高考数学大纲知识点总结

合集下载

高考数学知识点总结及公式

高考数学知识点总结及公式

高考数学知识点总结及公式高考数学必考知识点第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出。

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;三角函数。

注意归一公式、诱导公式的正确性。

数列题。

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的`式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

2024年上海高考数学大纲

2024年上海高考数学大纲

2024年上海高考数学大纲一、绪论随着社会的发展和教育体制的改革,2024年上海高考数学大纲将进一步完善,更加贴合时代需求,为学生提供更广阔的发展空间。

本文将详细介绍2024年上海高考数学大纲的主要内容和改革方向,旨在为学生提供有效的学习指导和备考建议。

二、知识体系与重点1. 数与代数1.1 数的集合与运算1.2 代数式与方程1.3 函数与方程组2. 几何与图形2.1 平面向量与解析几何2.2 空间几何与立体几何2.3 图形的性质与变换3. 数据与统计3.1 数据收集与整理3.2 数据分析与概率3.3 统计与推断三、知识要求与能力培养根据数学学科的特点和学生的认知发展,2024年上海高考数学大纲注重培养学生的以下能力:1. 数与代数方面:提升学生的数的认识和运算能力,培养学生分析代数式、解决方程和应用函数的能力。

2. 几何与图形方面:加强学生对几何概念的理解,培养学生分析几何性质、解决几何问题以及利用向量和坐标解决几何问题的能力。

3. 数据与统计方面:提高学生的数据收集、整理和分析的能力,培养学生利用统计方法进行推断和预测的能力。

四、教学与学习方法1. 深化课堂教学:教师要注重培养学生的思维能力和问题解决能力,通过开展探究、实验和课堂讨论等形式来激发学生的学习兴趣和创造力。

2. 引导自主学习:学生要积极参与学习,注重掌握基本概念和解题方法,通过实际问题的应用,培养灵活运用数学知识解决问题的能力。

3. 多样化评价方式:评价不仅要注重对学生知识掌握情况的评价,还要综合考察学生的思维方式、解题思路和创新能力,鼓励学生通过多种途径展示自己的数学能力。

五、备考建议1. 加强基础知识的学习:掌握数与代数、几何与图形、数据与统计方面的基本概念和解题方法,牢固打好基础。

2. 做好习题的练习:通过大量的习题练习,巩固知识点,培养解题能力和思维灵活性。

3. 关注题型变化:及时了解考试大纲的变化,熟悉新题型的解题思路和方法,提前做好应对准备。

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)复提纲1. 函数- 函数的概念及分类- 函数的性质及其图像- 常见函数及其性质2. 数列- 数列的概念及其分类- 数列的通项公式及前n项和公式- 常见数列及其性质3. 三角函数- 三角函数的概念及其关系式- 常见三角函数的性质- 解三角函数的基本方程4. 平面向量- 向量的概念及其运算- 向量的线性运算及应用- 向量共线、垂直及夹角的判定5. 解析几何- 二维平面直角坐标系、极坐标系及其应用- 空间直角坐标系及其应用- 点、直线、圆、锥面、曲面及其方程大纲1. 函数与导数1.1 函数的概念与性质1.2 常见函数及其变换1.3 导数概念及其计算法1.4 函数的极值与最值1.5 函数的单调性及曲线的凹凸性2. 不等式组与线性规划2.1 一元一次不等式及其解法2.2 多元一次不等式组及其解法2.3 线性规划基本概念及其解法3. 数列与数学归纳法3.1 数列的概念及性质3.2 等差数列、等比数列及其应用3.3 数学归纳法的原理及应用4. 三角函数4.1 角度及弧度制与三角函数关系4.2 常见三角函数及其性质4.3 三角函数的图像及其变换4.4 解三角形的基本原理及解法5. 平面向量5.1 向量的概念及其运算5.2 向量的线性运算及应用5.3 向量的共线、垂直、平行及夹角的判定6. 解析几何6.1 二维平面直角坐标系、极坐标系及其应用6.2 空间直角坐标系及其应用6.3 几何图形的基本性质及其坐标表示7. 概率论基础7.1 随机事件与概率的概念7.2 基本概型及其计算7.3 条件概率及乘法公式7.4 全概率公式及贝叶斯公式8. 统计与统计图8.1 样本与总体的概念及其统计量8.2 常见统计图及其应用8.3 正态分布及其应用。

高考数学基础知识点大全总结归纳

高考数学基础知识点大全总结归纳

高考数学基础知识点大全总结归纳数学是高考中最重要的科目之一,也是考生们备战高考的重点之一。

要在高考数学中取得好成绩,掌握基础知识点是至关重要的。

本文将对高考数学中的基础知识点进行全面总结归纳,帮助考生们更好地复习备考。

一、代数与函数代数与函数是数学中最基础也是最核心的内容之一。

在高考数学中,代数与函数的知识点占据了相当大的比重。

以下是高考数学代数与函数部分的基础知识点:1.1 整式与分式1.2 多项式与多项式的运算1.3 幂的运算与整式的整除性1.4 分式的化简与运算1.5 分式方程的解法二、数与数量关系数与数量关系是高考数学中的重要知识点之一,它不仅包括了基础的数与数的关系,还包括了数量之间的比较和计算。

以下是高考数学数与数量关系部分的基础知识点:2.1 数与数的性质2.2 数与式的计算2.3 数与面积、体积的关系2.4 一次函数与一次函数的应用三、几何与变换几何与变换是高考数学中相对较为复杂的知识点,但也是不可或缺的一部分。

几何与变换包括了图形的性质、图形的变换与运动等内容。

以下是高考数学几何与变换部分的基础知识点:3.1 线与角3.2 三角形与三角形的性质3.3 圆与圆的性质3.4 二次曲线与二次曲线的性质3.5 向量与向量的运算四、概率与统计概率与统计是高考数学中较为实际且应用广泛的知识点,它涉及到事件的发生概率和数据的统计分析等内容。

以下是高考数学概率与统计部分的基础知识点:4.1 随机事件与随机事件的运算4.2 概率的计算与性质4.3 统计数据的收集与整理4.4 统计指标与统计图的应用综上所述,高考数学基础知识点的掌握对于考生在高考中取得好成绩至关重要。

通过对代数与函数、数与数量关系、几何与变换以及概率与统计等知识点的全面总结归纳,相信考生们能够更好地复习备考并在高考中取得优异成绩。

希望本文能为广大考生提供帮助,祝愿各位考生都能顺利通过高考,实现自己的人生目标。

2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结2024年高考数学考试的大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

下面将对每个部分的知识点进行总结,以方便复习。

一、数与式1.实数实数的概念、实数的四则运算、有理数与无理数的关系、开方运算2.立方根立方根的概念、立方根的计算、立方根的性质3.代数式与多项式代数式的概念、等价代数式的判定、多项式的概念、多项式的加减乘除、单项式与多项式的乘法、多项式的因式分解、特殊的多项式4.分式分式的概念、分式的四则运算、分式的化简、分式方程二、函数1.一次函数一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用2.二次函数二次函数的概念、二次函数的图像、二次函数的性质、二次函数的应用、二次函数的最值3.绝对值函数绝对值函数的概念、绝对值函数的图像、绝对值函数的性质、绝对值函数的应用4.反比例函数反比例函数的概念、反比例函数的图像、反比例函数的性质、反比例函数的应用5.复合函数复合函数的概念、复合函数的性质、复合函数的应用三、几何与变换1.空间坐标系空间直角坐标系、点的坐标、点到平面的距离、点到直线的距离2.向量向量的概念、向量的线性运算、向量的模、向量的夹角、向量的共线与垂直、向量的投影、向量的应用3.三角函数弧度与角度的关系、三角函数的概念、三角函数的性质、三角函数的图像、三角函数的应用4.几何相似相似三角形的判定、相似三角形的性质、相似三角形的应用、相似三角形的面积比5.平面向量与平面几何平面向量的几何意义、平面向量的坐标表示、平面向量的线性运算、向量共线的判定、平行四边形的面积、三角形的面积、平面图形的位置关系四、统计与概率1.统计图与统计量频数分布表与频率分布表、频率直方图、频率多边形、统计图的应用、统计量的计算与性质2.概率的概念随机事件与样本空间、事件的概率、几何概型与排列、分子概型与组合、概率的加法定理、概率的乘法定理、条件概率、独立事件、概率的应用以上是2024年高考数学大纲的知识点总结。

高考数学大纲知识点总结

高考数学大纲知识点总结

高考数学大纲知识点总结高考数学是每年高中毕业生所面临的一项重要考试,涵盖了多个知识点和技巧。

为了帮助考生更好地备考和复习,本文将对高考数学大纲所涉及的主要知识点进行总结和归纳。

I. 初等数学1. 整式与分式- 整式的定义和性质- 分式的定义和性质- 整式与分式的相互转化2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 多元线性方程组与不等式组- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数及其图像- 函数的运算与复合- 反函数与函数方程4. 三角函数- 三角函数的定义和性质- 基本三角函数的图像及其性质 - 三角函数的运算和性质II. 解析几何1. 点、向量、直线、平面- 点的坐标与位置关系- 向量的定义和运算- 直线的方程及其性质- 平面的方程及其性质2. 空间几何体- 球、圆锥、圆台的性质与计算 - 圆柱、圆锥、圆台的视图与投影III. 数列与数学归纳法1. 数列- 数列的定义和性质- 等差数列和等比数列的通项与求和 - 递推数列的通项与求和2. 数学归纳法- 数学归纳法的基本原理- 应用数学归纳法解题IV. 概率论与数理统计1. 概率基础- 随机事件与概率的定义- 事件的运算与性质- 条件概率与独立事件2. 随机变量与分布- 随机变量的定义和性质- 常见离散型和连续型分布- 随机变量的期望与方差3. 统计基础- 样本与总体的定义- 统计量及其性质- 参数估计与假设检验V. 空间解析几何1. 向量与平面- 向量的数量积与叉积- 平面的方程及其性质- 平面与直线的位置关系2. 空间解析几何体- 空间直线与空间曲线- 空间曲面的方程与性质- 空间几何体的向量表示总结:高考数学大纲知识点的总结涵盖了初等数学、解析几何、数列与数学归纳法、概率论与数理统计以及空间解析几何等多个方面。

通过对这些知识点的掌握和了解,考生将能够更好地应对高考数学考试,提高成绩并取得好的成绩。

数学高考知识点提纲

数学高考知识点提纲

数学高考知识点提纲一、函数与方程1.1 一元二次函数- 定义及性质- 平移、伸缩及翻转- 解一元二次方程1.2 一次函数与二次函数的图像- 一次函数与二次函数的图像特点- 判断函数的单调性与极值- 求解函数的零点1.3 指数与对数函数- 指数与对数的定义及性质- 指数函数与对数函数的图像特点- 指数方程与对数方程的求解二、几何2.1 平面几何- 平面上的点、直线、线段、射线、角- 平面几何中的基本性质与定理- 平面几何证明方法2.2 空间几何- 空间中的点、直线、平面、多面体- 空间几何中的基本性质与定理- 空间几何证明方法2.3 三角函数- 弧度制与角度制- 正弦、余弦、正切函数的定义及性质- 三角函数的图像特点及其应用三、概率与统计3.1 概率基础- 随机事件的概念与性质- 基本概率公式与计算方法- 事件间的关系与运算3.2 统计与概率- 统计基础概念与方法- 随机变量与概率分布- 统计与概率的实际问题应用四、导数与积分4.1 函数的极限与连续性- 极限的定义与性质- 连续函数的判定与性质- 零点定理与介值定理4.2 导数与微分- 导数的定义与性质- 常见函数的导数计算- 微分的应用4.3 定积分与不定积分- 定积分的定义及性质- 基本积分计算方法- 积分的应用五、三角学5.1 三角比与三角恒等式- 三角比的定义及性质- 基本三角恒等式的证明与应用- 三角比与三角函数的关系5.2 三角函数与解三角形- 正弦定理与余弦定理- 解直角三角形与一般三角形- 三角形的面积与高线定理六、数列与数学归纳法6.1 数列的概念与性质- 数列的定义与表示- 数列的等差、等比和等差数列- 数列极限的定义与性质6.2 数学归纳法- 数学归纳法的基本原理与应用- 数学归纳法解题思路- 数学归纳法证明与应用七、复数与向量7.1 复数的基本概念- 复数的定义与表示- 复数的四则运算- 复数的几何意义与应用7.2 平面向量- 平面向量的基本概念与运算- 向量的数量积与向量积- 平面向量的几何应用综上所述,数学高考知识点提纲涵盖了函数与方程、几何、概率与统计、导数与积分、三角学、数列与数学归纳法、以及复数与向量等重要内容。

高中数学高考大纲及知识点讲解

高中数学高考大纲及知识点讲解

高中数学高考大纲及知识点讲解高中数学重点知识与结论分类解析一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性。

2.在求集合的交集时,必须注意到“极端”情况:当A或B 为空集时,它们的交集也为空集。

在求集合的子集时,也要注意到空集是任何集合的子集,而且是任何非空集合的真子集。

3.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数分别为2,2^n-2,2^n-1,n。

4.交的补等于补的并,即C∪(A∩B) = (C∪A)∩(C∪B);并的补等于补的交,即C∩(A∪B) = (C∩A)∪(C∩B)。

5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。

7.四种命题中,“逆”者“交换”也,“否”者“否定”也。

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。

反证法分为三步:假设、推矛、得果。

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”。

8.充要条件。

二、函数1.指数式、对数式,a^m×a^n = a^(m+n),m/n = logaN,a^a = N ⇔ loga N = a (a>0.a≠1.N>0),a = 1,loga 1 = 0,loga a = 1,lg2 + lg5 = 1,loge x = ln x,loga b = logc b / logc a,logam n = n loga m。

2.(1) 映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合A中的元素必有像,但第二个集合B中的元素不一定有原像(A中元素的像有且仅有下一个,但B中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集B的子集”。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

高考数学最全知识点

高考数学最全知识点

高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。

祝你成功!。

2024年高考数学知识点归纳总结

2024年高考数学知识点归纳总结

2024年高考数学知识点归纳总结随着社会的快速发展,数学已经成为我们生活中不可或缺的一部分。

作为高中生考试科目之一,数学是高考的重要内容之一。

2024年的高考数学知识点包括以下几个方面:1. 空间几何空间几何是数学的一个重要分支,主要研究空间中的点、线、面和体等几何对象的性质与关系。

高考数学中的空间几何主要包括平面方程、直线方程、圆锥曲线方程、向量、坐标系等内容。

考生需要掌握空间几何的基本概念和性质,并能够熟练运用相关公式和定理解决与空间几何相关的问题。

2. 函数与方程函数与方程是高考数学中的核心知识点,也是考生学习数学的基础。

涉及到函数与方程的内容主要包括函数的性质与图像、函数的导数与微分、方程与不等式的解等。

考生需要熟悉各种类型的函数与方程的性质,并能够通过代数和几何的方法解决与函数与方程相关的问题。

3. 数列与数学归纳法数列与数学归纳法是高考数学中的重要内容之一,也是数学思维的一种重要训练。

数列与数学归纳法的主要内容包括数列的概念与性质、数列的通项公式、数学归纳法的原理与应用等。

考生需要熟练掌握数列的定义与性质,能够求解数列的通项公式,并能够合理运用数学归纳法解决与数列相关的问题。

4. 概率与统计概率与统计是现代数学的重要分支,也是我们日常生活中经常使用的一种数学方法。

概率与统计的主要内容包括概率的定义与性质、事件的组合与求解、统计数据的分析与处理等。

考生需要熟悉概率与统计的基本概念和方法,能够分析和解决与概率与统计相关的问题。

5. 解析几何解析几何是数学中的一门重要学科,主要研究几何对象的坐标表示和性质。

解析几何的主要内容包括点、直线、圆的坐标表示与性质,以及解析几何在几何证明和几何问题中的应用。

考生需要掌握解析几何的基本知识和方法,并能够运用解析几何解决与几何相关的问题。

以上是2024年高考数学知识点的归纳总结,考生在备考过程中应该重点关注以上内容,并根据考试大纲进行有针对性的复习和训练,提高数学解题能力和应试水平,取得理想的成绩。

新高考数学必考知识点归纳

新高考数学必考知识点归纳

新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。

以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。

通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。

高考数学知识点总结及公式

高考数学知识点总结及公式

高考数学知识点总结及公式高考数学知识点总结及公式大全高考是为普通高等学校招生设置的全国性统一考试,每年6月7日-10日实施,是一种大型选拔形式。

以下是小编准备的高考数学知识点总结及公式,欢迎借鉴参考。

高考数学知识点总结专题一:集合考点1:集合的基本运算考点2:集合之间的关系专题二:函数考点3:函数及其表示考点4:函数的基本性质考点5:一次函数与二次函数.考点6:指数与指数函数考点7:对数与对数函数考点8:幂函数考点9:函数的图像考点10:函数的值域与最值考点11:函数的应用专题三:立体几何初步考点12:空间几何体的结构、三视图和直视图考点13:空间几何体的表面积和体积考点14:点、线、面的`位置关系考点15:直线、平面平行的性质与判定考点16:直线、平面垂直的判定及其性质考点17:空间中的角考点18:空间向量专题四:直线与圆考点19:直线方程和两条直线的关系考点20:圆的方程考点21:直线与圆、圆与圆的位置关系专题五:算法初步与框图考点22:算法初步与框图专题六:三角函数考点23:任意角的三角函数、同三角函数和诱导公式考点24:三角函数的图像和性质考点25:三角函数的最值与综合运用考点26:三角恒等变换考点27:解三角形专题七:平面向量考点28:平面向量的概念与运算考点29:向量的运用专题八:数列考点30:数列的概念及其表示考点31:等差数列考点32:等比数列考点33:数列的综合运用专题九:不等式考点34:不等关系与不等式考点35:不等式的解法考点36:线性规划考点37:不等式的综合运用高考数学公式总结必背常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结

2024高考数学知识点归纳总结一、集合与常用逻辑用语。

1. 集合。

- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。

- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。

- 集合的运算:交集、并集、补集的定义、性质和运算规则。

例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。

2. 常用逻辑用语。

- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。

- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。

- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。

- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。

例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。

二、函数。

1. 函数的概念。

- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应关系。

定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。

2. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

2023年云南省高考数学考试大纲

2023年云南省高考数学考试大纲

2023年云南省高考数学考试大纲
1、必学知识点:
(1)(必修第二册)平面向量投影的概念以及投影向量的意义(实际上这个知识点旧教材里也有)。

(2)(必修第二册)有限样本空间的含义。

(3)(必修第二册)分层随机抽样的样本均值和样本方差。

(4)(必修第二册)用样本估计百分位数,及百分位数的统计含义。

(5)(选择性必修第一册)空间向量投影的概念以及投影向量的意义。

(6)(选择性必修第一册)用向量方法解决空间中的距离问题(实际上这个知识点旧教材里也有)。

(7)(人教A版选择性必修第三册/人教B版选择性必修第二册)利用全概率公式计算概率。

2、选学知识点:
(1)(人教A版必修第二册/人教B版必修第四册)复数的三角形式。

(2)(人教A版选择性必修第三册/人教B版选择性必修第二册)贝叶斯公式。

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。

需要特别注意能够对含有一个量词的全称命题进行否定。

2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。

3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。

第二部分的位置关系侧重于利用空间向量来进行证明和计算。

4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。

5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。

6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。

我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。

7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。

会用基本不等式解决简单的最大(小)值问题。

9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。

10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。

11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。

要想成功就必须付出汗水。

12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。

高考数学知识点大纲总结归纳

高考数学知识点大纲总结归纳

高考数学知识点大纲总结归纳在高考数学中,掌握并熟练应用各个知识点是取得高分的关键。

为了帮助大家更好地复习和备考,下面将对高考数学知识点进行大纲总结和归纳,希望能对同学们有所帮助。

一、数与式的基本概念与运算1. 整数、有理数和实数的概念及其性质2. 数的进位制和逢几进一3. 约束算数式的基本约定二、函数的概念与初等函数1. 函数的概念与函数关系2. 一次函数的性质与应用3. 二次函数的性质与图像的应用4. 幂函数、指数函数和对数函数的性质5. 三角函数的定义、性质和图像三、数列与数列的极限1. 数列的概念与分类2. 数列的通项表达式及其性质3. 等差数列与等比数列的应用4. 数列极限的概念与性质5. 数列极限的计算与应用四、平面向量与解析几何1. 平面向量的概念与运算2. 向量的数量积与向量的夹角3. 直线的方程与位置关系4. 圆的方程与位置关系5. 曲线的方程与位置关系的应用五、空间几何与立体几何1. 空间直线与平面的位置关系与方程2. 空间中点、距离和角的性质3. 空间向量的共线与垂直4. 空间几何体的表面积和体积计算5. 空间几何体的平行与相交六、导数与微分1. 函数的导数与导数的计算2. 导数应用于函数图像与函数性质研究3. 函数的微分与微分的应用4. 导数与函数的解析几何应用七、不等式与线性规划1. 不等式与不等式的性质2. 一元二次不等式的解与应用3. 约束条件与目标函数的线性规划问题八、概率与统计1. 概率的概念与计算2. 事件的确定性与不确定性3. 统计调查与数据分析4. 正态分布与抽样调查通过对以上数学知识点的大纲总结归纳,我们可以清晰地了解到高考数学需要掌握的重点内容,有利于我们有针对性地进行复习备考。

在备考过程中,我们需要注重基础知识的掌握与应用,同时要加强练习并注重解题技巧的培养。

希望同学们能够根据大纲中的知识点进行系统性的学习和复习,通过大量的练习题来巩固知识,并特别注意各个知识点之间的联系与综合运用。

2024年高考数学知识点总结的资料(2篇)

2024年高考数学知识点总结的资料(2篇)

2024年高考数学知识点总结的资料____年高考数学知识点总结一、函数与方程1. 函数的定义与性质- 了解函数的定义和函数关系,掌握函数的性质:有界性、单调性、奇偶性、周期性等。

- 熟悉函数的图像与函数的基本性质的关系,如零点、极值、曲线的凹凸性等。

2. 一次函数与二次函数- 熟练掌握一次函数及其图像,掌握一次函数的性质、变化规律与应用。

- 理解二次函数的定义与性质,掌握二次函数的图像与二次函数方程、不等式的解法。

- 掌握二次函数的最值、对称轴、顶点与判别式等概念及其联系。

3. 指数与对数函数- 理解指数与对数函数的定义与性质,掌握指数与对数函数的图像、变化规律与应用。

- 掌握指数函数与对数函数的互为反函数的性质及应用。

4. 三角函数- 掌握常见的三角函数:正弦函数、余弦函数、正切函数等的定义及其图像。

- 理解三角函数的周期性、单调性、奇偶性等性质,掌握利用这些性质解三角函数方程与不等式的方法。

- 掌握三角函数的基本关系式、和差化积公式、倍角公式、半角公式等,能够利用这些公式解题。

5. 线性方程与二次方程- 熟练掌握一元一次方程的解法,了解二元一次方程组的解法。

- 掌握一元二次方程的解法:因式分解法、配方法、求根公式等。

- 理解二次方程与根与系数之间的关系,能够根据已知条件写出方程求解。

二、解析几何1. 向量的定义与运算- 掌握向量的定义,了解向量的加减法与数乘运算。

- 熟悉平面向量的坐标表示法与方法,能够用向量表示线段。

- 掌握向量的数量积与向量点乘的概念、性质与运算,能够计算向量的模长与夹角。

2. 直线与圆- 掌握直线的方程:一般式、点斜式、两点式等,能够利用直线的性质解决与直线相关的问题。

- 理解圆的定义,熟悉圆的方程与性质,能够利用圆的性质解决与圆相关的问题。

3. 平面与空间几何- 熟悉平面的方程:一般式、点法式、截距式等,能够利用平面的性质解决与平面相关的问题。

- 了解空间几何的基本概念与定理,熟悉球面与球体的性质与方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)必考内容与要求1. 集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。

②能用自然语言、图形语言、几何语言(列举法或描述法)描述不同的具体问题。

(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会要求给定及子集的补集。

③能使用韦恩(Venn)图表达集合的关系与运算。

2. 函数概念与基本初等函数Ⅰ(指数函数、对数函数。

幂函数)(1) 函数①了解构成函数的要素,会简单求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义:结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图象理解和研究函数的性质。

(2) 指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的含义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。

④知道指数函数是一类重要的函数模型。

(3) 对数函数①理解对数函数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③知道对数函数是一类重要的函数模型。

④了解指数函数与对数函数互为反函数(a﹥0,且a≠1)(4) 幂函数①了解幂函数的概念。

②结合函数的图像,了解它们的变化情况。

(5) 函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

③根据具体函数的图像,能够用二分法求相应方程的近似解。

(6) 函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升,指数增长,对数增长等不同函数类型增长的含义。

②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.立体几何初步(1)认识空间几何①认识柱、锥、台、球极其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物理的结构。

②能画出简单空间图形(长方形、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的指示图。

③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同形式。

④会画某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式。

(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

·公理1:如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在此平面内。

·公理2:过不在同一条直线上的三点,有且只有一个平面。

·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

·公理4:平行于同一条直线的两条直线互相平行。

·定理:空间中如果一个角度的两边与另一个角的两边平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,认识和理解空中线面平行、垂直的有关性质与判定定理。

理解以下判定定理·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

·如果一个平面内的两条相交直线与另一平面平行,那么这两个平面都平行。

·如果一条直线与另一个平面内的两条相交直线都垂直,那么该直线与此平面平行。

·如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。

理解以下性质定理,并能够证明·如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行。

.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行..垂直于同一个平面的两条直线平行。

.如果两个平面垂直那么一个平面内垂直于它们交线的直线与另一个平面垂直。

③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。

4.平面解析几何初步(1)直线方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。

②能根据两条直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

③能根据两条直线的斜率判定这两条直线平行或垂直。

④掌握正确直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。

⑤能用解方程组的方法求两条相交直线的交点坐标。

⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。

②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。

③能用直线和圆的方程解决一些简单的问题。

④初步了解用代数方法处理几何问题的思想。

(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标系表示点的位置。

②会推导空间两点的距离公式。

5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想。

②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

6.统计(1)随机抽样①理解随机抽样的必要性和重要性。

②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。

(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。

②理解样本数据标准的意义和作用,算数据标准差。

③能从样本数据中提取基本的数字特征(如平均数、标准差)并给出合理的解释。

④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。

⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。

(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用三点图认识变量间的相关关系。

②了解最小二乘法的思想,能根据给出的线性回归方程系数公式7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

②了解两个互斥事件的概率加法公式。

(2)古典概型①理解古典概型及其概率计算公式。

②会计算一些随机事件所含的基本事件数及事件发生的概率。

(3)随机数与几何概率①了解随机数的意义,能运用模拟方法估计概率。

②了解几何概型的意义。

8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念②了解弧度制的概念,能进行弧度与角度的互化。

(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义。

②能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性。

③理解正弦函数、余弦函数在区间的性质(如单调性、最大值和最小值以及与x轴交点等),理解正切函数在区间的单调性。

④理解同角三角函数的基本关系式:⑤了解函数的物理意义;能画出的图像,了解参数A、ω、对函数图象变化的影响。

⑥了解三角函数式描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。

9.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景。

②理解平面向量的概念,理解两个向量的相等含义。

③理解向量的几何表示.(2)向量的线性运算①掌握向量加法、减法的运算,并理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。

②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.10.三角恒等变换(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式.③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)11.解三角形(1)正弦三角形和余弦三角形掌握正弦定理,余弦定理,并能解决一些简单的三角形度量问题。

(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

12.数列(1)数列的概念和简单的表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式)②了解数列是自变量为正整数的一类函数。

(2)等差数列、等比数列①理解等差数、列等比数列的概念②掌握等差数列、等比数列的通项公式与前n项和公式。

③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题④了解等差数列与一次函数、等比数列与指数函数的关系。

13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式①会从实际情景中抽象出一元二次不等式模型。

②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的关系。

③会解一元二次不等式。

对给定的一元二次不等式,会设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题①会从实际情景中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

③会从实际情景中抽象出一些简单的二元一次线性规划问题,并能加以解决。

(4)基本不等式:①了解基本不等式的证明过程。

②会用解决简单的最大(小)值问题。

14.常用逻辑用语(1)命题及其关系①理解命题的概念。

②了解"若p,则q"形式的命题及其逆命题、否命题与逆命题,会分析四种命题的相互关系。

③理解必要条件、充分条件与充要条件的含义。

(3)全称量词与存在量词①理解全称量词与存在量词的意义。

②能正确地对含有一个量词的命题进行否定。

相关文档
最新文档