电力负荷控制的原理及应用

合集下载

浅谈电力负荷控制的基本原理及其控制策略,信息管理范文.doc

浅谈电力负荷控制的基本原理及其控制策略,信息管理范文.doc

浅谈电力负荷控制的基本原理及其控制策略,信息管理-【摘要】本文首先介绍了电力负荷控制系统的组成,阐述了电力负荷控制系统的工作原理,并着重对该系统的控制及管理过程进行了探讨,以此希望给予电力行业人员以有意义的借鉴,为我国电力事业的发展做出贡献。

【关键词】电力负荷控制;原理;控制策略随着我国经济和科学技术水平的快速发展,电力负荷控制技术及其电力负荷控制产品的发明和创造,在很大程度上提高了我国在这一领域的技术实力。

本文将结合本人的工作经验,首先对电力负荷控制的原理进行论述,并分析了电力负荷的控制方法,以此希望为同行业人员提供有意义的借鉴。

1、负荷系统的组成及工作原理电力负荷控制是一个集合计算机、自动化控制、信息等多类学科的应用技术,通过该技术可以对电力营业抄收、数据采集及其管理等进行有效的控制。

1.1负荷系统的组成电力负荷控制系统主要包括负荷控制中心、控制终端及通信系统。

负荷控制中心(主控站)的主要功能是对各负荷终端进行控制和监视;控制终端是一种接受主控站控制与监视的设备,其安装于客户端。

我国当前的负荷管理主要是以地市为主控站基础,直接管理大、中、小客户的用电负荷。

1.2负荷系统的工作原理控制终端包括主控单元、输入输出单元、电台、显示单元、调制解调单元和开关电源。

在接通控制终端电源后,该系统程序将自动初始化并进入上电复位运行。

在中心站发出信号后,终端天线接收指令,再由电台解调成低频的FSK信号并传输至解调单元,经调制解调后的数据信号将发送给主控单元,最后由主控单元对数据进行分析与识别并执行操作。

通常中心站发出的命令分为播命令和单点命令,播命令是向所有区域内的终端发出的命令,单点命令是向选定的终端发出的命令。

控制终端将根据命令对数据进行采集,并由异步串行接口将数据传输至调制解调单元进行制,最后将信号由电台和天线发回中心站。

在控制终端接受功率定值、功控投入等命令时,将执行域内闭环控,并发出声光信号。

当负荷功率超出设定值或处于受控状态时,将立即进入报警累计状态,超出报警设定值后,控制终端将开始第一次跳闸。

简述负荷开关的作用原理

简述负荷开关的作用原理

简述负荷开关的作用原理负荷开关是一种常用的电气元件,用于对电路负荷的控制,能够实现开关的功能。

下面将从负荷开关的作用、原理和应用等方面,对其进行详细介绍。

首先,负荷开关的作用是控制电路中负荷的通断。

在电路中,各种负荷(例如电灯、电机、电炉等)需要通过电源供电,负荷开关能够实现对这些负荷的通断控制。

当负荷开关处于闭合状态时,电路中的负荷得到供电,可以正常工作;而当负荷开关处于断开状态时,电路中的负荷得不到供电,停止工作。

负荷开关通过改变自身的状态(闭合和断开)来改变电路中负荷的通断状况。

负荷开关的工作原理基于电磁原理和机械原理。

其核心部件是电磁铁,包括线圈和铁芯。

当电流通过线圈时,产生磁场使铁芯磁化,因此负荷开关具有短时承载大电流的能力。

具体来说,当负荷开关处于闭合状态时,负荷开关的线圈得到电流供应,产生磁场使铁芯吸引到闭合位置,使得负荷得到电源供电。

当负荷开关处于断开状态时,线圈失去电流供应,磁场消失,铁芯回到原来的位置,使得负荷断开。

此外,负荷开关通常还配备了手动控制装置,用于手动地控制开关状态。

例如,在负荷开关上可以设置一个手动开关,用于手动开启或关闭负荷。

当手动开关处于开启状态时,负荷开关闭合,负荷得到电源供电;当手动开关处于关闭状态时,负荷开关断开,负荷断电。

负荷开关在电路中的应用非常广泛。

首先,它可以用于家庭电路中,例如用于控制灯光、电器等家用设备的通断。

在家庭中,我们可以通过负荷开关方便地控制灯光的开关状态,从而实现节能和方便的目的。

另外,负荷开关也可用于工业生产中,例如用于控制电机、电炉等设备的通断。

在工业生产中,负荷开关的通断控制能够实现对设备的启停控制,方便维护和保养设备,提高生产效率。

此外,负荷开关还广泛应用于电力系统中,用于控制电路的通断和电源的切换。

在电力系统中,负荷开关能够实现对电路的远程控制,方便对电路的管理和维护。

除了上述应用之外,负荷开关还用于紧急停电保护。

在一些特殊场合,例如火灾、漏电等情况下,负荷开关会自动切断电源,从而保护电路和设备的安全。

电力负荷控制的原理分析及控制策略

电力负荷控制的原理分析及控制策略

电力负荷控制的原理分析及控制策略摘要:随着社会经济的发展,人们对电能的需求量也在逐渐增加,对电力负荷控制的关注度也越来越高,加强对电力负荷的控制变得非常的重要。

通过对电力负荷控制,不但能有效的节约用电,还能降低供电线路的损耗,同时还能有效的提升电网运行过程中的可靠性和经济性。

本文对电力负荷控制的原理及控制策略进行了分析和探讨。

关键词:电力负荷控制;原理;控制策略一、电力负荷控制简介电力负荷控制运用所涉及的核心机能包括:计算机技术应用、信息管理技术以及自动控制系统。

电力系统能通过该系统的运行来对电力营销实行监控和管理,同时,通过该系统还能实现对数据的采集、网络的连接以及营业抄收等。

负荷控制的别称就是负荷管理,是通过碾平负荷曲线均衡电力负荷的使用,从而有效的提升电网系统运行的经济性和安全性,促进整个企业的效益增长。

负荷控制的方法非常多,比较常见的控制方式有直接控制、简介控制、集中控制以及分散控制。

二、电力负荷控制的原理分析2.1电力负荷系统的组成电力负荷的主要构成部分是负荷控制中心、通信系统以及控制终端。

负荷控制中心也被称为主控站,主要是针对各个负荷的终端进行控制和监视,作为负荷控制中心监视和控制的核心设备,用户端是控制终端的安装位置。

2.2电力负荷系统的工作原理负荷控制终端主要由主控组件、显示单元、电台、调制解调组件、输入输出组件以及一些开关电源组成,以下是电力负荷系统的工作原理:(1)电源接通以后,系统会默认进入上电复位程序开始运行,首次运行的过程中,终端会收到一系列由中心站发出的运行参数,然后终端会依据该参数进行运行。

正常运行过程中,中心站发出指令信号,由终端天线接收后经电台解调为SK低频信号送至调制解调单元,再将处理数据送向主控单元。

主控单元的应用程序截取异步通信接口的数据后,经过分析识别后分由不同的系统组织进行处理。

(2)经过对上述的数据进行传输后,终端怎会根据中心站所发出的一些运行参数通过变送器计算出模拟量,然后再计算出相应的电压和电流。

浅析电力负荷控制的基本原理与控制策略

浅析电力负荷控制的基本原理与控制策略

浅析电力负荷控制的基本原理与控制策略摘要:通常来讲,目前我们所说的电力负荷控制指的就是运用现代化的技术来对供电系统进行控制和管理,从而提升对电力负荷管控的能力,提升电能应用的有效性,减少对资源的浪费。

基于此,本文对电力负荷控制的基本原理及其控制策略展开了研究。

关键词:电力负荷控制;基本原理;控制策略电力计量是以电网为运行标准,合理的分析实际组成过程。

根据实际的使用情况,准确的判断电力监控过程。

随着电网铺设的快速普及,有效的电力计量受到人们的重视和关注。

根据电力计量的实际过程,准确的分析电力互感设备运行过程中,可能存在的各类误差情况。

电能表的互感效果,往往在不同程度上存在误差性问题。

其直接影响负载荷的情况变化。

需要根据电力计量的实际标准,分析影响低负荷情况的操作过程。

分析采取有效措施,可以提升处理效果的办法,确保电力计量的准确性和有效性。

1 电力负荷控制系统组成和工作原理从上世纪中后期,我国开始了对电力负荷控制技术的研究和应用,先后经历了音频、电力线载波及无线电控制3 个阶段,随着通信技术的发展,基于现有移动网络GPRS/CDMA数据传输技术的负荷控制技术的出现,无线负荷控制技术的稳定性和可靠性也有较大提高。

电力负荷管理系统是指利用无线、有线、载波等通信方式,由安装在用户侧的采集控制装置和供电公司的监控系统实现对用户或某个区域电力、电能等用电状况进行监测、控制并对采集数据信息进行分析,加以应用的综合系统。

包括终端装置、收发设备及信道、主台软硬件设备及其形成的数据库、文档等。

数量庞大、分部广泛的现场终端是系统的主要特点,电力负荷控制系统的现场终端设备主要由主控单元、电参数采样单元、监控单元、通信单元、RS485接口、遥信输入、遥控输出单元组成,系统通过RS485 线与客户多功能电子表或主进线电流、电压互感器连接,直接采集客户各相功率、电流、电压等实时数据资料。

2 电力负荷技术对电力计量的控制策略2.1电能计量中的实际影响因素分析过程在低负荷的状况下,电能通过电力计量标准直接反应出来。

电力负荷控制原理

电力负荷控制原理

电力负荷控制原理随着社会的发展和人们生活水平的提高,电力需求不断增加,电力负荷控制成为保障电力供应稳定运行的重要措施。

本文将就电力负荷控制原理进行探讨,并介绍一些常用的电力负荷控制技术和方法。

一、电力负荷控制的概念及意义电力负荷控制是指通过对电力负荷的调整和控制,使得电力供应与需求之间能够达到平衡,保证电力系统的稳定运行。

电力负荷控制是电力系统管理的重要手段,它能够合理调度电力资源,优化电力系统的运行效率,降低能源消耗,提高供电质量和可靠性。

二、电力负荷控制的原理主要包括两个方面,即负荷预测和负荷调节。

1. 负荷预测负荷预测是指通过对历史数据和相关因素的分析,预测未来一段时间内的负荷情况。

负荷预测可以分为长期负荷预测、中期负荷预测和短期负荷预测三个层次。

长期负荷预测主要用于电力规划和经济发展预测,中期负荷预测主要用于电力市场的交易和调度,短期负荷预测主要用于电力系统的实时调度和运行。

2. 负荷调节负荷调节是指根据负荷预测结果,通过相应的技术手段对电力负荷进行调节,以维持电力供需平衡。

常用的负荷调节手段包括:供电方面可通过增加发电容量、调整发电机组出力、利用储能设备等方式进行调节;需电方面可通过优化用电计划、合理安排用电时间、采用节能措施等方式进行调节。

此外,还可以通过电网平衡措施来实现负荷调节,如调整输电容量、改变联络方式等。

三、电力负荷控制技术和方法1. 能源管理系统能源管理系统是指利用信息技术手段对能源消耗进行监控、管理和调度的系统。

通过对各个环节的监测和控制,能够实现电力负荷的精细化管理和调控。

能源管理系统可以通过搭建监测平台、建立电力数据模型、采用优化算法等手段来实现对电力负荷的控制。

2. 智能电力调度系统智能电力调度系统是指利用先进的通信技术和计算机技术,对电力负荷进行实时调度和运行管理的系统。

通过对电力负荷进行动态监测和预测,可以实现对负荷曲线的优化调整,从而提高电力系统的运行效率和经济性。

电力负荷控制技术及其在需求侧管理中的应用

电力负荷控制技术及其在需求侧管理中的应用

于 电 力 负荷 控 制 技 术 的 负 荷 控 制 系 统 的 基 本 功 能 和 需 求 侧 管 理 的 内容 及 意 义 。最 后 分 析 了 将 电力 负 荷 控 制 技 术 应 用 到 需 求 侧 管 理 中 的 优 势 和 对 解 决 电力 供 应 短缺 问题 的 重 要 意 义 。 关键词 : 电力 : 荷 控 制 : 线 ; 求 侧 管理 负 无 需
12 电 力 负 荷 控 制 技 术 的 分 类 . 11 什 么 是 电 力 负 荷 控 制 技 术 .
1 电 力 负 荷 控 制 技 术
1 . 工频 电力 负荷 控制 技术 .2 2 此 种控 制 技 术要 求在 每 个 变 电站 装 设一 台工频 信 号 发Байду номын сангаас 机 , 应用 配 电 网络作 为传 输通 道 ,其基 本原 理是 根据 控 制 中心发 来 的
年 电 力运 行调 节 工作 的通 知》 , 中 已经提 到 2 1 年 将 是 近几 年 电 01
力供 需 形势 相 对偏 紧 的一 年 , 初 已有 2 年 0个省 ( 、 实 施 了有 区 市)
序用 电, 预计 夏季 高峰 期华 东 、 北 、 华 南方 供需 缺 口较大 。 面对 如此 分为 分散 式控 制和 集 中式控 制 2 。分散 电力 负荷 控 制是 指在 用 种
系统主 要功 能有 以下几方 面 : () 合智 能诊 断功 能 。系统 诊断 方法 运用 有 阂值 报警 诊 断 、 1综 基 于 D A 变压 器油 色 谱 诊断 与 神经 网络 识别 诊 断等 多 种 分析 诊 C 断方 法 , 行智 能综 合诊 断 , 进 根据 综合 诊断 结果 判定 出变 压 器 的故 障类 型 、 大小 、 障严 重 程度 与 故 障大 致 位 置 , 故 并提 供 缺 陷处 理 措

电力行业的电力负荷管理与控制

电力行业的电力负荷管理与控制

电力行业的电力负荷管理与控制在电力行业,电力负荷管理与控制是非常重要的一项任务。

随着电力需求的不断增长,有效管理和控制电力负荷对于电力系统的可靠运行和供应稳定至关重要。

本文将探讨电力负荷管理与控制的背景、重要性以及实施方案。

一、电力负荷管理与控制的背景随着经济的发展和人们生活水平的提高,电力需求不断增长。

通常情况下,电网的负荷与发电量需要严格匹配,以维持电力供应的稳定性。

然而,由于各种因素的影响,如天气变化、季节性需求波动和工业用电峰谷差异等,电力负荷管理与控制成为了不可忽视的问题。

二、电力负荷管理与控制的重要性1. 确保电力供应的可靠性:通过合理管理和控制电力负荷,电力系统能够更好地应对潜在的电力供应问题,保证电力的持续供应,降低停电、断电的风险。

2. 提高电力系统效率:通过对电力负荷的管理与控制,可以合理调配电力资源,避免不必要的浪费,提高电力系统的整体效率。

3. 降低能源消耗与环境影响:通过合理分配和优化电力负荷,可以减少能源的消耗,并降低与发电过程相关的环境污染和温室气体排放。

4. 提升电力系统的灵活性:电力负荷管理与控制能够使电力系统具备更好的应对能力,对于应对突发情况和电力需求的快速变化具有重要意义。

三、电力负荷管理与控制的实施方案1. 负荷预测与调度:通过对历史数据和预测模型的分析,可以准确预测电力负荷的变化趋势,从而合理调度发电设备,提前做好负荷峰值期间的准备工作。

2. 能源特性分析与优化:对不同类型的负荷进行能源特性的分析与优化,通过调整供电策略、优化能源转换效率等手段,实现电力系统的高效运行。

3. 负荷管理与平衡:通过负荷管理系统,对电力负荷进行实时监测和分析,并调整电力分配策略,使得电力系统的供需平衡更加稳定。

4. 负荷调控技术的创新应用:通过引入智能电网技术、分布式能源系统以及储能技术等,提高负荷调控的灵活性和可靠性。

总结:电力负荷管理与控制在电力行业中具有重要的地位和意义。

电力负荷控制系统在需求侧管理中的应用

电力负荷控制系统在需求侧管理中的应用

电力负荷控制系统在需求侧管理中的应用摘要:随着电力需求的不断增长和能源转型的推进,电力负荷控制系统在需求侧管理中的应用越来越受到重视。

需求侧管理是指通过优化用户的电力需求,调整负荷行为和供需平衡,实现能源的高效利用和节约减排。

电力负荷控制系统作为一种重要的需求侧管理技术,可以有效地提升电力供需的匹配度,改善电力系统的稳定性和可靠性。

关键词:电力负荷;控制系统;需求侧管理;应用引言电力负荷控制系统是一种通过在需求侧管理电力负荷,来实现电力供需平衡的技术手段。

随着能源资源的日益紧张和环境污染的加剧,需求侧管理成为了电力行业的重要方向。

本文将探讨电力负荷控制系统在需求侧管理中的应用,分析其优势和挑战,并展望未来的发展方向。

1电力负荷控制系统的基本原理和技术1.1电力负荷控制系统的基本原理实时监测和分析负荷:通过部署传感器和智能仪表等设备,实时监测、采集和传输负荷信息。

同时,还可以对负荷数据进行分析和处理,提取出关键指标,如负荷峰谷、波动性等。

负荷预测和模型建立:基于历史数据和统计分析,建立负荷模型和预测算法。

利用这些算法来预测负荷的变化趋势和特征,为后续负荷控制决策提供准确的参考。

弹性负荷管理:根据负荷情况和需求预测结果,通过调整负荷的使用时间、停电优化调度、分级管理等方式,实现负荷的弹性管理。

这样可以平滑负荷峰谷,减少电网的压力,提高电网供能效率。

互联网技术的应用:将电力负荷控制系统与互联网技术相结合,通过远程监控、智能调度和交互式通信等手段,实现对负荷的远程控制和协同运行。

1.2电力负荷控制系统有关技术智能仪表和传感器技术:通过安装智能仪表和传感器,实时监测电力的使用情况和负荷变化。

这些设备可以将数据传输给控制中心,以便对负荷进行分析和调度。

供电侧调控技术:通过电网调度和配电优化等措施,根据预测的负荷需求和电力供给情况,合理调整供电侧的发电机组和变压器,以达到负荷均衡和供需匹配。

基于大数据和人工智能的预测和优化算法:通过利用历史数据和实时监测得到的负荷数据,结合人工智能和大数据分析技术,建立预测和优化模型,以指导负荷调度和控制策略的制定。

电力系统的负荷预测及控制方法研究

电力系统的负荷预测及控制方法研究

电力系统的负荷预测及控制方法研究随着电力系统的不断发展,如何合理地预测电力负荷并进行有效控制,已经成为电力系统可持续发展的重要议题之一。

负荷预测和控制不仅可以保障电力供应的稳定性和可靠性,还可以提高电力系统的经济效益和环保效益。

本文将介绍负荷预测的基本原理和常见预测方法,并探讨负荷控制的常用技术和措施。

一、负荷预测负荷预测是指根据历史数据和已知的未来信息,对未来一段时间内电力负荷进行预测,以便进行合理的供电计划和电力系统运行调度。

电力系统的负荷预测一般分为短期、中期和长期预测三个层次。

1. 短期预测短期负荷预测一般是指对未来几小时内的电力负荷进行预测,主要用于日前调度和电力市场交易等方面。

短期预测的主要方法包括时间序列预测、神经网络预测、支持向量机预测等。

时间序列预测是一种基于历史数据的预测方法,其基本思想是将历史负荷数据转化为一个时间序列,并使用时间序列模型对未来负荷进行推断。

时间序列模型包括ARIMA模型、指数平滑模型、季节性模型等,其中ARIMA模型是应用最广泛的一种。

神经网络模型是一种基于人工神经元网络的预测方法,其基本思想是根据历史数据构建一个多层神经元网络,并通过网络学习将历史数据的特征和规律进行提取和抽象,以便对未来负荷进行预测。

常用的神经网络模型包括BP神经网络、RBF神经网络、GRNN神经网络等。

支持向量机模型是一种基于统计学理论和机器学习的预测方法,其基本思想是通过对历史负荷数据进行支持向量的分析和分类,提取数据的特征和规律,并通过对分类函数的构建和优化,对未来负荷进行预测。

2. 中期预测中期负荷预测一般是指对未来几天到几周内的电力负荷进行预测,主要用于电力生产和调度等方面。

中期预测的主要方法包括人工神经网络、模糊逻辑预测、小波分析预测等。

人工神经网络模型在中期预测中应用广泛,可以通过对历史负荷数据的学习和分析,将其转化为一种非线性关系的映射函数,并通过对映射函数的参数调整来实现对未来负荷的预测。

电力系统中的智能电能表和电力负荷控制

电力系统中的智能电能表和电力负荷控制

电力系统中的智能电能表和电力负荷控制智能电能表和电力负荷控制在电力系统中的作用和应用智能电能表和电力负荷控制是电力系统中重要的组成部分,它们的应用可以更好地管理和控制电力负荷,提高能源利用效率,减少电能浪费。

本文将从智能电能表和电力负荷控制的基本原理、作用和应用领域、优势等方面进行详细介绍。

1. 智能电能表的基本原理智能电能表是一种电子测量装置,它可以实时测量和记录电能的使用情况,并通过通信技术将数据传输到电力系统的后台管理系统中进行分析和处理。

智能电能表基于微处理器和数字信号处理技术,具有高精度测量、动态数据采集和远程通信等特点。

2. 智能电能表的作用和应用领域智能电能表在电力系统中的作用主要包括能源计量、负荷管理和故障监测等方面。

首先,智能电能表可以准确测量用电量,实现精确的电费计算。

其次,通过智能电能表可以实现对电力负荷的监测和管理,提高电网的可靠性和稳定性。

另外,智能电能表还可以实时监测电力设备的运行状态,及时发现和修复故障,提高系统的安全性。

智能电能表的应用领域非常广泛,既包括家庭用户、商业机构,也包括工业生产等各个领域。

家庭用户可以通过智能电能表实时监测自己的用电情况,合理安排用电时间,减少能源浪费。

商业机构可以利用智能电能表对电力负荷进行预测和管理,优化用电计划,降低能源成本。

工业生产过程中,智能电能表可以通过监测关键设备的用电情况,提供数据支持和决策依据,提高能源利用效率和生产效益。

3. 电力负荷控制的基本原理电力负荷控制是指通过控制和调节电力系统中的负荷,以实现平衡供需关系,提高电网的稳定性和可靠性。

电力负荷控制主要包括负荷预测、负荷调度和负荷管理等环节。

负荷预测是通过统计和预测模型,对未来一段时间内的负荷进行预测,为负荷调度和管理提供依据。

负荷调度是根据负荷预测结果,通过调节供电设备的输出,实现负荷的平衡和优化。

负荷管理则是通过智能电能表等工具,监测和控制负荷的实时运行情况,及时发现和处理问题,保障电力系统的正常运行。

电力系统负荷技术及应用分析

电力系统负荷技术及应用分析

电力系统负荷技术及应用分析电力系统负荷技术是指在电力系统运行中对负荷进行监测、预测和控制的技术。

电力系统负荷技术的应用可以最大限度地保证电力系统的调度计划得以执行,同时也可以提高电力系统的经济效益。

本文将从负荷监测、负荷预测和负荷控制三个方面分析电力系统负荷技术的应用。

一、负荷监测电力系统的负荷监测是指对电力系统运行过程中的负荷进行实时监测的技术。

通过负荷监测,可以获得电力系统的负荷运行情况,发现负荷异常变化等情况,及时采取相应的措施,保证电力系统的运行稳定性。

负荷监测主要包括以下几个方面:1. 实时监测:通过现场检测、远程监测等手段,实时获得电力系统负荷的运行情况。

2. 数据采集:通过数据采集设备,将电力系统产生的负荷数据实时采集并传输到监测系统中。

3. 数据处理:对采集到的负荷数据进行处理,生成负荷曲线、负荷分布图等。

二、负荷预测电力系统的负荷预测是指利用历史和实时负荷数据,进行负荷需求预测的技术。

通过负荷预测,可以对电力系统未来的负荷需求做出准确的预测,为电力系统的调度计划提供准确的参考。

负荷预测主要包括以下几个方面:1. 数据收集:通过各种手段,如嵌入式系统、传感器网络、传统设备等,采集历史和实时的负荷数据,进行分析处理。

2. 数据处理:通过各种数据分析技术,如时间序列分析、神经网络、遗传算法等,对收集到的负荷数据进行处理和分析。

3. 预测模型:基于历史和实时数据分析结果,运用各种预测算法,如灰色预测、常规回归、支持向量机等,建立负荷预测模型。

三、负荷控制电力系统负荷控制是指利用各种手段控制电力系统中负荷的大小和负载均衡,以保证电力系统的运行稳定和合理使用。

负荷控制技术包括负荷调度、负荷削峰、负荷预约等。

1. 负荷调度:通过对电力系统中各种负荷的分类、权重和紧急程度等进行分析,实现对负荷的定向调度,保证电力系统稳定和安全运行。

2. 负荷削峰:通过对高负荷时段、高负荷地区等进行预判、分析、调度和动态控制,实现对负荷削峰的目标。

第九章 负荷控制和管理系统

第九章 负荷控制和管理系统

负荷曲线中的最大值称 为日最大负荷P 为日最大负荷Pmax
负荷曲线中的最小值称 为日最小负荷P 为日最小负荷Pmin
(a)折线形日负荷曲线 图9—2电力系统日负荷曲线 2
(b)阶梯形日负荷曲线
电力系统日负荷曲线,描述了一天24小时负荷的变化情况. 电力系统日负荷曲线,描述了一天24小时负荷的变化情况. 24小时负荷的变化情况
四、负荷管理系统的主要功能
• • • • 1.远方抄表及自动计费功能 2.科学的防窃电功能 3.负荷预测功能 4.线损计算功能
第三节 负荷控制系统
(一)降压减负荷 已知: 可见电压的变化对负荷影响较大 电压的变化对负荷影响较大。 已知:P=U2/R ;可见电压的变化对负荷影响较大。 电网正常运行状态下允许电压在额定值的一定范围内 下允许电压在额定值的一定范围内( 电网正常运行状态下允许电压在额定值的一定范围内( 10% 变化,这就为在系统高峰负荷期间, 如10%)变化,这就为在系统高峰负荷期间,通过暂时 降低有关线路电压来减轻系统的总负荷提供了可能。 降低有关线路电压来减轻系统的总负荷提供了可能。 • 实现方法:在馈电线路的末端,安装一个称为线路电 实现方法:在馈电线路的末端, 压传送器LVT(Line Transducer)的现场FTU, 的现场FTU 压传送器LVT(Line Voltage Transducer)的现场FTU, 用以监视降压减负荷期间该点的电压, 用以监视降压减负荷期间该点的电压,使之不低于容 许的最小值。此外,线路电压调整器VRC(Voltage 许的最小值。此外,线路电压调整器VRC(Voltage Controller)接收控制中心发出的控制信号 Reduction Controller)接收控制中心发出的控制信号 控制线路电压调整器的输入分接头动作。 ,控制线路电压调整器的输入分接头动作。 • • •

电力负荷控制原理

电力负荷控制原理

电力负荷控制原理电力负荷控制是指通过对电力负荷进行精确调控,使之满足电力系统的要求,并保持在合理的范围内。

合理的电力负荷控制可以保障电力系统的稳定运行,提高能源利用效率,降低能源浪费。

本文将介绍电力负荷控制的原理及其应用。

一、电力负荷特性分析在开始讲解电力负荷控制原理之前,我们需要对电力负荷的特性进行分析。

电力负荷通常分为基本负荷、峰值负荷和尖峰负荷。

基本负荷是指电力系统中负荷的长期平均水平,占据系统总负荷的大部分。

峰值负荷是在每天的繁忙时段出现的负荷峰值,通常是基本负荷的2至3倍。

尖峰负荷是相对较短时间内的负荷高峰,通常是峰值负荷的几倍。

了解电力负荷的特性有助于我们进行有效的负荷控制。

二、电力负荷控制原理电力负荷控制的原理可以归结为两个方面:供需平衡和负荷调控。

1. 供需平衡供需平衡是指在电力系统中,电力的供给与需求能够实现动态平衡。

为了满足供需平衡,一方面,电力供给侧需要根据负荷的变化进行调整,以保证供电的可靠性;另一方面,电力需求侧需要根据电力供给的变化进行调整,以保证负荷的稳定运行。

供需平衡是电力负荷控制的基础。

2. 负荷调控负荷调控是指通过对负荷的调整来实现供需平衡。

负荷调控的方法有很多种,常用的包括峰谷差价策略、负荷削峰填谷、电力电子装置的运行调控等。

2.1 峰谷差价策略峰谷差价策略是指在电力供应紧张的尖峰时段,通过提高电价来引导用户削减电力使用,同时在电力供应过剩的谷底时段,降低电价来鼓励用户增加电力使用。

这种策略通过经济手段引导用户调整用电习惯,实现负荷的平滑分布。

2.2 负荷削峰填谷负荷削峰填谷是指在尖峰时间段对负荷进行限制,避免负荷过高导致电力供应不足或系统运行不稳定。

而在谷底时间段则鼓励用户增加用电,充分利用系统供应的电力。

通过负荷削峰填谷策略,可以实现负荷的平稳调控。

2.3 电力电子装置的运行调控电力电子装置,如STATCOM(静态同步补偿器)、FACTS(柔性交流输电系统)等,可以对电力系统进行动态调控,改善电力负荷的供需平衡。

电力控负荷方案

电力控负荷方案

电力控负荷方案一、背景随着社会经济的发展和人民生活水平的提高,对电能的需求逐渐增加。

然而,电力供应的不足和负荷过大的问题也逐渐凸显出来。

为了保障电力供应的稳定和可持续性发展,电力控负荷方案被提出并逐渐得到广泛应用。

二、电力控负荷的概念电力控负荷是指通过采取一系列措施,使得电力系统的负荷能够在合理的范围内进行调整和控制,以达到保证电能供应的目的。

电力系统的负荷控制通常包括负荷预测、负荷调度和负荷优化等方面。

三、电力控负荷的重要性1.保障电网的安全运行。

负荷过大会导致电网过载,进而引发电力设备故障甚至火灾等安全问题。

2.节约资源和提高效率。

通过合理控制负荷,可以避免能源的浪费,减少自然资源的消耗,并提高能源利用效率。

3.减轻环境污染。

通过合理控制负荷,可以减少发电设备的使用,从而减少对环境的污染。

4.保障电能供应的稳定性。

通过控制负荷,可以平衡电能供求关系,保证电能的持续供应。

四、电力控负荷方案的实施步骤1. 负荷预测负荷预测是电力控负荷方案的基础。

通过对历史数据和相关指标的分析,可以预测未来一段时间内的负荷情况。

常用的负荷预测方法包括时间序列分析、回归分析和神经网络等。

2. 负荷调度负荷调度是根据负荷预测结果,将电力系统的负荷进行合理的分配和调整。

通过优化负荷分配方案,可以确保电力的均衡供应,并避免电网的过载和设备的损坏。

负荷调度通常涉及到电力系统的运行特点、负荷需求、电力供应方式等多个方面的考虑。

3. 负荷优化负荷优化是指通过一系列技术手段和措施,对负荷进行进一步的优化和调整,以提高电力系统的效能和性能。

负荷优化的手段包括负荷平衡、负荷削峰填谷、负荷均衡和负荷调整等。

五、电力控负荷方案的挑战和解决方案1. 负荷预测准确性负荷预测的准确性直接影响到电力控负荷方案的实施效果。

为了提高负荷预测的准确性,可以采用更加精细的数据采集和分析方法,并结合相关的领域知识和经验进行预测。

2. 负荷调度的灵活性电力系统的负荷需求是时刻变化的,因此负荷调度需要具备一定的灵活性。

电力负荷控制系统在需求侧管理中的应用

电力负荷控制系统在需求侧管理中的应用

电力负荷控制系统在需求侧管理中的应用摘要:城市化进程的日益加快,一定程度上促进了电力行业的发展,就实际情况来看,当前我国电力供需日益紧张,部分地区相继出现“电荒”问题,可见我国正面临着严峻的电力供需形势,在此种情况下,积极做好电力调度工作是当前我国电力行业所面临的一项重要任务,那么这就需要相关电力工作人员对电力负荷控制技术进行合理化应用,并将其充分应用到需求侧管理中,从而切实提高电力负荷的控制效果,维护电力系统的安全稳定运行。

关键词:电力系统;负荷控制;需求侧管理;应用探析引言:城市经济建设给整个电力资源带来紧张的形势,甚至有些地方出现了电力供给的缺口,电力工作人员既要学会运用现代的科学信息手段来对电力进行合理的调度分配,又要防止电力供应不足对社会生产生活带来的不利影响,这也是电力工作人员在实际工作中所要重视和协调的问题。

充分开发电力负荷系统在需求侧管理中的应用,实时掌控用户的电力使用的变化情况,从而对电力负荷情况进行基准预测,更好的保障国民的用电秩序。

1电力负荷控制系统功能分析电力负荷控制系统终端集遥感、遥测、遥调、遥控功能为一体,能够遥测各类电气参数,实现终端抄表、交流采样、负荷控制、数据统计分析、主站通信、远程升级等功能。

同时还能监控计量柜、电表用电的异常情况,具有声光电、短信等实时报警功能。

后台主站支持终端主动上传,具有定时召测和人工召测功能,支持按功率自动控制、电信号控制等各种控制方式,设置多套负荷曲线对比功能,并对负控前后电量数据进行全程记录,自动进行用电分析。

电力负荷控制系统能完成远程抄表、功率控制、遥控操作、电量控制以及催费告警等工作,缩减了人工监控的时间及人力资源。

在执行需求侧管理功能时,可按变电站、线路、大客户制定错峰计划,按周期或某一时段进行错峰效果分析,终端更可随时进行负荷远程控制。

2电力负荷控制系统的主要功能及其原理电力负荷控制系统主要是通过有线无线以及载波等多种方式,同时利用用户侧的集控装置来对数据信息进行收集,直到最后汇集到电力企业的控制系统中,进而对信息数据进行研究和分析。

电力负荷控制原理

电力负荷控制原理

电力负荷控制原理电力负荷控制是指通过合理的方式控制电力供应系统的负荷,以确保电力系统的稳定运行。

负荷控制是电力系统运行中的重要环节,它的优化与合理调节对电网的稳定性、经济性和可靠性具有重要影响。

本文将介绍电力负荷控制的原理和相关技术。

一、电力负荷与供需关系电力负荷是指在一定时间内消耗的电能。

电力负荷是不断变化的,它与供电能力之间存在着紧密的关系。

当负荷超过供电能力时,容易导致电力系统的过载;当供电能力超过负荷时,则会造成电能浪费。

因此,了解负荷与供需关系是进行负荷控制的基本前提。

二、电力负荷控制的原理电力负荷控制的主要原理是通过调节负荷的消耗或引入备用电源的方式,实现负荷与供电能力之间的平衡。

常见的电力负荷控制方法包括峰谷电价差异控制、负荷分时控制、联网调度及电能替代等。

1. 峰谷电价差异控制峰谷电价差异控制是指在电力供应系统中,通过调整电价来引导用户在峰谷时段选择用电。

在峰时段,电价较高,用户可通过减少用电或延时用电的方式来控制负荷;而在谷时段,电价较低,用户则可以适当增加用电负荷,以提高用电效益。

2. 负荷分时控制负荷分时控制是指根据不同时间段内的电力需求,对负荷进行分时供电控制。

通过合理分时安排,可以实现负荷与供电能力之间的动态平衡。

例如,在高峰期对重要用户进行限电,以减轻负荷压力;而在低谷期则对特定用户提供更多的电力供应。

3. 联网调度联网调度是指通过电力系统的互联互通,实现区域间或跨区域的负荷分担和调度。

当某个区域的负荷过大时,可以借助联网调度的技术手段,将其部分负荷转移至其他区域,以平衡负荷与供电能力之间的关系。

4. 电能替代电能替代是指在合适的条件下,通过其他能源形式替代电能的使用,以减轻电力系统负荷。

例如,以燃气供暖取代电力供暖,以光热发电取代传统火力发电等。

通过合理的能源替代,可以有效控制负荷,提高电力系统的运行效率。

三、电力负荷控制技术为了实现电力负荷控制,需要借助一系列的技术手段。

无线电力负荷控制系统的原理与应用

无线电力负荷控制系统的原理与应用

三、 系统 硬 件 构 成
系统 的终端 控 制器 采 用 青 岛青 智 仪 器 有 限 公 司 设
计开发的 WK5 -0型无 线 电 力 负 荷 控 制 终 端 , 有 两 路 它
无 线通 信 网 络 发 送 到 中心 站 , 可 接 受 中 并
心 站 的 命 令 对 用 户 的
用 电 进行 控 制 。
常及 其 出现 时 间 。
转 变 为 以负荷 管 理 为 主 。截 止 到 2 0 0 0年 , 岛 市 已经 青 建 立 了较 大 规 模 的负 荷 控 制 系 统 , 且 通 过 了 国家 电 而 力 部 门 的刨 优验 收 。所 有 应 用 丁该 负荷 控 制 系 统 的工
业 用 户普 遍 反 映 通 过 实 现 对 企 业 用 电 的 有 效 管 理 , 企 业 的经 济效 益 得 到 丁 明显 提高 。
【 键 词 l 无 线 电力 负荷 控 制 关

系统
中 心站
电台
终 端控 { 器 目 I



压 、 流 , 算 出 功率 因 数 、 功 及无 功功 率 和 电量 , 电 计 有 并
报 告最 大 、 小 负 荷 及 其 出 现 时 间 。 对 采 集 到 的数 据 最
无 线 电力 负 荷 控 制 系统 是 集 甩 电 控 制 、 端 用 电 终
维普资讯
无 线 电 力 负 荷 控 制 系 统 的 原 理 与 应 用
东南 大学 自动控制 系 ( 京 南 2 0 9 ) 王建 国 10 6
【 摘要 】 阐 述 了无线 电力 负荷 控 制 系统 的总 体结 构 及主要 功 能 , 介绍 了一 种 终端 控制 器 的 内部 结掏 及 工作 原 理 最 后 给 出了 系统 的主 台管 理软 件 框 图

电力负荷控制系统在需求侧管理中的应用

电力负荷控制系统在需求侧管理中的应用

41我国社会经济飞速发展,社会主义现代化建设逐步深入,城市建设如火如荼,对电力资源的需求也越来越大。

自2011年3月份以来,全国电力资源供求形势越来越紧张,各大电网都出现了严重的电力缺口,把我国推向了又一个“电慌”阶段。

在当前如此紧张的电力供求形势下,如何利用现代技术手段将现有的电力资源合理调配使用,以免因电力缺口而影响到社会主义现代化建设及人民的生产生活,是我们广大电力行业从业者急需解决的问题。

由此,电力负荷系统在需求侧的管理中的应用越发广泛,该项技术可以随时随地掌握用户负荷的变化情况及其电力消费规律。

因此,可以提前对负荷进行准确的预测,更加有效地控制电力负荷,从而提高终端用电效率,维护正常的用电秩序。

1 电力负荷控制系统的工作原理电力负荷管理系统是指利用无线、有线、载波等通信方式,由安装在用户侧的采集控制装置和供电公司的监控系统实现对用户或某个区域电力、电能等用电状况进行监测、控制并对采集数据信息进行分析,加以应用的综合系统。

包括终端装置、收发设备及信道、主台软硬件设备及其形成的数据库、文档等。

20世纪80年代中国开始引入负荷管理系统,90年代中期得到大力发展,系统从最初的控制功能转变为集遥控、遥信、遥测等多项功能于一体的较为完善的负荷管理系统,经过十几年的运行与使用,已经得到了供、用电双方的认可,成为沟通供用电企业的最便捷的桥梁,目前负荷管理系统在需求侧管理中已得到广泛应用。

2 电力负荷控制系统功能电力负荷控制系统可以实现遥感、遥测、遥控等多项功能,它可以遥测各种电气参数,进行终端抄表、数据采样、数据分析、负荷控制等。

同时可以对计量柜、电表用电情况进行监控,发现异常可以进行声光电报警,甚至发出短信报警。

后台主站支持终端主动上传,具备人工召测及定时召测功能,可以采用功率自动控制、电信号控制,具有多条负荷曲线对比功能,可以全过程记录、分析负控前后的用电数据。

电力负荷系统的这些功能可以完成远程抄表、电量控制、遥控操作、催缴电费警报等工作,从而可以节约大量的人力、物力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制 系统 的发 展 方 向。
关键词 : 电力 负荷控制 ; 终端 ; 电力营销 ; 自动化 中图分类号 :M7 4 T 1 文献标识码 : A 文章编 号:0 9 2 7 (0 00 - 0 6-2 10 — 3 4 2 1 )4- 3 - 0 0
电力负荷控制即是综合运用现代化管理 、计算机应用 、 自 动控制 、 信息等多个学科 的技术 , 来实现电力营销监控 、 营 电力
2 1年第锎 00 ( 第 19 总 3 期)
审 高 术盆 固 新技 吐
Chn - c tr r e i a Hi Te h En e p i s s
N O ..01 42 0
( mu t e NO. 9 Cu li t av y 1 ) 3
电力负荷控 制 的原理及 应用
经过工程实践检验 , 此种具有 投资小 , 施工速度快 , 后期稳定性 较好等优点的地基处理方式,完全能达到预期的地基处理效 果, 满足高铁预制梁 的要求 , 以推广应用。 可 作者简介 : 王灶华(99 )男, 南桂 阳 , 17一 , 湖 人 中铁五局集团
二 公 司 工程 师 。 究 方 向 : 路施 工。 研 铁


系统组成及 工作原 理
主控单元 。主控单元应用程序截取从异 步通信 接 口进一帧数
据, 进行分析和识别 , 根据不同的命令代码执行各种操作。 中心 电力负荷控制系统 由负荷控制 中心 、 控制终端和通信系统 站发来 的命令一般分为两大类 :一类是发 给区域 内的所有终 组成 , 如图l 所示。 负荷控制 中心对各负荷终端进行监视和控制 端 , 称为播命令 ; 另一类是发给选定的终端 , 即为单点命令。终
销管理 、 营业抄收 、 数据采集 和网络连接等多种功能 。负荷控 制 , 为负荷管理 , 了碾平负荷 曲线 , 衡使用 电力负 又称 是为 均 荷, 提高 电网运行 的经济性 、 安全性 , 以及提高电力企业 的投资 效益。 电力负荷控制方法包括 间接 、 直接、 分散和集中等控制方 法, 所谓 间接控制是按客户用 电最 大需量 , 或峰谷时 间段 的用 电量 , 同的电价 收费 , 以不 借此来刺激客户削峰填谷 , 它是一种 经济手段 ; 直接控制则是在高 峰用 电时 , 切除一部分可 间断供 电的负荷 , 属于技术 手段 ; 分散控制是对各客户的负 荷, 按改善
叶 嘉
( 重庆市电力公 司沙坪坝供 电局 市场营销部 , 重庆 40 3 ) 0 0 0 摘要 : 电力负荷控制 可以降低局部地 区电网的最 大需求量 , 高电网的运行 经济性 和安 全性 , 提 因此 , 电力负荷控制 的研
究具有重要 的应 用价值。 文章 围绕集 中 负荷控制 系统的构成、 式 原理和应 用情况展 开 了 探讨 , 出了未来 电力负荷控 并提
制梁场布置 和地基处理具 有很好的借鉴和参考作用 。 同时认为

36一
保障电网安全及 营配管理等方面。控制系统增加 了用电 同时发出声光信号 , 即相应的语音提示和 面板信号灯指示 。如 秩序 、 果 当前负荷超出规定值并且正处 于功控 时段 内, 则将发 出声光 管理功能 , 包括用 电信息 管理功能 、 方抄 表功 能 、 远 防窃 电功
的站 , 又称主控站 。 控制终端是装在用户端 , 受负荷控制 中心的 端根据命令采集必要 的数据 , 由异步 串行接 口 送往调制解调单
( ) 一 系统组成
监视和控制的设备 。根据 目 前负荷管理的现状 , 负荷控制系统 元进行制 , 由电台通过天线将信号发 向中心站 。 最后 以地市为基础较为合适 , 在规模不 大的情况下 , 可省去 县区负 2 .终端根据 中心站发下 的参数 , 脉冲表传来的脉冲数 , 计 荷控制 中心 , 而让地市负荷控制中心直接管理各大用户和中、 算 出有功 功率 、 功功率 、 无 有功 电量 、 功电量 、 无 需量 ; 通过 电 小重要用户。 压、 电流变送器送出的模拟量 , 出电压和电流; 计算 通过被控辅 助接点送出的开关信号 , 开关 的“ 、 ” 。 检测 分”“ 状态 终端在收 合 终端 由 主控单元 、 显示单元、 电台、 调制解调单元 、 输人输 出 到功控时段、 功率定值及功控投入等命令后, 执行当地闭环控,
报警信号 , 累计报警次 数超 出规定值 时 ( 一般为 每分钟 l次 ) 0 , 能、 购电控功能、 电信息服务 、 用 电压合 格率监测等功能 。这些 终端 自动进行第一轮跳 闸 ,若 仍处于功率 报警则 每 隔规定 时 功能的扩展 , 不仅能为 电力企业 带来 巨大 的经济效 益 , 而且能 间, 依次进行后续轮次 的跳 闸。当负荷低于定值 , 则消 除报 警。 提 高电力负荷控制系统的经济价值和生命力 。此外 , 在数据处 打破 了以前数据 的局限性 , 拓展 了网络功能。 这些信 息 当前功控时段结束 时 , 终端 自动熄灭有关 功控跳 闸指示灯 , 允 理方 面, 对 于电力系统 负荷预 测、 电分 析 、 电计划 的制定和 电力 系 用 发 许用户合闸。 3 .收到 “ 控解 除” “ 功 或 允许合 闸 ” 令后 , 可解 除越 限 统 的发展规划 , 命 也 都是非常有用的。 近些年来 , 随着科学技术 的不 跳闸状态。当处 于电量控制状态 时 , 电量或 日电量 超过 电量 断发展和现代管理技术的不断深入 , 月 电力负 荷控 制装 置技术水 定值的8 %时 , 0 终端发出报警信号。当实 际电量超过定值 时 , 终 平 的高低、 系统规模 的大小及应用程度 已经 成为供 电管理 现代 端就对主进 开关进行跳 闸。 终端 收到 “ 功控解 除” 允许合 闸” 化 的重要标志。 或“
( ) 二 负荷控制 系统工作原理
等指标 , 并合理设置褥垫பைடு நூலகம் 的厚度及压实指标。
六、 结语
本文介绍了某梁场的总体布置, 阐述C G F 桩复合地基的施
工方法 以及在 制梁场地 基处理中 的实际应用 ,并总结 出了检 验、 试验结果 , 出了关键 的施工要点 , 同类 客专、 提 对 高铁 的预
负荷 曲线 的要求 , 由分散装设在各客户处 的定 时开关 、 定量器
图1 电力 负荷 管理 系统基本结构
源组成 。 负荷控制系统的终端基本工作原理如下 : 等装置进行控制 ; 中控制是 由负荷控制 主控站按改善负荷 曲 单元及开关 电 集 1 .终端 系统接通 电源后 , 自动进入上 电复位和程序初始 线 的需要 , 通过某种与客户联系的控制信道和装设在客户处 的 化运行 , 首次运行 中, 中心站将发送 一系列 的运行参数给终端 , 终端装置 , 对客户的可间断负荷进行集 中控制。实 际中, 间接、 随后 ,终端 会在程序的控 制下严格按参数有条不紊地进行工 直接、 分散和集 中负荷控制方法 , 往往是因地制宜综合应用 的。 作。 当中心站 向终端发 出信号 , 经终端天线接收 , 由电台解调为 本文主要针对集中式 的负荷控制 的原理和应用情况进行论述。 低频FKS S  ̄号到调制解调单元 , 然后调 制解调 出数据信号送往
相关文档
最新文档