=-,即k AB=-,∴线段AB的垂直平分线的斜率为.∴线段AB的垂直平分线的方程为y-=(x-1),即9x-2y-8=0.(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2-9=0,∴x1+x2=-=2⇒9k2+9km+1=0.①∵A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方的两点,∴k<0,m>0,②Δ=(18km)2-4(1+9k2)(9m2-9)>0⇒9k2-m2+1>0.③结合①②得m=(-k)+≥,当且仅当k=-时取到等号.此时,k=-,m=满足③.∴直线AB在y轴上截距的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=2,∴C的方程为 x2 + y2 =1.
32
1-3 已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一
定点,则|PA|+|PF|的最大值为
,最小值为
.
答案 6+ 2 ;6- 2
解析 椭圆方程化为 x2 + y2 =1,
95
设F1是椭圆的右焦点,则F1(2,0), ∴|AF1|= 2,∴|PA|+|PF|=|PA|-|PF1|+6, 又-|AF1|≤|PA|-|PF1|≤|AF1|(当P,A,F1共线时等号成立), ∴|PA|+|PF|≤6+ 2,|PA|+|PF|≥6- 2.
32
D. y2 + x2 =1
43
答案 D 由题意可设椭圆C的标准方程为 ay22 + bx22 =1(a>b>0),且另一个
焦点为F2(0,-1),
所以2a=|PF1|+|PF2|
=

3 2
2


(1

1)2
+

3 2
2


(1

1)2
=4.
所以a=2,又c=1,
1-2 已知椭圆C: ax22 + by22 =1(a>b>0)的左、右焦点为F1、F2,离心率为 33 ,
过F2的直线l交C于A、B两点.若△AF1B的周长3; y2 =1
32
解析 由题意及椭圆的定义知4a=4 3,则a= 3,又 c = c = 3 ,∴c=1,∴b2 a 33
则rr112rr22224ac, 2,
∴2r1r2=(r1+r2)2-(r 12 +r 22 )
=4a2-4c2=4b2,
∴ S
PF1F2
=
1 2
r1r2=b2=9,
∴b=3.
◆探究 在本例中增加条件“△PF1F2的周长为18”,其他条件不变,求 该椭圆的方程.
解析 由原题得b2=a2-c2=9,① 由△PF1F2的周长为18得2a+2c=18,② 由①②,解得a=5,c=4,
故椭圆方程为 x2 + y2 =1.
25 9
命题方向三 利用定义求最值
x2 y2
典例3 设P是椭圆 25 + 9 =1上一点,M,N分别是两圆:(x+4)2+y2=1和(x-4)2
+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )
A.9,12 B.8,11
C.8,12 D.10,12
第五节 椭 圆
教 1.椭圆的定义
材 2.椭圆的标准方程和几何性质 研 读 3.点P(x0,y0)和椭圆的位置关系
考点一 椭圆定义的应用
考 点 考点二 椭圆的标准方程 突 考点三 椭圆的几何性质 破 考点四 直线与椭圆的位置关系
教材研读
1.椭圆的定义
平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹 叫做① 椭圆 .这两个定点叫做椭圆的② 焦点 ,两焦点间的距离 叫做椭圆的③ 焦距 . 集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数. (1)若④ a>c ,则集合P表示椭圆;(2)若⑤ a=c ,则集合P表示线段; (3)若⑥ a<c ,则集合P为空集.
椭圆的标准方程
典例4 (2019湖北黄冈模拟)如图,已知椭圆C的中心为原点O,F(-5,0)为 C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的方程为( )
A. x2 + y2 =1
36 16
B. x2 + y2 =1 C. x2 + y2 =1
40 15
49 24
D. x2 + y2 =1
故所求的轨迹方程为 x2 + y2 =1.
64 48
命题方向二 利用定义解决“焦点三角形”问题
典例2 已知F1,F2是椭圆C: ax22 + by22 =1(a>b>0)的两个焦点,P为椭圆C上的
一点,且 PF1⊥ PF2 .若△PF1F2的面积为9,则b=
.
答案 3
解析 设|PF1|=r1,|PF2|=r2,
(3) S PF1F2 = 12 |PF1||PF2|·sin θ=c|y0|=b2tan θ2 ,当|y0|=b,即P为短轴端点时,S PF1F2
取最大值,最大值为bc;
(4)焦点三角形的周长为2(a+c).
1.判断正误(正确的打“√”,错误的打“✕”) (1)平面内到两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆. (✕) (2)椭圆上一点P与两焦点F1,F2构成的△PF1F2的周长为2a+2c(其中a为 椭圆的长半轴长,c为椭圆的半焦距). ( √ ) (3)椭圆的离心率e越大,椭圆就越圆. ( ✕ )
所以b2=a2-c2=3.
故所求的椭圆C的标准方程为 y2 + x2 =1.故选D.
43
5.(教材习题改编)椭圆C的长轴长是短轴长的3倍,则C的离心率为 ( D )
A. 6 B. 2 C. 3 D. 2 2
3
3
3
3
答案 D 不妨设椭圆C的方程为 ax22 + by22 =1(a>b>0),则2a=2b×3,即a=3b.
以椭圆 ax22 + by22 =1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶
点的△PF1F2中,若∠F1PF2=θ,则 (1)|PF1|=a+ex0,|PF2|=a-ex0(焦半径公式,e为椭圆的离心率),|PF1|+|PF2|=2a;
(2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ;
则 36mm

2nn1,1,解得mn 119.,
3
∴所求椭圆的方程为 x2 + y2 =1.
93
椭圆的几何性质
命题方向一 求椭圆的长轴长、短轴长和焦距
典例5 已知椭圆 x2 + y2 =1的长轴在x轴上,焦距为4,则m=
m 2 10 m
.
答案 8
解析
m 2 0,
因为椭圆 x2 + y2 =1的长轴在x轴上,所以10 m 0, 解得6
m 2 10 m
m 2 10 m,
<m<10.因为焦距为4,所以c2=m-2-10+m=4,解得m=8.
命题方向二 椭圆的离心率
典例6 (1)(2018课标全国Ⅱ,11,5分)已知F1,F2是椭圆C的两个焦点,P是 C上的一点.若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为 ( D )
内切,和圆C2相外切,则动圆圆心M的轨迹方程为 ( D )
A. x2 - y2 =1
64 48
C. x2 - y2 =1
48 64
B. y2 + x2 =1
64 48
D. x2 + y2 =1
64 48
答案 (1)A (2)D
解析 (1)连接QA.由已知得|QA|=|QP|. 所以|QO|+|QA|=|QO|+|QP|=|OP|=r. 又因为点A在圆内,所以|OA|<|OP|,根据椭圆的定义,知点Q的轨迹是以O, A为焦点,r为长轴长的椭圆.故选A. (2)设圆M的半径为r, 则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|, 所以M的轨迹是以C1,C2为焦点的椭圆, 且2a=16,2c=8,
2.(教材习题改编)若F1(-3,0),F2(3,0),点P到F1,F2距离之和为10,则P点的轨 迹方程是 ( A )
A. x2 + y2 =1
25 16
C. y2 + x2 =1
25 16
B. x2 + y2 =1
100 9
D. x2 + y2 =1或 y2 + x2 =1
25 16
25 16
(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆. ( √ )
(5) ay22 + bx22 =1(a≠b)表示焦点在y轴上的椭圆. ( ✕ ) (6) ax22 + by22 =1(a>b>0)与 ay22 + bx22 =1(a>b>0)的焦距相等. ( √ )
答案 (1)✕ (2)√ (3)✕ (4)√ (5)✕ (6)√
A.1- 3 2
B.2- 3
C. 3 1 2
D. 3 -1
(2)过椭圆C: ax22 + by22 =1(a>b>0)的右焦点作x轴的垂线,交C于A,B两点,直
线l过C的左焦点和上顶点.若以AB为直径的圆与l存在公共点,则C的离
答案 C 解析 如图所示,因为两个圆心恰好是椭圆的焦点,由椭圆的定义可知| PF1|+|PF2|=10,易知|PM|+|PN|=(|PM|+|MF1|)+(|PN|+|NF2|)-2,则其最小值为| PF1|+|PF2|-2=8,最大值为|PF1|+|PF2|+2=12.
规律总结 椭圆定义的应用 椭圆定义的应用主要有两个方面:一是利用定义求椭圆的标准方程;二 是利用定义求焦点三角形的周长、面积及弦长、最值和椭圆的离心率 等.
45 20
答案 C
解析 由题意可得半焦距c=5,设右焦点为F',由|OP|=|OF|=|OF'|知,∠ PFF'=∠FPO,∠OF'P=∠OPF',∴∠PFF'+∠OF'P=∠FPO+∠OPF',∴∠ FPO+∠OPF'=90°,即PF⊥PF',在Rt△PFF'中,由勾股定理,得|PF'|= | FF ' |2 | PF |2 = 102 62 =8, 由椭圆的定义,得|PF|+|PF'|=2a=6+8=14,从而a=7,a2=49,
相关文档
最新文档