排列组合 基本方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 分组(堆)问题
分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.)
处理问题的原则:
①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m!
②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m!
③非均分堆问题,只要按比例取出分完再用乘法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?
解:要完成发包这件事,可以分为两个步骤:
⑴先将四项工程分为三“堆”,有 种分法; ⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式
2.插空法:
解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决. 例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
第1步,把除甲乙外的一般人排列: 第2步,将甲乙分别插入到不同的间隙或两端中(插孔): 几个元素不能相邻时,先排一般元素,再让特殊元素插孔.
3.捆绑法
相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.
例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?
解:(1)分两步进行:
第一步,把甲乙排列(捆绑): 第二步,甲乙两个人的梱看作一个元素与其它的排队: .
几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列. 4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.
例4. 5个人站成一排,甲总站在乙的右侧的有多少种站法?
211421226C C C A =55A 有=120种排法
26A 有=30种插入法
120303600∴
⨯共有=种排法22A 有=2种捆法
55A 有=120种排法
2120240∴⨯共有=种排法
解法1:将5个人依次站成一排,有 种站法, 然后再消去甲乙之间的顺序数 ∴甲总站在乙的右侧的有站法总数为 解法2:先让甲乙之外的三人从5个位置选出3个站好,有 种站法,留下的两个位置自然给甲乙有1种站法
∴甲总站在乙的右侧的有站法总数为
5.剪截法(隔板法):
n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.
例5. 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班至少一个名额,则不同的分配方案共有___种.
解: 问题等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.
将16个小球串成一串,截为4段有 种截断法,对应放到4个盒子里. 因此,不同的分配方案共有455种 .
5.剪截法
n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.
变式: 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有___种.
解: 问题等价于先给2班1个,3班2个,4班3个,再把余下的10个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.
将10个小球串成一串,截为4段有 种截断法,对应放到4个盒子里.
因此,不同的分配方案共有84种 .
6.错位法:
编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同特别当n=2,3,4,5时的错位数各为1,2,9,44.
,这种排列称为错位排列.
例6. 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有____种.
解: 选取编号相同的两组球和盒子的方法有 种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
7.剔除法
从总体中排除不符合条件的方法数,这是一种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.
例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.
55A 22A 535522543A A A =⨯⨯=35
A 33551A A ⨯=315455
C =3984C =2615
C =
解:所有这样的直线共有 条,
其中不过原点的直线有 条,
∴所得的经过坐标原点的直线有210-180=30条.
例1 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?
分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.
解 先排学生共有 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中
的4个空档,共有 种选法.根据乘法原理,共有的不同坐法为 种.
结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.
例2 5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?
分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.
解 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列, 有A 66 种排法,其中女生内部也有A 33 种排法,根据乘法原理,共有A 66 A 33 种不同的排法. 结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.
例3 某学院二年级有8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?
分析 此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.
解 此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8
份,显然有 种不同的放法,所以名额分配方案有 种.
结论3 转化法:对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.
例4 袋中有5分硬币23个,1角硬币10个,如果从袋中取出2元钱,有多少种取法?
分析 此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.
解 把所有的硬币全部取出来,将得到 0.05×23+0.10×10=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有
种取法. 结论4 剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.
37210A =1266180A A ⨯=88P 47P 8487P P 711C 711C 311232310C C C
+⋅