材料力学 能量法

合集下载

材料力学能量法

材料力学能量法

限制条件:不适 用于求解动力学 问题如振动、冲 击等
适用范围:适用 于求解线性问题 如弹性、塑性等
限制条件:不适 用于求解非线性 问题如塑性、蠕 变等
材料力学能量法的发展趋势和未来 展望
材料力学能量法的发展趋势
计算方法:发展高效、准确 的数值计算方法
应用领域:拓展应用领域如 航空航天、生物医学等
柱的压缩问题
问题描述:柱在轴向 压力作用下的压缩问 题
应用实例:桥梁、建 筑等结构中的柱在受 压时的变形和破坏
能量法分析:利用能 量法分析柱的受压变 形和破坏过程
结论:能量法在柱的 压缩问题中的应用可 以有效地预测柱的变 形和破坏情况为工程 设计提供依据。
弹性体的振动问题
添加 标题
弹性体振动问题的背景:在工程中弹性体的振动问题非常常见如桥梁、建筑物、机械设备等。
定义和原理
材料力学能量法: 一种研究材料力学 问题的方法通过分 析能量变化来求解 问题。
基本概念:能量、 应力、应变、位移 等。
原理:根据能量守 恒定律材料的变形 和破坏过程中能量 会发生变化通过分 析这些变化可以求 解问题。
应用:广泛应用于 结构分析、优化设 计等领域。
能量法的应用范围
结构力学:分析结构受力、变形和稳定性 材料力学:分析材料应力、应变和断裂 流体力学:分析流体流动、压力和速度 热力学:分析热传导、对流和辐射 电磁学:分析电磁场、电磁波和电磁感应 声学:分析声波传播、反射和吸收
能量法的基本假设
材料是连续、均匀、各向同性的
材料是线弹性的应力与应变成正 比
添加标题
添加标题
材料是弹性的满足胡克定律
添加标题
添加标题
材料是各向同性的应力与应变的 关系与方向无关

材料力学 能量法

材料力学 能量法

3
13 Pa 12 EI
3
M
能量法
例:图示梁,抗弯刚度为EI,承受均布载荷q及
集中力X作用。用图乘法求: (1)集中力作用端挠度为零时的X值; (2)集中力作用端转角为零时的X值。
能量法
解:(1)
ql / 8
2
1 wC EI
Xal 2a Xa 2 2a ql 3 a 2 3 2 3 12 2
l P 2 得:P wC1 m 2E I 2 ml 由此得: C wC1 8E I
2
能量法
例:长为 l 、直径为 d 的圆杆受一对横向压力 P 作用,
求此杆长度的伸长量。已知E和m。
能量法
解:由位移互等定理知,①杆的伸长量等于 ②杆直径的减小量
l

d

e d e d
4 P P d d E AE
能量法
例:已知简支梁在均布载荷 q 作用下,梁的中点挠

5ql w 384E I
4
。求梁在中点集中力P作用下(见
图),梁的挠曲线与梁变形前的轴线所围成的面积A。
A
能量法
A
5ql q A P 384E I
能量法
4

可用于线弹性材料,也可用于非线弹性材料。
能量法
§12-7 单位载荷法 莫尔积分
P1
P2
C

用虚功原理可以导出计算结构一点位移的单位载荷法
能量法
P1
P2
C
Fs ( x)

C
M ( x)
1 M ( x)d
M ( x) d dx EI
P0 1 Fs ( x)

材料力学第十三章 能 量 法

材料力学第十三章 能 量 法

Vε Vε (D1 , D 2 ,, D i ,, D n )
假设位移 Di 有一微小增量 dDi 其它位移均保持不变 梁的应变能也有一增量 dVe
外力功的增量
d W Fi d D i
Ve d Ve d Di D i
d Ve d W
Ve Fi D i
卡氏第一定理
卡氏第一定理

l
0
F ( x) T ( x) dx dx 0 2GI 2 EA p
l
2 N
2
F ( x) M ( x) d x s dx 0 2 EI 0 2GA
l l
2
2 S
应变能恒为正 ,是内力或外力的二次函数。
非线性函数
一般情况:非线性弹性体
s s1 s e
外力作功:
de e 1
DAB 方向水平向外
§3-4 用能量法解超静定系统
解超静定问题要综合考虑三方面 几何方面 —— 建立变形几何相容条件 物理方面 —— 建立补充方程 静力学方面 —— 建立平衡方程
等直杆,发生基本变形,材料为线性弹性体 非等直杆或杆系结构,受较复杂荷载作用, 材料为非线性弹性体 易 难
能量法
例1:求图示超静定梁支座处的约束力。
③ 先加M,后加F
A
M AM
F
B
AF DCF
AM
Ml 3EI
D CF
Fl 48 EI
3
AF
Fl 16 EI
2
1 1 应变能: V M ε AM ( FD CF M AF ) 2 2 2 3 2 2 1 F l M l MFl ( ) EI 96 6 16
Ve Fi D i

材料力学:能量法

材料力学:能量法

P
P1
l

P
Δ1
o
d
1

外力作功为
W 0 P dΔ
Ve W Δ1
0
P dΔ
p
l

p
P
从拉杆中取出一个各边为 单位长 的单元体, 作用在单元体上,下两表面的力为 P= 1 1 =
其伸长量
l=1=
p

1
p
d
1

该单元体上外力作功为
0 d
§3-2
一、应变能
应变能 • 余能
1. 线弹性条件下,通过外力功求应变能 常力作功:常力 P 沿其方向线位移 上所作的功
W P
变力作功:在线弹性范围内,外力 P 与位移 间呈线性
关系。 (静荷载为变力)
P
P
l

P
o


轴向拉(压)杆外力作功
Pl F N l EA EA
FN
P P P l 2 sin a 2tga 2d
P
2 FN d l
l
d
a1
l
a1
FN
FN
d
A P1
P
2 FN d P l
FN l EA
d2 l l l 2 l 2 2l l
2
l
(
FNl ) EA
2
2l (
FN l ) EA
0
1 1 2 d E1 2 2E
2
扭转杆
G
ve
1
0
1 1 2 d G 1 2 2G
2
例 题: 在线弹性 范围内工作的杆, 已知: m、G、l、d 。 求:在加载过程中所积蓄的应变能 Ve。

材料力学能量法

材料力学能量法

B
2m C
F
30° A
能量法/克拉贝隆原理
•解: 由节点A的平衡条件求得AB杆的内力:
F N1
FN2
A
F
F N 12F115.2kN
AC杆的内力为:
F N 2F N 1c o s3 0 o 9 9 .8k N
杆系的应变能: UFN21LAB FN22LAC 172J 2EA1 2EA2
设节点A的竖直位移 A为
mF
代入应变能的内力表达式:
L
UM 2(x)dxL(F xm )2dx L 2E I 0 2E I
F2L3 FmL2 m2L 6EI 2EI 2EI
能量法/克拉贝隆原理
UF2L3FmL2 m2L 6EI 2EI 2EI
mF L
•从结果中可以看到:第一、三项分别为F和m单独作用时 的 应变能,故F、m同时作用在杆内所引起的应变能不等于各 载荷单独作用时所引起的应变能之和。其原因是这两个载 荷都使梁产生了同一种弯曲变形,彼此都在对方引起的位 移上做了功(结果中的第二项即代表F和m共同作用时在相 互影响下所做的功)。
2、能量法
利用应变能的概念,解决与弹性体系变形有关的问题的 方法。
在求解组合变形、曲杆或杆系以及超静定问题时,能量 法是一种非常有效的方法,是结构分析的基础。
能量法/基本概念
能量法有关的几个基本概念 1、外力功:线弹性体系在外力的作用下产生变形,每个外力
在与它相对应的位移上所作的功 W。
2、应变能:弹性体受外力作用下产生变形而储存了能量,这个
Ub 125 30
US 3(1)
能量法/克拉贝隆原理
二、应变能的普遍表达式(克拉贝隆原理)
基本变形下应变能的一般表达式:

材料力学(能量方法)

材料力学(能量方法)

代入莫尔积分公式
δy = ∫
0
x2
M ( x1 ) = − Px1 , M ( x2 ) = − Pa
B
x1 1
A
C
AB段 BC段
M ( x1 ) = − Px1 , M ( x2 ) = − Pa
a
M ( x1 ) = − x1 , M ( x2 ) = − a
代入莫尔积分公式
l M ( x )M ( x ) M ( x1 ) M ( x1 ) 2 2 δy = ∫ d x1 + ∫ d x2 0 0 EI1 EI 2 1 a 1 l = ∫0 (− x1 )(−Px1 ) d x1 + EI2 ∫0 (−a)(−Pa) d x2 EI1 2 3 Pa l Pa + = 3EI1 EI 2
a
=0
例2:用单位力法求C点的水平位移。(EI、EA 已知) x2 x2 b 解:1 加单位载荷 A B A B 2 求内力方程 a 3 积分 x1 x1 C F C F=1
BC :
BA :
M ( x1 ) = − Fx1 ;
M ( x1 ) = − x1
M ( x2 ) = − Fa; FN ( x2 ) = − F ;
F1
δ2
F3 F2
δ3
δiβ
Fi β
广义外力的中间值 相应的广义位移中间值 广义力(位移)的相应增量
Fi (δ i )dβ
b 外力在位移增量上作的功为
d W = ∑ ( Fi β + Fi dβ ) • (δ i dβ ) ≈ (
外力总功
∑ F δ )βdβ
i i
W = ∫ d W = (∑
1 Fiδ i ) β dβ = ∑ ( Fiδ i ) 0 2

材料力学第8章-能量法

材料力学第8章-能量法

能量原理的应用
能量原理可以应用于弯曲、拉伸、压缩等各种不同的力学问题。通过计算系统的势能和应变能,可以分 析材料的应力分布、变形情况和稳定性。
弹性势能和弹性材料的能量原 理
弹性势能是指弹性材料在外力作用下产生的能量。通过应变能和弹性势能之 间的关系,可以推导出弹性材料的力学性质和变形方程。
弹塑性材料的能量原理
材料力学第8章-能量法
材料力学的能量法是研究材料变形和力学行为的重要方法,它具有广泛的应 用。本章将介绍能量法的基本概念和应用,以及弹性和弹塑性材料的能量原 理。
能量法的基本概念
能量法是一种力学分析方法,通过考虑系统的能量变化,推导出材料的力学 性质和变形行为。能量法的基本概念包括势能和应变能的概念,以及能量守 恒定律。
通过能量法,我们可以分析臂梁在外力作用下的弯曲行为。通过计算和优化梁的几何参数和材料性质, 可以设计出更加稳定和高效的悬臂梁结构。
总结和要点
能量法是一种重要的材料力学分析方法,它通过考虑材料的能量变化,分析 材料的力学性质和变形行为。
对于弹塑性材料,除了考虑弹性势能外,还需要考虑应变能和塑性势能的贡献。能量原理可以用来分析 弹塑性材料的强度和变形行为。
能量法在材料力学中的重要性
能量法是材料力学中的一种基本方法,它可以用来分析各种不同类型的力学问题,包括材料的变形、破 坏和失稳行为。掌握能量法对于研究和设计材料结构至关重要。
应用实例:悬臂梁弯曲问题的分析

材料力学之能量法

材料力学之能量法
A
l/2
F C 1
l/2
B
l/2 1 1 Fl 3 W Fδ1 F F 2 2 48 EI C A 2) 力偶由零增至最后值 Me Mel B 截面的转角为 θ 3 EI 1 1 Mel 力偶 Me 所作的功为 W2 M eθ M e 2 2 3 EI
l/2 Me B
由 V =W 得
( FRsin ) 2 πF 2 R3 Rd 2 EI 8EI
Δ BV
πFR 4 EI
3
A
O
例: 简支梁, 两种载荷按同样比例加载, 计算其变形能。 梁中点的挠度为 梁右端的转角为
Fl 3 M el 2 δ1 48EI 16 EI Fl 2 M el δ2 θ 16 EI 3EI
Fb 2 Fa 2 ( x1 ) ( x2 ) a b l dx1 l dx2 0 0 2 EI 2 EI
2
B
x1 a l C x2
b
F 2b2 a3 F 2a 2 b3 F 2a 2b 2 2 2 2 EIl 3 2 EIl 3 6 EIl
1 W F vC 2
由 V =W 得
(( ))
1
q A
RA
F=qa B
C
x
A x 1/2a
B
C x
x
2a
a
2a
a
(2) 求 C 截面的转角 ( 在 C 处加一单位力偶 ) 2 qa qx x AB: M ( x) x (0 x 2a) M ( x) 2 2 2a BC: M ( x) qa x (0 x a) M ( x) 1 a 1 2 a qa qx 2 x 5qa3 c [ ( x )( )dx (qax)(1)d x] 0 EI 0 2 2 2a 6 EI (

材料力学能量法

材料力学能量法

材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。

能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。

本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。

首先,我们来看一下材料力学能量法的基本原理。

能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。

在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。

能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。

其次,材料力学能量法的应用范围非常广泛。

它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。

在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。

通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。

最后,我们来介绍一下材料力学能量法的计算方法。

能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。

在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。

在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。

综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。

通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。

在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。

材料力学 能 量 方 法

材料力学 能 量 方 法

例4.4 已知: F, R, EI
求: BV
解: 1. 写 M (x) 并对F 求偏导
F B R F1
A : M ( ) = - FRsin M/F = - Rsin 2. 求 BV M ( ) M 1 /2 BV = EI F Rd = EI 0 (-FRsin )(-Rsin ) Rd
上式适用于线性和非线性弹性或非弹性杆件或杆系。 对于线弹性杆或杆系:
FN(x)dx d = EA T(x)dx d = GI t My(x)dx dy = E I y Mz(x)dx dz = E I z
0 FN(x)FN(x) T 0(x)T(x) My0(x)My(x) Mz0(x)Mz(x) dx + G I dx + dx + dx = EA E Iy E Iz l t
l
M 2(x) dx 2 EI
非圆截面杆:
2 FN(x) dx T 2(x) dx M 2(x) dx M 2(x) dx y z V = + + + l 2 EA l 2 GIt l 2 EI y l 2 EI z




功能原理:
W = V
例4.1 知: F , Me , EI , l
求: 外力做的总功 W 解: wB =
P B

B + P
R

1
B
16PR2 + 32PR2 ( 1 – 1 ) = Ed 4 Gd 4 4
例4.9 知:P , l , EI
(省竞赛试题)
y A
P B x l
求: 反向弯曲的挠曲线方程 解: 由图乘法求力作用点挠度: y = – {[a(Pab/l )/2](2ab/3l ) + + [b(Pab/l )/2](2ab/3l ) }/EI Pa2b2 = – 3EIl 令 a = x , b = l – x , 并反号, 得 y = Px2(l – 3EIl x)2

材料力学 能量法

材料力学  能量法

能量法一、变形能(应变能):变形固体在外力作用下由变形而储存的能量“”。

弹性变形能:变形固体在外力作用下产生的弹性变形而储存的能量1、性变形能具有可逆性。

2、塑性变形能不具有可逆性。

二、变形能的计算:利用能量守恒原理能量守恒原理:变形固体在外力作用下产生的变形而储存的能量,在数值上等于外力所作的外力功。

三、能量法:利用功能原理和功、能的概念进行计算的方法。

常见的能量法——功能原理、单位力(莫尔积分)、卡氏定理等。

在卡氏第二定理中应该注意的问题①、Vε——整体结构在外载作用下的线弹性变形能。

②、F i视为变量,结构反力和变形能等都必须表示为F i的函数②、Δi为F i作用点的、沿F i方向的变形③、Δi处要有相应的荷载,当无与Δi对应的F i时,可采用附加力法进行计算。

既先加一沿Δi方向的F i(在所求位移处沿所求位移的方向加上相对应的附加力),求偏导后,在令其为零,结果即为实际荷载作用的位移⑤、结果为正时,说明Δi与F i的方向相同;结果为负时,说明Δi与的F i方向相反。

单位力载荷法注意问题1、此种方法存在两个力系:一个为实际的力系;另一个为单位力系。

2、单位力必须与所求位移相对应:若求线位移——则单位力必须作用在所求点沿所求位移方向加单位的集中力;若求角位移——则单位力必须作用在所求点沿所求位移方向加单位的集中力偶。

2、内力的坐标系必须一致,每段杆的坐标系可自由建立。

莫尔积分必须遍及整个结构。

4、结果为“+”只说明所加的单位力的方向与实际的位移方向相同;“-”只说明所加的单位力的方向与实际的位移方向相反。

材料力学(能量法)

材料力学(能量法)

弹性变形阶段
01
外力作用下,材料发生弹性变形,此时外力所做的功全部转化
为应变能储存于材料内部。
塑性变形阶段
02
当外力继续增加,材料进入塑性变形阶段,部分应变能转化为
热能散失到环境中。
断裂破坏阶段
03
当材料达到强度极限时发生断裂破坏,此时储存的应变能迅速
释放并转化为断裂表面的新表面能和其他形式的能量。
非圆截面扭转时的能量可以通过实验或数值模拟等方法进 行计算,以获得准确的能量值。
扭转变形过程中能量转化
弹性变形能
在扭转变形过程中,部分能量以弹性变形能的形式储存在材料中。 当外力去除后,这部分能量可以释放并使材料恢复原状。
塑性变形能
当扭转变形超过材料的弹性极限时,部分能量会以塑性变形能的形 式消耗在材料中。这部分能量不可逆转,导致材料产生永久变形。
压缩过程中能量变化
外力做功
在压缩过程中,外力对杆件做 功,使其产生压缩变形和位移 。外力做功的大小与外力的大 小和杆件的位移成正比。
内力耗能
杆件在压缩过程中,材料内部 会产生应力和应变,从而消耗 能量。内力耗能的大小与材料 的应力-应变关系有关。
弹性势能
杆件在压缩过程中,由于材料 的弹性变形,会储存一定的弹 性势能。弹性势能的大小与材 料的弹性模量和变形量有关。
结构稳定性分析方法
能量准则
通过比较结构失稳前后的能量变 化,判断结构的稳定性。若失稳 后能量降低,则结构不稳定。
平衡路径跟踪法
通过逐步增加荷载或位移,跟踪 结构的平衡路径,观察结构从稳 定到不稳定的转变过程。
特征值分析法
基于结构刚度矩阵和质量矩阵, 求解特征值和特征向量,分析结 构的振动特性和稳定性。

材料力学能量法

材料力学能量法
弹性固体的应变能
一、外力功与应变能
1、外力功W
载荷在其作用点位移上所作的功。 (1) 常力作

F AF B
q
D
W=FD
W=Mq
材料力学
中南大学土木建筑学院
M M
1
(2) 静载作功
静载是指从零开始逐渐地、缓慢地加载到 弹性
体上的载荷,静载作功属于变力作功。 对于一般弹性体
F
W D F d D 0
外力作的总功为:
1
W (F1D1 +
+FiDi +
+ FnDn )
d
0
1
1
1
2 F1D1 + + 2 FiDi + + 2 FnDn

n i 1
1 2
Fi Di
材料力学
中南大学土木建筑学院
17
设各外载荷按相同的比例,从零开始缓慢增加到最 终值。即任一时刻各载荷的大小为: F1*=F1, F2*=F2 ,… Fi*=Fi ,…Fn*=Fn
8
2、应变能 弹性体因载荷引起的变形而储存的能量。
三、功能原理
条 件:(1)弹性体(线弹性、非线弹性) (2)静载荷 —— 可忽略弹性体变形过
程中的 能量损失。
原 理:外力功全部转化成弹性体的应变能。
Ve = W
材料力学
中南大学土木建筑学院
9
已知:EI = 常数,用功能原理
F
计算A点的挠度。
A
B
单独作用于结构时引起的弯矩于是00010iimxmxmxfmfmx简记为所以材料力学mxmxmxmx是所求位移处单独作用一个与位移对应的单位力时引起的弯矩莫尔积分处无载荷作用附加一个载荷fmmxfmx即无论所求位移处是否有载荷只要在原结构单独加一个与所求位移对应的单位力单位力作用下求得的内力方程便是原所有载荷作用下的内力方程对广义力的偏导数

材料力学13能量法

材料力学13能量法
FN (x)
T (x)
M (x)
FN (x)
T (x)Fs(x)

FN2 (x) dx l 2EA(x)
T 2(x) dx l 2GIp (x)
M 2(x) dx l 2EI (x)
kFs 2 (x) dx l 2GA(x)
对若k于是杆双用件向来及弯修杆曲正系,横的弯力变矩弯形沿曲是形时以心切弯主应曲轴力变分不形解沿为, 截主面的均,匀因分轴布力的和修剪正力系远数小,
)
再施加P1
AB又伸长
Dl AB

P1l1 EA
P2保持不变,作功为
V 2

P2

P1l1 EA
P1作功为
V 3

P12l1 2EA
(5)应变能是可逆的。(跳板跳水) 总功仍为上述表达式。10
直接利用功能原理求位移的实例 利用能量法求解时,所列
例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
V F

FL3 48 EI
wC
29
说明: (1)卡氏第二定理只适用于线性弹性体
δi

Vε Fi
(2)Fi 为广义力,i为相应的位移
一个力
一个力偶
一对力
一对力偶
一个线位移
一个角位移
相对线位移
相对角位移
30
(3)卡氏第二定理的应用
(a) 轴向拉伸与压缩
δi

Vε Fi

Fi
22
F
B2
wC1
解:由功的互等定理 F wC1 M B2
得:F

wC1

M
Fl 2 16EI

材料力学 能量法

材料力学 能量法
第九章 能量法
概述 弹性体在外力作用下将发生变形,在变形过程中, 弹性体在外力作用下将发生变形,在变形过程中,一方面 载荷将在相应的位移上做功,称为外力功, 表示; 载荷将在相应的位移上做功,称为外力功,用 W 表示;另一 方面,弹性体由于变形,在其内部存储了能量, 方面,弹性体由于变形,在其内部存储了能量,这种因变形而 存储的能量称为应变能(变形能) 表示。 存储的能量称为应变能(变形能),用 Vε 或 U 表示。 根据能量守恒定律:如果载荷是静载,则应变能在数值上应 根据能量守恒定律:如果载荷是静载, 等于外力功: 等于外力功:
Vε1 = W Vε2 = W2 1
Vε1 = Vε2 = W = W2 1
F∆12 = F2∆21 1
F1
二、位移互等定理
F ∆12 = F2∆21 1
若F1=F2
1
11
2
21
F2
∆12 = ∆21
1
12
2
22
F1作用点沿 1方向由于 2而引起的位移∆12,等于 2作用点 作用点沿F 方向由于F 而引起的位移∆ 等于 等于F 方向由于F 引起的位移∆ 沿F2方向由于 1引起的位移∆21. 一个力作用在2点时, 点所引起的位移等于 一个力作用在 点时,在1点所引起的位移等于该力作用在 点时 点所引起的位移等于该力作用在 1点时,在2点所引起的位移 点时, 点所引起的位移 点所引起的位移. 点时 上述互等定理中的力和位移都应理解为广义的,如果力 上述互等定理中的力和位移都应理解为广义的, 换成力偶,则相应的位移应当是角位移。 换成力偶,则相应的位移应当是角位移。
例9-3 如图所示悬臂梁,已知梁的抗弯刚度为 如图所示悬臂梁,已知梁的抗弯刚度为EI, 若B点的垂直 点的垂直 位移为0,试用互等定理求F 位移为 ,试用互等定理求 B

材料力学能量法

材料力学能量法

材料力学能量法
材料力学是研究材料在外力作用下的变形、破坏和稳定性等问题的学科。

能量法是材料力学中的一种重要分析方法,它通过能量的守恒原理来分析材料的力学性能,为工程实践提供了重要的理论支撑。

本文将对材料力学能量法进行介绍,包括能量原理、应用范围、解题方法等内容,希望能为相关领域的研究人员和工程师提供一些参考。

在材料力学中,能量原理是指系统在外力作用下,能量的总变化等于外力所做的功。

根据这一原理,可以利用能量方法来分析材料的力学性能。

能量方法的应用范围非常广泛,可以用于分析材料的弹性、塑性、断裂等问题,也可以用于分析结构的稳定性和动力响应。

在工程实践中,能量方法被广泛应用于材料设计、结构优化和故障分析等领域。

在使用能量方法进行分析时,首先需要建立系统的能量平衡方程,然后根据系统的力学性能和外力条件,确定系统的势能和动能表达式。

接下来,可以利用能量平衡方程来推导系统的力学性能参数,比如应力、应变、位移等。

最后,通过求解能量平衡方程,可以得到系统的稳定性、破坏条件等重要信息。

除了上述基本方法外,能量方法还可以结合其他分析方法,比如有限元方法、变分原理等,来进行更复杂的问题分析。

在工程实践中,能量方法通常与实验测试和数值模拟相结合,可以为工程设计和材料选择提供重要的参考依据。

总之,材料力学能量法是一种重要的分析方法,它通过能量的守恒原理来分析材料的力学性能,为工程实践提供了重要的理论支撑。

希望本文的介绍能够对相关领域的研究人员和工程师有所帮助,也希望能够引起更多人对材料力学能量法的关注和研究。

材料力学 第12章_能量法

材料力学     第12章_能量法



W Vε
B V
Fl 1 2 2 EA
返回


§12.3 卡氏定理
返回总目录
一、卡氏定理
可以证明,应变能对任一载荷Fi的一阶偏导数, 等于Fi的作用点沿Fi作用方向的位移 Δi。 V Δi Fi
说明: 1. 卡氏定理中的载荷Fi与位移Δi都是广义的; 2. 卡氏定理仅适用于线弹性结构。
解:1. 梁的应变能 弯矩方程
M x M e
梁的应变能
M 2 x V dx 2 EI

l

2 M M e dx e l 0 2 EI 2 EI
l 2
返回
例12-1 悬臂梁如图所示 已知:梁的抗弯刚度为常量 试:计算其应变能以及B截面的转角 2 Me l 解:1. 梁的应变能 V 2 EI
返回
四、外力功与应变能的关系 对于在静载作用下的完全弹性体,外力从零 缓慢增加到最终值,可不考虑其他能量的损失, 外力在相应位移上作的功,在数值上等于积蓄在 物体内的应变能。 根据能量守恒原理,有:
W Vε
返回
§12.2 杆件应变能的计算
返回总目录
一、外力功
在线弹性范围内,F与Δ成正比1 W Fd' F 2 0
第12章
能量法
第12章
能量法
§12.1 能量法概述
§12.2 杆件应变能的计算 §12.3 卡氏定理
§12.4 莫尔定理与单位载荷法
§12.1 能量法概述
返回总目录
一、能量法 利用功能原理 W= Vε 来求解可变形固体的位移、 变形和内力等的方法。 二、外力功(W) 固体在外力作用下变形,引起力的作用点 沿力作用方向位移,外力因此作功 。 三、变形能或应变能 (Vε) 弹性固体因变形而储备了能量 ,称为变形 能或应变能。

材料力学 第10章 能量法

材料力学 第10章 能量法

材料力学第10章能量法在材料力学这门学科中,能量法是一种重要的分析方法。

它可以帮助我们计算杆件受力、弯曲、扭转等方面的机械能量,以及计算受力杆件的变形和应力分布等方面的物理能量。

本文将对材料力学第10章中的能量法做一简要介绍和讲解。

第一节:能量法的基本概念能量法的基本概念是物理学中的能量守恒定律。

根据能量守恒定律,能量可以被转化为其他形式,但总能量守恒不变。

在材料力学中,能量法通过分析杆件的受力变形过程,计算机械能、变形能和应变能等不同形式的能量,来求解某些物理量,如杆件的应力、变形等。

第二节:能量法的应用能量法可以应用在杆件的弯曲、扭转、受力等方面。

其中,弯曲问题是最为常见的。

在弯曲分析中,我们需要计算杆件上各点的剪力和弯矩,使用能量法时,我们可以采用双曲线弧长法和曲率半径法来计算。

在扭转分析中,我们需要计算杆件上各点的切向力和扭矩,使用能量法时,我们可采用扭转角度法和扭转能的变化法来计算。

在受力分析中,我们需要计算杆件上各点的应力和应变,使用能量法时,我们可以用弹性能和破裂能来计算杆件的应力和应变等物理量。

第三节:能量法的计算过程在应用能量法进行分析时,需要进行以下步骤:1. 建立受力变形模型:根据杆件的几何形状和受力情况建立受力变形模型,确定受力分布和变形情况。

2. 确定杆件的位移和应变能量:计算杆件受力变形后的弹性能、变形能等物理能量。

3. 利用能量守恒定律:将机械能、弹性能、变形能和应变能等能量之和等于零,根据能量守恒定律和受力变形模型,求解杆件的位移、应力和应变等物理量。

4. 对解得的结果进行有效检验:通过检查应力、应变等物理量的分布情况,对解得的结果进行有效检验。

总而言之,能量法是材料力学分析领域中非常重要的分析方法。

它广泛应用于工程设计、科研和生产实践等领域。

通过掌握能量法的理论基础和实际应用方法,可以有效地分析和解决杆件受力、弯曲、扭转等方面的技术问题,推动材料力学学科的发展进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


l
A
A
F
方法二
FN 12 l1 FN 2 2 l F 2l V 2 EA 2 EA 2 EA sin 2 F W 2 Fl 1 2 cos EA sin 2 cos
1 2 cos cos
Page
F
M A
解:(1)计算梁的应变能(x轴从A向左)
M ( x ) M e Fx
V
l 0
M 2 ( x) F 2 l 3 FM e l 2 M e2 l dx 2 EI 6 EI 2 EI 2 EI
F 2 l 3 M e2 l V V ,F V ,Me 6 EI 2 EI 相应位移互耦的多个外力引起的应变能不能叠加计算!
• 非圆截面杆或杆系
2 2 My ( x )dx M z2 ( x )dx FN ( x )dx T 2 ( x )dx Vε l l l l 2 EA 2GIt 2 EI y 2 EI z
y , z轴-主形心轴
Page 13
第十三章 能量法
例:悬臂梁承受集中力与集中力偶作用,计算外力所做 之总功。弯曲刚度为EI。
F A

A
广义位移: 线位移,角位移,相对线位移,相对角位移等。
Page 3
第十三章 能量法 例:试确定图a均布载荷q 对应的广义位移.
q
A B
l
(a)
l
相应广义位移:面积
Page 4
第十三章 能量法 一、计算外力功的基本公式
W
f ( )d 载荷—位移曲线所包围的面积 线弹性体:
d
f df F
f k

F k
f
1 2 1 W 0 kd k F 2 2
Page 5
第十三章 能量法 二、克拉比隆定理: 已知线弹性体上同时作用有多个广义力F1, F2 ,.. 及其相应广 义位移, 求外力功
1
2
1 2
F1
WF1 1 F11 2 WF2
FN(x)
dx

2 1 n FN l Vε i i 2 i 1 Ei Ai
T(x) d
1 V ε 2

T 2( x) dx l GI p
1 V ε 2

T 2( x) dx l GI t
dx
d M(x)
• 处于平面弯曲的梁与刚架(忽略剪力影响):
M 2( x) V dx ε l 2 EI
1
第十三章 能量法
C
A B
F
问题: 求节点A的垂直位移,哪种方法优越?
Page
2
第十三章 能量法
§13-1 外力功与应变能的一般表达式
几个概念 相应位移: 载荷作用点沿载荷作用方向的位移分量。 F 外力功: 载荷在其相应位移 上所作之功。
A

A
广义力: 力,力偶,一对大小 相等、方向相反的力 或转向相反的力偶等。

dx
Page 11
第十三章 能量法 组合变形情况
M(x) T(x) dx d T(x) Fs(x)
FN(x)
组合变形杆件的总能量是否可由 叠加法计算?为什么?
FN(x)
dx d dx
M(x)
dx
FN ( x )dδ T ( x )d M ( x )d dVε dW 2 2 2
N
i i ( F1 , F2 Fn )
Page 8
第十三章 能量法
加载过程中各载荷不保持比例关系:
F1
A B 1 f1 A B
F2
C 2 f2 C D
最终状态相同 考虑比例卸载过程
f1 c f2
a2 1 a1 f1 a2 f 2 (a 1 ) f1 c
Page 12
第十三章 能量法 • 圆截面杆或杆系
2 FN ( x )dx T 2 ( x )dx M 2 ( x )dx dV ε 2 EA 2GI p 2 EI
2 FN ( x )dx T 2 ( x )dx M 2 ( x )dx Vε l l l 2 EA 2GIp 2 EI
第十三章 能量法 引言
求节点A的铅垂位移 的两条研究途径
FN 1 F sin 拉 , FN 2 F tan 压
2
1
方法一

F l F l l1 N 1 1 , l2 N 2 EA EA
l1 l2 Fl sin tan EA sin 2 1 2 cos cos
f1 c f2
1
F1 A
2
F2
1 a1 f1 a2 f2
D
B 1
C
a2 ( a1 ) f1 c
同理:
2
1∝ f f ∝ 2
2
1
第一个载荷所做之功: W
1 F1 1 2
第二个载荷所做之功: W 1 F2 2 2
1 W Fi i i 1 2
D
1
2
1∝ f
1
同理: 2∝ f 2
W
1 Fi i i 1 2
N
对线弹性体,不论按何种方式加载,广义力F1,F2,..Fn在其相应位移 N 1 1, 2, .. n上的总功恒为 W Fi i i 1 2 Page 9
第十三章 能量法 注意:
线弹性体上作用有多个广义力时:
F1
A B 11 D A
F2
C 22
D
W
F1
A B 1
1 F111 2
F2
C 2 D
W
1 F2 22 2
1 1 W F1 11 F2 22 2
1= 11, 2= 22
2
Page
7
第十三章 能量法
加载过程中各载荷保持比例关系:
f1 A
B
f2
C D
1 F2 2 2
F2
F1+F2
(1) WF F
1
1
1 1 1 1 F11 F2 2 ? WF1 F1 F1 (1 2 ) F2 (1 2 ) 2 2 2 2
Page 6
(2) F1与F2对弹簧做的总功与他们的加载顺序与方式有关吗?
第十三章 能量法
广义位移可以用叠加法求解 外力功一般不可以用叠加法求解 特殊情况:
T F T F
一种载荷在另一种载荷引起的位移上不做功
一种载荷不在另一种载荷方向上引起相应位移
Page 10
第十三章 能量法 三、应变能的一般表达式 基本变形情况 • 拉压杆与桁架:
2 1 FN ( x) V dx ε 2 l EA • 轴:
相关文档
最新文档