二项分布的可加性与泊松分布的例题(课堂PPT)
合集下载
统计学:二项分布与泊松分布PPT课件
对立事件 A的概率为1-p。则有总概率p+
(1-p)=1。注意:1-p=q
简历
返回总目录
返回章目录 精选
第9页
结束
二、 二项分布的概率函数
1. 根据贝努里模型进行试验的三个基本条 件,可以求出在n 次独立试验下,事件 A出现的次数X的概率分布。X为离散型 随机变量,其可以取值为0,1,2,…,n。
简历
返回总目录
返回章目录 精选
第13页
结束
由公式(7.2)可看出二项展开式有以下特点:
简历
返回总目录
返回章目录 精选
第3页
结束
《医学统计学》目录
第1章 绪论 第2章 定量资料的统计描述 第3章 总体均数的区间估计和假设检验 第4章 方差分析 第5章 定性资料的统计描述 第6章 总体率的区间估计和假设检验 第7章 二项分布与Poisson分布 第8章 秩和检验 第9章 直线相关与回归 第10章 实验设计 第11章 调查设计 第12章 统计表与统计图
简历
返回总目录
返回章目录 精选
第12页
结束
二项式展开式实例
将二项式(a+b)n 展开
(ab)2a22a bb2
(a b )3 a 3 3 a 2 b 3 a2 b b 3
( a b ) 4 a 4 4 a 3 b 6 a 2 b 2 4 a 3 b b 4
( a b ) 5 a 5 5 a 4 b 1 a 3 b 2 0 1 a 2 b 0 5 a 4 b b 5
简历
返回总目录
返回章目录 精选
第7页
结束
2.二项分布定义:如果已知发生某一结果(如阳 性)的概率为π,其对立结果(阴性)的概率为 (1-π),且各观察单位的观察结果相互独立, 互不影响,则从该总体中随机抽取n例,其中出 现阳性数为X (X=0,1,2,3,…,n)的概率服从二 项分布。
(1-p)=1。注意:1-p=q
简历
返回总目录
返回章目录 精选
第9页
结束
二、 二项分布的概率函数
1. 根据贝努里模型进行试验的三个基本条 件,可以求出在n 次独立试验下,事件 A出现的次数X的概率分布。X为离散型 随机变量,其可以取值为0,1,2,…,n。
简历
返回总目录
返回章目录 精选
第13页
结束
由公式(7.2)可看出二项展开式有以下特点:
简历
返回总目录
返回章目录 精选
第3页
结束
《医学统计学》目录
第1章 绪论 第2章 定量资料的统计描述 第3章 总体均数的区间估计和假设检验 第4章 方差分析 第5章 定性资料的统计描述 第6章 总体率的区间估计和假设检验 第7章 二项分布与Poisson分布 第8章 秩和检验 第9章 直线相关与回归 第10章 实验设计 第11章 调查设计 第12章 统计表与统计图
简历
返回总目录
返回章目录 精选
第12页
结束
二项式展开式实例
将二项式(a+b)n 展开
(ab)2a22a bb2
(a b )3 a 3 3 a 2 b 3 a2 b b 3
( a b ) 4 a 4 4 a 3 b 6 a 2 b 2 4 a 3 b b 4
( a b ) 5 a 5 5 a 4 b 1 a 3 b 2 0 1 a 2 b 0 5 a 4 b b 5
简历
返回总目录
返回章目录 精选
第7页
结束
2.二项分布定义:如果已知发生某一结果(如阳 性)的概率为π,其对立结果(阴性)的概率为 (1-π),且各观察单位的观察结果相互独立, 互不影响,则从该总体中随机抽取n例,其中出 现阳性数为X (X=0,1,2,3,…,n)的概率服从二 项分布。
2-4 二项分布与泊松分布
0 P( A0 ) = P( X = 0) = C3 (0.08) 0 (0.92) 3 = 0.7787
1 P( A1 ) = P( X = 1) = C 3 (0.08) (0.92) 2 = 0.2031
P( A2 ) = P( X = 2) = C (0.08) (0.92)
2 3 2
=0.0177
Pn (k > 10) =
K =11
∑C
p q
k
n−k
比较大时,计算很繁琐 当n比较大时 计算很繁琐 比较大时
(金融保险 金融保险) 金融保险 根据生命表知道, 根据生命表知道,在某个年龄段的投保人中一年内 每个人死亡的概率是 0.005 ,现在有 10,000 人参加 保险, 人的概率。 保险,问未来一年中死亡人数不超过 60 人的概率。 分析: 解。 分析: 以 X 记这 10,000 人中死亡的人数,则显然有 人中死亡的人数, X ~ B (104,0.005 ) ,需要计算 { X ≤ 60 } 。 需要计算P P { X ≤ 60 } = ∑k6=00 [C10000k 0.005k 0.99510000 – k ] □
0.2031× 0.8 + 0.0177× 0.3 = = 0.7582 0.2031+ 0.0177+ 0.0005
其中显然有 P(C|A3)=0
P( A3 ) = P( X = 3) = C (0.08) (0.92)
3 3 3
0
=0.0005
设 C 表示“可以保证灌溉”, 表示“可以保证灌溉” 则由全概率公式
P (C ) =
3
∑ P ( A ) P (C | A )
i=0 i i
= 1 × 0.7787 + 0.8 × 0.2031 + 0.3 × 0.0177 + 0 × 0.0005
1 P( A1 ) = P( X = 1) = C 3 (0.08) (0.92) 2 = 0.2031
P( A2 ) = P( X = 2) = C (0.08) (0.92)
2 3 2
=0.0177
Pn (k > 10) =
K =11
∑C
p q
k
n−k
比较大时,计算很繁琐 当n比较大时 计算很繁琐 比较大时
(金融保险 金融保险) 金融保险 根据生命表知道, 根据生命表知道,在某个年龄段的投保人中一年内 每个人死亡的概率是 0.005 ,现在有 10,000 人参加 保险, 人的概率。 保险,问未来一年中死亡人数不超过 60 人的概率。 分析: 解。 分析: 以 X 记这 10,000 人中死亡的人数,则显然有 人中死亡的人数, X ~ B (104,0.005 ) ,需要计算 { X ≤ 60 } 。 需要计算P P { X ≤ 60 } = ∑k6=00 [C10000k 0.005k 0.99510000 – k ] □
0.2031× 0.8 + 0.0177× 0.3 = = 0.7582 0.2031+ 0.0177+ 0.0005
其中显然有 P(C|A3)=0
P( A3 ) = P( X = 3) = C (0.08) (0.92)
3 3 3
0
=0.0005
设 C 表示“可以保证灌溉”, 表示“可以保证灌溉” 则由全概率公式
P (C ) =
3
∑ P ( A ) P (C | A )
i=0 i i
= 1 × 0.7787 + 0.8 × 0.2031 + 0.3 × 0.0177 + 0 × 0.0005
第六章、二项与泊松分布ppt课件
总体率的可信区间
所以当样本含量为n=20,阳性发生数x=5,总 体率的95%可信区间为(0.087~0.491)
因为不但要求累积概率,还要不断的尝试,所 以求该区间的手工计算量十分庞大
统计学家已经绘制了一张表格,方便我们直接 查找!——附表6
总体率的可信区间的正态近似法
当np与n(1-p)均大于5且n足够大时,样本率p的 抽样分布近似正态,可以写为p ~ N( p, sp2)
mp p
样本率的标准差Var (p) (或sp) :
sp
p (1p )
n
样本率的抽样分布 (sampling distribution of rate)
样本率的总体均数等于总体率 m p p
样本率的标准差(即率的标准误)反映率的抽样误差
sp
p (1p )
n
由于总体率通常是未知的,因而用样本率p来估计p,故
二项分布的阳性数的均数与标准差
如果随机事件满足贝努利试验条件 则称随机事件的阳性数x满足二项分布B( n,
p) 阳性数x的均数与标准差又是多少?
阳性数的均数与标准差
均数E (x)(或mx):
mx np
标准差Var (x) (或sx) :
sx np(1p)
样本率的均数与标准差
样本率的均数E (p)(或mp):
本题的问题是该地的患病情况是否较以前下降
假设总体患病率没有下降,那么现在该地的高 血压患病率仍为10%;那么从中得到一个比当 前样本率6%还要极端的情况概率是否是一个小 概率事件?
如果是小概率事件,则原假设有问题,因为小 概率事件不太可能在一次抽样中发生,因而拒 绝它;反之,如果不是小概率事件,那么尚不 拒绝它。
来不是小概率事件,即:
医学统计学课件:第九讲 二项分布和Poisson分布
S p1 p2
X1 X 2 (1 X1 X 2 )( 1 1 )
n1 n2
n1 n2 n1 n2
温州医科大学公共卫生与管理学院/附属眼视光医院
例 7 - 7 为 研 究 A 、B 两 地 学 生 的 肺 吸 虫 感 染 率 是 否 相 同 ,某 研 究
者 随 机 抽 取 8 0 名 A 地 学 生 和 8 5 名 B 地 学 生 ,查 得 感 染 人 数 A 地 2 3 ,
当二项分布中n很大,p很小时,二项分布就变
成为Poisson分布,所以Poisson分布实际上是 二项分布的极限分布。
由二项分布的概率函数可得到泊松分布的概率 函数为:
P{X x} e x
x!
x 0,1, 2,
为大于0的常数,X 服从以为
参数的Poisson分布 X ~ P( )
温州医科大学公共卫生与管理学院/附属眼视光医院
当n→∞时,只要不接近0、1,二项分布近似 正态分布。
温州医科大学公共卫生与管理学院/附属眼视光医院
温州医科大学公共卫生与管理学院/附属眼视光医院
温州医科大学公共卫生与管理学院/附属眼视光医院
温州医科大学公共卫生与管理学院/附属眼视光医院
相关程序(R软件)
op<-par(mfrow=c(2,2)) n<-c(10) p<-c(0.1) k<-seq(0,n) plot(k,dbinom(k,n,p),type='h',main='二项
分布', xlab='K',cex=1.5,cex.axis=1.5,col.axis=4) mtext(paste('N=',n),adj=0.9,side=3,line= -2,col=4) mtext(paste('P=',p),adj=0.9,side=3,line= -3.1,col=4)
二项分布教学课件(共36张PPT)高中数学北师大版(2019)选择性必修第一册
C 则这 3 台车床中至少有一台每天加工的零件数超过 35 的概率为( )
1 A. 64
27 B. 64
37 C. 64
63 D. 64
解析:设车床每天加工的零件数超过 35 的台数为 ,由题意知每台加工的零件数
超过 35 的概率 P 1 0.5 1 , 24
所以
~
B
3,
1 4
,则这
3
4
32 4
C34
33 1
4
31 4
C44
34 1
4
30 4
思考交流
在上面的问题中, 将一次射击看成做了一次试验, 思考并回答下列问题: (1)一共进行了几次试验?每次试验有几种可能的结果? (2)如果将每次试验的两种结果分别称为"成功"(命中目标)和"失败"(没有命 中目标), 那么每次试验成功的概率是多少? 它们相同吗? (3)各次试验是否相互独立?在随机变量X的分布列的计算中, 独立性具体应 用在哪里?
解:
设 X 为 5 台机床中正常工作的台数, 则 X 服从参数为 n 5, p 0.2 的二项分布,
即
P( X 于是, 由题意可得
k ) C5k 0.2k (1 0.2)3 k (k
0,1, 2,3, 4,5)
P(X 4)
P(X 4) P(X 5) C54 0.24 0.8 C55 0.25 0.80 0.007
中目标
(事件
Bk
发生),这包含
C
k 4
种情况.
根据互斥事件的概率加法公式和相互独立
事件的概率乘法公式,可得
P(X k) P Bk
C4k
3k 4
1
二项分布泊松分布
n x N M.称这样的分布为X服从参数为n, m, N的超几何分布
通常记作 X ~ H(n, M, N ), (1)超几何分布原型:检查产品的次品问题
设一批产品共有 N 个, 其中有 M 个次品.从这批产品 中任取 n 个产品,则取出的 n 个产品中的次品数 X服从超
几何分布 X ~ H (n, M , N )
P(x) e
x
e e
1(
x
e,该级数的计算结果常
用)
x0
x0 x!
x0 x!
泊松分布是泊松经过著名的泊松试验得出的成就。可用它描
述大量试验中的小概率事件,如某区域发生交通事故的次数,
某120急救站未接到急救电话的次数等。
(2)泊松分布概率最大值定理 设X ~ P( ),则
k 0
k 0
如; X ~ P(3),则:P5 (3) Px5( 3) F3(x 5) F3(x 1 4)
F3(5) F3(4) 0.916082 0.815263 0.100819
第四讲 常用离散分布
例4-1-3 某十字路口有大量汽车通过,假设每辆汽车在这里发生
k}
C3k
(
2 5
)k
(
3 5
)3k
,
k
0,1,2,3.即:
P(X
0)
C
0 3
(
2 5
)0
(
3 5
)3
27 ,
125
P(X
1)
C
1 3
(
2 5
)1
(
3 5