动态规划
动态规划
![动态规划](https://img.taocdn.com/s3/m/e4e03323a31614791711cc7931b765ce04087a5e.png)
多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
动态规划的基本思想
![动态规划的基本思想](https://img.taocdn.com/s3/m/70f02b44178884868762caaedd3383c4ba4cb477.png)
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的应用举例大全
![动态规划的应用举例大全](https://img.taocdn.com/s3/m/f52f70ed294ac850ad02de80d4d8d15abf230065.png)
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。
动态规划的基本原理和基本应用
![动态规划的基本原理和基本应用](https://img.taocdn.com/s3/m/64ea565a6d175f0e7cd184254b35eefdc8d315e2.png)
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划原理
![动态规划原理](https://img.taocdn.com/s3/m/db09c57cf011f18583d049649b6648d7c1c708ad.png)
动态规划原理动态规划(Dynamic Programming)是一种在数学、计算机科学和经济学等领域中使用的优化方法。
它是一种将复杂问题分解成更小的子问题来解决的方法,通过将问题分解成相互重叠的子问题,动态规划可以大大简化问题的解决过程,提高算法的效率。
在本文中,我们将介绍动态规划的原理及其应用。
动态规划的基本原理是将原问题分解成相互重叠的子问题,通过解决子问题来解决原问题。
在动态规划中,我们通常使用一个表格来存储子问题的解,以便在解决更大的问题时能够重复利用已经计算过的结果。
动态规划通常用于解决具有重叠子问题和最优子结构性质的问题,这些问题可以被分解成相互重叠的子问题,并且最优解可以通过子问题的最优解来计算得到。
动态规划的关键步骤包括定义子问题、构建状态转移方程、初始化边界条件和计算最优解。
首先,我们需要定义子问题,即将原问题分解成更小的子问题。
然后,我们需要构建状态转移方程,即找到子问题之间的递推关系,以便能够通过子问题的解来计算更大的问题的解。
接下来,我们需要初始化边界条件,即确定最小的子问题的解。
最后,我们可以通过自底向上或自顶向下的方式计算最优解。
动态规划的应用非常广泛,包括但不限于最短路径问题、背包问题、编辑距离、最长公共子序列、最大子数组和斐波那契数列等。
这些问题都具有重叠子问题和最优子结构性质,因此可以通过动态规划来解决。
动态规划在实际应用中往往能够大大提高算法的效率,因此受到了广泛的关注和应用。
总之,动态规划是一种将复杂问题分解成更小的子问题来解决的优化方法。
通过定义子问题、构建状态转移方程、初始化边界条件和计算最优解,动态规划可以大大简化问题的解决过程,提高算法的效率。
它在各个领域都有着广泛的应用,是一种非常重要的算法设计思想。
希望本文能够帮助读者更好地理解动态规划的原理及其应用。
以上就是关于动态规划原理的介绍,希望对您有所帮助。
第6章-动态规划
![第6章-动态规划](https://img.taocdn.com/s3/m/fda9376d0a4c2e3f5727a5e9856a561253d32140.png)
求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*
动态规划法
![动态规划法](https://img.taocdn.com/s3/m/019eaf1acdbff121dd36a32d7375a417866fc127.png)
动态规划法动态规划法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题性质和最优子结构性质的问题。
动态规划法通过把问题分解为更小的子问题,并将子问题的解存储起来,以避免重复计算,从而提高了算法的效率。
动态规划法有两个核心概念:状态和状态转移方程。
在动态规划过程中,我们需要定义状态,即问题的子问题解,以及状态之间的关系,即状态转移方程。
动态规划法的一般步骤如下:1. 定义问题的子问题:将问题划分为更小的子问题,并明确子问题的解是什么。
2. 定义状态:将问题的子问题解抽象为状态,即用一个变量或者数组表示子问题的解。
3. 定义状态转移方程:根据子问题的关系,定义状态之间的转移方程,即如何根据已知的子问题解计算出更大的问题的解。
4. 缓存子问题解:为了避免重复计算,我们需要将已经计算过的子问题解存储起来,以便后续使用。
5. 递推计算:通过状态转移方程和缓存的子问题解,逐步计算出更大的问题的解,直到计算出最终的问题解。
动态规划法的关键在于找到正确的状态转移方程和合理的存储子问题解的方式。
有些问题的状态转移方程比较容易找到,比如斐波那契数列,每个数都是前两个数的和;而有些问题的状态转移方程可能比较复杂,需要通过观察问题的特点和具体分析来确定。
动态规划法的时间复杂度通常为O(n),其中n 表示问题规模。
由于利用了子问题的解,避免了重复计算,因此动态规划法相对于暴力求解法能够大大提高算法的效率。
但是,动态规划法的空间复杂度通常较高,需要存储大量的子问题解,因此在实际应用中需要权衡时间和空间的消耗。
总的来说,动态规划法是一种非常灵活且强大的算法思想,能够解决许多复杂的问题,特别适用于具有重叠子问题性质和最优子结构性质的问题。
通过正确定义状态和状态转移方程,并结合缓存子问题解和递推计算,我们可以高效地求解这类问题,提高算法的效率。
动态规划的基本概念与方法
![动态规划的基本概念与方法](https://img.taocdn.com/s3/m/b88a044c53ea551810a6f524ccbff121dd36c587.png)
动态规划的基本概念与方法动态规划(Dynamic Programming,简称DP)是解决一类最优化问题的一种方法,也是算法设计中的重要思想。
动态规划常用于具有重叠子问题和最优子结构性质的问题。
它将问题分解为子问题,并通过求解子问题的最优解来得到原问题的最优解。
动态规划的基本概念是“最优子结构”。
也就是说,一个问题的最优解可以由其子问题的最优解推导出来。
通过分解问题为若干个子问题,可以形成一个递归的求解过程。
为了避免重复计算,动态规划使用一个表格来保存已经计算过的子问题的解,以便后续直接利用。
这个表格也被称为“记忆化表”或“DP表”。
动态规划的基本方法是“状态转移”。
状态转移指的是,通过已求解的子问题的解推导出更大规模子问题的解。
常用的状态转移方程可以通过问题的递推关系定义。
通过定义好状态转移方程,可以通过迭代的方式一步步求解问题的最优解。
在动态规划中,通常需要三个步骤来解决问题。
第一步,定义子问题。
将原问题划分为若干个子问题。
这些子问题通常与原问题具有相同的结构,只是规模更小。
例如,对于计算斐波那契数列的问题,可以定义子问题为计算第n个斐波那契数。
第二步,确定状态。
状态是求解问题所需要的所有变量的集合。
子问题的解需要用到的变量就是状态。
也就是说,状态是问题(解决方案)所需要的信息。
第三步,确定状态转移方程。
状态转移方程通过已求解的子问题的解推导出更大规模子问题的解。
通常情况下,状态转移方程可以通过问题的递推关系确定。
在实际应用中,动态规划常用于求解最优化问题。
最优化问题可以归纳为两类:一类是最大化问题,另一类是最小化问题。
例如,最长递增子序列问题是一个典型的最大化问题,而背包问题是一个典型的最小化问题。
动态规划的优势在于可以解决许多复杂问题,并且具有可行的计算复杂度。
但是,动态规划也有一些限制。
首先,动态规划要求问题具有重叠子问题和最优子结构性质,不是所有问题都能够满足这两个条件。
其次,动态规划需要存储计算过的子问题的解,对于一些问题来说,存储空间可能会非常大。
动态规划(完整)
![动态规划(完整)](https://img.taocdn.com/s3/m/188e1a517dd184254b35eefdc8d376eeaeaa17a9.png)
(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者从
给定阶段状态出发对下一阶段状态作出的选
择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
阶段变量描述当前所处的阶段位置,一 般用下标 k 表示;
(2) 确定状态
每阶段有若干状态(state), 表示某一阶段决策 面临的条件或所处位置及运动特征的量,称为 状态。反映状态变化的量叫作状态变量。 k 阶段的状态特征可用状态变量 sk 描述;
每一阶段的全部状态构成该阶段的状态集合Sk ,并有skSk。每个阶段的状态可分为初始状 态和终止状态,或称输入状态和输出状态, 阶段的初始状态记作sk ,终止状态记为sk+1 ,也是下个阶段的初始状态。
状态转移方程在大多数情况下可以由数学公 式表达, 如: sk+1 = sk + xk;
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
• 2、在全过程最短路径中,将会出现阶段的最优路
径;-----递推性
• 3、前面的终点确定,后面的路径也就确定了,且 与前面的路径(如何找到的这个终点)无关;----
-无后效性
• 3、逐段地求解最优路径,势必会找到一个全过程
最优路径。-----动态规划
§7.1多阶段决策问题
• 动态规划是解决多阶段最优决策的方法, 由美国数学家贝尔曼(R. Bellman) 于 1951年首先提出;
《动态规划》课件
![《动态规划》课件](https://img.taocdn.com/s3/m/b7a9c1a09a89680203d8ce2f0066f5335a816726.png)
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。
运筹学教材课件(第四章动态规划)
![运筹学教材课件(第四章动态规划)](https://img.taocdn.com/s3/m/d10c6b9627fff705cc1755270722192e45365824.png)
最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
什么是动态规划?
![什么是动态规划?](https://img.taocdn.com/s3/m/4d2fea5df6ec4afe04a1b0717fd5360cba1a8dac.png)
什么是动态规划?⼀、基本思想态规划算法的基本思想与分治法类似,都是将问题⼤问题拆分为⼩问题,通过⼩问题的求解来得到最后的解。
与分治法不同的是,分治法是分⽽治之,分治法将⼤问题拆分为相同性质的⼦问题,最后合并⼦问题的解来构成最终解。
⽽动态规划是,将⼦问题拆解后,按顺序求解⼦问题,前⾯阶段的求解为后⼀阶段提供有⽤信息,通过动态的选择来到达最终解。
⽤图来表⽰就是如下所⽰:⼆、适⽤情况(1)最优化原理:如果问题的最优解所包含的⼦问题的解也是最优的,就称该问题具有最优⼦结构,即满⾜最优化原理。
(2)⽆后效性:即某阶段状态⼀旦确定,就不受这个状态以后决策的影响。
也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
(3)有重叠⼦问题:即⼦问题之间是不独⽴的,⼀个⼦问题在下⼀阶段决策中可能被多次使⽤到。
(该性质并不是动态规划适⽤的必要条件,但是如果没有这条性质,动态规划算法同其他算法相⽐就不具备优势)----摘⾃百度百科三、求解步骤动态规划中有三个⾮常重要的概念:最优⼦结构、边界、状态转移公式。
最优⼦结构:最优⼦结构指的是,问题的最优解包含⼦问题的最优解。
反过来说就是,我们可以通过⼦问题的最优解,推导出问题的最优解。
边界:就是问题的出⼝。
状态转移公式:动态规划问题的这⼀阶段的最优解是可以通过前⾯阶段的解和上⼀阶段的决策推导出来的。
这个推导过程就是⼀个状态转移公式我们通常按照如下4个步骤设计⼀个动态规划算法:1.刻画⼀个最优解的结构特征2.递归地定义最优解的值3.计算最优解的值,通常采⽤⾃底向上的⽅法(采⽤⼀张表格记录之前的状态)4.利⽤计算出的信息构造⼀个最优解我们之前的和也是⼀样的求解步骤。
以硬币找零问题为例:⾸先,⾯对⼀枚新的硬币,我们有两个选择:使⽤和不使⽤。
构成当前阶段的最优解 = min{使⽤这枚硬币的解,不使⽤这枚硬币的解} ----(1.刻画⼀个最优解的结构特征)然后,我们就得到转移⽅程 Value(i) = min {Value(i-1), Value(s-c[i])) + 1} ---- (2.递归地定义最优解的值)之后我们从找零1⾓开始算起,⼀直到达我们想要找零的数⽬。
什么是动态规划
![什么是动态规划](https://img.taocdn.com/s3/m/be33112711661ed9ad51f01dc281e53a5802517f.png)
什么是动态规划动态规划( D ynamic P rogramming ,所以我们简称动态规划为 DP )是的⼀个分⽀,是求解决策过程(decision process) 最优化的数学⽅法。
20 世纪 50 年代初数学家R.E.Bellman 等⼈在研究多阶段决策过程 (multistep decision process) 的优化问题时,提出了著名的最优化原理 (principle of optimality),把多阶段过程转化为⼀系列单阶段问题,利⽤各阶段之间的关系,逐个求解,创⽴了解决这类过程优化问题的新⽅法 —— 动态规划。
1957 年出版了他的名著《 Dynamic Programming 》,这是该领域的第⼀本著作。
动态规划算法通常基于⼀个递推公式及⼀个或多个初始状态。
当前⼦问题的解将由上⼀次⼦问题的解推出。
使⽤动态规划来解题只需要多项式时间复杂度,因此它⽐回溯法、暴⼒法等要快许多。
说了这么多术语,想必⼤家都很头疼,现在让我们通过⼀个例⼦来了解⼀下DP 的基本原理。
⾸先,我们要找到某个状态的最优解,然后在它的帮助下,找到下⼀个状态的最优解。
这句话暂时理解不了没关系,请看下⾯的例⼦ :如果我们有⾯值为1 元、 3 元和 5 元的硬币若⼲枚,如何⽤最少的硬币凑够 11 元?我们凭直观感觉告诉⾃⼰,先选⾯值最⼤,因此最多选 2枚 5 元的硬币,现在是 10 元了,还差⼀元,接下来我们挑选第⼆⼤的 3 元硬币,发现不⾏( 10+3=13 超了),因此我们继续选第三⼤的硬币也就是 1元硬币,选⼀个就可以( 10+1=11 ),所以总共⽤了 3 枚硬币凑够了 11 元。
这就是贪⼼法,每次选最⼤的。
但是我们将⾯值改为 2 元, 3 元和 5 元的硬币,再⽤贪⼼法就不⾏了。
为什么呢?按照贪⼼思路,我们同样先取 2 枚最⼤ 5 元硬币,现在 10 元了,还差⼀元,接下来选第⼆⼤的,发现不⾏,再选第三⼤的,还是不⾏,这时⽤贪⼼⽅法永远凑不出 11 元,但是你仔细看看,其实我们可以凑出 11 元的, 2 枚 3元硬币和 1 枚五元硬币就⾏了,这是⼈经过思考判断出来了的,但是怎么让计算机算出来呢?这就要⽤动态规划的思想:⾸先我们思考⼀个问题,如何⽤最少的硬币凑够i 元 (i<11) ?为什么要这么问呢?两个原因: 1. 当我们遇到⼀个⼤问题时,总是习惯把问题的规模变⼩,这样便于分析讨论。
《动态规划》课件
![《动态规划》课件](https://img.taocdn.com/s3/m/83aaef9381eb6294dd88d0d233d4b14e85243ea8.png)
动态规划(Dynamic Programming)是一种用来解决复杂问题的算法思想。
什么是动态规划
动态规划是一种将问题拆分成子问题并进行最优解比较的算法,常用于求解最优化问题。
问题模型
状态
将问题抽象成能够描述当前情况的状态。
目标
定义问题的目标,通常是最小化或最大化某 个指标。
经典面试题:爬楼梯问题
爬楼梯问题是指给定楼梯的阶数,求解爬到楼顶的不同方式的数量。
经典面试题:硬币找零问题
硬币找零问题是指给定一定面值的硬币和一个金额,找到凑出该金额的最少 硬币数。
经典面试题:最长回文子串问题
最长回文子串问题是指找到给定字符串中最长的回文子串。
实用案例:机器人找出路
机器人找出路是指给定一个迷宫,找到从起点到终点的路径。
决策
根据状态作出选择或决策。
转移方程
根据子问题的最优解推导出整体问题的最优 解。
最优子结构和重叠子问题
1 最优子结构
问题的最优解包含了子问题的最优解。
2 重叠子问题
子问题之间存在重复的计算,可以利用记 忆化存储中间结果来优化。
动态规划三部曲
1
定义状态
明确问题的状导转移方程
国王游戏问题
国王游戏问题是指在一个棋盘上放置国王,使得它们无法互相攻击。
编辑距离问题
编辑距离问题是指计算两个字符串之间转换的最小操作次数,包括插入、删 除和替换操作。
矩阵连乘问题
矩阵连乘问题是指给定一系列矩阵,找到最佳的乘法顺序,使得计算乘法的总次数最小。
最长递增子序列问题
最长递增子序列问题是指找到给定序列中最长的递增子序列的长度。
斐波那契数列问题
《计算机算法设计与分析》第三章动态规划法
![《计算机算法设计与分析》第三章动态规划法](https://img.taocdn.com/s3/m/d7ccc2b7370cba1aa8114431b90d6c85ed3a8871.png)
发展历程及现状
发展历程
动态规划的思想起源于20世纪50年代,由美国数学家Richard Bellman提出。随着计 算机科学的发展,动态规划在算法设计和分析领域得到了广泛应用和深入研究。
第六章
总结与展望
动态规划法在计算机科学中重要性
高效求解最优化问题
动态规划法通过把原问题分解为相对简单的子问题,并保存子问题的解,避免了大量重复计算,从而高效地求解最优化问题。
广泛应用
动态规划法在计算机科学、经济学、生物信息学等领域都有广泛应用,如背包问题、最短路径问题、序列比对问题等。
提供算法设计框架 动态规划法不仅为解决特定问题提供了有效方法,而且为算法设计提供了一个通用框架,有助于理解和设 计更复杂的算法。
现状
目前,动态规划已经成为计算机算法设计和分析领域的重要工具之一。在实际应用 中,许多复杂的问题都可以通过动态规划的方法得到有效的解决。同时,随着计算 机技术的不断发展,动态规划的应用领域也在不断扩展。
第二章
动态规划法基本原理
最优子结构性质
在动态规划法中, 子问题之间是相互 独立的,即一个子 问题的求解不会影 响到其他子问题的 求解。这使得动态 规划法能够避免重 复计算,提高算法 效率。
学习相关算法和技术
学习与动态规划法相关的其他算法 和技术,如贪心算法、分治法等, 以便在实际问题中灵活应用。
关注最新研究进展
关注计算机科学和算法设计领域的 最新研究进展,了解动态规划法的 新发展和应用,保持对新技术的敏 感性和好奇心。
THANKS
感谢观看
基本思想
动态规划的基本概念与算法设计
![动态规划的基本概念与算法设计](https://img.taocdn.com/s3/m/52e7e560abea998fcc22bcd126fff705cc175c2c.png)
动态规划的基本概念与算法设计动态规划(Dynamic Programming)是一种解决复杂问题的优化方法,常用于计算机科学和数学领域。
它的基本思想是将一个复杂问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来构建原问题的最优解。
一、动态规划的基本概念动态规划中的概念主要包括以下几个方面:1. 最优子结构(Optimal Substructure):一个问题的最优解可以由其子问题的最优解来构建。
也就是说,问题的最优解具备递归性质。
2. 无后效性(无后效性):一个阶段的状态一旦确定,就不受之后决策的影响。
也就是说,在解决某个阶段的问题时,只需要考虑当前阶段的状态和选择,无需关心之后的情况。
3. 重叠子问题(Overlapping Subproblems):子问题之间可能会出现重叠的情况,即不同的子问题具有相同的子问题。
二、动态规划的算法设计步骤动态规划的算法设计通常包括以下步骤:1. 确定状态:首先要明确问题的求解需要哪些状态量,并将问题抽象化,将问题的每个阶段的状态定义清楚。
2. 确定状态转移方程:根据问题的最优子结构,利用递归的思想,确定问题的状态转移方程。
状态转移方程描述了问题从一个阶段到下一个阶段的状态转移过程。
3. 确定初始条件和边界条件:确定问题的初始状态和边界状态,也就是递归的终止条件。
4. 确定计算顺序:确定问题的计算顺序,通常是从小规模的子问题开始,逐渐扩展到原问题的规模。
5. 填表计算:根据状态转移方程和初始条件,填充计算表格,记录子问题的最优解。
6. 求解原问题:根据计算表格中的最优解,推导出原问题的最优解。
三、动态规划的示例应用为了更好地理解动态规划的基本概念和算法设计步骤,下面以一个经典的示例问题来说明。
问题描述:给定一个数组nums,其中的元素表示一系列可抢劫的房屋的价值。
要求求解出在不触发警报的情况下,可以获得的最大抢劫价值。
解决思路:1. 状态定义:定义一个一维数组dp,其中dp[i]表示前i个房屋能够获得的最大抢劫价值。
动态规划的三个实施步骤
![动态规划的三个实施步骤](https://img.taocdn.com/s3/m/ae91bb2f4531b90d6c85ec3a87c24028915f8598.png)
动态规划的三个实施步骤什么是动态规划动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通常用于求解最优化问题。
动态规划的核心思想是将复杂问题分解成较简单的子问题,并通过子问题的最优解推导出原问题的最优解。
动态规划的三个实施步骤动态规划的实施步骤通常包括以下三个阶段:1.划分阶段:将原问题划分成若干个子问题,通过划分可以简化问题的复杂度。
2.确定状态:定义状态表示问题的不同阶段和状态,以及状态之间的关系。
状态的选择对最终解决问题的效率和准确性有很大影响。
3.推导方程:根据子问题的最优解和状态之间的关系,推导出原问题的最优解,并通过递推和迭代求解。
下面将详细介绍每个步骤。
1. 划分阶段在划分阶段,我们需要将原问题划分成若干个子问题。
通常,问题的划分可以基于以下两种方式之一:•递归划分:将原问题拆分成规模更小的相同类型的子问题,直到问题规模较小,可以直接得到解答。
•迭代划分:通过迭代的方式,逐步处理原问题的不同阶段,每个阶段都可以看作是一个子问题。
划分阶段可以大大减少问题的复杂度,使得问题的求解更加可行和高效。
2. 确定状态确定状态是动态规划的核心步骤,它需要定义状态并建立状态之间的关系。
状态表示问题的不同阶段和状态,以及状态之间的关联关系。
在确定状态时,通常需要考虑以下几个因素:•问题的边界状态:例如,问题的起始状态和最终状态。
•中间状态的定义:例如,问题的中间阶段的状态。
•状态之间的转移方程:即状态之间的关联关系,包括过程中的选择和决策。
通过合理地确定状态,可以将复杂问题简化成易于求解的子问题,并能够快速推导出原问题的最优解。
3. 推导方程在推导方程阶段,我们通过子问题的最优解和状态之间的关系,推导出原问题的最优解。
根据问题的具体特点和状态定义,推导方程可以采用不同的方式,例如:•递推方程:通过递归地求解子问题,逐步推导出原问题的最优解。
•迭代方程:通过迭代地更新状态,逐步得到原问题的最优解。
数据结构之动态规划动态规划的基本思想和常见应用场景
![数据结构之动态规划动态规划的基本思想和常见应用场景](https://img.taocdn.com/s3/m/4f6a5dbefbb069dc5022aaea998fcc22bcd14319.png)
数据结构之动态规划动态规划的基本思想和常见应用场景动态规划(Dynamic Programming,DP)是一种通过将问题分解为更小的子问题来解决复杂问题的方法。
它的基本思想是利用已解决过的子问题的解来求解当前问题的解,从而避免重复计算,提高算法效率。
动态规划的应用广泛,可以用于解决一些优化问题、最优化问题以及组合优化问题等。
动态规划的基本思想可以用以下三个步骤来概括:1. 定义子问题:将原问题划分为一个或多个子问题,并找到它们之间的关系。
2. 构建状态转移方程:根据子问题之间的关系,找到问题的递推关系,将问题转化为子问题的解。
3. 解决问题:通过递推计算或者自底向上的方法,求解问题的最终解。
动态规划的核心是状态转移方程。
状态转移方程描述了子问题与原问题之间的关系,通过它可以求解原问题的解。
在构建状态转移方程时,需要考虑如何选择最优子结构并进行状态转移,以及确定初始状态和边界条件。
动态规划常见的应用场景包括:1. 最优化问题:如最短路径问题、最长递增子序列问题、背包问题等。
这类问题中,动态规划可以帮助我们找到最优解。
2. 组合优化问题:如旅行商问题(TSP)、任务分配问题等。
这类问题中,动态规划可以帮助我们找到最佳的组合方案。
3. 概率计算问题:如概率图模型中的推断问题、隐马尔可夫模型中的预测问题等。
这类问题中,动态规划可以帮助我们计算复杂的概率。
举例来说,我们可以通过动态规划求解最长递增子序列问题。
给定一个序列,我们希望找到其中最长递增的子序列的长度。
首先,定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。
然后,我们可以根据dp[i-1]和第i个元素的大小关系来更新dp[i]的值,即dp[i]= max(dp[i], dp[j]+1),其中j为i之前的某个位置,且nums[j] < nums[i]。
最后,我们通过遍历数组,找到dp数组中的最大值,即可得到最长递增子序列的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划关健字:阶段状态决策函数递推式摘要:动态规划是解决多阶段决策最优化问题的一种思想方法。
所谓“动态”,指的是在问题的多阶段决策中,按某一顺序,根据每一步所选决策的不同,将随即引起状态的转移,最终在变化的状态中产生一个决策序列。
动态规划就是为了使产生的决策序列在符合某种条件下达到最优。
动态规划思想近来在各类型信息学竞赛中频繁出现,它的应用也越来越受人重视。
本文就是讨论如何运用动态规划的思想设计出有效的数学模型来解决问题。
一动态规划问题的数学描述我们先来看一个简单的多阶段决策问题。
[例1]现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。
如图1所示,试找出从结点1到结点10的最短路径。
第一阶段第二阶段第三阶段第四阶段第五阶段图1本问题的解决可采用一般的穷举法,即把从结点1至结点10的所有道路列举出来,计算其长度,再进行比较,找出最小的一条。
虽然问题能解决,但采用这种方法,当结点数增加,其运算量将成指数级增长,故而效率是很低的。
分析图1可知,各结点的排列特征:(1) 可将各结点分为5个阶段;(2) 每个阶段上的结点只跟相邻阶段的结点相连,不会出现跨阶段或同阶段结点相连的情况,如不会出现结点1与结点4连、结点4与结点5连的情况。
(3) 除起点1和终点10外,其它各阶段的结点既是上一阶段的终点,又是下一阶段的起点。
例如第三阶段的结点4、5、6,它即是上一阶段结点2、3中某结点的终点,又是下一阶段结点7、8、9中某结点的起点。
根据如上特征,若对于第三阶段的结点5,选择1-2-5和1-3-5这两条路径,后者的费用要小于前者。
那么考虑一下,假设在所求的结点1到结点10最短路径中要经过结点5,那我们在结点1到结点5之间会取那条路径呢?显然,无论从结点5出发以后的走法如何,前面选择1-3-5这条路都总是会优于1-2-5的。
也就是说,当某阶段结点一定时,后面各阶段路线的发展不受这点以前各阶段的影响。
反之,到该点的最优决策也不受该点以后的发展影响。
由此,我们可以把原题所求分割成几个小问题,从阶段1开始,往后依次求出结点1到阶段2、3、4、5各结点的最短距离,最终得出答案。
在计算过程中,到某阶段上一结点的决策,只依赖于上一阶段的计算结果,与其它无关。
例如,已求得从结点1到结点5的最优值是6,到结点6的最优值是5,那么要求到下一阶段的结点8的最优值,只须比较min{6+5,5+5}即可。
这样,运用动态规划思想大大节省了计算量。
可以看出,动态规划是解决此类多阶段决策问题的一种有效方法。
二动态规划中的主要概念,名词术语1阶段:把问题分成几个相互联系的有顺序的几个环节,这些环节即称为阶段。
2 状态:某一阶段的出发位置称为状态。
通常一个阶段包含若干状态。
如图1中,阶段3就有三个状态结点4、5、6。
3 决策:从某阶段的一个状态演变到下一个阶段某状态的选择。
4策略:由开始到终点的全过程中,由每段决策组成的决策序列称为全过程策略,简称策略。
5 状态转移方程:前一阶段的终点就是后一阶段的起点,前一阶段的决策选择导出了后一阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转移方程。
6 目标函数与最优化概念:目标函数是衡量多阶段决策过程优劣的准则。
最优化概念是在一定条件下找到一个途径,经过按题目具体性质所确定的运算以后,使全过程的总效益达到最优。
三运用动态规划需符合的条件任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。
同理,动态规划也并不是万能的。
那么使用动态规划必须符合什么条件呢?必须满足最优化原理和无后效性。
1 最优化原理最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状图2态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。
简而言之,一个最优化策略的子策略总是最优的。
如图2中,若路线I和J是A到C的最优路径,则根据最优化原理,路线J 必是从B到C的最优路线。
这可用反证法证明:假设有另一路径J’是B到C的最优路径,则A到C的路线取I和J’比I和J更优,这与原名题矛盾。
从而证明J’必是B到C的最优路径。
最优化原理是动态规划的基础,任何问题,如果失去了最优化原理的支持,就不可能用动态规划方法计算。
2 无后效性“过去的步骤只能通过当前状态影响未来的发展,当前的状态是历史的总结”。
这条特征说明动态规划只适用于解决当前决策与过去状态无关的问题。
状态,出现在策略任何一个位置,它的地位相同,都可实施同样策略,这就是无后效性的内涵。
由上可知,最优化原理,无后效性,是动态规划必须符合的两个条件。
四动态规划的计算方法对于一道题,怎样具体运用动态规划方法呢?(1)首先,分析题意,考察此题是否满足最优化原理与无后效性两个条件。
(2)接着,确定题中的阶段,状态,及约束条件。
(3)推导出各阶段状态间的函数基本方程,进行计算。
具体求解则有多种方法。
1 前向与后向动态规划法所谓前向与后向,指的是从起点出发,层层递推,直到终点,或从终点出发,逆向求解。
这两种方法本质上是一样的,具体解题时,可根据实际情况来选用。
[例2] 排队买票问题描述:一场演唱会即将举行。
现有N(O〈N〈=200)个歌迷排队买票,一个人买一张,而售票处规定,一个人每次最多只能买两张票。
假设第I位歌迷买一张票需要时间T i(1〈=I〈=n),队伍中相邻的两位歌迷(第j个人和第j+1个人)也可以由其中一个人买两张票,而另一位就可以不用排队了,则这两位歌迷买两张票的时间变为R j,假如R j〈T j+T j+1,则这样做就可以缩短后面歌迷等待的时间,加快整个售票的进程。
现给出N,T j和R j,求使每个人都买到票的最短时间和方法。
.解决问题:本题的阶段十分明显,只要按排队的先后顺序划分即可。
而买票的方式只有两种,要么一人买一张,要么一人买两张,整个过程呈线性排列。
要使前I个人买票时间最短,只需考虑前I个人的买票方式,与队列以后的人无关。
而且显而易见,在最优策略中,任意m个连续的决策也肯定是最优的。
这样,问题就符合了最优化原理及无后效性,能运用动态规划。
那如何构造函数递推式呢?可以以到每个人为止所需的最短时间为状态值,设为f(i),于是有f(i)=min{f(i-1)+T i,f(i-2)+R i-1},起步时f(0)=0,f(1)=T1 。
如此从前往后,只需遍历一次即可。
上面的分析是从前往后进行的。
其实倒过来逆推也一样。
设f(I)表示当票卖到第I个人时,最少还需多少时间才能卖完。
则函数递推式为f(I)=min{f (I+1)+T i,f(I+2)+R i},从后往前逆推,起步时f(n)=T n,f(n+1)=0 。
采用前向还是后向动态规划,要看实际情况而定,哪一种直观、简便,就运用哪一种。
2 具有隐含阶段的问题(即阶段不明显)动态规划的一个重要环节是阶段划分,可有些题目无明显阶段,但也符合最优化原理,怎么解决呢?下面来看一道例题。
[例3] 最小费用问题问题描述:已知从A到J的路线及费用如图3,求从A到J的最小费用路线。
图3解决问题:本问题没有明显的阶段划分,各点间没有一定的先后次序,不能按照最少步数来决定顺序,如从A到D走捷径需4,但A-C-D只需3,更优。
看来图中出现回路,不能实施动态规划。
其实不然。
细想一下,从A到J的最优策略,它每一部分也是最优的(可以用前述的反证法来证明),换言之,本题也具有最优化性质,只是阶段不明显而已。
对于这类问题,我们可以换个角度分析,构造算法。
比较一下前面所讲的前向与后向动态规划法,都是以某个状态为终点,寻找到达次点的路径,然后比较优劣,确定此状态最优值。
可是,本题阶段不明显,各状态之间的道路会出现嵌套,故此法不能使用。
变一下角度,每次都以某个状态为起点,遍历由它引申出去的路径,等所有已知状态都扩展完了,再来比较所有新状态,把值最小的那个状态确定下来,其它的不动。
如图3,先从A出发,找到3个结点B,D,C,费用为F(B)=3,F(D)=4,F(C)=2。
因为F(B),F(D)都大于F(C),那么可以确定:不可能再有路线从B或D出发到C,比A-C更优。
这样F(C)的最优值便确定了。
可是,有没有路线从C出发到B或D,比A-B或A-D更优呢?还不清楚。
继续下去,因为A扩展完了,只有从C开始,得到A-C-D=3,A-C-F=3,于是F(D)的值被刷新了,等于3。
现在,有F(B)=F(D)=F(F)=3,于是,三点的最优值都确定下来了。
然后以分别以三个点为起点,继续找。
以次类推,直到J点的最优值确定为止。
细心观察,其实本题的隐含阶段就是以各结点的最优值的大小来划分的,上述过程就是按最优值从小到大前向动态规划。
人们习惯上把此题归入到图论范畴中,并将上述方法称为标号法。
五动态规划的应用上文叙述了动态规划的几种解法,下面我们通过例题来加深了解。
[例4] 复制书稿(BOOKS)问题描述:假设有M本书(编号为1,2,…M),想将每本复制一份,M本书的页数可能不同(分别是P1,P2,…P M)。
任务时将这M本书分给K个抄写员(K 〈=M〉,每本书只能分配给一个抄写员进行复制,而每个抄写员所分配到的书必须是连续顺序的。
意思是说,存在一个连续升序数列0=b o〈b1〈b2〈…<b k-1 <b k=m,这样,第I号抄写员得到的书稿是从b i-1+1到第b i本书。
复制工作是同时开始进行的,并且每个抄写员复制的速度都是一样的。
所以,复制完所有书稿所需时间取决于分配得到最多工作的那个抄写员的复制时间。
试找一个最优分配方案,使分配给每一个抄写员的页数的最大值尽可能小(如存在多个最优方案,只输出其中一种)。
解决问题:该题中M本书是顺序排列的,K个抄写员选择数也是顺序且连续的。
不管以书的编号,还是以抄写员标号作为参变量划分阶段,都符合策略的最优化原理和无后效性。
考虑到K〈=M,以抄写员编号来划分会方便些。
设F(I,J)为前I个抄写员复制前J本书的最小“页数最大数”。
于是便有F(I,J)=MIN{ F(I-1,V),T(V+1,J)} (1〈=I〈=K,I〈=J〈=M-K+I,I-1〈=V〈=J-1〉。
其中T(V+1,J)表示从第V+1本书到第J本书的页数和。
起步时F(1,1)=P1。
观察函数递推式,发现F(I)阶段只依赖于F(I-1)阶段的状态值,编程时可令数组F的范围为(0…1,1…M),便于缩小空间复杂度。
[例5] 多米诺骨牌(DOMINO)问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。
现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。