数学难题之巧妙解题方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学难题之巧妙解题方法

数学难题之巧妙解题方法

逆推

也称倒推法。思考的途径是从题目的问题出发,倒着推理,逐步靠拢已知条件,直到解决问题。有些题目用顺推法颇感困难,而用倒推法解却能化难为易。

例1一种细菌每小时可增长1倍,现有一批这样的细菌,10小时可增长到100万个。问增长到25万个时需要几小时?

因为细菌每小时增长1倍,所以增长到25万个后再经过1小时就可以增长到25×2=50(万个),增长到50万个后又经过1小时就可以增长到50×2=100(万个)。

从25万个增长到100万个要用1+1=2(小时),所以增长到25万个时需要10-2=8(小时)。

把第二天运走后再余下的吨数看作单位“1”,还剩下的12吨占第二天

又把第一天运走后余下的吨数看作单位“1”,16吨货占第一天运走

=30(吨)

例3(国外有趣的故事题)传说捷克的公主柳布莎,决定她所要嫁的人必须能解下面的问题:一只篮中有若干李子,取出它的一半又一枚给第一人,再取出其余的一半又一枚给第二人,又取出最后所余的一半又一枚给第三人,那末篮中的李子就没有剩余。篮内有李子多少枚?

逆推法:〔(3×2+1)×2+1〕×2

=〔7×2+1〕×2

=15×2

=30(枚)

若抓住“1”的转移,算式为

解题分析:如果某一次乙报后还剩下100或99、100;或98、99、100,那么甲取胜,乙则败。但是乙要取胜,他倒数第二次报后必须

剩下4个数,使甲一次不能报完。因为100是4的倍数,甲先报,

无论甲报几个数,乙只要报自己报的数字个数与甲报的个数加起来

是4。这样,剩下的数字个数总是4的倍数,乙定获胜。

例5有甲、乙两堆小球,各有小球若干,如果按照下列规律挪

动小球;第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,那么如此挪动四次后,甲、乙两堆的所有小球恰好都是16个,问甲、乙两堆小球最初各有多少个?

此题用逆推法列表分析如下:

从表中可明显看出甲堆最初有21个小球,乙堆有11个。

巧虚构

虚构求解是一种重要的数学思维方法,可帮助我们从困境中解脱出来,是假设法的一种。

例1我国运动员为参加十一届亚运会进行长跑训练。跑10000

米的时

设过去跑10000米需要21分钟,那么缩短的时间为1分钟,现

在所需的时间为20分钟,因此过去与现在所需时间的比为21∶20。

根据路程一定,速度与时间成反比例,则过去与现在的速度比为20∶21。所求为

(21-20)÷20=5%

例2甲、乙、丙三人进行竞走比赛。甲按某一速度的2倍走完

全程的一半,又按某一速度的一半,走完余下的路程。乙在一半的

时间内,按某一速度的2倍行走,在另一半的时间内,却按某一速度的一半行走。丙始终按某一速度走完了全程。问谁先到达目的地?谁最后到达目的地?

设三人竞走的全程为400米,某一速度为每分钟行100米。那么甲行完全程需要的时间为

(400÷2)÷(100×2)+(400÷2)÷(100÷2)=5(分钟)。

又设乙行完全程的时间为x分钟,则得:

解得x=3.2

丙行完全程的时间为400÷100=4(分钟)

例3A、B、C、D、E五个代表队参加某项知识竞赛,结果的得分情况是这样的:

A队比B队多50分;…………………………………①

C队比A队少70分;…………………………………②

B队比D队少30分;…………………………………③

E队比C队多80分。………………………………④

请按各队的得分的多少,给这五个队排一个先后名次。分析:从这四个关系中解出五个队的`得分数是不可能的。于是,我们可以给这五个队中任意一个队虚构一个分数,并由此逐个算出其四个队的分数(当然也是虚构的)最终以这些虚构的分数来回答名次的排序问题。

解:设A队得200分。

则由①知:B队得200-50=150(分)

由②知:C队得200-70=130(分)

由③知:D队得150+30=180(分)

由④知:E队得130+80=210(分)

名次为E、A、D、B、C。

例4刘师傅和古师傅加工同一种零件。刘加工的零件

傅加工这种零件的技术水平是否相同?如果不同谁的技术好些?

分析:比较两人技术水平的高低,可以比在同一时间内谁加工的零件数多,也可以比加工同样数量的零件谁用的时间少。

现在问题中既没有给出两位师傅各自加工的零件数、也没给出他们加工零件所用的具体时间数。并且这两种量的具体数值是求不出来的。和前面的一样,可任我们虚构。

=2(小时)。

所以刘师傅平均每小时加工的零件数为

古师傅平均每小时加工的零件数为

30÷2=15(个)

显然,古师傅的技术水平高一些。

相关文档
最新文档