第五章_单因素模型与多因素模型
因素模型
Ri = i + i Rm+ e i
14
2019年3月25日
石河子大学商学院孙家瑜
因素模型
Ri = i + i Rm+ e i
Ri=ri-rf是股票的超额收益 i是当市场超额收益为0时的期望收益 i是股票i对宏观因素的敏感程度 Rm=rm-rf是市场收益的超额收益 i Rm是影响股票超额收益的宏观因素 e i是影响股票超额收益的公司特有因素
11
2019年3月25日
石河子大学商学DP 的预期增长率 为 2.9% , A 的实际回报率是 13% 。因此, A 的 回报率的特有部分(由 e t 给出)为3.2%。 给定GNP的预期增长率为2.9%,从A的实际回 报率13%中减去A的期望回报率9.8%,就得到 A的回报率的特有部分3.2%。
10
2019年3月25日
石河子大学商学院孙家瑜
因素模型
零因子是 4% ,这是 GDP 的预期增长率为零时 , A 的回报率。 A 的回报率对 GDP 增长率的敏 感度为 2 ,这是图中直线的斜率。这个值表 明,高的GDP的预期增长率一定伴随着高的A 的回报率。如果GDP的预期增长率是5%,则A 的回报率为14%。如果GDP的预期增长率增加 1%——为 6% 时,则 A 的回报率增加 2% ,或者 为16%。
16
2019年3月25日
石河子大学商学院孙家瑜
因素模型
单指数模型的几何表达
证券特征线 Security characteristic line, SCL
资产超额 收益率
e1 •
e3 • • e2 • e5
e4 • • e6
市场指数超额收益率
17 2019年3月25日
因素模型
因素模型杨长汉1证券资产价格的决定因素是多种多样的,西方学者在研究中采取了多种多样的方法去探讨证券价格的决定因素。
最主要的两种模型就是单因素模型和多因素模型。
一、单因素模型(Single-Index Model)夏普(William Sharp)于1963年建立了单因素模型2。
单因素模型是指证劵价格的影响因素只有一个,而如果有两个或两个以上的因素,则称为多因素模型。
单因素模型的基本思想是:当市场指数上升时,市场中大部分证券资产的价格就会上涨;相反,当市场指数下降时,市场中大部分证券资产的价格就会下降。
单因素模型中有以下两个基本假设条件:第一,证券的风险分为系统性风险和非系统性风险,而这里所讲的因素仅指系统性风险。
第二,一个证券的非系统性风险与其他证券的非系统性风险之间的相关系数为零,两种证券之间的相关性仅取决于共同的市场因素。
在单因素模型中,主要有两个基本因素会造成证券收益率的波动:一是宏观经济环境因素,比如GDP 增长率、利率、通货膨胀率等,这些因素的变化会引起证券市场中所有证券收益率的变化,相对于市场中的系统性风险;二是微观因素的影响,如公司的财务状况、公司的经营状况以及突发事件等,这些因素的变化只会引起个别证券收益率的变化,相当于市场中的非系统性风险,可以通过多样化的投资组合进行分散。
我们以股票的收益率和股价指数的收益率为例,可以得到如下单因素模型公式: it it i mt it r A R βξ=++这一公式揭示了股票的收益率与市场指数收益率之间的关系。
其中,it r 为t 时期证券i 的收益率,mt R 为t 时期市场指数的收益率,i β为斜率,表明股票收益率波动对市场指数波动的反应程度,代表两者的相关关系,it A 是截距项,反映市场指数为零时股票收益率的大1 文章出处:《中国企业年金投资运营研究》 杨长汉 著杨长汉,笔名杨老金。
师从著名金融证券学者贺强教授,中央财经大学MBA 教育中心教师、金融学博士。
投资学(对外经济贸易大学)知到章节答案智慧树2023年
投资学(对外经济贸易大学)知到章节测试答案智慧树2023年最新第一章测试1.现代金融理论的发展是以()为标志。
参考答案:马科维茨的投资组合理论的出现2.资本资产定价模型是()参考答案:威廉夏普提出的3.套利定价模型是()参考答案:利用相对定价法定价的4. ______是金融资产。
参考答案:A和C5._____是基本证券的一个例子参考答案:长虹公司的普通股票6.购买房产是一定是实物投资。
参考答案:错7.金融市场和金融机构能够提供金融产品、金融工具和投资机制,使得资源能够跨期配置。
参考答案:对8.有效市场假说是尤金.法玛于1952年提出的。
参考答案:错9.投资学是学习如何进行资产配置的学科。
参考答案:对10.威廉夏普认为投资具有两个属性:时间和风险。
参考答案:对第二章测试1.公平赌博是:参考答案:A和C均正确2.假设参与者对消费计划a,b和c有如下的偏好关系:请问这与偏好关系的相违背?参考答案:传递性3.某投资者的效用函数为,如果这位投资者为严格风险厌恶的投资者,则参考答案:α<2βy, β<04.某人的效用函数是U(w)=-1/w。
那么他是相对风险厌恶型投资者。
参考答案:递减5.假设图中的所有组合都是公平定价的。
1、股票A,B,C的贝塔因子是多少?参考答案:0 ;1;1.6第三章测试1.马克维茨提出的有效边界理论中,风险的测度是通过_____进行的。
参考答案:收益的标准差2.用来测度两项风险资产的收益是否同向变动的的统计量是____参考答案:c和d3.有关资产组合分散化,下面哪个论断是正确?参考答案:一般来说,当更多的股票加入资产组合中时,整体风险降低的速度会越来越慢4.加入了无风险证券后的最优资产组合____参考答案:是无差异曲线和资本配置线的切点5.现代金融投资理论的开创者是。
参考答案:马柯维兹6.在均值-标准差坐标系中,当资产收益率服从正态分布时,严格风险厌恶型投资者无差异曲线的斜率是参考答案:正7.公平赌博:参考答案:a和b均正确8.按照马克维茨的描述,下面的资产组合中哪个不会落在有效边界上?资产组合期望收益率(%)标准差(%)W 4 2X 6 8Y 5 9Z 8 10参考答案:资产组合Y不会落在有效边界上9.考虑两种完全负相关的风险证券A和B。
《金融经济学导论》教学大纲
北京市高等学校精品课程申报文件之四《金融经济学导论》教学大纲《金融经济学导论》教学大纲项目负责人: 林桂军教授对外经济贸易大学金融学院《金融经济学导论》课题组二零零五年六月课程名称 《金融经济学导论》 Introduction of Financial Economics林桂军 教 授郭 敏 副教授余 湄 讲 师吴卫星 讲 师办公地点 博学楼908 接待时间 周四下午3:00-4:50任课教师联系电话 64495048 E-MAIL minguo992002@yumei@wxwu@课程性质 金融学院专业基础课学分学时 3学分, 3学时(18周),共54学时授课对象 金融学院本科生及全校各年级本科生先修课程 微观经济学 宏观经济学 金融市场:机构与工具 微积分 概率论与数理统计 平时作业计成绩。
考试方式期中、期末考试均为闭卷考试。
考试成绩 平时作业占20%,期中占20%,期末占60%,考勤要求教师可根据作业、考勤情况确定是否允许参加考试和扣减成绩。
教学目标 通过该课程的学习,将实现如下教学目标1.使学生了解金融经济学的基本思想和基本理论框架,为进一步学习现代金融理论打下基础;2.介绍资本市场的基本理论模型,包括马科维茨投资组合模型、资本资产定价模型、套利定价模型、MM模型、有效市场假说等;3. 从经济学和金融学角度了解金融商品相对于一般实际商品的特殊性,以及金融市场均衡的形成过程,掌握金融市场均衡机制相对于一般商品市场的均衡机制的共性与差异。
4.掌握金融经济学的基本分析方法,如金融商品的未来回报的不确定性的刻划方法、处理风险和收益之间关系的定量方法、证券投资组合方法、资本资产定价的原理和无套利均衡方法等。
教学方法 本课程属理论性较强的专业基础课,教学以讲授为主,辅以讨论.为在实证角度上增强学生对理论模型的深入了解,在部分章节安排了上机试验课。
课程简介 参见本课《课程介绍》。
教材 指定参考教材和授课教案结合《金融经济学》毛二万 编著,辽宁教育出版社,2002年。
多因素模型分析.完美版PPT
三、套利定价模型(APT)
资本资产定价模型无法用值完全解释不同资产之 间收益率的差异,而且它的导出建立在很多不现 实的假设基础上,这就为其它资产定价模型打开 了大门,这些模型中最具竞争力的是套利定价模 型(APT)(arbitrage pricing theory)。
套利定价模型背后的逻辑基础与资本资产定价模 型类似,都是投资者只有在承担了不可分散的风 险时才能获得补偿。
然而,1977年,Roll在一篇有创见性的模型检验 评论中指出:既然市场投资组合永远不可能观察 到,那么资本资产定价模型就永远不会得到检验, 而所有对该模型的检验都是对该模型及模型中市 场投资组合的联合检验。
近年来,Fama和French(1992)又检验了1963 年到1990年间值与期望收益率的关系,与他在 1974年得到的结论正好相反,发现这两者竟然毫 无关系。
无论是股票、债券还是房地产,既然它们在争夺既定数量的投资资金,那么一个好的风险收益模型所提供的风险度量方法就应当可以
他们将这一结果归因于所选取的标准普尔500股 应用到各种投资标的之上,而不论该投资标的是金融资产还是实物资产。
CAPM模型的基本假设:
票指数中包含了大量低值的股票,而高值的股 模型好坏的最终检验标准是看它是否行之有效,也就是说它所度量出的风险与收益在长时间内对于不同投资项目是否为正相关。
二、CAPM的实证检验
资本资产定价模型是否行之有效,值是否是风险 的最好近似,它是否与期望收益正相关,对于这 些问题的回答一直是争论的焦点。
根据CAPM理论,任何证券的值与其期望收益率 E(r)存在线性关系,而描述这一关系的直线称 为证券市场线。
由于直接检验市场组合的有效性十分困难,所以 传统的检验者都把注意力集中到对值与期望收益 率E(r)线性关系的检验上。
因素模型与套利定价理论
套利定价方程
2.两因素模型的APT定价公式
❖E(Ri)=λ0+λ1bi1+ λ2bi2
❖λ1 :考虑一个充分多样化的组合,该组合对第一种
因素的敏感度等于1,对第二种因素的敏感度等于0,
则该组合的预期收益率δ1= Rf+λ1,
λ1=
δ1- Rf
❖λ2 :考虑一个充分多样化的组合,该组合对第一 种因素的敏感度等于0,对第二种因素的敏感度等 于1,则该组合的预期收益率δ2= Rf+λ2,
掌握
CAPM难题
❖运用CAPM模型面临的两大难题: • 一是寻找有效集的工作量,特别是计算协方
差的数目随着资产数目的增加而程指数增长 ------因素模型解决 • 依赖市场资产组合-----套利定价理论解决
APT理论的逻辑
Ri iiRMi
RpppRpp
系统风险与非系统风险
多因素模型的提出
❖ 单指数模型将所有的系统风险都归结为单一因素, 实际上,一方面系统风险包括多种因素,如经济 周期、利率和通货膨胀的不确定性等;另一方面, 不同的因素对不同的股票的影响力是不同的。因 此,要想准确地分析对股票收益的影响,还需要 将影响其收益的系统风险进行进一步的分解。
❖ 推导这种关系------推导出套利定价方程 ❖ APT模型的本质逻辑:104页
套利定价方程
1.单因素模型的APT定价公式 ❖ E(Ri)=λ0+λ1bi ❖ λ0和λ1的含义:如果bi=0(剔除共同因素对期望
收益率的影响),则 E(Ri)= λ0, λ0表示因素风 险为零时的证券期望收益率,则λ0=Rf。如果 bp=1,则E(Rp)=Rf+λ1, λ1= E(Rp)-Rf,即λ1敏 感系数为1的资产组合的期望收益率高出无风险收 益率的部分,即单位因素风险的溢价,记 E(Rp)=δ1,所以套利定价方程又可表示为 E(Ri)=Rf+bi(δ1-Rf)
投资规划-因素模型
单因素模型的一般形式
ri E(ri ) i F ei
• 表示不同公司对未预期到的宏观经济事件的敏感度 不同。
ri i i (rm rf ) ei
Ri i i Rm ei
SIM
单因素模型的假设条件
① 随机误差项的期望值为零;
E(ei ) 0
② 随机误差项与共同因素F不相关;
cov(ei , F ) 0
5. 依据因素的数量,可分为单因素模型和多因素模型
1963年,夏普提出单指数模型,旨在简化资产组合理论 的复杂计算问题。
单因素模型的前提假设
1. 证券的风险分为系统性风险和非系统性风险,因素 对非系统性风险不产生影响;
2. 一个证券的非系统性风险对其他证券的非系统性风
险不产生影响,两种证券的回报率仅仅通过因素的
(用最小二乘法OLS对观测数据进行拟合得到)
年份 1 2 3 4 5 6
IGDPt(%) 5.7 6.4 8.9 8.0 5.1 2.9
股票A收益率(%) 14.3 19.2 23.4 15.6 9.2 13.0
rt
r6 13.0%
案例1:样本期间的散点图
e6 3.2%
4%
IGDP6 2.9%
Chapter7 因素模型
学习目标 1. 了解因素模型的建立、特征 2. 了解因素模型的贡献 3. 掌握在因素模型下单个证券及证券组
合的预期收益率和风险
主要内容
单因素模型 多因素模型 因素模型的估计 因素模型与CAPM
引言
• 法玛在市场有效性的理论表述和实证研究上都有 重大贡献。
• 法玛弗兰齐 (K. French)等人对 CAPM 的不足进 行批判--又一影响重大的贡献。
方差分析
假设从总体中抽取容量为 n i 的样本: X i 1 , X i 2 ,..., X in , i 1,2,3,4
i
• 假设4个样本相互独立,则 X ij相互独立, 这里 4
n ni
i 1
• 提出假设:
H0 : 1 2 3 4
原假设等价于
H0 : 1 2 ... r 0
5.4
5.1.3. 统计分析
(一)假设检验 • 构造(5.4)的统计量。 n 1 记 X X ,
i
ni
j 1 ni j 1
i
ij
1 2 Si ni
(X
ij
Xi ) ,
2
i 1,2,...,r
分别为第i个总体的样本均值和方差。
——单因素方差分析数学模型
• 假设
H 0 : 1 2 ... r
• 引入记号: n ni(总次数)
i 1 r
1 r ni i n i 1
(理论总均值)
i i
(因素对指标的效应)
•
i 之间的差异等价于 i 之间的差异,
且
n
Tests of Between-Subjects Effects Dep endent Variable: 杀 虫率 Source Corrected Model Intercept 农药 Error Total Corrected Total Type III Sum of Squares 3794.500a 95340.115 3794.500 178.000 118693.000 3972.500 df 5 1 5 12 18 17 Mean Square 758.900 95340.115 758.900 14.833 F 51.162 6427.424 51.162 Sig . .000 .000 .000
第五章 单因素模型与多因素模型
E ( Ri ) = α i + β i E ( rM )
E ( Ri ) = (1 − β i )rf + E (rM ) β i
根据资本资产定价模型,如果均衡存在,则
这意味着,单因素模型和资本资产定价模型的 参数之间必然存在下列关系:
如果:α i = (1 − β i )rf 即对证券的阿尔法的估计值刚好是证 券均衡定价时的截矩, 则 β i = β i 即在由CAPM决定的收益 率中的测度证券的市场风险大小的指 标与在因素模型决定的收益率中的因 素敏感性大小的值相同,意义相同。
因素模型中的因素常以指数形式出现(如GNP指 数、股价指数、物价指数等),所以又称为指数 模型。 单因素模型相对CAPM是为了解决两个问题,一是 提供一种简化地应用CAPM的方式;二是细分影响 总体市场环境变化的宏观因素,如国民收入、通 胀率、利率、能源价格等具体带来风险的因素因 素模型
一、单指数模型的估计
经济状况影响着大部分企业,因而对经济前景的预期的变 化被认为对绝大部分证券的收益率产生深刻影响。然而经 济并不是一个简单、统一的实体,因而我们需要确认一些 具有广泛作用的共同影响力,比如:1.国内生产总值;2. 利率水平;3.通货膨胀率;4.石油价格水平。 多因素模型对现实的近似程度更高。这一简化形式使得证 券组合理论广泛应用于实际成为可能,尤其是20世纪70年 代以来计算机的发展和普及以及软件的成套化和市场化, 极大地促进了现代证券组合理论在实践中的应用。
ri = α Ii + β Ii rI + ε iI
式中:r i代表某一给定时期证券i的收益率 I代表市场指数 ri代表相同时期市场指数I的收益率 εiI是随机误差项
例子:考虑股票A,有αIi =2%,ß 票A的市场模型为:
6第五章 因素模型
cov(ei , f1) = 0,cov(ei , f2 ) = 0
28
在两因素模型中, 在两因素模型中 , 对于证券 i , 其 回报率的均值
ri = ai + bi1 f1 + bi2 f2
其回报率的方差
证券i对因素2的敏感度 对因素2
16
其回报率的均值(期望值) 对于证券i,其回报率的均值(期望值)为
ri = ai + bi f
其回报率的方差
因素风险
(5.3) 5.3)
非因素风险
2 2 f 2 ei
σ = bi σ +σ
2 i
而言, 对于证券i和j而言,它们之间的协方差为
σij = cov(ri , rj ) = cov(ai + bi f + ei , aj + bj f + ej )
Cov ( Ri , RM )
24
CAPM中 与市场组合M的关系为: CAPM中,资产i 与市场组合M的关系为:
Ri − rf = ( Rm − rf ) β i
单指数模型为: 单指数模型为:
Ri − r f = α i + ( Rm − r f ) β i
其中: 超过CAPM CAPM预测的期望 其中:αi是资产i超过CAPM预测的期望 收益部分。 收益部分。 为零。 CAPM理论认为, CAPM理论认为,均衡状态下αi为零。 理论认为
第五章 因素模型
在之前的理论应用中, 在之前的理论应用中,为了得到投 资者的最优投资组合,要求知道: 资者的最优投资组合,要求知道:
–预期收益率率均值向量 预期收益率率均值向量 –预期收益率方差-协方差矩阵 预期收益率方差预期收益率方差 –无风险利率 无风险利率
金融工程相关概念的理解
其实图上的F点就是无风险资产,风险为0所以方差为0,在y轴上面。
P点就是风险资产。
当位于P点时,意味着所有资产投资与风险资产P,也就是风险资产比例 y=1当位于F点时,意味着所有资产投资与无风险资产,也就是无风险资产的比例为1。
那么在F和P之间的连线就意味着,风险资产比例 0<y<1的资产组合。
所以资产配置线是一条直线。
它的斜率也就可以由图片推导出来。
是一个常数。
因为P点和F点是固定的。
他们的期望收益和方差都是固定的。
然后再推导资本市场线就简单很多了。
资本市场线就是:无风险资产和市场组合M 的连线。
你把M代换成P点就懂了。
所以说,你问的它的斜率是一个常数是成立的。
并不需要推导,因为CML的定义就是,两个点的连线。
既然是连线,那么斜率就是确定的了,用(市场组合M的收益-无风险资产的收益)/市场组合M的方差。
而不是你说的“(风险组合报酬率-无风险投资报酬率)/风险组合方差”,你说的这个是资产配置线的斜率。
资本市场线是指表明有效组合的期望收益率和标准差之间的一种简单的线性关系的一条射线。
它是沿着投资组合的有效边界,由风险资产和无风险资产构成的投资组合。
资本市场线可表达为: E(rp)=rF+re*Qp其中rp为任意有效组合P的收益率,rF为无风险收益率(纯利率),re为资本市场线的斜率,Qp 为有效组合P的标准差(风险)。
虽然资本市场线表示的是风险和收益之间的关系,但是这种关系也决定了证券的价格。
因为资本市场线是证券有效组合条件下的风险与收益的均衡,如果脱离了这一均衡,则就会在资本市场线之外,形成另一种风险与收益的对应关系。
这时,要么风险的报酬偏高,这类证券就会成为市场上的抢手货,造成该证券的价格上涨,投资于该证券的报酬最终会降低下来。
要么会造成风险的报酬偏低,这类证券在市场上就会成为市场上投资者大量抛售的目标,造成该证券的价格下跌,投资于该证券的报酬最终会提高。
经过一段时间后,所有证券的风险和收益最终会落到资本市场线上来,达到均衡状态。
投资学课程教案
陇东学院课程教案
2012-2013学年第二学期
课程名称:投资学
授课专业:财务管理专业
授课班级: 2011级财管班
主讲教师:齐欣
所属院系部:经济管理学院
教研室:应用经济学教研室
教材名称:投资学
出版社、版次:中国人民大学出版社
第一版
2013年3月3日
陇东学院课程教案(首页)
陇东学院课程教案
使计算投资组合的期望收益率及期望收益率的方差。
参考资料(含参考书、文献、网址等):
(1)是否有人会有兴趣投资股票B?
如果无风险收益率是3%,计算收益-变动比率并排序。
2.A先生投资5万元申购一只LOF基金—南方高增长,他采取了场外申购,即通过银行柜台等申购方式。
投资人A打算在天成基金和另一家以上证综指业绩为目标的基金中选择一家进行投资。
如果仅仅参考。
第五讲 套利定价模型(APT)
a 差为
,
i
i为常数,它表示要素值为0时证券i的预期
收益率。因素模型认为,随机变量ε与因素是不相关的,
且两种证券的随机变量之间也是不相关的。
2021/10/10 10
根据式(5-1),证券i 的预期收益率为:
其ri中F a表i示该b要i 素F的期望值。(5-2)
根据式(5-1),证券i 收益率的方差为:
r
APT资产定价线
B
S
2021/10/10
bB=bS
bi
22
式(5-5)中的 0和1代表什么意思呢?
我们知道,无风险资产的收益率等于无风险利率
,即:ri r f 。由于式(5-5)适用于所有证券包括无
风险证券,而无风险证券的因素敏感度
_
bi 0
,因此
根据式(5-5)我们有: ri 0 。由此可见,式(5-5)
讲套利定价模型(APT)
2021/10/10
1
本讲的主要内容:
1、CAPM模型的缺陷 2、因素模型 3、套利组合 4、APT模型 5、CAPM与APT的比较
2021/10/10
2
一、CAPM的局限性
(一)相关假设条件的局限性 1.市场无摩擦假设和卖空无限制假设与现实不符; 2.投资者同质预期与信息对称的假设意味着信息是无
2021/10/10 18
五、套利定价模型
投资者的套利活动是通过买入收益率偏高的证券同时 卖出收益率偏低的证券来实现的,其结果是使收益率偏高 的证券价格上升,其收益率将相应回落;同时使收益率偏 低的证券价格下降,其收益率相应回升。这一过程将一直 持续到各种证券的收益率跟各种证券对各因素的敏感度保 持适当的关系为止。下面我们就来推导这种关系:
第五章 真实验设计 34单多因素随机区组
拉丁方的标准块:当拉丁方阵的第一行或第 一列都是按字母表顺序排序的时候,叫标准 化方块。
A B B A 2×2 A B C B C A C A B 3×3 A B C D B C D C D A D B A A B C 4×4
P=4的时候标准块的个数是多少? (4*4 为4; 5*5为56; 6*6 为9408) 拉丁方阵标准块的随机化: 当P=2 时 2*2的拉丁方阵可能的个数是2个; 当P=3 时 3*3的拉丁方阵可能的个数是12个; 当P=4 时 4*4的拉丁方阵可能的个数是576个; …… 当P=7时 7*7的拉丁方阵可能的个数是16942080个; 算法:P!*(P-1)!* 标准方块数
二、多因素随机区组设计的数据分析
• 多因素随机区组设计的数据也可通过多因素方差分 析进行处理,即将区组作为一个因素。实验处理A 和实验处理B的主效应及其交互作用是研究者关注 的中心,区组因素则作为无关变量加以控制。 • 但是研究者可以尝试分析区组因素和实验处理之间 的交互作用,如果达到统计的显著性水平,就可以 进一步修改原有的理论假设,把区组因素作为一个 实验因素加以考虑,以提高实验研究的外部效度。
实验处理平均 O.1
例.天气状况对“赛车”测试速度的影 响
年老组
好
中
差
年轻组
好
中
差
举例
一个研究者在做4种文章的生字密度对 学生阅读理解影响的研究时,在这个研究 中,自变量——生字密度有a1, a2, a3, a4 四个水平。学生智力不是研究者感兴趣 的变量,但它们对实验可能有影响,于是 将它们纳入到“自变量”中。
随机化区组设计的原则
• 随机化区组设计的原则是同一区组内的被试尽量 “同质”。 • 每一区组内被试的人数分配有3种情况: 一名被试作为一个区组。这时,每名被试(区组)均 接受全部处理,在接受处理的顺序上要采用随机化 的方法。 每个区组内被试的人数是实验处理数目的整倍数。 区组内的基本单元不是一名被试或几名被试,而是 以一个团体为单元。
什么是单因素模型
授课教师:张宗新 复旦大学金融研究院
第五章
因素模型与套利定价理论(APT)
第一节 指数模型
一、因素模型的产生
1、资本资产定价模型(CAPM)在实际应用的两大 问题: (1)要计算风险市场组合,计算量非常巨大。 ( 2 )证券市场线实际上只考虑了风险市场组合的 预期回报率对证券或证券组合的期望收益率的影 响,即把市场风险(系统风险)全部集中地表现 在一个因素中,并没有将影响证券收益的宏观经 济变量(如国民收入、利率、通货膨胀率、能源 价格等)考虑在内。
(3)因素模型的非均衡特征
ri ai bi F
非均衡特征的体现:
ai
和 的区别; ri rf iM (r rf ) M
rf
四、多因素模型
多因素模型形成:将影响证券收益的系统性因素 扩展到多个。
1、双因素模型的一般形式:
实例:(具体化的)双因素模型定价 R a b F b
2、多因素模型
同样,考虑到多种因素对证券回报率的影响, 可以进一步将因素模型进行拓展,从而形成含 有种因素的多因素模型:
Rit ai bi1 F1t bi 2 F2t bik Fkt eit
五、指数模型估计与因子识别 (一)模型估计方法
1.时间序列法:因素的值是已知的,而敏感度需要 估计,且对每个证券的分析是多个时期逐个进行 的。 2.横截面法:敏感度是已知的,而因素的值需要估 计,且对每一组证券的分析是每一时期逐个进行。
Cov( i , j ) 0
Cov(F , i ) 0
2 Cov( F , F ) F
Cov( Ri , R j ) Cov(ai bi F i , a j b j F j ) Cov(bi F i , b j F j )
心理统计SPSS-第五章 因素型实验设计及方差分析过程剖析
1 2
A1
8 12
A2
16 11
A3
21 16
3
4 5
11
7 13
15
10 12
18
19 22
6
9
14
18
练习
One Way方差分析程序的适用条件: 1.三个以上相等独立被试组在不同条件下接受观测得 到三组以上的独立数据组; 2.来自三个以上不同总体的独立被试组在相同条件下 接受同样的观测,得到三组以上的独立数据组; 3.一般要求因变量必须是连续测量的数据或近似于连
究会得到多组数据,而这些数据必然存在变异。被试差异、测量误 差、其他额外变量的变化等。因素型实验的目的就是考察自变量或准自
变量变化是否引起了因变量数据足够大的改变,以至于可以认为其不同
水平间因变量的差异性并非误差因素造成,而且这种评估是与误差因素 引起数据的变化量相比较而完成的。数据变异可以通过离差平方和或方 差来反映,所以关于数据变异的分析叫方差分析。
续变化的数据;
4.数据总体为正态分布、各数据样本方差齐性。
二、多因素完全随机实验设计方差分析(GLM 方差分析)
当研究的自变量或准自变量不只一个,每个自变量的水平在两个 以上时,就会结合出四个以上的实验处理。将选取来的被试分成四个 独立组,每个组被试只接受一种条件下的实验观察,则构成多因素完 全随机实验设计。其数据分析则要使用SPSS程序中的“General Linear Model-Univariate”模块。 如果进行简单效应检验,可执行类似于下的句法命令: MANOVA SCORE by A(1,2) B(1,2) /design(此句要求先输出完整的方差分析表) /design=A within B(1) A within B(2) B within A(1) B within A(2). (ANOVA命令中不能做简单效应检验)
第5章 资本资产定价模型
第一节 资本资产定价模型 二、资本市场线模型
分离定理
根据分离定律,风险厌恶程度较大的投资者A, 风险厌恶程度较小的投资者B,比较激进的投 资者C分别所选择的投资组合
C B E(r) A
M
rf
σp 10
第一节 资本资产定价模型 二、资本市场线模型
市场组合
当市场处于均衡状态时,对于最优风险资产组 合来讲,每一种风险资产的比例都不为零。
风险的分类(按照其来源分类) 货币风险 利率风险 流动性风险 信用风险 市场风险 营运风险
31
第三节 单个证券与组合的风险
风险的分类(按照是否可分散的分类) 系统性风险 不可分散的,市场会为承担该风险提供相应的风险 溢价 非系统性风险 和某些特定的证券相联系的,是可以通过不同的投 资组合策略来分散的,整个市场不会为承担这种风 险而提供相应的风险溢价。
5
0
-8
-6
-4
-2
0
2
4
6
-5
-10
-15 上证综合指数指数收益率(%)
其特征线方程为:Rit 0.1214 1.2887RMt
浦发银行股票自 2008年9月25日 至2009年9月24 8 日的特征线
29
第三节 单个证券与组合的风险
一、单个证券的风险 二、组合的风险
30
第三节 单个证券与组合的风险 一、单个证券的风险
13
第一节 资本资产定价模型 二、资本市场线模型
资本市场线
E(r)
M
E(rp )
rf
E(rM ) rf
M
p
rf
σP
CML前一项可以看成是投资者持有资产组合一 段时间内所得到的时间收益
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 任一给定证券的实际回报率由于含有非因 素回报率的缘故而位于拟合直线的上方或 下方。因此对例中的单因素模型多反映的
关系的完整描述为:ri 4% 2GDP i
2020/4/7
11
Ri i iG i
➢ 从方程中我们可以看出,任何一个证券的收益由 三部分构成:
Cov(i , j ) 0
2020/4/7
15
上述方程中证券i的期望收益、方差、协方差分别为
➢ 期望收益率:根据单因素模型,证券i的期望收 益率可以表示为
E(Ri ) i i E(F )
➢方差:在单因素模型中,同样可以证明任意证券i 的方差等于:
2 i
i2
2 F
2 (i )
在这里,δ2F是因素的方差,δ2(εi)是随机误 差项的方差
2012最新文档-管理系列
(PPT可编辑版)
2020/4/7
2
❖教学目的及要求
1、掌握因素模型是根据收益生成过程通过回 归分析建立的收益和风险关系的资产定价 模型
2、认识因素模型与资本资产定价模型的关系
3、了解因素模型是实践中具有操作性的替代 资本资产定价模型的测定风险和收益关系 的模型
❖重点内容 : 掌握因素模型的生成性质及实际运用
2020/4/7
20
第二节、资本资产定价模型与 因素模型
一、市场模型
二、资本资产定价模型与因素模型的关系
2020/4/7
2020/4/7
14
SIM有如下假设:
• 收益率的生成过程由上述回购方程描述
• 对每一证券i, E(it ) 0 • 每一证券的残差与宏观因素不相关,这意味着
因素的结果对随机误差的结果没有任何影响。
Cov(it , Ft ) 0
• 证券i与j的残差不相关,这意味着一种证券的 随机误差结果对任意其他证券的随机误差结果 不产生任何影响。换句话说,两种证券的回报 率仅仅通过对因素的共同反应而相关联。
• αi是宏观因素期望变化为零时的收益,是投资者 对证券的期初收益;
• βiG系统性风险收益,即随整个市场运动变化不 确定性(非预期的)的收益,且变化的敏感度是 βi;
• εi是与国内生产总值无关因素的作用,是非系统 性风险收益,即只与单个证券相关的非预期事件 形成的非预期收益。
2020/4/7
12
➢协方差:在单因素模型中,计算证券间的协方 差变得十分简单。
ij
i
j
2 F
2020/4/7
16
➢正是因为可以用这种简单方式计算协方差, 使指数模型能够克服马柯威茨模型的庞大
计算量的困难。如果组合里有n项资产,计 算组合的方差—协方差矩阵需要进行 1/2n(n+1)次方差-协方差的测算,但现在 只需要测算n个βi和1个δ2F就可以了。
系统风险是指整个市场所承受到的风险, 如经济的景气情况、市场总体利率水平的变 化等因为整个市场环境发生变化而产生的风 险,即每一证券的风险来源是一样的。由于 市场风险与整个市场的波动相联系,因此, 无论投资者如何分散投资资金都无法消除和 避免这一部分风险。
2020/4/7
19
非系统风险是公司特有的风险,诸如企 业陷入法律纠纷、罢工、新产品开发失败 等等,即每一证券的风险来源是独立的。 风险与整个市场的波动无关,投资者可以 通过投资分散化来消除这部分风险。
2020/4/7
3
第一节 单因素模型 第二节 资本资产定价模型与因素模型 第三节 多因素模型
2020/4/7
4
第一节 单指数(SIM)模型
一、单指数模型的估计 二、单指数模型的一般形式 三、单指数模型中的系统风险与非 系统风险
2020/4/7
5
❖因素模型由威廉.夏普在1963年提出.它是 是描述证券收益率生成过程的一种模型, 建立在证券关联性基础上。认为证券间的 关联性是由于某些共同因素的作用所致, 不同证券对这些共同的因素有不同的敏感 度。这些对所有证券的共同因素就是系统 性风险。因素模型正是抓住了对这些系统 影响对证券收益的影响,并用一种线性关 系来表示。
2020/4/7
6
❖因素模型中的因素常以指数形式出现 (如GNP指数、股价指数、物价指数等), 所以又称为指数模型。
❖单因素模型相对CAPM是为了解决两个问 题,一是提供一种简化地应用CAPM的方 式;二是细分影响总体市场环境变化的 宏观因素,如国民收入、通胀率、利率、 能源价格等具体带来风险的因素因素模 型
二、单因素模型的一般形式 一般地,单因素模型认为有一个因素
F对证券收益产生广泛影响,这种影响力 通过对每种证券i在任意时期t的建立如 下方程来反映:
Rit i i Ft it
2020/4/7
13
Rit i i Ft it
• Rit是证券i在t时期的收益率, Ft是宏观因 素在t期的值,i 是证券i对宏观因素的敏 感度, it 是一个均值为零的随机变量, i 是当宏观因素均值为零时证券的收益 率。
2020/4/7
7
一、单指数模型的估计
以回归分析得单因素模型
假设证券的回报率生成过程仅包含一 个因素,例如认为证券的回报率与预期 国内生产总值的增长率有关,那么预20/4/7
8
• 假设先考虑经济增长GDP对公司之股票收 益率的影响,即只考虑GDP变化对风险补 偿的影响。
2020/4/7
17
三、单因素模型中表示的系统风险与非系 统风险
Rit i i Ft it
因素模型是一个描述证券收益生成的模型。 it 表示非系统风险,i iFt表示系统风险,其中, 表示宏观因素均值为零时证券的期望收益。
2020/4/7
18
由第二章的内容可知,
总风险=系统风险+非系统风险
历史数据库
年
1 2 3 4 5 6
2020/4/7
GDP增长率 (%)
5.7 6.4 7.9 7.0 5.1 2.9
证券收益率 (%)
14.3 19.2 23.4 15.6 9.2 13.0
9
• 这一关系也可用下面的图形表示
24
•
20
•
16
•
•
12
• •
8
4
2468
2020/4/7
10
• 为了阐明图中所反映的数量关系,我们使 用一元回归分析的统计技术做一条直线来 拟合图中的点。那么,图中这条直线的回 归方程则为Ri=4%+2GDP