黄金分割 优秀教学设计
教案 北师大版 初中数学 八年级下册《黄金分割》教案
教案北师大版初中数学八年级下册《黄金分割》教案一. 教材分析北师大版初中数学八年级下册《黄金分割》教案旨在让学生理解黄金分割的概念,掌握黄金分割的应用。
通过本节课的学习,学生能够了解黄金分割的历史背景,熟悉黄金分割的基本性质,并能够运用黄金分割解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,具备了一定的观察、分析、解决问题的能力。
但部分学生可能对黄金分割的概念和应用存在理解上的困难,需要教师在教学中给予关注和引导。
三. 教学目标1.知识与技能:让学生掌握黄金分割的概念,了解黄金分割的基本性质,能够运用黄金分割解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生独立思考和合作解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。
四. 教学重难点1.重点:黄金分割的概念及其应用。
2.难点:黄金分割性质的证明和运用。
五. 教学方法1.情境教学法:通过设置情境,引导学生主动参与学习,提高学生的学习兴趣。
2.启发式教学法:引导学生独立思考,发现问题,解决问题。
3.合作学习法:鼓励学生之间相互讨论、交流,共同提高。
六. 教学准备1.准备相关图片、实例等教学资源。
2.设计好课堂练习题和作业。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的黄金分割实例,如建筑、艺术品等,引导学生观察、思考,引出黄金分割的概念。
2.呈现(10分钟)教师简要介绍黄金分割的历史背景,讲解黄金分割的定义和性质,引导学生通过观察、操作,理解黄金分割的特点。
3.操练(10分钟)学生分组进行实践活动,运用黄金分割的知识解决实际问题。
教师巡回指导,帮助学生克服困难,提高解决问题的能力。
4.巩固(10分钟)教师出示一些练习题,让学生在课堂上完成。
通过练习,巩固所学知识,提高学生的应用能力。
5.拓展(10分钟)教师引导学生思考黄金分割在实际生活中的应用,如设计、建筑等领域。
《黄金分割》教学设计
1、教学重点:黄金分割的定义以及应用。
2、教学难点:黄金分割的引入以及学生对黄金分割的价值的理解。
三、学习者特征分析
学生在活动经验上经过七、八年的学习,学生初步养成自主探究的意识,有了一定的说理和作图能力;通过比和成比例的学习之后有了一定的基础,增强了学生学习数学的信心。通过比例线段的学习发展了的逻辑推理能力。
学生在尝试知识应用的过程中,体会到了知识的应用价值,感受到数学存在于身边,来源于生活,应用于生活,从而知识得到升华。
六、教学板书
黄金分割
黄金分割的定义 以埃菲尔铁塔为例,将它抽象为一条线段,塔尖和塔座的连接处抽象成一个点。 给出埃菲尔铁塔的高度数据。 引入黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。
教学课例研究
课题名称:《黄金分割》教学设计
一、教学内容分析
《黄金分割》是人教版版数学八年级下册的一节内容。在以往的教学中,大都将“黄金分割”作为比例线段的应用来处理,学生学过以后,丝毫感受不到“黄金分割”的实用价值,体会不到“黄金分割”所带来的美的享受。因此,本节课除了讲授黄金分割的定义及其作图方法之外,让学生阅读有关资料,从日常生活中找出一些黄金分割的例子,使学生亲身感到数学知识的作用,从而更促进对知识的理解,体会黄金分割的文化价值以及在人类历史上的作用和影响。
对问题进行思考、猜想并进行回答。
问题的提出,激发学生学习本节课的兴趣,为本节课的内容进行了铺垫。
让学生进行投票——在给出的一组矩形选出一个自己心目中觉得漂亮的矩形(如图2)。
(工具:教学平台中的投票系统。)
北师大版八下《黄金分割》word教案3篇
大路中学数学讲学稿1、掌握黄金分割的含义.2、能通过作图找到一条线段的黄金分割点.学习重点能通过作图找到一条线段的黄金分割点.学习难点掌握黄金分割的含义并能进行简单运用.一、学前准备1.填空(1)四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =(或a:b=c:d )那么这四条线段a,b,c,d 叫做,简称.反过来,如果四条线段a,b,c,d 成比例线段,则可以记作.(2)已知a=2,b=4,c=6;若a ,b ,c ,x 是成比例线段,则x=;若a ,x ,b ,c 是成比例线段,则x=.(3)若=y x 25则=x y ;=+y y x ;=-yy x ; (4)小明的身高为1.6m ,测得他的影长为1m ,在同一时刻,旗杆的影长为5m ,则旗杆的实际高度是. 2.选择(1)已知cd ab =,则把它改写成比例式后错误的是 ( ) Ab dc a = Bd a b c = C d c b a = D ad c b = (2)一个矩形的长为2cm ,宽为1cm ,则它的长、宽及对角线的比为 ( ) A 4:2:5 B 4:2:10 C 2:1:5 D 2:1:25 3.已知a ∶b ∶c =4∶3∶2,且a +2b -4c =24.求2a -3b +c 的值4.已知:d c b a ==f e=3(b +d +f ≠0),求f d b e c a 3232+-+-的值二、探究活动1、自主探究·解决问题五角星是我们常见的图形.在下图中,度量点C 到点A ,B 的距离,AB AC 和ACBC相等吗?2、师生探究·合作交流如图,在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的,AC 与AB 的比叫做.其中ABAC =≈,=2AC . 3、学以致用·牛刀小试作一条线段的黄金分割点.如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.你知道为什么吗?线段AB 有没有除点C 以外的黄金分割点呢?如果有应满足怎样的条件?三、自我测验1、选择(1)已知线段AB 的黄金分割点是C ,且AC >BC ,则下列各式正确的是 ( )A . AB 2=AC ·CB B . CB 2=AC ·AB C . AC 2=CB ·ABD . AC 2=2AB ·BC(2)若AB=a ,C 点是AB 上的黄金分割点,且AC >BC ,则BC 等于 ( )A.a 215- B.a 253- C. 1 D. 无法判断 ACB(3)若点C 为线段AB 的黄金分割点,则ABAC等于 ( ) A.215- B.215+ C.215-或253- D.253-2、填空(1)已知点C 为线段AB 的黄金分割点,且AB AC =215-,则ACCB 的近似值为(2)点C 是线段AB 上的一个黄金分割点,且AC>BC ,若AB =5cm ,则AC =_____,BC=____. (3)若点C 是线段AB 上一点,AB =1,AC =215- ,则AC :BC =______. (4)把长为10cm 的线段黄金分割,则较长的线段长为;较短的线段长为.(结果精确到0.01)四、学习收获1、通过今天的学习,你有何收获?2、预习中遇到困惑解决了吗?3、你还有哪些疑惑?五、应用与拓展1、如图,点C,D 是线段AB 的两个黄金分割点,已知AB=1,试求CD 的长2、作图(1)宽与长的比等于黄金比的矩形称为黄金矩形.设法做出一个黄金矩形(2)底边与腰的比等于黄金比的等腰三角形称为黄金三角形,设法做出一个黄金三角形3、收集一些有关黄金分割的数学知识,例如黄金分割的由来、黄金分割在实际生活中的运用等等,介绍给你的同伴.北师大版八年级数学第四章相似图形第二节黄金分割教案1、课题§4.2 黄金分割2、教学目标:知识技能目标:(1)掌握黄金分割的定义及黄金分割点的作法;(2)会进行黄金分割的有关计算。
4.4.4黄金分割(教案)
1.在实践活动前,先进行一些简单的实例分析,让学生对黄金分割在实际问题中的应用有更直观的认识,降低实践活动的难度。
2.在小组讨论时,鼓励学生多发表自己的观点,充分调动他们的积极性。同时,作为教师,我要密切关注每个小组的讨论进度,及时提供必要的引导和帮助。
详细列明每个细节:
1.教学重点:
-黄金分割概念:解释什么是黄金分割,如何表示黄金分割比(1:0.618或0.618:1)。
-应用实例:分析教材中提到的黄金分割应用案例,如古希腊建筑、著名画作等,让学生直观感受黄金分割的美。
2.教学难点:
-推导过程:指导学生通过画图、测量等方法,发现并理解黄金分割比的数学原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“黄金分割在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解黄金分割的基本概念。黄金分割是一种特殊的比例关系,即一条线段被分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比,约为0.618。它在艺术、建筑、自然界等领域具有广泛应用,被认为是美的象征。
2.案例分析:接下来,我们来看一个具体的案例。以古希腊帕特农神庙为例,分析其建筑比例如何体现黄金分割,以及黄金分割如何使其成为经典之作。
4.培养学生的审美观念:引导学生发现生活中的黄金分割美,提高学生的审美鉴赏能力。
《黄金分割》教学设计
《黄金分割》教学设计一、教材分析:黄金分割是线段的比、成比例线段等内容在现实生活中的应用,在建筑、艺术等方面有较多的体现。
同时它也是线段的比、成比例线段等枯燥概念在现实生活中的充分体现。
本节课设置了丰富的问题情境,展现了知识的发生、发展过程。
二、学情分析学生已经学习了线段的比和成比例的线段以后,已经有了一定的基础,但本节课的教学难点的突破对学生来说并不是一件容易的事情。
故采用了分工合作学习的方式,让学生在做中学,再组织学生汇报交流。
教学中要充分利用黄金分割与生活的紧密联系,体会黄金分割的黄金价值。
三、教学目标:知识技能目标:在应用中进一步理解线段的比、成比例线段等相关内容,在实际操作、思考、交流等过程中增强学生的实践意识和自信心。
过程方法目标:(1)经过收集素材加强对线段比例关系的认识.(2)在现实情境中了解黄金分割的文化价值,进而由实际问题去探索黄金分割的作图方法,让学生感受到黄金分割在实际生活中的实用性。
情感态度目标:(1)从学生乐于接受的现实背景中学习黄金分割,认识到数学上解决实际问题和进行交流的重要工具。
(2)通过对黄金分割的理解和掌握,明确黄金分割的作图方法,体会数形结合的思想。
(3)通过分组讨论学习,体会在解决实际问题的过程与他人合作的重要性,从而培养学生的团结协作精神。
(4)进行美育渗透,通过对黄金分割的学习,让学生体验数学中的美。
四、教学重点、难点:1、教学重点:黄金分割的定义和简单应用。
2、教学难点:对黄金分割定义中出现的“线段的比”的理解;黄金比是一个无理数,学生无法用已学知识进行直接验证;黄金点的画法和验证。
●教学方法和手段1、采用教师引导,学生自主探索和小组合作相结合的学习方式。
2、利用多媒体教学设备辅助教学,充分调动学生的积极性,创设和谐、轻松的学习氛围。
●学法指导学生通过动手、动口、动脑等活动,主动探索,发现问题,小组之间互相合作,取长补短。
养成自主学习和合作学习相结合的良好习惯。
北师大版初中数学九年级上册《黄金分割》 优质课获奖教案_0
4.4探索三角形相似的条件(4)--黄金分割教案一.教学目标(一)知识与能力1. 知道黄金分割的定义;2.会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点;(二)过程与方法通过找一条线段的黄金分割点,培养学生理解与动手能力及合作交流意识。
(三)情感与价值观1. 能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系对人类历史发展的作用;2.在实际操作过程中增强学生的实践意识和自信心。
二.教学重点:了解黄金分割的意义并能运用三.教学难点:找出黄金分割点和黄金矩形四.教法:启发探究法五.教学用具:幻灯片和国旗六.教学过程第一环节创设情境导入新课活动内容:发现美展示课件,提出问题:问题⒈你觉得哪张照片的构图最合理?更能体现小松鼠若有所思的在凝视前方?问题⒉从国旗中找出共同的图案度量点C 到A 、B 的距离,ACBC AB AC 与相等吗?教师操作课件,提出问题与共同学交流、观察学生回答: 五角星, 相等第二环节 合作交流 探索新知活动内容:探索美1.黄金分割点在线段AB 上,点C 把线段分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段AB 被点C 分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫黄金比。
其中618.01:215:≈-=AC AB 即618.0≈ABAC 教师讲解,学生观察、思考、交流。
活动目的:利用五角星,创设一个有利于学生探究和综合运用线段比的情境。
引入黄金分割的概念、黄金比约为0.618。
注意事项:学生通过观察、思考、交流,教师引导、回答问题。
因为学生尚未学习一元二次方程,所以无法理解比值为215-的理由,只需让学生了解这一事实即可。
第三环节 动手操作 感知新知B C活动内容:创造美做一做:如果已知线段AB ,按照如下方法画图:(1)经过点B 作BD ⊥AB ,使AB BD 21= (2)连接AD ,在DA 上截取DE=DB(3)在AB 上截取AC=AE ,则点C 为线段AB 的黄金分割点根据上述作图回答下列问题(1) 如果设AB=2,那么BD 、AD 、AC 、BC 分别等于多少?(2) 点C 是线段AB 的黄金分割点吗?教师操作课件,提出问题,学生独立思考与同伴交流回答问题:活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识。
黄金分割(5篇范文)
黄金分割(5篇范文)第一篇:黄金分割黄金分割——设计师的设计利器作者:黄金体验来源: WSD 时间: 2011年3月2日设计师在设计的时候,总会遇到这样那样的问题,和人PK不断,修改不断。
界面区域多大合适呢?ICON多大?颜色区间多少?为什么这么定义?什么是普世的美?很多UIer都说,50%靠设计,50%靠交流,那么在交流的时候如何说服别人呢?ADS定位、用户群、用户环境、调研都可以作为参考的依据,在这里再向大家介绍一下我们身边存在的黄金分割,希望作为设计的利器,或创作或PK。
一.植物“黄金角度”生物学家发现植物种类繁多、叶子形态各异,但是叶子在茎上的排列却有着特殊的规律.我们从某种植物的顶端往下看,便会发现上下层相邻的两片叶子之间所构成的角约为137.50,如果每层叶子只画一片来表示,第一层和第二层的相邻两叶之间的角度约为137.50,以后二层到三层、三层到四层、四层到五层……两叶之间都成这个角度,这个角度对叶子的通风和采光最为有利.这叶子之间的137.50角与黄金数又有什么联系呢?我们知道,一周为3600,137.50:=137.50:222.50≈0.618.也就是说,各种植物叶子的生长规律中自然隐藏着黄金数。
向日葵花有89个花辫,55个朝一方,34个朝向另一方枫叶喷嚏麦1.1.2.3.5.8.13.21.34.55.89.144…后面的数除以前面的树,越往后越趋向于黄金比例。
运用到设计当中,譬如一个齿轮的图标,齿的个数可以参考这组数列。
PK词:这是自然的法则。
二.动物由这组数列引出斐波那契曲线,斐波纳契是在解一道关于兔子繁殖的问题时,得出了这个数列。
假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去。
每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子?•在一月底,最初的一对兔子交配,但是还只有1对兔子;在二月底,雌兔产下一对兔子,共有2对兔子;在三月底,最老的雌兔产下第二对兔子,共有3对兔子;在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子;……如此这般计算下去,兔子对数分别是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144, …看出规律了吗?•从第3个数目开始,每个数目都是前面两个数目之和。
九年级数学上册《黄金分割》教案、教学设计
一、教学目标
(一)知识与技能
1.理解黄金分割的定义,掌握黄金分割点的概念,能够运用黄金分割的概念解决实际问题。
2.学会运用黄金分割比计算线段、图形的黄金分割点,并能运用黄金分割的性质分析解决实际问题。
3.掌握黄金分割与相似三角形、三角形面积的关系,能够运用相关知识解决综合问题。
3.教学方法:小组合作法、讨论法。
(四)课堂练习
1.教学内容:设计具有针对性的练习题,检验学生对黄金分割知识的掌握程度。
2.教学过程:首先,设计一些基础题,让学生巩固黄金分割点的计算方法。然后,设计一些综合题,让学生运用黄金分割知识解决实际问题。
3.教学方法:练习法、指导法。
(五)总结归纳
1.教学内容:总结本节课的学习内容,强调黄金分割的重要性,激发学生对数学美的追求。
学生在这个阶段,正处于形象思维向抽象思维过渡的关键时期,他们对新鲜事物充满兴趣,但同时也可能在学习过程中遇到一些困难和挑战。因此,在教学过程中,教师应关注学生的个体差异,充分调动他们的积极性,引导他们通过观察、思考、实践等途径,逐步理解并掌握黄金分割的知识。
此外,学生在小组合作学习中,需要提高沟通与协作能力。教师应关注学生在合作过程中的表现,适时给予指导和鼓励,帮助他们建立自信,培养团队精神。在此基础上,教师还应关注学生的情感态度,激发他们对数学美的追求,使他们在学习过程中体验到数学的魅力和价值。
4.通过课堂练习、课后作业、阶段测试等形式,巩固学生对黄金分割的理解和应用,提高学生的解题技巧。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生对数学美的感知和欣赏能力。
2.培养学生的创新意识,使学生认识到数学在现实生活中的重要作用,增强学生的应用意识。
黄金分割优秀教学设计-
《黄金分割》教学设计一、教材分析本节课是在《相似图形》的基础上,从一个崭新的角度加深对比例线段和线段的比的认识和拓展,在实际的教学过程中部分教师淡化了该知识点的教学,而实际上该内容是与现实世界背景紧密联系,是学生在具体活动中体验数学知识,建构数学知识体系的非常重要的过程。
“黄金分割”能有效的激发学生学习数学的兴趣,培养学生思维能力。
黄金分割是现实生活中存在的一种现象,广泛的应用在建筑设计,艺术,甚至大自然中处处都有黄金分割。
如黄金矩形,就是黄金分割在设计中的一个主要应用。
在设计建筑物、工艺品、日常用品涉及矩形时,如果设计成黄金矩形,容易引起美感。
让学生体会数学与自然及人类社会的密切关系,丰富学生的数学活动经验,促进了学生观察、分析、归纳、概括的能力和审美意识的发展。
二、学情分析1、学生已有基础:本节课的教学对象是初三的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣。
而且,在前面已经学过相似形的基本知识以及一元二次方程,所以对于黄金比的计算也不存在太大的困难。
2、学生面临问题:初三年级学生思维能力处于发展阶段,动手能力较弱,建模的能力不强。
三、教学目标1、知识技能目标:通过测量,计算,观察让学生理解黄金分割的概念,培养学生数学建模和多维度思考的能力(发散思维能力);通过概念引出黄金比的计算,培养学生用方程的思想解决数学问题的能力2、思维目标:培养学生在理解概念中多角度思维能力(发散思维能力);运用思维工具训练学生的归纳思维能力;通过设计高跟鞋培养学生创新思维能力3、情感目标:培养学生对“数学美”的欣赏能力第1页四、教学重难点:教学重点:探究黄金分割,计算黄金比教学难点:探究计算黄金比的值五、教学过程分析:活动一:创设问题情境,引发认知冲突师:出示图片,为什么这么多国家的国旗上都用了五角星为什么五角星这么有魅力,从而引出主题让学生形象、直观地感受数学美,激发学生的学习兴趣和求知欲,引起学生思维上的认知冲突,让教师获得思维教学的起点,以问题自然引入新课活动二:思考实践,解决疑惑师:每个小组分别准备两个大小不一样的五角星,通过小组合作测量,计算,交流等活动,指导学生主动调试已有知识经验建立新的知识结构。
《黄金分割》教案
《黄金分割》教案一、教学目标:1. 让学生了解黄金分割的概念和特点。
2. 培养学生运用黄金分割知识解决实际问题的能力。
3. 提高学生对数学美的感知,培养学生的审美情趣。
二、教学内容:1. 黄金分割的定义及历史背景。
2. 黄金分割线的画法及应用。
3. 黄金分割在生活中的实例分析。
三、教学重点与难点:1. 黄金分割的概念及画法。
2. 黄金分割在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解黄金分割的概念、历史背景及应用。
2. 采用案例分析法,分析生活中的黄金分割实例。
3. 采用实践操作法,让学生动手画黄金分割线,提高实际应用能力。
五、教学过程:1. 导入新课:通过展示著名的黄金分割作品,引发学生对黄金分割的好奇心,激发学习兴趣。
2. 知识讲解:讲解黄金分割的定义、历史背景及画法,让学生掌握基本知识。
3. 案例分析:分析生活中的黄金分割实例,让学生了解黄金分割在现实生活中的应用。
4. 实践操作:让学生动手画黄金分割线,提高实际应用能力。
6. 板书设计:黄金分割1. 定义:线段分割的比例,使较长线段与整体线段的比等于较短线段与较长线段的比。
2. 画法:通过特定方法画出黄金分割线。
3. 应用:生活中的黄金分割实例分析。
六、教学评价:1. 课后作业:要求学生绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 同伴评价:学生之间互相评价对方的作品,从黄金分割的应用和创意等方面进行评价。
七、课后作业:1. 绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。
2. 收集生活中的黄金分割实例,下节课分享。
八、教学反思:1. 课堂节奏是否适中,学生是否能跟上教学进度。
2. 教学方法是否有效,学生是否能更好地理解和掌握黄金分割的知识。
3. 学生参与度如何,是否都能积极投入到课堂活动中。
九年级数学上册《黄金分割》优秀教学案例
3.要求学生在课后进行自我反思,总结学习黄金分割的收获和不足,为下一步学习打下基础。
4.教师对作业进行及时批改和反馈,了解学生的学习情况,调整教学策略。
五、案例亮点
1.生活化的情境导入:本案例从学生熟悉的生活实例出发,如自然景观、艺术作品等,以多媒体手段呈现黄金分割的美,激发学生的好奇心和学习兴趣。这种导入方式使学生能够迅速进入学习状态,感受到数学与现实生活的紧密联系。
(二)过程与方法
1.通过观察和分析自然、艺术及建筑等领域的实例,引导学生发现黄金分割的普遍性和美观性,培养学生从生活中发现数学现象的习惯。
2.采用小组合作、讨论交流等形式,让学生在互动中探索黄金分割的性质和应用,提高学生的合作意识和解决问题的能力。
3.设计丰富的实践活动,如制作黄金分割比例的模型、绘制黄金分割图案等,让学生在实践中掌握黄金分割的方法,培养学生的动手操作能力和创新精神。
(二)问题导向
1.提出富有启发性的问题,如“为什么黄金分割被认为是最美、最和谐的比例?”“黄金分割在生活中的应用有哪些?”等,引导学生进行深入思考。
2.设计不同难度层次的问题,让学生在解决问题的过程中,逐步掌握黄金分割的知识点。
3.鼓励学生提出自己的疑问,引导学生通过查阅资料、讨论交流等方式,寻求解决问题的方法。
4.利用现代教育技术手段,如多媒体、网络等资源,拓展学生的知识视野,提高他们对黄金分割在科学、艺术等领域应用的了解。
(三)情感态度与价பைடு நூலகம்观
1.培养学生对数学美的感知和欣赏能力,激发他们对数学学科的兴趣和热爱。
2.通过探索黄金分割在各个领域的应用,让学生认识到数学知识在实际生活中的价值,增强他们的学习动力。
6.2黄金分割优秀教学案例
4.多元化的评价方式:在教学过程中,教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发学生的学习动力。同时,设计评价量表,让学生对自己的学习成果进行评价,培养学生的评价能力和自我反思能力。这种多元化的评价方式,有助于全面了解学生的学习情况,为下一步教学提供参考。
2.学生通过合作交流,分享探究成果,提高学生的团队协作能力和沟通能力。
3.学生运用几何画板软件,动态演示黄金分割的过程,提高学生的信息技术应用能力和数形结合的思想。
4.学生通过解决实际问题,运用黄金分割的知识,提高学生的解决问题的能力和创新意识。
(三)情感态度与价值观
1.学生通过对黄金分割的学习,感受数学的美,提高对数学的兴趣和热情。
2.设计有趣的数学问题,如黄金分割的奥秘、黄金分割在艺术品设计中的应用等,引发学生的思考,引导学生进入学习情境。
3.创设实践操作活动,如让学生自己动手寻找身边的黄金分割现象,用几何画板软件动态演示黄金分割的过程等,让学生在实践中感受数学的美。
(二)问题导向
1.提出探究性问题,引导学生独立思考,激发学生的探究欲望。例如:“黄金分割是什么?它有哪些特殊的性质?如何运用黄金分割解决实际问题?”
教学内容选取了人教版八年级数学下册“几何”章节中的“黄金分割”一节。在此之前,学生已掌握了相似三角形的知识,为本节课的学习奠定了基础。黄金分割的教学,不仅要求学生理解其几何意义,还希望他们能体会数学与现实生活的联系,激发对数学美的感受。
为了实现这一目标,我设计了丰富的教学活动:首先,通过展示生活中的黄金分割现象,如建筑物、艺术作品等,引发学生的好奇心;其次,利用几何画板软件动态演示黄金分割的过程,让学生直观感受其比例的美感;接着,引导学生通过合作探究,发现黄金分割的性质并证明之;最后,通过解决实际问题,如艺术品设计、建筑设计等,让学生体会黄金分割在现实生活中的应用价值。
九年级数学上册《黄金分割数》教案、教学设计
3.黄金分割的应用:讲解黄金分割在自然界、艺术、建筑等领域的应用,使学生感受数学与生活的紧密联系。
4.黄金分割的几何作图:教师示范如何利用尺规作图法找到线段的黄金分割点,并引导学生动手实践。
(三)学生小组讨论,500字
4.了解黄金分割在自然界、艺术、建筑等领域中的应用,培养学生对数学美的感知能力。
(二)过程与方法
在本章节的教学过程中,教师应注重引导学生通过以下方法掌握知识:
1.采用启发式教学法,激发学生的好奇心,引导学生自主探究黄金分割的性质和应用。
2.通过合作学习,培养学生团队协作、交流表达的能力,提高学生的综合素质。
3.运用多媒体教学手段,结合实际案例,使学生在直观感知中理解黄金分割的美学价值。
4.设计丰富的课堂练习和课后作业,巩固所学知识,提高学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学美的感知,激发学生学习数学的兴趣和热情。
2.培养学生勇于探索、积极思考的良好学习习惯,提高学生的自主学习能力。
c.结合多媒体教学手段,丰富教学形式,提高学生的学习兴趣。
d.创设轻松愉快的学习氛围,关注学生的情感态度,提高学生的学习积极性。
e.定期进行教学反思,根据学生的学习情况调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,教师首先通过多媒体展示一系列美丽的自然景观、世界著名建筑和艺术作品,如希腊神庙、埃及金字塔、达芬奇的《蒙娜丽莎》等。同时,引导学生观察这些图片中的共同特点,让他们猜测这些图片背后的数学原理。
三、教学重难点和教学设想
《黄金分割》教案
《黄金分割》教案一、教学目标1、知识与技能目标(1)理解黄金分割的定义,能准确找出黄金分割点。
(2)掌握黄金分割比的数值,并能进行简单的计算。
(3)了解黄金分割在生活中的应用,提高学生的数学应用意识。
2、过程与方法目标(1)通过观察、计算、推理等活动,培养学生的探究能力和逻辑思维能力。
(2)经历黄金分割的发现和探究过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标(1)感受黄金分割的美,激发学生对数学的兴趣和热爱。
(2)通过了解黄金分割在生活中的广泛应用,体会数学与生活的紧密联系,增强学生的应用意识和创新意识。
二、教学重难点1、教学重点(1)黄金分割的定义及黄金分割比的计算。
(2)黄金分割在实际生活中的应用。
2、教学难点(1)理解黄金分割的本质,能准确找出黄金分割点。
(2)灵活运用黄金分割解决实际问题。
三、教学方法讲授法、探究法、讨论法、演示法四、教学过程1、导入新课(1)展示一些具有美感的图片,如建筑、艺术作品等,引导学生观察并思考这些图片中美的共同特点。
(2)提出问题:为什么这些图片会给人一种美的感受?是否存在某种数学规律在其中?2、讲授新课(1)黄金分割的定义通过一个简单的几何图形,如线段,引入黄金分割的概念。
在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果AC/AB = BC/AC,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段AB 的黄金分割点,AC 与 AB 的比值约为 0618,这个比值称为黄金分割比。
(2)黄金分割比的计算设线段 AB 的长度为 1,点 C 为黄金分割点,AC 的长度为 x,则BC 的长度为 1 x。
根据黄金分割的定义可得:x/1 =(1 x)/x解方程可得:x =(√5 1)/2 ≈ 0618(3)黄金分割在几何图形中的应用①展示一些常见的几何图形,如矩形、三角形等,引导学生找出其中的黄金分割点和黄金分割比。
②以矩形为例,讲解如何通过黄金分割比来绘制一个具有美感的黄金矩形。
九年级数学下册《黄金分割》教案、教学设计
(三)学生小组讨论
在学生掌握黄金分割的基本概念和性质后,我会组织学生进行小组讨论。将学生分成若干小组,每组挑选一个生活中的黄金分割实例进行分析,讨论以下问题:
1.实例中黄金分割的具体应用和作用是什么?
2.黄金分割是如何在这个实例中体现美感的?
3.你们还能想到其他黄金分割的应用实例吗?
(四)课堂练习
为了巩固所学知识,我会设计以下几道课堂练习题:
1.充分调动学生的已有知识经验,引导他们通过观察、思考、实践,逐步发现黄金分割的规律和性质。
2.注重培养学生的空间想象能力,通过实际操作和实例分析,帮助学生形象地理解黄金分割的概念。
3.针对学生在认知上的差异,采取分层教学,关注每一个学生的学习需求,让每一个学生都能在课堂上获得成功的体验。
4.激发学生的好奇心和探究欲,创设有趣的教学情境,引导学生主动参与课堂讨论,提高学生的学习兴趣。
2.黄金分割在生活中的应用实例。
3.黄金分割的美学价值。
五、作业布置
为了巩固学生对黄金分割知识点的掌握,提高学生的应用能力和创新意识,我设计了以下几项作业:
1.基础作业:
-请同学们完成教材中的练习题,巩固黄金分割的定义、性质和计算方法。
-结合实际生活中的实例,举例说明黄金分割的应用,并简要分析其美感来源。
3.作业设计:
-设计富有挑战性的课后作业,让学生运用黄金分割知识解决实际问题,提高学生的应用能力。
-布置开放性作业,鼓励学生发现生活中的黄金分割现象,培养学生的观察力和创新意识。
4.教学评价:
-采用形成性评价,关注学生在课堂上的表现,及时给予反馈,指导学生改进学习方法。
黄金分割教案范例讲解
黄金分割教案范例讲解第一章:黄金分割的概念与历史1.1 黄金分割的定义引导学生了解黄金分割的概念,即一条线段分割成两部分,使得整体长度与较长部分的长度之比等于较长部分的长度与较短部分的长度之比,这个比值约为1:1.618。
1.2 黄金分割的历史渊源介绍黄金分割在古希腊、古埃及等文明中的运用,以及其在艺术、建筑、自然界中的广泛存在。
第二章:黄金分割在艺术中的应用2.1 黄金分割与绘画通过分析名画作品,如达芬奇的《蒙娜丽莎》等,引导学生发现艺术家如何运用黄金分割来创造视觉平衡和美感。
2.2 黄金分割与音乐探讨黄金分割在音乐创作中的应用,如乐曲的结构、旋律的起伏等。
第三章:黄金分割在建筑中的运用3.1 古代建筑中的黄金分割分析古希腊神庙、埃及金字塔等古代建筑中的黄金分割比例,以及这些建筑的美学价值。
3.2 现代建筑中的黄金分割介绍现代建筑设计师如何运用黄金分割创造和谐的视觉效果,如巴黎圣母院、纽约世贸中心等。
第四章:黄金分割在自然界中的体现4.1 植物世界的黄金分割引导学生观察植物的叶序、花朵的排列等自然界中的黄金分割现象。
4.2 动物世界的黄金分割探讨动物身体比例、迁徙路线等方面的黄金分割应用。
第五章:黄金分割的实际应用5.1 黄金分割与设计引导学生了解黄金分割在平面设计、广告设计等领域的应用,如版面布局、图像组合等。
5.2 黄金分割与时尚分析黄金分割在服装设计、珠宝首饰设计等方面的应用。
第六章:黄金分割与数学之美6.1 黄金分割与斐波那契数列引导学生了解斐波那契数列与黄金分割之间的关系,探讨斐波那契数列在自然界中的广泛存在。
6.2 黄金分割与几何图形分析黄金分割在各种几何图形中的应用,如正五边形、黄金矩形等。
第七章:黄金分割与心理学7.1 黄金分割与视觉感知探讨黄金分割在视觉艺术中的心理效应,如视觉焦点、平衡感等。
7.2 黄金分割与审美观念分析黄金分割如何影响人们的审美观念,以及它在设计中的应用。
黄金分割阅读教学设计
黄金分割阅读教学设计阅读是培养学生语言表达和思维能力的重要途径之一。
然而,如何设计一节有效的阅读课程一直是教师们关注的问题。
在本文中,将介绍一种基于黄金分割的阅读教学设计,以帮助学生提高阅读理解和批判性思维的能力。
一、引言阅读是一种复杂的认知活动,需要读者通过理解文本、分析信息和推理等过程来构建意义。
黄金分割阅读教学设计是基于黄金分割原理的一种教学方法,旨在帮助学生更好地理解文本,提高阅读水平。
二、黄金分割原理黄金分割原理是一种美学原理,可以应用到阅读教学中。
根据黄金分割原理,一个整体被分割成两个部分,其中一个部分与整体的比例等于另一个部分与前者的比例,即整体与较大部分的比例等于较大部分与较小部分的比例。
三、黄金分割阅读教学设计步骤1. 预热:在开始阅读课程之前,可以通过提问激发学生对主题的兴趣,预热学生的阅读思维。
2. 导入:引导学生了解背景知识和前置信息,为学生理解文本创造必要的条件。
3. 阅读:学生开始独立阅读文本,可以根据不同的年级和能力设定适当的阅读时间。
4. 分析:学生完成阅读后,进行文本分析,包括整体理解、重点信息提取和关键思维问题的思考。
5. 讨论:学生以小组或全班形式进行讨论,分享他们对文本的理解和观点,并与他人进行交流和碰撞。
6. 总结:通过引导学生总结他们在阅读过程中的收获和思考,加深对文本的理解,同时培养学生的批判性思维。
四、案例分析以一篇短文《保护环境的重要性》为例进行黄金分割阅读教学设计。
1. 预热:教师可以通过提问激发学生对环境保护的兴趣,例如:“你认为为什么我们需要保护环境?”2. 导入:教师可以引导学生浏览短文标题、首段和图片,激发学生的背景知识和好奇心。
3. 阅读:学生开始独立阅读短文,可以设定适当的阅读时间,鼓励学生尽量理解文本的整体内容。
4. 分析:学生完成阅读后,可以进行信息提取,例如找出短文中的环境问题和解决方法,并思考对环境保护的自己的观点。
5. 讨论:学生以小组形式进行讨论,分享他们的观点和对环境保护的理解,并互相提出问题和建议。
黄金分割 教学设计
黄金分割教学设计一、教学目标:通过本课的学习,使学生了解黄金分割的概念、应用和意义,掌握黄金分割的计算方法及其运用。
二、教学内容:1、黄金分割的概念和历史渊源。
2、黄金分割的计算方法和应用。
三、教学重难点:1、黄金分割的运用及其应用;四、教学方法:1、案例引入法:通过展示黄金分割的实际应用案例,引导学生理解黄金分割的概念和价值。
2、教师讲授法:将黄金分割的概念、历史渊源、计算方法、应用等内容进行详细讲解五、教学过程:第一节:概念和历史渊源1、概念讲解(1) 黄金分割的定义黄金分割,又称黄金比例、黄金中数、黄金切割等,是一种美学和艺术上的比例关系,其比例约为1:1.618。
黄金分割是古希腊数学家欧多克索斯(Eudoxus)于公元前4世纪提出的一个研究问题,其解题方式就是通过三次平方数的和来刻画黄金分割比例的近似值,并用这个比例计算出大量的华丽形式。
2、案例分析:通过展示黄金分割的实际应用案例,如“达芬奇的绘画艺术”、“高迪的建筑风格”等,让学生了解黄金分割的实际应用价值。
第二节:计算方法和应用1、计算方法的讲解黄金分割比例是指将长度为a的一条线段分割成两段不等的部分,使得整段线段a与其中较大部分的比值等于较大部分与较小部分的比值,即a/b=(a+b)/a=φ(黄金分割比例)。
黄金分割比例φ的取值为1.61803398975...,它可以通过以下的方程式计算出来:φ^2=φ+1φ=(1+√5)/2 ≈ 1.61803399将长度为a的一条线段分割成黄金分割比例a:b,可以通过下图中的多边形逐步构造得到。
2、实际应用使用黄金分割的比例关系,可以创造出更加美观和和谐的视觉效果,同时也能够予以观者以更多的审美体验和艺术感受。
(2) 黄金分割在建筑设计中的应用使用黄金分割的比例关系,可以设计出更加高贵、庄重、优美的建筑结构,进而赋予建筑更多的文化内涵和艺术魅力。
1、艺术设计中的应用通过展示多种艺术设计作品,如绘画、雕塑、工艺品等,让学生感受黄金分割对于美术设计的重要性,并引导学生多注重黄金分割的应用和实践。
教学设计 北师大版 初中 数学 八年级 下册 《黄金分割》 优秀参赛教学设计
教学设计北师大版初中数学八年级下册《黄金分割》优秀参赛教学设计一. 教材分析北师大版初中数学八年级下册《黄金分割》一课,主要让学生了解黄金分割的概念,学会运用黄金分割的知识解决实际问题。
教材通过丰富的图片和生活中的实例,激发学生的学习兴趣,引导学生探索黄金分割的奥秘。
本节课的内容与现实生活紧密相连,有利于培养学生的数学应用能力。
二. 学情分析八年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。
但黄金分割这一概念较为抽象,学生难以直观理解。
因此,在教学过程中,教师需要充分利用生动形象的实例和多媒体辅助教学,帮助学生建立直观的认识,引导学生主动探究黄金分割的性质和应用。
三. 教学目标1.知识与技能目标:让学生了解黄金分割的概念,学会运用黄金分割的知识解决实际问题。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的空间想象能力和动手实践能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:黄金分割的概念及性质。
2.难点:黄金分割在实际问题中的应用。
五. 教学方法1.情境教学法:通过生动形象的实例,引导学生进入学习情境,激发学习兴趣。
2.探究教学法:引导学生主动观察、操作、探究,培养学生的自主学习能力。
3.互助合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.准备相关图片和实例,用于导入和讲解。
2.准备多媒体课件,辅助教学。
3.准备练习题和拓展题,用于巩固和拓展知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的黄金分割实例,如建筑、艺术品等,引导学生观察并提问:“你们认为这些事物为什么美?”学生回答后,教师总结:这些事物之所以美,是因为它们符合黄金分割的原理。
从而引出本节课的主题——黄金分割。
2.呈现(10分钟)教师讲解黄金分割的定义,并通过多媒体展示相关图片和实例,让学生直观地了解黄金分割。
黄金分割教案范例讲解
黄金分割教案范例讲解第一章:黄金分割的概念与历史1.1 黄金分割的定义1.2 黄金分割的历史发展1.3 黄金分割在艺术和建筑中的应用案例分析第二章:黄金分割在绘画中的应用2.1 黄金分割法则在绘画构图中的应用2.2 著名绘画作品中黄金分割的应用案例分析2.3 学生绘画创作实践:运用黄金分割法则进行构图第三章:黄金分割在建筑设计中的应用3.1 黄金分割法则在建筑设计中的应用3.2 著名建筑作品中黄金分割的应用案例分析3.3 学生建筑设计实践:运用黄金分割法则进行设计第四章:黄金分割在摄影中的应用4.1 黄金分割法则在摄影构图中的应用4.2 著名摄影作品中黄金分割的应用案例分析4.3 学生摄影创作实践:运用黄金分割法则进行构图第五章:黄金分割在时尚设计中的应用5.1 黄金分割法则在时尚设计中的应用5.2 著名时尚作品中黄金分割的应用案例分析5.3 学生时尚设计实践:运用黄金分割法则进行设计第六章:黄金分割在音乐创作中的应用6.1 黄金分割法则在音乐结构中的应用6.2 著名音乐作品中黄金分割的应用案例分析6.3 学生音乐创作实践:运用黄金分割法则进行创作第七章:黄金分割在文学创作中的应用7.1 黄金分割法则在文学作品结构中的应用7.2 著名文学作品中黄金分割的应用案例分析7.3 学生文学创作实践:运用黄金分割法则进行创作第八章:黄金分割在自然界中的应用8.1 黄金分割法则在自然界中的发现和应用8.2 著名自然景观中黄金分割的应用案例分析8.3 学生自然观察实践:运用黄金分割法则观察自然界第九章:黄金分割与现代科技的应用9.1 黄金分割法则在现代科技产品设计中的应用9.2 著名科技产品中黄金分割的应用案例分析9.3 学生科技设计实践:运用黄金分割法则进行科技产品设计第十章:黄金分割在个人生活中的应用10.1 黄金分割法则在日常生活中的应用案例分析10.2 学生日常生活实践:运用黄金分割法则进行个人空间布置重点和难点解析重点环节一:黄金分割的定义黄金分割是一个数学概念,指的是将整体一分为二,使得整体与较长部分的比例等于较长部分与较短部分的比例,即(a+b)/a = a/b = φ(φ为黄金分割比,约等于1.618)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.探索三角形相似的条件(四)黄金分割教学设计
一、学情分析
学生在学习了本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质;也在之前的学习中掌握了一些基本的尺规作图方法。
二、教材分析
教学目标:
1、知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的
黄金分割点;
2、通过找一条线段的黄金分割点,培养学生理解与动手能力。
3、理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识教学
与人类生活的密切联系。
教学重点:了解黄金分割的意义并能运用。
教学难点:找出黄金分割点。
三、教学过程
本节课设计了六个环节:第一个环节:情境引入;第二个环节:要点呈现;第三个环节:操作感知;第四个环节:熟能生巧;第五个环节:课堂小结;第六个环节:布置作业。
第一环节情境引入
活动内容:展示课件,欣赏图片。
第一组:国旗中的黄金分割
由黄金分割画出的正五角星形,有庄严雄健之美。
第二组:绘画中的黄金分割
世界名画<蒙娜丽莎>之所以有名,也得益于黄金分割,
无论是画面整体还是局部。
第三组:人体与黄金分割
人的俊美,体现在头部及躯干是否符合黄金分割。
活动目的:
1、通过感知国旗中的黄金分割和开学第一课中“白公馆”的故事讲解,让学生接受革命思想的洗礼,感知黄金分割在生活中的重要性。
2、通过摄影、艺术上的实例初步感受黄金分割,体会黄金分割在现实生活中的广泛应用和文化价值。
第二环节要点呈现
活动内容:
在线段AB上,点C把线段分成两条线段AC和BC,如果,那么称线段AB被点C分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金比。
其中。
即。
教师讲解,学生观察、思考、交流。
注意事项:学生通过观察、思考、交流,教师引导、回答问题。
因为学生尚未学习一元二次
方程,所以不能轻松地理解比值为的理由,只需让学生了解这一事实即可。
第三环节操作感知
活动内容:
1.提出问题:如何找到一条线段的黄金分割点?
多数学生尝试画出1cm、2cm的线段,通过计算找到黄
金分割点大概的位置。
可以用这种方法大概的找到当线
段长为a时黄金分割点的位置,但不能精确地找到。
2.展示课件,学生跟做。
如果已知线段AB,按照如下方法画图:
(1)经过点B作BD⊥AB,使;
(2)连接AD,在DA上截取DE=DB;
(3)在AB上截取AC=AE,则点C为线段AB的黄金分割点。
3.提出问题:为什么点C为线段AB的黄金分割点?
方法提示:设AB=2,分别求出AC和BC,并计算和,或计算AC2和BC•AB。
活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识。
注意事项:教师操作,学生动手、独立思考,再与同伴交流完成。
由于学生所学过的尺规作图方法有限,作图工具可以用三角尺和刻度尺。
第四环节熟能生巧
活动内容:
1、已知M是线段AB的黄金分割点,且AM>BM。
(1)写出AB,AM,BM之间的比例式;
(2)如果AB=12 cm,求AM与BM的长.
2、如图的五角星中,AD=BC,且C,D两点都是AB的黄金分割点,AB=1,求CD的长.
3、美是一种感觉,当人体下半身长与身高的比值越接近0。
618时,越给人一种美感。
如图,某女士身高165 cm,下半身长x与身高l的比值是0。
60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )
A.4 cm B.6 cm C.8 cm D.10 cm
4、(教材改编题)如图所示,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.
(1)求AM,DM的长;
(2)点M是AD的黄金分割点吗?为什么?
活动目的:前3个练习与本节课第一环节相呼应,在于展示黄金分割在人类生活中的作用,提高解题问题的能力。
其中练习3还运用比例变形的一些技巧,体会比例基本性质的重要性。
练习4在于向学生介绍另一种可以作黄金分割点的方法,同时进一步巩固黄金分割点的认识。
注意事项:教师充分引导学生观察、思考、交流、讨论、解决问题。
第五环节课堂小结
活动内容:
1。
什么叫做黄金分割?黄金比是多少?
2。
一条线段有几个黄金分割点?
3。
如何用尺规作线段的黄金分割点?
4。
如何说明一个点是一条线段的黄金分割点?
活动目的:鼓励学生结合本节课的学习过程,自觉总结,并自觉地应用到现实之中,逐步形成正确的数学观,培养学生的审美意识。
注意事项:教师鼓励学生畅所欲言自己的感想和收获。
第六环节布置作业
必做作业:习题4.8—1、2
选做作业:习题4.8—4。