倒立摆模型
(完整版)一级倒立摆系统分析
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
倒立摆姿态控制模型
倒立摆倒立摆百度文库解释:倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
倒立摆分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:1) 直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
倒立摆模型
摆杆/小车铰接点与摆杆质心的距离
l 0.25m
摆杆绕其质心的转动惯量
I 0.0034kg m2
备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。
表 1. 实验装置参数
现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方 法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控
F
M
g
a. 小车的受力分析
b. 摆杆的受力分析
图2. 小车与摆杆的受力分析
小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:
(1) 摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力 分析,可以得到下式:
即,
(2)
带入方程(1)得:
(3) 再由摆杆的垂直方向的受力分析,得到下式:
即, 又由摆杆对质心的力矩平衡方程有:
2
(4) (5)
直线一级倒立摆控制方法
由于
,所以等式左边有负号。最后,整理方程 (4),(5),可得: (6)
由于 ,则有
. 用 u 代表输入,也就是作用在
小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程
(7) 2. 系统的状态空间方程
为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:
1
直线一级倒立摆控制方法
及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上 述控制算法的有效性;6)通过上机实验观察其实际控制效果。 1. 建立直线一级倒立摆的运动方程
对小车和摆杆进行受力分析如图 2,其中,N 和 P 为小车与摆杆相互作用力 的水平和垂直两个方向的分量。
N
P
二级倒立摆的数学模型推导
二级倒立摆的数学模型推导一、二级倒立摆系统的结构二级倒立摆系统的结构如图1如示,机械部分主要有小车、下摆、上摆、导轨、皮带轮、传动皮带等,控制对象由小车、下摆、上摆组成,电气部分由电机、晶体管直流功率放大器、传感器以及保护电路组成。
图1 二级倒立摆结构示意图二、二级倒立摆的数学模型 (一)假设条件为了简化二级倒立摆的数学模型,作如下假设:1. 小车与导轨间的摩擦力与小车速度成正比;电机摩擦转矩与电机转矩成正比;上、下摆连接处摩擦力矩与二摆相对角速度成正比;下摆与小车连接处摩擦力矩与下摆相对角速度成正比。
2. 整个对象系统除皮带外视为刚体。
3. 皮带伸长忽略不计且传递作用力的延迟忽略不计。
4. 电路系统的传递延迟及功率放大器的非线性忽略不计。
5. 电机电感忽略不计。
6. 检测电位器设为线性的,即设检测信号分别为与r 、1θ、21θθ-成正比的电信号,且假设标定完全准确。
(二)系统参数说明推导中各符号的意义如下:0M :小车、皮带、电机转子、皮带轮归算到小车运动上的等效质量; 1M :下摆质量; 2M :上摆质量;1J :下摆转动惯量; 2J :上摆转动惯量;r :小车位移;1θ:下摆角位移;2θ:上摆角位移;1L :下摆全长(轴心到轴心); 1l :下摆质心与小车——下摆连接轴心距离; 2l :上摆质心与上摆——下摆连接轴心距离;'0F :小车与导轨间摩擦力,电机机械摩擦转矩,皮带轮摩擦转矩归算到小车运动上的等效摩擦系数,由下式定义等效摩擦力:'00f F r =⋅1F :下摆与小车摩擦力矩的等效摩擦系数,由下式定义等效摩擦力矩:111T F θ=⋅2F :上、下摆间摩擦力矩的等效摩擦系数,由下式定义等效摩擦力矩:2221()T F θθ=⋅-P :电机提供的控制力;U :电机外加电压即功率放大器输出电压; E :电机反电势; I :电机电流;R :电机等效电阻;i R :功率放大器等效输出电阻;d :皮带轮直径;θ:电机转速(/rad s );n 电机转速(转/分);K :功率放大器电压增益 ;e K :电势系数; t K :转矩系数;e :功率放大器的输入电压;参阅相关资料后,对各参数的取如下值:0M =1.328kg ,1M =0.220kg ,2M =0.187kg ,1J =0.004962kg m ⋅,2J =0.004822kg m ⋅,1L =0.490m ,1l =0.304m ,2l =0.226m ,'0F =22.947kg/s ,1F =0.00705/kg m s ⋅,2F =0.00264/kg m s ⋅,R =8.550Ω,i R =1.252Ω,d =0.130m ,K =8.000,t K =0.946/N m A ⋅(三)数学模型推导 此处少图3-2(P7)图3-2中,'i i f f =(1,2)i =小车在y 方向上无运动,小车受导轨垂直方向力示标出,推导中iy f ,ir f (1,2)i =分别表示i f 在y ,r 方向的分力。
倒立摆模型数学模型推导
倒立摆模型数学模型推导倒立摆模型是一种经典的数学模型,它可以用来描述倒立摆的运动规律。
倒立摆是一个由一个质点和一个固定在一根杆上的支点组成的系统,其特点是质点可以在杆的竖直方向上自由运动。
倒立摆模型的推导过程可以帮助我们更好地理解倒立摆的运动行为。
我们需要确定倒立摆模型中的各个物理量。
倒立摆模型包括杆的长度l、质点的质量m、杆与竖直方向夹角θ以及杆与竖直方向的角速度ω。
我们假设杆是质量均匀分布的,忽略空气阻力和摩擦力的影响。
根据牛顿第二定律和力的平衡条件,我们可以得到倒立摆的运动方程。
首先考虑沿杆方向的受力平衡,可以得到以下方程:m * l * ω^2 * sinθ = m * g * sinθ进一步考虑垂直于杆方向的受力平衡,可以得到以下方程:m * l * ω * cosθ = m * g * cosθ + T其中,T表示杆对质点的拉力。
由于杆是刚性的,因此可以认为杆上各点的速度相同,即杆的线速度为v = l * ω。
根据牛顿第二定律,可以得到以下方程:m * l * ω * cosθ = m * g * cosθ + T = m * a其中,a表示质点的加速度。
将上述方程带入到沿杆方向的受力平衡方程中,可以得到以下方程:m * l * ω^2 * sinθ = m * g * sinθ + m * a * sinθ进一步化简上述方程,可以得到倒立摆的运动方程:l * ω^2 + g * sinθ = a * sinθ倒立摆的运动方程是一个非线性微分方程,可以通过数值解或近似解的方法求解。
在实际应用中,可以利用控制理论和控制算法来实现倒立摆的控制。
倒立摆模型的推导过程可以帮助我们更好地理解倒立摆的运动规律。
通过倒立摆模型,我们可以研究倒立摆的稳定性、控制方法以及应用领域等问题。
倒立摆模型不仅在物理学和工程学中有广泛的应用,也成为了控制理论和控制工程的经典案例之一。
总结起来,倒立摆模型是一种用数学方法描述倒立摆运动规律的模型。
一级倒立摆数学模型建立
一、直线一级倒立摆系统的数学模型1、倒立摆系统是一种复杂的非线性系统,为了简化对系统的反洗,在建立数学模型的过程中,作以下假设:1.)小车、摆杆在运动过程中都是不变得刚体;2.)皮带轮与传动带之间没有相对滑动,皮带不能拉伸变长,传动带没有抖振以及伸长的现象;3.)交流伺服电机的输入和输出之间是纯线性的关系;而且忽略不计电机的电枢绕组中的电感等动态特性;4.)将整个系统运行中的摩擦、各种阻力及机械传动间隙等不确定性忽略不计。
通过上述假设,则可以将直线一级倒立摆系统抽象成小车和均质敢组成的系统,如图1.1所示。
图1.1倒立摆系统2、各参数符号含义如下:符号含义单位数值M 小车质量kg 1.096m 摆杆质量kg 0,109b 小车摩擦系数N/m/sec 0.1l 摆杆转动轴心到杆质心的长度m 0.25I 摆杆转动惯性Kg*m²0.0034g 重力加速度N/kg 9.8x 小车的水平位置mθ摆角大小radN 小车对摆杆水平方向作用力NP 小车对摆杆竖直方向作用力NF 电动机经传动机构给小车的力Nφ摆杆与垂直向上方向的夹角rad3、采用牛顿--欧拉方法建立直线型一级倒立摆系统的数学模型。
图1.2是系统中小车和摆杆的受力分析图。
(a)小车的受力分析 (b)摆杆受力分析图1.2小车与摆杆的受力分析对小车水平方向所受的力进行受力分析,可以得到方程:N x b F x M --=⋅⋅⋅ 式(1.1)对摆杆水平方向所受的力进行受力分析并化简整理,可以得到等式:θθθθsin cos 2⋅⋅⋅⋅⋅-==ml ml x m N 式(1.2)将式(1.2)带入式(1.1)中,可以得到系统的第一个运动方程:θθθθsin cos )(2⋅⋅⋅⋅⋅⋅-+++=ml ml x b x m M F 式(1.3)对摆杆垂直方向所受的力进行受力分析并化简整理,可以得到下面等式:θθθθcos sin 2⋅⋅⋅--=ml ml mg P 式(1.4)力矩平衡方程如下:⋅⋅=--θθθI Nl Pl cos sin 式(1.5)将有关P 和N 的等式代入式(1.5)中,得到系统的第二个运动方程:θθθcos sin )(2⋅⋅⋅⋅-=++x ml mgl ml I 式(1.6)假设φ与1(单位弧度)相比很小,即φ<<1,并设θ=π+φ(φ是摆杆与垂直向上方向的夹角),可以作近似处理:φθθθ-=-==⎪⎭⎫⎝⎛s i n ,1c o s,02dt d 式(1.7)将被控对象的输入力F 用u 来表示,可以得到两个线性化后运动方程,如下 所示:⎪⎩⎪⎨⎧=-++=-+⋅⋅⋅⋅⋅⋅⋅⋅⋅u m l x b x m M x m l m glm l I φφφ)()(2式(1.8)对方程组式(1.8)进行拉氏变换,得到:⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(22222s U s s ml s bX s s X m M s s mlX s mgl s s ml I 式(1.9)假设初始条件为零,对上述方程组的第一个方程求解,可得:)()()(22s s g ml ml I s X Φ⎥⎦⎤⎢⎣⎡-+= 式(1.10)将式(1.10)代入方程组式(1.9)中的第二个方程,可得:222222)()()()()()()(s s ml s s s g ml ml I b s s s g ml ml I m M s U Φ-Φ⎥⎦⎤⎢⎣⎡-++Φ⎥⎦⎤⎢⎣⎡-++= 式(1.11)整理,可以得到摆角的传递函数为:sq bm gl s q m gl m M s q m l I b s sqm l s U s -+-++=Φ23242)()()()( 式(1.12)式中:]))([(222l m ml I m M q -++=将倒立摆的实际参数值代入上式,得到摆角的传递函数为:ss s s s s U s 3141.28853.270883.03566.2)()(2342-++=Φ 式(1.13)同理,可以得到小车位置的传递函数:sq bm gl s q m gl m M s q m l I b s qm gls q m l I s U s X -+-++-+=23242)()()()()( 式(1.14)将实际的参数值代入,得到小车位置的传递函数为:s s s s s s U s X 3141.28853.270883.01413.238832.0)()(2342--+-= 式(1.15)在方程组(1.8)中对⋅⋅x 、⋅⋅φ求解代数方程,得到解如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x xx 2222222222)()()()()()()()()(φφφφφ 式(1.16)设系统状态空间方程为:⎪⎩⎪⎨⎧+=+=⋅Du Cx y Bu Ax x 式(1.17)整理式(1.16),得到系统状态空间方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I bml I x x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅2222222222)(0)()(00)()()(010000)()()(00010φφφφ 式(1.18)u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.19)将已知的M 、m 、b 、g 、l 、I 代入式(1.18)可得状态方程u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅3566.208832.0008285.272357.00100006293.00883.000010φφφφ 式(1.20)输出方程u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.21)。
倒立摆的动力学模型
倒立摆的动力学模型倒立摆是一个经典的物理实验,同时也是控制系统领域中的一个重要研究对象。
本文将介绍倒立摆的动力学模型以及相关的理论背景。
一、背景介绍倒立摆是由一个杆和一个连接在其上方的质点组成的,它在重力作用下呈现出不稳定的平衡状态。
倒立摆的动力学模型可以通过建立质点与杆之间的力学关系来描述。
二、质点的动力学方程假设质点质量为m,位置用x表示,杆的最低点为平衡位置,根据牛顿第二定律,可以得到质点的动力学方程:m * d^2x / dt^2 = Fg + Fc其中Fg表示质点受到的重力,Fc表示质点受到的摩擦力。
重力可以表示为:Fg = -mg * sinx摩擦力一般可以近似为:Fc = -b * dx / dt其中b为摩擦系数。
将上述方程带入质点的动力学方程中,可以得到:m * d^2x / dt^2 + b * dx / dt + mg * sinx = 0这就是质点的动力学方程。
三、杆的动力学方程杆的运动可以由转动惯量和力矩平衡来描述。
假设杆的质量为M,长度为l,转动惯量为I,杆绕其一端的转动中心转动,可以得到杆的动力学方程:I * d^2θ / dt^2 = -Mgl * sinθ其中θ表示杆的角度。
四、控制方法倒立摆的控制方法可以分为开环和闭环控制。
开环控制是通过输入外部力或力矩来控制摆的位置或角度,而闭环控制是通过测量摆的位置或角度,并根据目标位置或角度来调整输入力或力矩。
闭环控制往往使用PID控制器。
PID控制器是一种经典的控制器,可以根据目标位置与当前位置之间的差异来调整输入力或力矩,从而实现对倒立摆的控制。
五、应用领域倒立摆的研究在控制系统领域具有广泛的应用。
例如,在工业自动化中,倒立摆可以用来模拟和控制各种平衡问题。
此外,倒立摆还可以用于教育和科普领域,帮助人们更好地理解动力学和控制原理。
六、结论倒立摆的动力学模型是控制系统领域中一个重要的研究对象。
通过建立质点与杆之间的力学关系,可以得到质点和杆的动力学方程。
倒立摆的数学模型
倒立系统的数学建模和线性化处理 为使问题简明,数学模型不包括小车内的拖动电机和机械传动系统,只考虑它施于小车的力出发,根据牛顿定律小车在X 方向上``u H M x -= (1)对于摆,在 X 方向上22(sin )d H mx L dtθ=+ (2)在 Y 方向上22(cos )d V m g mL dtθ-= (3)摆绕其中心的转矩为2``sin cos 12m L VL H L θθθ-=(4)假定θ很小,sin θ→θ,cos θ→1``u H M x -=````H m x m L θ=+0V mg -=2``12m L VL H L θθ-=上述四个方程五个变量x ,θ ,V ,H ,u .消去V 和H 后,并写成矩阵的形式,即式(5).系统中小车的质量 M=2.00 kg ,摆的质量m=0.20 kg ,摆长2 L=0.80 m ,重力加速度g=9.80m /s2````````()10001313()()121213/12001313()()1212100000100m M g m L m M Lm L m M L x m g x u m M mm M m x x θθθθ+⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤-+-+⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ (5)并设向量X =``Tx xθθ⎡⎤⎢⎥⎣⎦和向量 :```````Tx x xθθ⎡⎤=⎢⎥⎣⎦, 系统的输出为摆的偏角0和小车```````TX x x θθ⎡⎤=⎢⎥⎣⎦,系统的输出为摆的偏角θ和小车运动的距离x ,则系统的方程`X AX Bu Y C X=+= (6)0024.6960000.89801000010A -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦状态矩阵 (7) -1.1450.49600⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦输入矩阵B (8) 001001⎡⎤=⎢⎥⎣⎦输出矩阵C (9) 系统状态可控的条件为:当且仅当向量组B,AB,```` 1n A B -是线性无关的,或n*n 维矩阵1```n B ABAB -⎡⎤⎣⎦的秩为n 。
线性系统理论 仿真作业(倒立摆模型)
线性系统理论课后设计报告一、题目倒立摆模型如下:xAx Bu y Cx =+=01000000.490500.51000,,0001000100020.60101A B C ⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦当(0)0.1,(0)=0,(0)=0,z(0)=0θθ=z 1、 求系统输出响应2、 要求输出在6s 内达到稳定,如何处理?二、解答1、系统输出响应根据题中状态方程,取状态变量:1=, 2=z, 3,4=x x x x θθ=z ,根据题中给出的倒立摆模型,我们可以在matlab 中建立空间状态模型并得出零输入状态响应输出,matlab 代码如下:仿真结果如下:注:蓝色曲线代表z(t),绿色曲线代表θ(t)由上图可知,从图中可以看到,系统输出响应曲线发散,输出不稳定。
2、要求输出在6s内达到稳定,如何处理?第一步:由于系统输出响应发散,所以该系统中有特征根中在极平面右半平面,一般都需要进行极点配置。
所以首先我们需要判断系统是否完全可控。
代码如下:结果n=4,即秩为4,系统是完全可控的,可以使用线性状态反馈法配置零极点。
第二步:极点配置,即选取期望极点并进行极点配置校正,本例中将阻尼比设置为0.707时可以去期望极点为:P=(-2-2j,-2+2j,-10-j,-10+j);根据期望极点可以在matlab中计算出增益矩阵K,具体代码如下:得出增益矩阵K为:第三步:将状态反馈极点配置后的闭环系统在matlab中建立描述模型,并将输出响应表示成曲线,代码如下:校正后的仿真曲线如下:其中蓝色曲线为z(t),绿色为θ(t),在2.8s时系统即可进入稳定状态,完全满足6s内稳定的性能指标。
附--倒立摆简介与模型
倒立摆简介倒立摆系统是理想的自动控制教学实验设备,使用它能全方位的满足自动控制教学的要求。
许多抽象的控制概念如系统稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆直观的表现出来。
倒立摆系统具有模块性好和品种多样化的优点,其基本模块既可是一维直线运动平台或旋转运动平台,也可以是两维运动平台。
通过增加角度传感器和一节倒立摆杆,可构成直线单节倒立摆、旋转单节倒立摆或两维单节倒立摆;通过增加两节倒立摆杆和相应的传感器,则可构成两节直线倒立摆和两节旋转倒立摆。
倒立摆的控制技巧和杂技运动员倒立平衡表演技巧有异曲同工之处,极富趣味性,学习自动控制课程的学生通过使用它来验证所学的控制理论和算法,加深对所学课程的理解。
由于倒立摆系统机械结构简单、易于设计和制造,成本廉价,因此在欧美发达国家的高等院校,它已成为常见的控制教学设备。
同时由于倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为研究对象,并不断从中发掘出新的控制理论和控制方法。
因此,倒立摆系统也是进行控制理论研究的理想平台。
直线运动型倒立摆外形美观、紧凑、可靠性好。
除了为每个子系列提供模块化的实现方案外,其控制系统的软件平台采用开放式结构,使学生建立不同的模型,验证不同的控制算法,供不同层次的学生进行实验和研究。
由于采用了运动控制器和伺服电机进行实时运动控制,以及齿型带传动,固高公司的倒立摆系统还是一个典型的机电一体化教学实验平台,可以用来进行各种电机拖动、定位和速度跟踪控制实验,让学生理解和掌握机电一体化产品的部件特征和系统集成方法。
一. 系统组成及参数:倒立摆系统由水平移动的小车及由其支撑的单节倒立摆构成。
控制输入为驱动力F (N),是由拖动小车的直流伺服电机提供的;被控制量是摆杆与垂直位置方向夹角θ(rad)和小车的位移x(m)。
实际倒立摆系统的模型参数:M:小车的质量,1.096kg;m:摆杆的质量,0.109kg;b:小车的摩擦系数,0.1N/(m/sec);L :摆杆的中心到转轴的长度,0.25mJ:摆杆对重心的转动惯量,0.0034kg m2;T :采样周期,0.005秒;二.设计指标:摆的角度小于0.02rad,响应时间小于1秒倒立摆系统的数学模型应用牛顿—欧拉法对倒立摆进行数学建模。
(完整版)倒立摆建模
1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为得 (3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩&&&&&& sin cos ..........(1)y x J F l F l θθθ=-&&2222(sin ) (2)(cos ).........(3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ&⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。
倒立摆模型推导
倒立摆系统模型研究控制系统的数学模型是描述系统内部物理量或变量之间关系的数学表达式。
在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程称为静态数学模型;而描述变量各阶导数之间关系的微分方程称为动态数学模型。
如果已知输入量及变量的初始条件,对微分方程求解,则可以得到系统输出量的表达式,并由此对系统进行性能分析。
因此,建立控制系统的数学模型是进行控制系统分析和设计的首要工作。
系统建模可以分为两种方式:实验建模和机理建模。
实验建模是通过在研究对象上加入各种由研究者事先确定的输入信号,激励研究对象,并通过传感器检测其可观测的输出,应用系统辩识的手法分析输入-输出关系,建立适当的数学模型逼近实际系统。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统的运动方程。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难,故而选用机理建模的方法。
为了在数学上推导和分析的方便,可作出如下假设:1) 摆杆在运动中是不变形的刚体;2) 齿型带与轮之间无相对滑动,齿型带无拉长现象; 3) 各种摩擦系数固定不变; 4) 忽略空气阻力;在忽略掉这些次要的因素后,倒立摆系统就是一个典型的运动刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
本文采用分析力学Lagrange 方程建立一、二级倒立摆的数学模型。
Lagrange 方程有如下特点:1) 它是以广义坐标表达任意完整系统的运动方程式,方程的数目和系统的自由度数是一致的。
2) 理想的约束反力不出现在方程组中,因此在建立系统的运动方程时,只需分析已知的主动力,而不必分析未知的约束反力。
3) Lagrange 方程是以能量的观点建立起来的运动方程式,为了列出系统的运动方程式,只需从两个方面进行分析,一个是表征系统运动的动力学能量——系统的动能,另一个是表征主动力作用的动力学量——广义力。
因此,用Lagrange 建模可以大大简化系统的建模过程。
一级倒立摆数学模型
一级倒立摆数学模型一、啥是一级倒立摆嘿,小伙伴们!咱们来聊聊一级倒立摆这个有趣的玩意儿。
其实啊,一级倒立摆就是一个简单又神奇的系统。
想象一下,一根杆子,上面顶着个重物,然后这根杆子还能自由地转动。
咱们要研究的就是怎么让这个杆子不倒,还能稳定地保持平衡。
是不是感觉有点难理解?没关系,接着往下看!二、为啥要研究它你可能会问,研究这东西有啥用啊?这用处可大了去啦!它能帮助我们理解和控制很多不稳定的系统。
比如说走路、飞机的平衡控制,甚至是火箭的姿态调整。
通过研究一级倒立摆,咱们能掌握让这些复杂系统稳定运行的方法和技巧。
而且,这也是学习控制理论的一个很好的例子,能让我们更深入地理解那些抽象的数学概念。
三、数学模型咋建立好啦,重点来啦!咱们来说说怎么建立一级倒立摆的数学模型。
咱们得搞清楚这个系统的物理特性,像杆子的长度、重物的质量、转动的摩擦力等等。
然后,根据牛顿定律和一些数学知识,就能列出一堆方程啦。
这里面会涉及到微分方程、线性代数这些知识,可别被吓到哦!其实就是把物理现象用数学语言描述出来。
比如说,咱们可以用一个角度来表示杆子的倾斜程度,然后根据力和力矩的平衡关系,就能得到描述这个系统动态变化的方程。
当然,这只是个简单的介绍,真正的模型建立可要复杂得多,但只要咱们一步一步来,也能搞明白的!四、模型有啥特点这个数学模型有一些很有趣的特点哦!比如说,它是非线性的,这就意味着它不像咱们平时学的那些简单方程那么好处理。
而且,它对初始条件很敏感,一点点小的变化可能就会导致系统的行为完全不同。
不过,咱们可以通过一些方法,把它近似地转化为线性模型,这样就能用我们熟悉的控制方法来研究啦。
好啦,小伙伴们,关于一级倒立摆的数学模型就先讲到这里,希望大家能对它有个初步的认识和了解,要是感兴趣的话,还可以自己深入研究研究哦!。
倒立摆控制方法
倒立摆控制方法倒立摆是一种经典的控制系统问题,它是指一个竖直放置的杆子上面安装了一个质量集中在一点上的小球,通过控制杆子底部的电机或者其他形式的能源输入来控制小球在杆子上面做周期性运动。
倒立摆广泛应用于机器人、汽车、飞行器等领域,其控制方法也是研究自适应控制、非线性控制等领域的重要课题。
本文将介绍倒立摆的基本模型和常见的控制方法。
一、倒立摆模型1.单自由度倒立摆模型单自由度倒立摆模型是指小球只能在竖直方向上运动,并且可以忽略小球与杆子之间的滑动摩擦力和空气阻力。
这种模型可以用如下图所示的简单结构来表示:其中,m为小球质量,l为杆长,g为重力加速度,θ为小球相对竖直方向偏离角度。
2.多自由度倒立摆模型多自由度倒立摆模型是指考虑了小球与杆子之间滑动摩擦力和空气阻力等因素,可以用如下图所示的结构来表示:其中,x为小球与竖直方向的位移,θ为小球相对竖直方向偏离角度,u为输入控制量。
二、常见的倒立摆控制方法1.线性控制方法线性控制方法是指利用线性系统理论来设计控制器,使得系统能够稳定运行。
常见的线性控制方法包括PID控制器、LQR控制器等。
(1)PID控制器PID控制器是一种经典的线性反馈控制器,其输出信号由比例、积分和微分三个部分组成。
对于单自由度倒立摆模型,其PID控制器可以表示为:其中,Kp、Ki和Kd分别表示比例、积分和微分增益系数。
(2)LQR控制器LQR(Linear Quadratic Regulator)是一种基于最优化理论的线性反馈控制方法。
对于单自由度倒立摆模型,其LQR控制器可以表示为:其中,Q和R分别为状态权重矩阵和输入权重矩阵。
2.非线性控制方法非线性控制方法是指利用非线性系统理论来设计控制器,使得系统能够稳定运行。
常见的非线性控制方法包括滑模控制、自适应控制等。
(1)滑模控制滑模控制是一种基于变结构控制理论的非线性反馈控制方法,其主要思想是通过引入一个滑动面来实现系统稳定。
对于单自由度倒立摆模型,其滑模控制器可以表示为:其中,s为滑动面,sgn为符号函数。
高中物理轻绳模型浅析
高中物理轻绳模型浅析轻绳模型,又称倒立摆模型,是高中物理教学上的一个重要模型,它解释了重力受到空气的阻力而不断减小的原理。
它的原理是在牛顿定律的有重力的情况下,半个周期内发挥作用的力分别是重力和空气阻力(称为气动阻力),即重力和空气动力学互相抵消,从而使运动量保持平衡,半个周期后重复出现。
尽管轻绳模型是一个简单的模型,但它对动量守恒定律和动量散失的认识却有重要的意义。
实验装置轻绳模型的实验装置由悬挂系统、振动支架和调节系统构成。
悬挂系统是由一根垂直的轻绳支撑,用滑轮架固定在地面上;振动支架有一根弹簧绳和一枚质量系统,支持弹簧绳,弹簧绳贴紧质量系统两面,通过位移限位器控制位移,以保证系统的实验稳定性。
实验原理在实验前,首先将系统中位移限位器偏转一定角度,使系统质量点处于非平衡状态,此时重力加上弹簧弹力组成的张力将使质量点往下偏移;随后,质量点在弹簧和重力的参差不齐的作用下,运动的特性就很像在牛顿定律的物体在弹力存在的情况下运动的情况一样。
当物体从它的偏转角度开始往下滑动时,它的滑动距离越长,重力的作用就越强,而由于气动阻力的存在,物体的速度越来越小,当它停止滑动时,气动阻力完全抵消了重力,此时物体也停止了运动;随后,由于滑动过程中发生的动量损失,物体便重新开始朝上运动,同时重力和气动阻力仍被张力抵消半个周期,即完成一次倒立摆的运动。
总的来说,在倒立摆的实验中,弹簧和光滑面由于受到外力的影响而变得不平衡,这时弹簧和天平上的质量开始运动,重力和摩擦力(气动阻力)加在质量上,使质量朝上抛出,当质量变得不平衡时,重力被气动阻力抵消,质量重新向下移动,重力再次配合气动阻力使质量变得不平衡,即开始下一个周期。
结论轻绳模型是高中物理中常见的一种实验,它是以弹性反作用和重力、摩擦力的抵消为基础的,倒立摆的基本原理可以帮助学生更加深刻地理解动量守恒定律及动量的损失,从而增强学生的直观感受。
(完整版)倒立摆建模
1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为得 (3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩&&&&&& sin cos ..........(1)y x J F l F l θθθ=-&&2222(sin ) (2)(cos ).........(3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ&⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。
倒立摆的数学模型
倒立摆的数学模型质量为m 的小球固结于长度为L 的细杆(可忽略杆的质量)上,细杆又和质量为M 的小车铰接相连。
由经验知:通过控制施加在小车上的力F (包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。
在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型。
倒立摆模型如图所示。
小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。
电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。
导轨截面成H 型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。
轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。
以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x 由线性化后运动方程组得x1’=θ’=x2 x2’=''θ=()Ml g m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-M mg x1+M1 F 故空间状态方程如下: X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+00010000000010Mm gMl g m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F 其中,M=1 kg ,m=0.1kg ,l=.1m ,g=10m/s 。
由倒立摆系统数学模型,倒立摆系统是一个具有两输出变量的不稳定系统,按照传统模糊控制设计方法,一个两输入的模糊控制器不可能实现对输出变量摆角和小车位移的控制,得需要一个四输入的模糊控制器。
倒立摆模型
直线一级倒立摆数学模型建立及线性化处理直线一级倒立摆系统的组成本系统由水平移动的小台车及由其支撑的单节倒立摆构成。
控制输入量是拖动小台车的直流伺服电机的驱动力,被控制量是摆的偏角和小台车的位移。
系统的构成示意如图1所示。
图1系统示意图应用牛顿力学方法建立系统的数学模型在以上假设的前提下,来分析系统的运动情况。
采用隔离的办法,首先分析倒立摆系统的受力情况。
一、小台车的受力分析设小台车的质量为[]M kg ,[]f N 为由电机提供的x 方向的驱动力,[]w f N 为系统的外部干扰作用力,2[]kg m ξ⋅为小车和轨道的摩擦系数,[/]K Nm s 为电动机动特性影响因数,则根据小车水平方向所受的合力,可得如下方程: ()()w F Mx f f f K x ξ=+--+ (1) 其中[]F f N 表示摆的水平运动对台车的作用力,其方向与驱动力[]f N 的方向相反。
二、摆杆的受力分析以小台车与摆的节点为坐标原点,取坐标系如图1。
那么,摆的运动由水平方向,铅直方向以及旋转方向的运动来构成。
记摆的质心距节点的距离为[]L m , 摆的质量为[]m kg ,摆的偏移角为ϕ,那么摆的质心沿各个运动方向的位移分别为:● 水平方向 sin []x L m ϕ+● 铅直方向 cos []L m ϕ● 旋转方向 []rad ϕ且各个方向的运动方程可以表示为:22[sin ]H d f m x L dtϕ=+ (2) 22[cos ]V d f mg m L dtϕ-= (3) sin cos V H J Lf Lf ϕηϕϕϕ+=- (4)其中[]H f N 和[]V f N 分别表示作用在节点上的沿水平方向和铅直方向的反作用力。
记转动惯量为2/3J mL =,摩擦系数为η,则由(2)和(3) 求得[]H f N 和[]V f N ,并代入(4),得2()cos sin J mL mL x mLg ϕϕηϕϕ++=-+ (5)由于摆的水平方向的推力F f 等于摆的水平运动作用在台车上的阻力H f , 即F H f f = (6)将(2)式中的H f 代入(1)式,得到小台车的运动方程为:2()()(cos )(sin )()w M m x K x mL mL f f ξϕϕϕϕ++++-=+ (7)由(5)式和(7)式可得出倒立摆系统的数学模型为如下方程组:22()()(cos )(sin )()()cos sin w M m x K x mL mL f f J mL mL x mLg ξϕϕϕϕϕϕηϕϕ⎧++++-=+⎪⎨++=-+⎪⎩ (8)直线一级倒立摆系统的结构参数台车的质量(M ) 0.445[kg ]摆的质量(m)0.210[kg]重力加速度(g) 9.8[2m s]/质心距节点的距离(L) 0.305[m]台车与轨道的摩擦系数(ξ) 0.925 2⋅[]kg m摆节点处的摩擦系数(η) 0.06[//]N rad s 电动机动特性影响因数(K) 7.877[/]Nm s。
倒立摆数学模型
1单级倒立摆的数学模型的建立:小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。
电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。
导轨截面成H 型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。
轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。
图1 单级倒立摆系统数学模型倒立摆系统的模型参数如下[]:M 小车质量 1.096Kg ;m 摆杆质量 0.109Kgb 小车摩擦系数 0.1N/m /secI 摆杆质量 0.0034kg*m*ml 摆杆转动轴心到杆质心的长度 0.25mT 采样频率 0.005s下面N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
分析小车水平方向所受的合力,可得到方程为:N x b F xM --= (1) 由摆杆水平方向的受力进行分析可以得到下面等式:()θθθθθsin cos sin 222ml ml xm N l x dtd m N -+=+= (2) 把这个等式代入(1)式中,得到系统的第一个运动方程:()F ml ml x b xm M =-+++θθθθsin cos 2 (3) 为了推出系统的第二个运动方程,对摆杆垂直方向的合力进行分析,得到下面的方程:()θcos 22l dtd m mg P =- θθθθcos sin 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθ I Nl Pl =--cos sin (5) 方程中力矩的方向,由于φπθ+=,θφθφsin sin ,cos cos -=-=,故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程: ()θθθcos sin 2x ml mgl ml I -=++ (6)假设φ与1(单位是弧度)相比很小,即1〈〈φ,则可进行近似处理:0,sin ,1cos 2=⎪⎭⎫⎝⎛-=-=dt d θφθθ用u 代表被控对象的输入力,线性化后两个运动方程如下:()()⎪⎩⎪⎨⎧=-++=-+u ml x b x m M x ml mgl ml I φφφ2(7)对方程(7)进行拉普拉斯变换,得到:()()⎪⎩⎪⎨⎧=-++=-+)()()()()()()(22222s U s s ml s s bX s s X m M s s mlX s mgl s s ml I φφφ (8)(推到时假设初始条件为0)则,摆杆角度和小车位移的传递函数为: mgl s ml I mls s X s -+=222)()()(φ将上述参数代入,摆杆角度和小车位移的传递函数为:26705.00102125.002725.0)()(22-=s s s X s φ摆杆角度和小车加速度之间的传递函数为: ()mgl s ml I mls A s -+=22)()(φ将上述参数代入,摆杆角度和小车加速度之间的传递函数为:26705.00102125.002725.0)()(22-=s s s A s φ摆杆角度和小车所受外界作用力的传递函数:22432222()()()()()()ml s s q b I ml M m mgl bmgl F s s s s s q q qq M m I ml m l φ=+++--⎡⎤=++-⎣⎦将上述参数代入,摆杆角度和小车所受外界作用力的传递函数:32()2.35655()0.088316727.9169 2.30942s s F s s s s φ=+-- 以外界作用力作为输入的系统状态空间表达式为:222222222201000()00()()()00010()00()()()x x I ml b m gl I ml x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mml φφφφ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++++++⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎢⎥⎢⎥++++++⎣⎦⎣⎦1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦将上述参数代入,以外界作用力作为输入的系统状态空间表达式为:0100000.08831670.62931700.8831670001000.23565527.82850 2.356551000000100x x x x u x x x y u φφφφφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦以小车加速度作为输入的系统系统状态空间表达式:'0100000001000103300044x x x x u g l l φφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ '1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦ 将上述参数代入,以小车加速度作为输入的系统系统状态空间表达式:01000000010********.4031000000100x x x x u x x x y u φφφφφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦ 2系统的可控性、可观测性分析对于连续时间系统:Bu AX X+= Du CX y +=系统状态完全可控的条件为:当且仅当向量组B A AB B n 1,...,,-是线性无关的,或n ×n 维矩阵[]B A AB B n 1- 的秩为n 。
倒立摆机器人系统的数学模型描述
倒立摆机器人的模型倒立摆动力学模型示意图如图1.1所示。
图1.1倒立摆动力学模型示意图表1.1 参数说明参数名称参数定义1l 主动臂的长度1c l主动臂相对于连接点到质心的距离2c l 欠驱动臂相对于连接点到质心的距离1q主动臂相对于坐标轴的角度2q 欠驱动臂相对于主动臂的角度1I 主动臂相对于质心转动惯量2I 欠驱动臂相对于质心转动惯量1m 主动臂质量2m 欠驱动臂质量g重力加速度拉格朗日动力学方程拉格朗日方程以广义坐标为自变量,通过拉格朗日函数来表示。
拉格朗日体系分析力学处理问题时以整个力学系统作为对象,用广义坐标来描述整个力学系统,着眼于能量概念。
对于机械系统,其拉格朗日函数都可以定义成该系统动能k E 和势能p E 之差,即:k pL E E =-(1.1)系统的动能和势能可以用任意选取的坐标系来表示。
系统的动力学方程(第二类拉格朗日方程)为:d L Ldt qq τ∂∂=-∂∂ (1.2)由于势能不含速度项,因此动力学方程也可以写成:pk k E E E d dt q q qτ∂∂∂=-+∂∂∂ (1.3)由此可见,对于Pendubot 系统,其拉格朗日运动方程则为:()()()1,,[ 0]()()()1,2T i i i d K q q K q q P q dt q q qi τ∂∂∂-+=∂∂=∂(1.4)其中,(),K q q为Pendubot 系统的动能之和,()P q 为Pendubot 系统的势能总和。
摆臂受到的力矩为τ,只有摆臂与电机相连接的主动关节受力,而另一个关节是欠驱动的。
由于两杆均为刚体,所以摆臂的动能与势能可根据每一根杆的总质量与相对于重心的惯量来唯一确定。
欠驱动机械臂动力学模型根据式(1.4),分析Pendubot 摆臂的动能和势能。
计算平移动能的一般表达式为22mv K =。
由上图可知,系统两个摆臂的角速度可以表示为:11212ωωqq q ==+ , (1.5)对于系统的主动臂,其平移动能可以直接描述成以下形式:22111112c K m l q =(1.6)由于系统的势能大小与机械臂的质心位置有关系,这里可以用y 坐标来表示摆臂的其位置高度,于是势能可以直接描述为:1111 sin()c P m l g q =(1.7)对于系统的欠驱动臂,要先得到其质心位置的笛卡儿坐标表达式,然后通过微分处理得到关节角速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
直线一级倒立摆控制方法
及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上 述控制算法的有效性;6)通过上机实验观察其实际控制效果。 1. 建立直线一级倒立摆的运动方程
对小车和摆杆进行受力分析如图 2,其中,N 和 P 为小车与摆杆相互作用力 的水平和垂方法
直线一级倒立摆控制方法
按照工作原理可将直线一级倒立摆实验装置抽象成小车和摆杆组成的系统, 其中小车可沿固定导轨左右移动,摆杆可绕小车与摆杆之间的铰接点自由转动,
如图1所示。
图1. 直线一级倒立摆原理
控制系统依据读取到的小车位置以及摆杆角度信号,通过控制作用在小车上 的水平力,使其沿固定导轨左右移动,可以使得摆杆始终处于垂直向上这样一个 临界稳定位置,实验装置具体参数如表2所示。
即,
计算可得系统主导极点:
,
非主导极点离虚轴为主导极点的 5 倍以上,则取 则可得期望的闭环特征多项式为:
,则取两个期望的闭环
,
。
设状态反馈矩阵为
,则对应的闭环特征方程为:
比较
和 ,可得
解方程组得系统状态反馈矩阵:
(2) 将以小车加速度作为输入的系统:
6
直线一级倒立摆控制方法
+ 分为两个子系统来分析,即
+ 将表 1 中参数带入上式,则得以外界作用力作为输入的系统的状态空间表达式:
+ 以小车加速度作为输入的系统的状态空间表达式为:
+
4
直线一级倒立摆控制方法
将表 1 中参数带入上式,则得以小车加速度作为输入的系统的状态空间表达式:
+ 3. 系统的能控和能观性分析
对输入为加速度输出为摆杆与竖直方向的角度的夹角时的系统进行 分析,则:
子系统一:
子系统二: 通过能观判别矩阵可以求得两个子系统都是可观的,由于闭环系统主导极点
为:
,
,而通常选择观测器的相应速度比所考虑的
状态反馈闭环系统快 2~5 倍,则可取:
。
则可得到闭环状态观测器系统矩阵的期望特征多项式:
设子系统一观测器反馈矩阵
比较
和
,可得
,则:
设子系统二观测器反馈矩阵
比较
和
,可得
F
M
g
a. 小车的受力分析
b. 摆杆的受力分析
图2. 小车与摆杆的受力分析
小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:
(1) 摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力 分析,可以得到下式:
即,
(2)
带入方程(1)得:
(3) 再由摆杆的垂直方向的受力分析,得到下式:
即, 又由摆杆对质心的力矩平衡方程有:
2
(4) (5)
直线一级倒立摆控制方法
由于
,所以等式左边有负号。最后,整理方程 (4),(5),可得: (6)
由于 ,则有
. 用 u 代表输入,也就是作用在
小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程
(7) 2. 系统的状态空间方程
为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:
则摆杆角度和小车位移的传递函数为:
将表 1 中参数带入上式,则得到摆杆角度和小车位移的传递函数为: 摆杆角度和小车加速度之间的传递函数为: 将表 1 中参数带入上式,则得: 摆杆角度和小车所受外界作用力的传递函数:
3
直线一级倒立摆控制方法
将表 1 中参数带入上式,则得: 以外界作用力作为输入的系统的状态空间表达式为:
小车质量
M 1.096kg
摆杆质量
m 0.109kg
小车与导轨间的阻力系数
b 0.1N /(m / s)
摆杆/小车铰接点与摆杆质心的距离
l 0.25m
摆杆绕其质心的转动惯量
I 0.0034kg m2
备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。
表 1. 实验装置参数
现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方 法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控
,则:
7
直线一级倒立摆控制方法
综上的系统观测器反馈矩阵
8
,
,
,
AB= , ,
, ,
Rank [B AB
]=
=4
Rank 因此,系统是可控的,同时是可观测的。
5
直线一级倒立摆控制方法
4. 状态反馈矩阵及状态观测矩阵 (1) 若使超调量不超过 17%,则根据公式:
算得 =0.5,设调整时间
,则振幅进入
的误差范围是,根据公式
计算的
。则由
可得反馈系统特征方程为: