正比例函数的图像与性质
第16讲 正比例函数的图像及性质(解析版)
![第16讲 正比例函数的图像及性质(解析版)](https://img.taocdn.com/s3/m/c2f2ac32d5bbfd0a78567320.png)
第16讲 正比例函数的图像及性质【学习目标】正比例函数的图像及性质是八年级数学上学期第三章第二节内容,主要对正比例函数的图像及性质进行讲解,重点是对正比例函数的性质的理解,难点是正比例函数表达式的归纳总结.通过这节课的学习为我们后期学习正比例函数的应用提供依据.【基础知识】一、正比例函数的图像1.一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;2.图像画法:列表、描点、连线. 二、正比例函数的性质:(1) 当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值 也随着逐渐增大.(2) 当0k <时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值则随着逐渐减小.【考点剖析】考点一:正比例函数的图像例1.已知正比例函数2y x =.列表:取自变量x 的一些值,根据正比例函数的解析式,填写下表.x…… 1.5- -1 0.5- 0 0.5 1 1.5 2 …… 2y x =……-4-3 -2-1 01 234……描点:分别以所取x 的值和相应函数值作为点的横坐标和纵坐标,描出相应点. 连线:用光滑的曲线(包括直线)把描出的点按照横坐标由小到大的顺序连接. 【难度】★【解析】考查正比例函数图像的画法.例2.在同一直角坐标平面内画出下列函数图像.(1)4y x =;(2)14y x =;(3)32y x =-;(4)32y x =.【难度】★【解析】考查正比例函数图像的画法.例3.函数15y x =-的图像是经过点________、________的________.【难度】★【答案】,,一条直线.【解析】考查正比例函数图像的特点.例4.(1)正比例函数y kx =的图像是____________,它一定经过点_______和_______.(2)函数y kx =的图像经过点1(5)2A -,,写出函数解析式,并说明函数图像经过哪几个象限? 【难度】★★【答案】(1)一条直线,,; (2)x y 10-=,经过二、四象限.【解析】考查正比例函数解析式的解法和图像性质.例5.已知2y -与x 成正比例,且x =2时,y =4; (1)求y 与x 之间的函数关系式;(2)若点(m ,2m +7),在这个函数的图象上,求m 的值.【难度】★★【答案】(1)2+=x y ;(2)-5.【解析】(1)设kx y =-2,将x =2时,y =4代入其中可得:1=k ,则2+=x y ;(2)点(m ,2m +7)在这个函数的图象上,则272+=+m m ,解得:5-=m .【总结】本题一方面考查利用待定系数法求函数解析式,另一方面考查根据函数解析式求函数值或者是自变量的值.例6.已知正比例函数图像上的一点到x 轴距离与到y 轴距离之比为1:2,则此正比例函数的解析式是________________. 【难度】★★【答案】x y 21=或x y 21-=. 【解析】由题意可知,该点的横坐标的绝对值是纵坐标绝对值的两倍,然后再求解析式. 【总结】注意距离需要分正负.例7.如果正比例函数的图像经过点(24)-,,说明是否在这个图像上,并作出该正比例函数的图像.【难度】★★【答案】x y 2-=,不在这个图像上,图像略.【解析】设正比例函数解析式为,将点(24)-,代入,可得:2k =-,所以该正 比例函数的解析式为x y 2-=.当4x =-时,,所以点不在该函数的图像上.【总结】考查正比例函数解析式的求法、图像的画法.例8.已知函数2(2)21y t x t =-+-,当t 为何值时该函数图像经过原点?此时函数解析式是什么?【难度】★★ 【答案】21=t ;x y 47-=.【解析】函数2(2)21y t x t =-+-经过原点,则012=-t ,解得:21=t .代入表达式中可得,函数解析式为:x y 47-=.【总结】本题主要考查正比例函数的概念.例9.一个正比例函数的图像经过点A ,B ,求a 的值.【难度】★★【答案】41-=a .【解析】设正比例函数的解析式为, ∵图像经过点A , ∴3=-k ,则3-=k . ∵图像经过点B ,∴a a 31=--,则41-=a .【总结】本题一方面考查利用待定系数法求正比例函数的解析式,另一方面考查利用解析式求图像上点的坐标.考点二:正比例函数的性质:例1.直线经过一、三象限,则m ________.【难度】★【答案】2<m .【解析】考查的图像经过一、三象限.例2.已知正比例函数的图像经过第二、四象限,求k 的取值范围.【难度】★ 【答案】25>k . 【解析】由题意,可得:520k -<,解得:25>k . 【总结】考查的图像经过二、四象限.例3.若正比例函数(3)y m x =-,y 的值随x 的增大而减小,则m _______.【难度】★ 【答案】3<m .【解析】由题意,可得:30m -<,解得:3m <. 【总结】考查的图像性质y 的值随x 的增大而减小.例4.(3)y x π=-图像经过_______象限,y 的值随x 的值增大而_______.【难度】★【答案】一、三;增大.【解析】由题意,可得:30π->,所以图像过一、三象限. 【总结】考查的图像y 的值随x 的增大而增大.例5.当a =_______时,2(3)(9)y a x a =-+-是正比例函数,图像经过第______象限.【难度】★ 【答案】;二、四.【解析】因为正比例函数,所以,解得:3a =-,所以图像过二、四象限. 【总结】考查的图像y 的值随x 的增大而减小.例6.已知点(11,x y ),(22,x y )在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 【难度】★★ 【答案】2<k .【解析】当12x x >时,12y y <,可以理解成y 的值随x 的增大而减小. 【总结】本题主要考查正比例函数图像的性质.例7.已知正比例函数25(3)mm y m x +-=+,那么它的图像经过____________象限.【难度】★★ 【答案】一、三.【解析】∵152=-+m m ,∴3-=m 或2=m ,又∵03≠+m ,∴2=m .∴图像过一、三 象限. 【总结】本题主要考查正比例函数的概念及图像的性质.例8.正比例函数2mmy mx +=的图像经过第一、三象限,求m 的值.【难度】★★ 【答案】.【解析】由题意,可得:12=+m m ,则251±-=m . ∵正比例函数2m my mx +=的图像经过第一、三象限,∴0>m ,∴215-=m . 【总结】本题主要考查正比例函数的概念及图像的性质.例9.已知0mn <,那么函数my x n =经过______象限,y 的值随x 的值增大而______.【难度】★★【答案】二、四;减小.【解析】∵0mn <,∴,所以图像过二、四象限,并且y 的值随x 的值增大而减小. 【总结】考查的图像y 的值随x 的增大而减小.例10.函数()2(2)2k y k x -=-是正比例函数,且y 的值随着x 的减小而增大,求k 的值.【难度】★★ 【答案】1.【解析】由题意,可得:()122=-k ,则3=k 或1=k .∵y 的值随着x 的减小而增大,∴02<-k ,∴1=k .【总结】本题主要考查正比例函数的概念及图像的性质.例11.如果正比例函数y kx =的自变量增加5,函数值减少2,那么当3x =时,y =_______.【难度】★★【答案】56-.【解析】∵正比例函数y kx =的自变量增加5,函数值减少2,∴52-=k∴正比例函数解析式为x y 52-=.∴当3x =时,26355y =-⨯=-.【总结】本题主要考查正比例函数的概念及图像的性质.例12.(1)已知y ax =是经过第二、四象限的直线,且3a +在实数范围内有意义, 求a 的取值范围;(2)已知函数的值随自变量x 的值增大而增大,且函数的值随自变量x 的增大而减小,求m 的取值范围. 【难度】★★【答案】(1)03<≤-a ;(2)3121-<<-m . 【解析】(1)由题意,可得:,所以;(2)由题意,可得:,解得:,所以1123m -<<-.【总结】考查正比例函数图像的性质.例13.正比例函数()41y m x =-的图像经过点11(,)A x y 和22(,)B x y ,且该图像经过第 二、四象限.(1)求m 的取值范围;(2)当12x x >时,比较1y 与2y 的大小,并说明理由.【难度】★★ 【答案】(1)41<m ;(2)1y 2y <,正比例函数y 的值随着x 的增大而减小. 【解析】考查正比例函数图像的变化情况.【过关检测】一、填空题1.(2020·上海市静安区实验中学八年级课时练习)已知正比例函数的图像过点(3,2),(a ,6),则a 的值=_________. 【答案】9【分析】先根据点(3,2)坐标求出正比例函数解析式,再把点(a ,6)代入解析式,即可求解. 【详解】解:设正比例函数解析式为y=kx (k≠0), ∵正比例函数的图像过点(3,2), ∴3k=2, ∴k=23, ∴正比例函数解析式是23y x =,再把x=a ,y=6代入23y x =得, 263a =, 解得a =9. 故答案为:9【点睛】本题考查了待定系数法求正比例函数和已知正比例函数求字母的值,根据待定系数法求出正比例函数解析式是解题关键.2.(2019·上海凉城第二中学八年级月考)若正比例函数()231my m x-=-的图像经过一、三象限,则函数解析式是_______________. 【答案】y x =.【分析】根据正比例函数的定义和图像所经过的象限即可求出m ,从而求出函数解析式. 【详解】解:∵正比例函数()231m y m x -=-的图像经过一、三象限,∴解得:2m =∴函数解析式是y x =. 故答案为:y x =.【点睛】此题考查的是求正比例函数的解析式,掌握正比例函数的定义和图像所经过的象限与比例系数的关系是解决此题的关键.3.(2020·上海市位育实验学校八年级月考)已知直线y kx =(k≠0),当直线与x 轴正半轴夹角为30º时,直线解析式是____________ 【答案】y=x.【分析】依题意作图,根据含30°的直角三角形的特点设AO=2a ,得到故求出A 点坐标,再代入解析式即可求解.【详解】如图,AB ⊥x 轴,设OA=2a,∵∠AOB=30°,∴=∴A ,a )代入y kx =,即∴直线解析式是y=x 故填:y=x.【点睛】此题主要考查正比例函数的解析式,解题的关键是熟知含30°的直角三角形的性质. 4.(2019·上海市西南模范中学)正比例函数3y x =-的图像经过_____象限. 【答案】二、四.【分析】由题目可知,该正比例函数过原点,且系数为负数,故函数图象过二、四象限. 【详解】由题意,y=-3x , 可知函数过二、四象限. 故答案为:二、四.【点睛】此题主要考查了正比例函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.5.(2017·上海市青浦区金泽中学八年级期末)如果正比例函数的图象经过点(2,12),则正比例函数解析式是_____. 【答案】y =14x 【分析】设正比例函数解析式为y =kx (k ≠0),把经过的点的坐标代入解析式求出k 值,即可得解. 【详解】设正比例函数的解析式是y =kx (k ≠0),把(2,12)代入就得到:2k =12, 解得:k =14,因而这个函数的解析式为:y =14x .故答案为:y =14x.【点睛】本题考查待定系数法求正比例函数解析式.6.(2020·上海八年级期中)已知正比例函数y kx =的图像经过点()4,3A -,则函数图像经过______象限. 【答案】第二、第四【分析】将点()4,3A -代入正比例函数解析式中,即可求出k 的值,再根据k 的符号即可得出结论. 【详解】解:将点()4,3A -代入y kx =中,得解得:34k =-∴正比例函数34y x =- ∵34-<0 ∴函数图像经过第二、第四象限 故答案为:第二、第四.【点睛】本题考查的是正比例函数的性质,熟知利用待定系数法求正比例函数解析式是解答此题的关键. 7.(2020·上海八年级期中)已知正比例函数()21y a x =-,如果y 的值随着x 的值增大而减小,则a 的取值范围是______. 【答案】12a <【分析】根据正比例函数的性质可知关于a 的不等式,解出即可.【详解】解:∵正比例函数()21y a x =-,y 的值随着x 的值增大而减小, ∴21a -<0 解得:12a <故答案为:12a <. 【点睛】此题考查的是正比例函数图象的性质,掌握正比例函数图象的性质:它是经过原点的一条直线.当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小,是解题关键.8.(2020·上海市静安区实验中学八年级课时练习)正比例函数()21y k x =+的图像经过第二、四象限,则k ______. 【答案】12k <-【分析】根据正比例函数经过象限,得到关于k 的不等式,解不等式即可求解. 【详解】解:∵正比例函数()21y k x =+的图像经过第二、四象限, ∴210k +<, 解得12k <-.故答案为:12k <-【点睛】本题考查了正比例函数的图象与性质,在正比例函数中当k>0时,图象经过第一、三象限,当k<0时,图象经过第二、四象限.9.(2020·上海市静安区实验中学八年级课时练习)函数y =的图像过点(b ,则b=________. 【答案】-1【分析】把点(b b .【详解】解:∵函数y =的图像过点(b ∴, ∴b=-1. 故答案为:-1【点睛】本题考查了已知正比例函数解析式求点的坐标的参数,把点的坐标代入函数解析式是解题关键. 10.(2018·上海八年级期末)如果正比例函数y kx =的图像经过点(2-,6),那么y 随x 的增大而______. 【答案】减小【分析】求出k 的值,根据k 的符号确定正比例函数的增减性. 【详解】解:∵正比例函数y kx =的图像经过点(2-,6), ∴-2k =6, ∴k =-3,∴y 随x 的增大而减小. 故答案为:减小【点睛】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k 的值是解题关键. 二、解答题11.(2020·上海市静安区实验中学八年级课时练习)已知y 与x 成正比例,且当x=12时, 求(1)y 关于x 的函数解析式? (2)当y=-2时,x 的值?【答案】(1)y =;(2)2x =.【分析】(1)首先设反比例函数解析式为y =k x(k≠0),再把x=12时,y=k 的值,进(2)把y=-2代入函数解析式即可.【详解】(1)设,把x=12,12k ,∴k =故y 关于x 的函数解析式是y =.(2)把y=-2代入解析式y =中,得-2=,解得2x =-. 【点睛】此题主要考查了待定系数法求正比例函数解析式,关键是掌握正比例函数解析式的形式. 12.(2020·上海市静安区实验中学八年级课时练习)正比例函数的图像经过点P (-3,2)和Q (-m ,m-1 ),求m 的值.【答案】3【分析】图象经过点,即点的坐标符合图象解析式,据此解题,先用待定系数法设正比例函数解析式,再代入点坐标求m 的值即可.【详解】设正比例函数解析式为(0)y kx k =≠,因为正比例函数的图像过点P (-3,2),将点P 坐标代入得,23y x =- 再代入点Q 坐标,即把x=-m ,y=m-1代入23y x =-左右两边, 解得m=3.【点睛】本题考查正比例函数图象性质、待定系数法等知识,是典型考点,难度较易,掌握相关知识是解题关键.13.(2020·上海市格致初级中学八年级期中)已知点(2,﹣4)在正比例函数y =kx 的图象上. (1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.【答案】(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y=kx的图象上∴-4=2k解得:k=-2;(2)结合(1)的结论得:正比例函数的解析式为y=-2x∵点(-1,m)在函数y=-2x的图象上∴当x=-1时,m=-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.14.(2018·上海)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.【答案】(1)y=2x﹣2;(2)﹣4;(3)x的取值范围是﹣12<x<72.【分析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为-1时对应的函数值即可;(3)先求出函数值是-3和5时的自变量x的值,x的取值范围也就求出了.【详解】(1)设y=k(x﹣1),把x=3,y=4代入得(3﹣1)k=4,解得k=2,所以y=2(x﹣1),即y=2x﹣2;(2)当x=﹣1时,y=2×(﹣1)﹣2=﹣4;(3)当y=﹣3时,x﹣2=﹣3,解得:x=﹣12,当y=5时,2x﹣2=5,解得:x=72,∴x的取值范围是﹣12<x<72.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.15.(2020·上海市静安区实验中学八年级课时练习)正比例函数23my mx -=的图象经过第一、三象限,求m 的值.【答案】2【分析】根据正比例函数的定义和图象经过象限得到关于m 的方程和m 的取值范围,即可求解.【详解】解:∵函数函数23my mx -=为正比例函数, ∴231m -=,∴2m =±,又∵正比例函数的图像经过第一、三象限,∴m >0,∴2m =【点睛】本题考查了正比例函数的定义和性质,注意正比例函数是一次函数,自变量次数为1,熟知正比例函数图象与性质是解题关键.。
正比例函数
![正比例函数](https://img.taocdn.com/s3/m/579ee766ac02de80d4d8d15abe23482fb5da025b.png)
即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比k≠0)的图像是一条经过原点的直线,我们称它为直线y=kx。 正比例函数的关系式表示为:y=kx(k为比例系数)。 当k>0时(一、三象限),k的绝对值越大,图像与y轴的距离越近;函数值y随着自变量x的增大而增大; 当k<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。自变量x的值增大时,y的值则逐渐减小。
图像性质
正比例函数的图像是经过坐标原点(0,0)和定点(1,k)两点的一条直线,它的斜率是k(k表示正比例函 数与x轴的夹角大小),横、纵截距都为0,正比例函数的图像是一条过原点的直线。
正比例函数y=kx(k≠0),当k的绝对值越大,直线越“陡”;当k的绝对值越小,直线越“平”。 1、已知一点坐标,用待定系数法求函数解析式。先设解析式为y=kx,再代入已知点坐标,解出k的值。 2、解出k的值后,在数轴上标出各点并连接个点
性质
单调性
对称性
当k>0时,图像经过第一、三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数; 当k<0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
对称点:关于原点成中心对称。 对称轴:自身所在直线;自身所在直线的平分线。
图像
图像作法
图像描述
正比例函数在线性规划问题中体现的力量也是无穷的。 比如斜率问题就取决于k值,当k越大,则该函数图像与x轴的夹角越大,反之亦然。 还有,y=kx是 y=k/x的图像的对称轴。
正比例
①正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也 就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
正比例函数图像及性质
![正比例函数图像及性质](https://img.taocdn.com/s3/m/fef5b8ccd4d8d15abf234e46.png)
WORD 格式整理版正比例函数的图像和性质知识精要1.正比例函数的图像一般地,正比例函数 y=kx(k 是常数, k 0)的图像是经过原点 O(0,0) 和点 M(1,k)的一条直线。
我们把正比例函数 y=kx 的图像叫做直线 y=kx。
2.正比例函数性质精讲名题x m 3例 1. 若函数 y=(m-1)是正比例函数,则m=,函数的图像经过象限。
解:m=4, 图像经过第一、三象限。
例 2. 已知 y-1 与 2x 成正比例,当 x=-1 时, y=5, 求 y 与 x 的函数解析式。
解:∵ y-1 与 2x 成正比例∴设y-1=k ·2x (k0 )把x=-1,y=5代入,得k=-2,∴ y-1=-2·2x∴y=-4x+1例 3. 已知 y 与 x 的正比例函数,且当x=6 时 y=-2WORD 格式整理版(1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点 P(a, 4)在这个函数的图像上,求 a 的值;(4)试问,点 A(-6 , 2)关于原点对称的点 B 是否也在这个图像上?解: (1)设 y=k·x ( k 0)当 x=6 时, y=-2 ∴-2=6k ∴k 1∴这个函数的解析式为 y1x 33(2)y 1x 的定义域是一切实数,图像如图所示:3(3)如果点 P(a, 4)在这个函数的图像上,∴41a ,∴a=-12 3(4)点 A(-6 ,2)关于原点对称的点 B 的坐标( 6,-2 ),当 x=6 时, y=162因此,点 B 也在直线y 1x 上33例 4. 已知点 ( x1, y1 ) ,( x2, y2 ) 在正比例函数 y=(k-2)x的图像上,当x1x2时, y1y2,那么k 的取值范围是多少?解:由题意,得函数y 随 x 的值增大而减小,∴k-2<0, ∴k<2例 5. (1)已知 y=ax 是经过第二、四象限的直线,且 a 3 在实数范围内有意义,求 a 的取值范围。
正比例函数、一次函数、反比例函数的性质及图象
![正比例函数、一次函数、反比例函数的性质及图象](https://img.taocdn.com/s3/m/01a619ac910ef12d2af9e772.png)
正比例函数、一次函数、反比例函数的性质及图象一、正比例函数性质和图象:概念:一般地,形如(k是常数,且k≠0 )的函数,叫做正比例函数。
当k>0时,图象过象限; y随x的增大而。
当k<0时,图象过象限; y随x的增大而。
:概念:一般地,形如y=kx+b(k,b是常数,且k≠0 )的函数,叫做一次函数。
图像和性质:①k>0,b>O,则图象过象限②k>0,b<0,则图象过象限当k>0时, y随x的增大而。
③k<0,b>0,则图象过象限④k<0,b<0,则图象过象限当k<0时, y随x的增大而。
三、反比例函数性质和图象:1.定义:形如(k为常数,k≠0)的函数称为反比例函数。
其他形式2.图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
3.性质:当k>0时双曲线的两支分别位于,在每个象限内y值随x值的增大而减小。
当k<0时双曲线的两支分别位于,在每个象限内y 值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
练习题 1、若y =(m -1)x22m -是正比例函数,则m 的值为( ) A 、1 B 、-1 C 、1或-1 D 、2或-2 2、下列函数中,一次函数为( )A 、25y x = B .25y x =-1 C .245y x = D .25y x=-3、下列函数中,反比例函数是( )A 、y=x+1B 、y=C 、=1D 、3xy=24、正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx+k 的图象大致是( )5、直线443--=x y 与两坐标轴围成的三角形面积是( ) A 3 B 4 C 12 D 66、函数y 1=kx 和y 2=的图象如图,自变量x 的取值范围相同的是( )7、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线上,( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 28、已知一次函数y=ax+b 图象在一、二、三象限,则反比例函数y=的函数值随x 的增大而__________。
正比例函数的图象和性质课件
![正比例函数的图象和性质课件](https://img.taocdn.com/s3/m/a8f0e64903020740be1e650e52ea551811a6c94a.png)
们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义
正比例函数图像及性质
![正比例函数图像及性质](https://img.taocdn.com/s3/m/8c0995e7c67da26925c52cc58bd63186bdeb9276.png)
布置作业
A组:必做题:函数y=-5x的图象在第 象限
内,经过点(0, )与点(1, ),y随
着x的增大而
。
选做题:P89页,练习(1),(2)任选一 B组:写出正比例函数的性质
1.正比例函数的定义
一般地,形如 y=kx(k为常数,k≠0)的函 数,叫做正比例函数,其中k叫做比例系数
2.画函数图象的步骤
列表、描点、连线
例1 画出下列正比例函数的图象 (1)y=2x;(2)y=-2x
动动
手
x … -2 -1 0 1 2 …
y … -4 -2 0 2 4 …
y=2x
例1 画出下列正比例函数的图象 (1)y=2x;(2)y=-2x
y 1 x 3
o1
时,它的
x
图像经过 第二、四
像限
思考3 对一般正比例函数y =kx,当k<0时,
它的图象形状是什么?位置怎样?
当k<0时图像是经过原点的一条直线,且经
过二、四象限
思考4 在k<0 的情况下,图象是左低右高
还是左高右低?
当k<0时图像从左到右下降趋势,即y随着x
的增大而减小
口答:看谁反应快
y 3x y x y 1 x y
y 3x
3
3
yx
当k>0
时,它的图
1
y1x
像 经过第
一、三象
o1
3
3xΒιβλιοθήκη 限思考1 对一般正比例函数y =kx,当k>0时,
它的图象形状是什么?位置怎样?
当k>0时图像是经过原点的一条直线,且经
过一、三象限
思考2 在k>0 的情况下,图象是左低右高
还是左高右低?
正比例函数的图像和性质
![正比例函数的图像和性质](https://img.taocdn.com/s3/m/2ec3538688eb172ded630b1c59eef8c75ebf957a.png)
正比例函数的图像和性质
正比例函数是指函数的值与自变量成正比关系的函数,通常表示为y=kx,其中k为比例常数。
正比例函数的图像是一条经过原点的直线。
这是因为当自变量为0时,函数的值也为0,所以直线经过原点。
正比例函数的性质包括:
1. 随着自变量的增大,函数的值也随之增大或减小;随着自变量的减小,函数的值也随之减小或增大。
2. 自变量为0时,函数的值为0,即函数通过原点。
3. 函数的图像是一条经过原点的直线。
4. 如果k>0,则函数是递增函数;如果k<0,则函数是递减函数。
5. 函数的图像在第一象限和第三象限的部分为正值,而在第二象限和第四象限的部分为负值。
6. 正比例函数的图像是关于原点对称的,即改变自变量的正负会导致函数的正负改变。
值得注意的是,正比例函数的定义域和值域都可以是整个实数集合。
正比例函数的性质及图像
![正比例函数的性质及图像](https://img.taocdn.com/s3/m/c95c5b6c33d4b14e84246897.png)
第十九章一次函数19.2 一次函数19.2.1 正比例函数第2课时正比例函数的图象与性质教学设计【探究1】用描点法画出正比例函数y = 2x的图象.练习:在同一直角坐标系中用描点法画岀正比例函数y=3x的图象.3思考:对一般正比例函数y= kx,当k> 0时,它的图象形状是怎样的?位置呢?在k>0的情况下,图象是左低右高还是左高右低?当自变量的值增大时,对应的函数值是增大还是减小?【探究2】当k v0时,正比例函数的图象特征及性质又怎样呢?请各小组画出函数y= —3x和y=—1.5x的图象,小组间进行合作研究.[师生活动]让学生在完成上述练习的基础上总结归纳岀正比例函数解析式与图象特征之间的规律:正比例函数y= kx(k是常数,k工0)的图象是一条经过原点的直线. 当k>0时,图象经过第一、三象限,从左向右上升,即随着x的增大y 也增大;当k<0时,图象经过第二、四象限,从左向右下降,即随着x 的增大y反而减小.正是由于正比例函数y= kx(k是常数,k工0)的图象是一条直线,我们可以称它为直线y= kx.【探究3】正比例函数的图象是一条经过坐标原点的直线,我们知道,两点确定一条直线,现在,你知道画正比例函数图象的简便方法了吗?[师生活动]教师引导学生用简便方法画正比例函数的图象.用你认为最简单的方法画出下列函数的图象:(1)y = ;x; (2)y = —3x.活动实践探究交流新知让学生观察、分析、讨论、对比图象的异同:发现函数图象的性质.在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生渗透了概括、归纳、比较、分析等数学思想方法.[学生活动]学生合作探究交流得出结论:画正比例函数的图象时,只需在原点外再确定一个点,即找岀一组 满足函数解析式的对应数值即可,如(1, k ),因为两点可以确定一条直线例 在同一直角坐标系中,画岀下列函数的图象,并对它们进行比 较.1 1(1)y = 2x ; (2)y = - 2x.图 19- 1 -[师生活动]比较两个函数图象可以看出: 两个图象都是经过坐标原点1的直线.函数y = 2x 的图象从左向右上升,经过第一、三象限,即随着x1的增大y 也增大;函数y =— -x 的图象从左向右下降,经过第二、四象 限,即随着x 的增大y 反而减小. 【应用举例】例1汽车由天津驶往相距120千米的北京,s (千米)表示汽车离开 天津的距离,t (时)表示汽车行驶的时间,s 与t 之间的关系如图19-2-7活动实践 探究 交流 新知教师引导学生用简 便方法画正比例函数的 图象,并利用此例让学 生巩固正比例函数图象 的性质.活动开放训练体现应用图19-2 - 7活动开放训练体现应用(1) 汽车用几小时可到达北京?速度是多少?(2) 汽车行驶1小时,离开天津有多远?(3) 当汽车距北京20千米时,汽车岀发了多长时间?解法一:用图象解答:(1) 从图上可以看出汽车用4个小时可到达北京.120速度=~4~ = 30(千米/时).(2) 汽车行驶1小时离开天津约为30千米.(3) 当汽车距北京20千米时,汽车出发了约3.3小时. 解法二:用解析式来解答:(1)由图象可知:s与t是正比例关系,设s= kt,当t = 4 时,s= 120,即120 = k x4,k= 30,•*s= 30t.(1) 汽车4小时可达到北京,速度为30千米/时.(2) 当t= 1 时,s= 30X1 = 30(千米).10(3) 当s= 100 时,100= 30t,t= 3 (时).3以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优点.【拓展提升】ty图19-2-8例2观察图象比较大小:(1) k1__ =_k2;(2) k3__<.__k4;(3) 比较k1,k2,k3,k4的大小,并用不等号连接.[答案:k1< k2< k3< k4]变式训练1.当k>0时,正比例函数y= kx的图象大致是(A )A B C D图19-2-92.已知正比例函数y = (3k- 1)x,y随着x的增大而增大,则k的取值范围是(D )1 1A.k< 0B.k> 0C.k< 3D.k >3应用迁移、巩固提高,培养学生解决问题的能力.1•知识的综合与拓展,提高应考能力.2.进一步使学生巩固正比例函数的性质使学生体验数形结合思想的运用过程.。
人教版八年级数学下册19.2.1正比例函数正比例函数的图象和性质课件
![人教版八年级数学下册19.2.1正比例函数正比例函数的图象和性质课件](https://img.taocdn.com/s3/m/9c9491099b89680203d825fe.png)
学习难点:会运用正比例函数的性质
练习 在同一坐标系中用描点法画 3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
下列图像哪个可能是函数y=-8x的图像( )
19.2.1正比例函数(第2课时)
正比例函数的图象和性质
• 学习目标:会画正比例函数的图象,知道 和运用正比例函数的性质.
• 学习重点:正比例函数的图象和性质 • 学习难点:会运用正比例函数的性质
和运1用正.什比例函么数的是性质正. 比例函数?请你写出两个具体的正比
一般地,形如 y=kx(k为常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数
我们把正比例函数y=kx的图象叫做直线y=kx;
例函数. 学习重点:正比例函数的图象和性质
1正比例函数(第2课时)
3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
一般地,形如 y=kx(k为常数,k≠0)的函 观察图像,思考以下问题:
下列图像哪个可能是函数y=-8x的图像( )
3.正比例函数研究过程中,你感受最深的是什么?
的增大而增大,则k的取值范围 ( ).
A.k<0
B.k≤0
C.k>0
D.k≥0
3.下列图像哪个可能是函数y=-8x的图像( )
A
B
C
D
1.本节课,我们研究了什么,得到了哪些成果? 2.正比例函数的图象及性质怎样?
1)正比例函数y=kx的图象是一条经过原点的直线;我们把正 比例函数y=kx的图象叫做直线y=kx; 2)当k>0时,它的图象从左向右上升,经过第一、三象限,y 随x的增大而增大; 3) 当k<0时,它的图象从左向右下降,经过第二、四象限,y 随x的增大而减小
公开课正比例函数的图象及性质
![公开课正比例函数的图象及性质](https://img.taocdn.com/s3/m/ec7d4bc1cf2f0066f5335a8102d276a2002960c9.png)
y= 12x y=-4x
y=3x y=x y=-4x y= 1 x
2
在正比例函数y=kx中, 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
(1)正比例函数y=x和y=3x 中,随着x值的增大,y的
值都增加了,其中哪一个 增加得更快?你能说明其 中的道理吗?
(2)正比例函数y=- 1 x和
2
y=-4x中,随着x值的增 大,y的值都减小了,其中
哪一个减小得更快?你是 如何判断的?
y=3x y=x (-3,-9)(-3,-3) (-2,-6)(-2,-2) (-1,-3)(-1,-1) (1,3)(1,1) (2,6)(2,2) (3,9)(3,3)
y=-4x y= 1 x
③连线
y=2x
1、正比例函数y=kx的图象是一条直线. 2、正比例函数图像必过原点(0,0). 那么在画正比例函数图象时有没有什么简 单的方法呢?
通常过(0,0),(1,k)作直线.
正比例函数图象的性质
在同一直角坐标系内画出正比例函数
y=x , y=3x,
y=-
1 2
x和
y=-4x
的图象
y=3x y=x
x/k
m
答:该汽车行驶220 km所需油费是165元.
作业布置
课后习题4.3 第1、2、3、4、5题。 写在本上,不抄题。
函数的表示形式有哪几种? 图象法,列表法,关系式法.
例1:画出下面正比例函数的图象
解:①列表
y=2x.
关系式法
x … -2 -1 0 1 2 …
y … -4 -2 0 2 4 …
列表法
(-2,-4)(-1,-2)(0,0)(1,2) (2,4)
第九讲 一次(正比例)函数图像及其性质(解析版)
![第九讲 一次(正比例)函数图像及其性质(解析版)](https://img.taocdn.com/s3/m/2bb7b6b4846a561252d380eb6294dd88d0d23dbc.png)
第九讲 一次(正比例)图像及其性质目录必备知识点........................................................................................................................................1考点一 函数的概念理解................................................................................................................1考点二 一次函数概念的理解........................................................................................................4考点三 一次函数图像....................................................................................................................5考点四 一次函数图像性质1.........................................................................................................9考点五 一次函数图像性质2. (13)必备知识点知识点1 正比例函数图像(y=kx )1.正比例函数图像是一条经过原点的直线。
2.性质(1)正比例函数图像必过(2)k>0,函数图像经过 象限,y 随x 的增大而 (3)K<0,函数图像经过 象限,y 随x 的增大而知识点2 一次函数图像(y=kx+b )1.一次函数图像是一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《19.2.2正比例函数图像及性质》教案
【教学目标】
1.知识与技能
(1)掌握正比例函数的概念;
(2)会求正比例函数的解析式;
(3)掌握正比例函数的性质。
2.过程与方法
使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。
3.情感态度和价值观
实例引入,激发学生学习数学的兴趣。
【教学重点】
正比例函数的概念及图像。
【教学难点】
正比例的性质与常数k的关系。
【教学方法】
教法:启发引导。
学法:自学与小组合作学习相结合的方法。
【课前准备】
多媒体课件,直尺,彩色粉笔。
【课时安排】
1课时
【教学过程】
一、复习导入
【过渡】我们学习了第一节的内容,主要是学习了函数的基本知识,如变量与常量,函数的解析式等等,现在,我们一起来回忆一下这几个基本概念吧。
1、正比例的解析式是什么?
2、已知y与x成正比例,且当x =-1时,y =-2,求y与x之间的函数关系式?
(可以由学生回答)
【过渡】在学习基础知识的过程中,我们会看到不同种类的函数解析式,那么,这些函数解析式有没有哪些具有共同的特征呢?又有什么样的性质呢?今天,我们就来探究一种具有独特性质且简单的函数:正比例函数。
二、新课教学
1.正比例函数
课本P86思考内容。
【过渡】这几个问题的函数关系式很容易就能得到,大家观察这四个关系式,这几个关系式有什么共同点呢?
(学生回答)
列表更清晰直观。
【过渡】根据大家的观察,这些函数有什么共同点?
这些函数都是常数与自变量的乘积的形式!
【过渡】在数学中,我们将这样的函数称为正比例函数。
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k
叫做比例系数。
【过渡】大家来练习一下吧。
1、下列式子中,哪些表示是的正比例函数?并说出正比例函数的比例系数是多少?
(1)y=-0.1x;(2)y=-1 /2 x;(3)y=2x2;(4)y2=4x
2、若y=(k-2)x+k2-4是正比例函数,则k= ,此时的函数解析式为。
【过渡】关于第二个问题,我们只需要牢记正比例函数的定义即可解决。
注意:使自变量的指数为1;系数不为0;常数项即k不为0。
2、正比例函数的图象及性质
【过渡】第一节内容中,我们学习了如何画函数的图象,现在,大家自己动手画一下课本例1的几个图象吧。
(学生动手)
课件展示过程。
【过渡】我们以(1)中的y=2x,为例,按照画函数图象的步骤:列表、描点、连线,得到如图所示的图象。
然后我们将y=1/3x图象也画出来。
观察这两个图象,有什么相似之处呢?
【过渡】通过观察,我们发现,两图象都是经过原点的直线。
两图象均从左到右上升,经过第一、三象限,即:随着x的增大y也增大。
在这个时候,我们看到,k是大于0的数。
如果k是小于0的,又会是什么样的情况呢?我们来比较一下当k=-1.5和k=-4时的两个函数。
【过渡】通过观察,我们发现,两图象都是经过原点的直线。
两图象均从
左到右下降,经过第二、四象限,即:随着x的增大y反而减小。
【过渡】通过刚刚的比较,我们发现,不管k的取值如何,正比例函数的图象均是通过原点的直线,不同的地方在于直线的方向。
正比例函数的图象及性质:
(1)正比例函数的图象都是经过坐标原点的直线。
(2)当k>0时,直线y=kx经过第一、三象限,从左向右上升,即:随着x的增大y也增大;
当k<0时,直线y=kx经过第二、四象限,从左向右下降,即:随着x的增大y反而减小。
【过渡】经过原点与(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
【过渡】结合正比例函数的性质,经过原点与(1,k)的直线是正比例函数y=kx (k是常数,)的图象,由于两点确定一条直线,画正比例函数图象时,我们只需描点(0,0)和点(1,k),连线即可。
【过渡】既然我们能够简单的画出正比例函数的图象,那么,我想问大家另外一个问题。
正比例函数的图象与x轴的夹角与k值有什么关系?
由学生根据自己的实例,进行总结。
当图象经过一、三象限时,直线与x轴正方向的夹角越大,k值就越大;
当图象经过二、四象限时,直线与x轴负方向的夹角越大,k值就越小;
总结:|k |越大,直线与x轴的夹角越大。
【练习】比较大小。
(1)k1<k2
(2)k3<k4
(3)比较k1、k2、k3、k4大小,并用不等号连接。
k1<k2<k3<k4
【课堂练习】
(一)基础练习
1、填空
(1)正比例函数y=kx(k≠0) 的图象是它一定经过点
和。
(2)如果函数y= - kx 的图象在一,三象限,那么y = kx 的图象经
过。
(3)如果22
(是正比例函数,且y随x的增大而减小,那么
m
y)
1-
-
=m x
m= 。
2、根据下列图象,写出函数关系式:
3、选择。
1.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,
y=5 B.它的图象是一条经过原点的直线
C.y随x的增大而增大D.它的图象经过第一、三象限
2.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()
A.(-3,2)B.(3/2,-1)
C.(2/3 ,-1)D.(-3/2 ,1)
3.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是
()
A.是一条直线B.过点(1/k ,-k)C.经过一、三象限或二、四象限
D.y随着x增大而减小
4.如图:三个正比例函数的图象分别对应的解析式是
①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()
A.a>b>c B.c>b>a C.b>a>c D.b>c>a
5.正比例函数y=(k-3)x的图象经过一、三象限,那么k的取值范围是()
A.k>0 B.k>3 C.k<0 D.k<3
(二)提升练习:
已知直线y=(2-3m)x经过点A(x1,y1)、B(x2,y2),当x1<x2时,有y1>y2,则m的取值范围是。
【课堂小结】:同学们,本节课你有什么收获?请总结一下。
(学生代表发言)
【板书设计】
【教学反思】
本节课采用了我“导、学、练、结,自学辅导法”的授课方式,即在教师引导下使学生通过自己的观察、研究、自学和小组的探索、讨论来发现问题、解决问题,再通过教师的点拨、总结进行知识归纳,理论提升的教学方法。
由于学生亲自来发现事物的特征和规律,能使学生产生兴奋感、自信心,激发学生兴趣,产生自行学习的内在动机,更有利于发展学生的创造性思维能力。
感谢您的阅读,祝您生活愉快。