PLC冷却水泵节能循环控制系统

合集下载

基于PLC的冷却水泵温度控制设计

基于PLC的冷却水泵温度控制设计
示。
图l 冷却水泵 的主电路原理 图 图 2电气系统控制框图 4 程序设计 、 控制程序 主要 由以下几部分组成 : ①冷却水 回进水温度检测及温差计算程序 C 通 道为 冷却水 进水 温度 ( 0 , H2 道为冷 却水 回水温 度 Hl D2 ) C 通 ( 2 )D2 为冷却水 回进水 温差 。其程序 如图 3 D 1, 5 所示 。
1方 案 分 析 、
冷却水泵电动机
冷却水 循环 系统 中 ,L 通过 温度传感 器及温 度模块将 冷却水 的 PC 回水温 度和进水 温度读人 内存 , 据出水和进水 的温差 值来控制变 频 根 器的转 速 , 调节冷 却水 的流 量 , 控制 热交换 的速度 。因此 , 对冷却水 来 说 , 回水 和进水 的温差作为控制依据 , 以 实现回水和进水 的恒温差控 制 是 比较合理 的。温 差大 , 说明冷冻机组产 生的热量大 , 应提高冷却泵 的 转速, 加大冷却水 的循 环速度 ; 温差小 , 明冷冻机组产生 的热量小 , 说 应 降低冷却泵 的转速 , 减缓冷却 水的循 环速度 , 到节能 的 目的。 因此 , 达 冷 却水 系统 的控制 可采用变频 调速来实 现 , 变频 器的频率采 用定温差 控制 , 冷却水的进 回水温差控制在 45~5 . ℃。 根 据控制 目标 , 冷却水泵 的主电路原理 图如图 l 所示 。图中 K 、 M1 KM2 分别 为 M1M2的变频接触器 , M3 KM4 、 K 、 为工频接触 器 , 变频接触 器通 过变频器 进行控 制 , 工频 接触器通过 继电器 电路 进行控制 , 并且 , 他们相互 之间有电气互锁 。 控制 部分通过铂热 电阻 温度传 感器( t0 、 线 lo 采集冷却水 的 P1 0 3 o ) 回水和 进水 温 度 , 然后 通过 与 之连 接 的 日本 三菱 电机 小 型 P C系列 L F N 4 )一 ,热 电阻接 口特殊功能模块 , 采集 的模拟量 转换成数 X2 - A【 Pr _ 将 字量传送 给P C 再通过 P C L , L 进行 运算 , 运算的结果通过 F 2 —4 A 将 xN D 将数字量 转换 成模拟量 ( C ~ 0 ) D 0 1V 来控 制变频器 的转速 。触 摸屏可 以 发 出控 制信号 , 能对 系统 的运行进 行监视 , 系统控制框 图如图 2 并 其 所

论PLC在空调系统节能改造中的应用

论PLC在空调系统节能改造中的应用
P I D进行调节 ,让温差变动在规定 的范 围之 中。另外 , 根据变频器的需要进行实时调节其频率 ,将冷冻水泵 、
的温 度以后 ,将 回水与出水 的温差值计算 出来 ,然后与
空调系统预设 的温差值进行 比较 。如果前者的温差值 比 较大 ,那么 ,由此表明室内温度是 比较高的 ,这是就需
增加流量 ,从而提升热交换 的速度。相反 ,如果前者的 温差值 比较小 ,那 么 ,室 内温度则 比较低 ,这时可 以降

低冷冻泵的运转速度 ,从而减小水 流量 ,以便达到节能
的 目的 。
( 作者单位 :沈阳发动机设计研究所 )
信息系统T程 l 2 0 1 3 . 4 2 0 1 2 1
中央空调系统在设计 的时候主要是根据天气最热与负荷 最大的条件来进行 的,因此 ,即使温差很大也是能够承 受的 ,而且大部分情况下 ,系统并没有达到这一极限。 ( 二 )变 流量 的控 制方法 。对 于冷 冻水变流 量 的
后开始运行。接触器K M2 主要属于变频接触器 。这一接
触器主要可以通过P L C 实现控制作用 。量K M1 与K M2 两 种接触器之问有 电气可以相互锁住 。 我 们对 中央空调 节能改造 控制 系统进行 了点数 总 结 ,它主要包括 了A I 、AO、DI 、D O四种 ,这 四种总点 数分为有1 2 个 、1 6 个 、3 6 个 、9 个 。本文主要使用台湾 盟立F a ma 的S C 型P L C,在经济型 中,这是 一种 中型的 P L C,在其 内部具有 以太 网主站通讯 的功能优势 ,同时
控制主要可以通过两种方法 :第一种是冷冻水温差控制
方法 ,第二种是压差控制方法 。第一种方法主要适用于 对一次泵定 流量空调系统的改造 ,工程施工过程 比较简

PLC在中央空调控制系统中的应用

PLC在中央空调控制系统中的应用

PLC 在中央空调控制系统中的应用摘要:当前建筑设施中,中央空调是其中必不可少的重要设施之一。

通过对中央空调系统的应用,大大增加了人们生活的便利。

而PLC在中央空调控制系统中的应用,更是进一步提升了中央空调使用的便利性。

本文就PLC在中央空调控制系统中的具体应用进行了分析,以供参考。

关键词:PLC;中央空调;控制系统中央空调控制系统主要是对建筑物中空气进行调节的系统。

当前建筑物中央空调系统的组成中,一般有冷压缩机系统、冷却循环水系统、冷冻水系统、冷却塔系统等。

中央空调控制系统主要就是通过对空调各个系统中风机、阀门等设备的启动和关闭控制,来实现对建筑物中温度、湿度等环境参数的自动调整[1]。

传统的中央空调控制系统,更多的采用接触式控制系统、直接数字式控制器DDC来实现对建筑物环境参数的自动调节控制,这些控制的功能比较简单,但无法联网,控制灵活性比较差,不能做到实时控制,还需要人工花费大量的时间进行手动操作控制。

而当前建筑物中央空调控制系统中,更多的采用先进、可靠的编程控制器(PLC)来控制中央空调中的各个系统。

一、PLC的控制原理1、PLC的基本构成PLC与传统继电器控制系统一样,其组成部分主要有输入、逻辑以及输出三个部分。

其中逻辑部分还要被细分为微处理器和存储器两个部分,同时PLC要求其微处理器要由大规模的集成电路来构成,否则微处理器难以保证其性能,PLC也就无法正常稳定的运行[2]。

PLC中存在逻辑部件还有继电器、定时器以及移位寄存器等,通过这些逻辑部件,PLC能够实现更多的功能,满足不同用户的多种需求。

通过PLC对这些部件的不断优化,可以将相应的部件设定为专门的编程语言,在PLC中通过编程器可以对多种逻辑部件按照相应的工艺要求进行组合之后,能够充分的发挥出逻辑部件的相关作用,从而实现PLC不同的逻辑功能。

PLC中输入相关信息,然后通过所组合的相关逻辑发挥功能作用,最后通过输出部分,将相应的作用转化为实际的控制行为,以实现对中央空调的相关控制。

中央空调冷热源群控系统PLC逻辑控制说明

中央空调冷热源群控系统PLC逻辑控制说明

一、冷机启停逻辑(DDC内控制程序)1、冷机启动→平台选择了冷机模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→冷机模式对应的1个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵,冷冻水泵频率>(设定启动频率-5)→开启冷机,系统运行状态返回(计时清零,正常启动完成,如果超过3分钟没有状态返回,启动故障处理程序)→冷机启动完成2、冷机关闭→平台选择了冷机模式,并且发送了关机命令(开始计时)→给冷机发送关机指令,冷机停机,冷机运行状态为OFF,开始计时→计时时间=300S(5分钟),关闭冷冻水循环泵→计时时间=360S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→冷机关闭完成3、板换启动→平台选择了板换模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→板换模式对应的4个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵→板换启动完成4、板换关闭→平台选择了板换模式,并且发送了关机命令(开始计时)→计时时间=30S(半分钟),关闭冷冻水循环泵→计时时间=60S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→板换关闭完成二、冷机故障切换逻辑1、故障条件➢大前提:制冷单元发送了开机命令或者在运行中➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)切换到本地模式➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)故障➢冷机断电(延时10S(可设置)时间没有恢复)。

毕业设计(论文)-利用plc、变频器设计中央空调节能改造系统[管理资料]

毕业设计(论文)-利用plc、变频器设计中央空调节能改造系统[管理资料]

设计论文题目:利用PLC、变频器设计中央空调节能改造系统设计时间:~系别:电子电气工程系设计班级小组:电气083班(第一组)指导教师:设计学生:摘要作为现代使人生活舒适的家用电器,空调可以说与人们的生活紧密相关。

在现代社会中,它已像冰箱、电视一样,成为人类不可缺少的生活电器。

①经济节能:每个区间末端风机盘管可自行调节温度,区间无人时可关闭,系统根据实际负荷做自动化运行,开机计费,不开机不计费,有效节约能源和运行费用。

②环保:主机采用水源热泵型机组,电制冷,没有燃烧过程,避免了排污;整个系统为密闭式管路系统,可避免霉菌灰尘等杂质对系统的污染,使环境清新优美,特别适于高档别墅、高级公寓与写字楼的使用。

③节约空间:主机体积小巧,不设机房,无需占用设备层,减少公用设施和土建投资,室内末端暗藏在吊顶内,极易配合屋内装修。

④个性化:中央空调系统以区间为单元,满足用户不同区间需求,室内末端安装采用暗藏方式,不影响室内的审美观,不占据室内空间,适应用户的个性化需求。

⑤简化管理:于采用不同区间单独控制系统为用户所有,产权关系明确,可简化空调设施管理。

⑥提升档次:中央空调主机可以避免破坏楼体的整体外观,使用户充分享受高档综合环境的同时,提升产品质量及量贩档次。

⑦投资方便:可根据量贩发展情况,分期分批投资添置空调系统,同时量贩档次提升,因此资金周转快,有效地利用资金更进一步开发。

而可编程控制器PLC是根据顺序逻辑控制的需要发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。

它具有可靠性高,操作灵活,拓展型号等优点,不仅能满足设计系统的精度,还可以降低能耗,节约能源,减小运行费用。

再加上变频器的使用,把380V的交流变成直流再变成频率可调的交流电,实现电机的无级调速,比较省电,比直流调速维护方便。

本论文就是在己有的通用变频器的基础上,采用PLC对电机进行控制,通过合理的选择和设计,对中央空调系统进行变频调速,通过调速来改变耗能大小,提高了资源的利用率,达到理想的控制效果。

机电一体化毕业设计:PLC控制的变频-工频双回路恒压供水控制系统的设计

机电一体化毕业设计:PLC控制的变频-工频双回路恒压供水控制系统的设计

GDGM-QR-03-074-B/1Guangdong College of Industry & Commerce毕业综合实践报告Graduation synthesis practice report题目:PLC控制的变频-工频双回路恒压供水控制系统的设计(in English) Design of frequency - frequency PLC control double loop constant pressure water supply control system系别:电气自动化系班级:12机电一体化(3)班完成日期:6/2015摘要本设计根据供水要求,设计了PLC控制的变频-工频双回路恒压供水控制系统。

变频恒压供水控制系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。

本系统包含两台水泵电机,它们组成变频循环运行方式。

采用变频器实现对四相水泵电机的软启动和变频调速。

压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。

通过工控机与PLC 的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。

变频恒压供水技术具有较先进的技术、水压恒定、操作方便、运行可靠、节约电能、自动化程度高等有点。

关键词:变频恒压供水系统;可编程控制器(PLC)目录一、绪论 (1)(一)课题的提出 (1)(二)变频恒压供水系统的国内外研究现状 (1)(三)本课题的主要研究内容 (2)二、控制方案确定及系统的理论分析 (3)(一)变频恒压供水系统控制方案的确定 (3)1.控制方案的比较和确定 (3)2.变频恒压供水概况 (4)(二)变频恒压供水系统的理论分析 (4)1.变频恒压供水系统的节能原理 (4)2.电动机的调速原理 (5)(三)变频恒压供水系统的设计构想 (6)1.变频恒压供水系统的组成和原理图 (6)2.变频恒压供水系统控制流程 (8)3.水泵切换条件 (9)三、系统的硬件设计 (10)(一)主设备选型 (10)1.主设备选型 (10)2.PLC 及其扩展模块的选型 (11)3.变频器的选型 (11)4.水泵机组的选型 (12)5.压力变送器的选型 (12)6.液位变送器的选型 (13)(二)系统主电路分析及其设计 (13)(三)系统控制电路分析及其设计 (14)(四)PLC的I/O端口分配及外围接线图 (16)四、系统的软件设计 (18)(一)系统软件设计分析 (18)(二)PLC程序设计 (19)1.控制系统主程序程序设计 (19)2.控制系统子程序设计 (21)(三)PID控制器参数整定 (30)1.PID 控制及其控制算法 (30)2.PID 参数整定 (31)五、结束语 (33)参考文献 (34)致谢 (35)附录 (36)附录图1主电路图 (36)附录图2控制电路图 (37)附录图3主程序流程图 (38)附录图4主程序梯形图 (39)一、绪论水是生产生活中不可缺少的重要组成部分,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。

PLC在中央空调循环水节能系统中的应用

PLC在中央空调循环水节能系统中的应用


特 点 , 出 用 得
P P — 2 控 制 其 旁通 阀 ( V 的开 口度 , = IP , T ) 使 化 等 。 其 维持压差 。 32 L . P C控制 系统的选 型及设 置 为 了 满 足 以 上 所 介 绍 的 空 调 工 艺 要 2 P C 制系统 原理及应用 L控 求 , 个 控 制 系 统 需 要 可 编 程 序 控 制 器 的 整 中央 空 调 冷 冻 系统 有 3 控 制 方式 : 种 早 输 入 、输 出 点 分 别 是 l 2点 和 3 1 2点 , 中 其 期 的 继 电器 控 制 系 统 、直 接 数 字 式 控 制 器 模拟 量输 入 、输 出为 6 点和 4 。根 据 P C 点 L DDC和 可 编 程 序 控 制 器 ( Lc 控 制 系 统 。 的 I P ) /O原理 使 用原 则 , 留 出一定 的 I 即 /O点 继 电 器 控 制 系 统 由 于 故 障 率 高 、 系 统 复 以 做 扩 展 时 使 用 , 及 系 统 设 计 中 实 际 所 以 杂 、功 耗 高 等 明 显 的 缺 点 已逐 渐 被 人 们 淘 需 的 I O点 数 。 选 用 华光 电子 工 业 有 限 公 / 汰 ; 接数 字式 控 制 器 D 直 DC虽 然 在 智 能 化 司 的 s 5 B型主机 : U- / 输 入模块 : U- / S 5 B; 方 面 有 了 很 大 的 发 展 , 由于 D 但 DC本 身 的 U一2 N、U- 1 5 0 AD; 出模块 : O T、U~ 输 U— 5 抗 干 扰 能 力 问 题 和 分 级 分 步 式 结 构 的 局 限 0 DA。 这 种机 型 的 I O点 数 为 2 6点 , l / 5 有
性 而 限制 了 其 应 用 范 围 ; PLC

PLC在中央空调变频节能系统中的应用

PLC在中央空调变频节能系统中的应用

率/ 电压 ,降低水 泵转 速 ,从 而达 到节 能 的 目的。系 统变频
节 能 结构 图 如 图 1 永 :左 边 为 冷 冻 系统 , 右 边 为 冷 却 系 统 , 所

点却十分 明显 ;前一种 足以频繁 开启 电机影响其使用寿命为代
价 ,且温 度 调 节波 动 大 ,舒 适 感 差 :后 ‘ 是 以增 加 管 J 耗 , 种 圳损
电源 频 率 /电 J 增 ) 水 泉 转 速 ; 反 之 ,温 差 变 小 则 降 低 频 土, J u
2 节 能原理
中央空训系统机组 中有冷 水系 统和冷冻 水系统 ,传统的
方案是通 过改变压缩机机组、水泵、风机肩停 台数,或者改变 室内送风系统中的 门或水泵系统 中的节流 阀开度 ,以达到 调 节温度 的 目的。这样的 测节 方式 虽然简 易行 ,仙 是它们 的缺

水泵 的 力 P与其转速 的平方 n 成正 比
p 2 =k n ;
l 引言
随着我 经 济的进 一步发 和 WT O的不断深化 ,空调 设
备 已被 广 泛 应 用 丁工业 生产 、 民用建 筑 及 各 行 各 、 ,如 电子 J l :
水泵轴功率 P等于流量 q与乐J J P的乘积
者和变频器组成控制系统 『 。 路
()冷 冻 系 统 : 由于 低温 冷冻 水 温 度 取 决于 蒸 发 器 的 运 行 1
耗费大量能源在风 门、阀门上为代价 ,且对 调的调节足阶段 性的 ,易使窄调系统工作征波动状态,稳定性菁 。木文钊’ 对这 种弊端, 中央空训 的循环系统 ( 冷却泵和冷冻泵 )L接入变 卜 『 频系统, 利用变 频技术调节 电机转速来调节流量和 力的变化, 以达剑 节温度 的 目的,并 上整个系统处于 滑 捌节状 态,稳 L

冷却水循环学习心得体会

冷却水循环学习心得体会

冷却水循环学习心得体会篇一:循环水冷却系统论文唐山学院毕业设计设计题目:基于PLC的循环泵水冷自动操纵系统设计系别:信息工程系班级: 09电气自动化技术(1)班姓名:王粉青指导教师:刘鹏XX年5月30 日基于PLC的循环泵水冷自动操纵系统设计摘要随着城市建设和工业的进展,循环水冷却系统成为不可缺少的部份。

要紧用于化工、冶金、建材、焦化、暖通等行业。

钢铁业的生产进程中往往会产生大量的热量,使生产设备和产品的温度升高,必需及时进行冷却,不然会阻碍生产的正常运行、产品的质量和产量。

本设计以某钢厂三组工作问题太高的乳化液循环泵为对象,用PLC作为下位机操纵设备动作进程,并用PC机开发基于力控组态软件的监控系统,用于监控设备的运行情形,来实现冷却水循环系统,达到对乳化液循环泵的降温的目的。

关键词:循环水冷却系统 PLC 组态软件Based on the PLC circulation pump waterautomatic control system designAbstractAlong with the city construction and the development of industry, the circulating cooling water system has become an indispensable part of. Mainly used in chemical industry, metallurgy, building materials, coking, hvac. Iron and steel industry production process tends to produce a lot of heat, so that the production equipment and the product temperature, must be timely cooling, otherwise it will affect the normal operation of the production, product quality and yield. This design to a three group work high emulsion circulating pump as the object, using PLC as slave computer control equipment movement process, using PC development based on force control configuration software in the monitoring system, used to monitor the running situation of the equipment, to achieve thecooling water circulation system, to achieve the cooling emulsion circulating pump to the purpose.Key words: circulating water cooling system PLC configuration software唐山学院毕业设计1引言目前我国经济正处于高速进展时期,钢材的市场需求也平稳增加。

基于PLC的节能制冷系统设计

基于PLC的节能制冷系统设计
本 系 统 可 实 现 冷 水 供 水 高 低 温 保 护 ,即 当 系 统 冷 冻 、冷 却 水 温 度 超 过 温 度 设 定 值 的 上 下 限 值 时 ,系 统 自 动进 入高 低 温 保 护 模 式 ,如 果 温 度 过 低 则 减 小 水 泵 的 转 速 ,直到温度不 低 于 下 限 设 定 值 为 止 ,这 样 就 避 免 了 温 度 过 低 而 对 系 统 造 成 危 害 ,反 之 亦 然 ;工 频 和 变 频 之 间 的 切 换 设 置 ,当控制系统 出 现 故 障 需 要 检 修 时 可 以 暂 时 关 闭 ,开 启 原 来 的 系 统 ,当系 统 检 修 好 以 后 即 可 切 换 回 来 。这 样 既 有 利 于 检 修 ,也不耽误 空 调 的 正 常 使 用 ,更 具 安 全 可 靠 性 ;对 于 系 统 中 的设 备 可 以 有手动和自动两种控制方式,当手动时, 自动按钮屏蔽;当 自动 时,手 动 按 钮 屏 蔽 。
system after energy saving have been improved.
Keywords:energy saving;PLC;control
i 制冷原理
凝 器 、节流部件、蒸 发器。
制冷机由压缩机、冷 凝器、蒸发器、膨胀机或节流机构 和 一 些 辅 助 设 备 组 成 。在 制 冷 机 的 循 环 系 统 中 ,压缩机 从 蒸 发 器 吸 入 低 温 低 压 的 制 冷 剂 蒸 汽 ,经 压 缩 机 绝 热 压 缩 成 为 高 温 高 压 的 过 热 蒸 汽 ,再 压 入 冷 凝 器 中 定 压 冷 却 ,并向冷 却 介 质 放 出 热 量 ,然 后 冷 却 为 过 冷 液 态 制 冷 剂 。
2. 3 控制方法 满 足 用 户 供 冷 需 求 为 根 本 兼 顾 用 户 舒 适 性 的 要 求 ,主要 考虑制冷系统的安全、可 靠 、经济的运行,使系统运行在最 佳 工 况 ,从 而 实 现 本 系 统 的 稳 定 性 、可 靠 性 以 及 高 效 节 能 性 。 中央空调系统的设计是一个系统群控,即从制冷机房中冷水 机 组 、冷 冻 水 泵 、冷 却 水 泵 和 冷 却 塔 各 个 方 面 进 行 ,使系统 在整个控制作用下达到节能降耗的目的。系统运用数据模 块 、工业现场总线、变频器等设备与技术,采用了先进的运 行 工 况 ,实 现 空 调 水 系 统 的 运 行 和 管 理 。 选 用 合 适 的 控 制 方 法 要 根 据 现 场 情 况 来 决 定 ,才可以使 系 统 的 运 行 效 率 大 大 提 高 。制 冷 控 制 系 统 可 采 用 顺 序 流 程 控 制 方 法 或 加 减 载 控 制 方 法 等 。启 停 顺 序 流 程 控 制 方 法 自 动 模 式 中 开 机 顺 序 为 :主 机 冷 冻 水 、冷 却 水 阀 门 打 开 - 冷 却 塔 进 、 出 水 管 阀 门 开 启 - 冷 冻 水 一 次 泵 、冷 却 水 泵 开 启 - 冷 冻 水 二 次 泵 打 开 -打 开 主 机 。 自动模式关机顺序流程为:主机先关 闭 ,进 而 冷 冻 水 一 次 泵 、冷 却 水 泵 关 闭 ,之 后 是 冷 却 塔 风 机 关 、进出水阀门关,最后是主机冷冻、冷却水阀门关闭。 制 冷 系 统 开 始 运 行 后 ,一 般 先 选 择 容 量 较 小 的 机 组 ,启 动 系 统 的 变 频 压 缩 机 ,随 着 频 率 的不 断 加 快 逐 渐 使 系 统 达 到 保 持 平 稳 运 行 状 态 ,这 种 控 制 方 法 是 加 减 载 控 制 方 法 。在加 载机组时应根据机组的主机运行时间对启动流程进行排序, 可 使 操 作管理更方便,使管理人员对设备的故障判断更准 确 。加减载控制方法就是在用户末端负荷增加时,来增加变 频 压 缩 机 的 功 率 ,从 而 使 系 统 输 出 制 冷 量 增 大 ,这 样 可保 持 温 度 的 平 衡 ,若 负 荷 增 加 一 定 程 度 后 ,此 时 机 组 输 出 的最 大 功 率 时 也 不 能 满 足 末 端 要 求 需 求 ,此 时 应 进 行 加 载 机 组 ,启 动另一台机组同时运行,可使输出功率大大提高, 以达到所 需的制冷量。 采 用 模 糊 控 制 和 优 化 算 法 ,传 统 PID控制器在工业控

冷冻冷却水泵及循环水泵自动控制系统节能方案

冷冻冷却水泵及循环水泵自动控制系统节能方案

冷冻冷却水泵及循环水泵自动控制系统节能方案一、背景与意义冷冻冷却水泵及循环水泵系统是工业生产中常见的设备,其运行对于保证生产正常进行具有重要意义。

然而,传统的手动控制方式无法有效地适应生产的变化,并且存在能源浪费的问题。

因此,开发一种能实现自动控制的系统来提高能源利用效率具有重要意义。

二、节能方案1.自动控制系统的设计设计一套基于PLC(可编程逻辑控制器)的自动控制系统,在此基础上实现对冷冻冷却水泵及循环水泵的控制。

2.系统参数设置通过对系统中的各参数进行设置,如设定温度和压力范围,以及启停时间和频率等,能够提高系统的运行效率,并减少能源的浪费。

3.温度和压力传感器的应用安装温度和压力传感器,实时监测冷冻冷却系统及循环水系统中的温度和压力变化。

根据传感器的反馈,及时调整系统的运行状态,以达到节能的目的。

4.高效水泵的选择与优化选用能效比较高的水泵,并根据系统的实际需求进行数值模拟计算,确定最佳的水泵工作参数。

并进行定期维护和检修,保证水泵的高效运行。

5.频率变频器的应用安装频率变频器,通过调整电机的转速,减少水泵的运行功率。

根据实际流量进行调整,避免了冷却水泵及循环水泵长时间运行,减少了能耗。

6.能源回收系统的构建利用现有设备中的废热或余热能源,通过回收利用的方式为生产提供热能需求。

在系统中添加换热器,将热能转换为可再生的能源,提高整体能源利用效率。

三、预计效果通过以上的节能方案,预计能够从以下几个方面实现节能效果:1.优化水泵工作参数,减少能源浪费,降低能耗。

2.自动控制系统实时监测温度和压力变化,及时调整系统运行状态,提高系统运行效率。

3.频率变频器应用可根据实际需求动态调整水泵转速,避免长时间高功率运行,减少能耗。

4.回收废热或余热能源,提高整体能源利用效率,减少能源浪费。

综上所述,冷冻冷却水泵及循环水泵自动控制系统的设计与优化将能够提高能源利用效率,减少能耗,具有重要的节能效果。

在实际应用中,可以根据具体情况进行调整和完善,并定期对系统进行检查和维护,以保证系统的长期稳定运行。

基于PLC控制的中央空调节能系统设计

基于PLC控制的中央空调节能系统设计

基于PLC控制的中央空调节能系统设计摘要:中央空调有多种控制模式,传统的控制可以满足需求,但是有一些问题,比如浪费水和电,并且没有足够的智慧和节能、中央空调节能改造是如何放入应用程序中,能够满足专业教学和相关专业和高职院校面临的问题。

应用PLC和变频器在中央空调节能改造,不仅可以大大减少中央空调能源消耗的数量,也可以实现空调的自动控制,等等,使中央空调的使用变得更加方便和快速,节能减排在中国发挥更大的作用。

关键词:PLC;中央空调;节能1前言中央空调系统是现代大型建筑不可缺少的设施之一。

耗电量大,约占总耗电量的50%。

因为中央空调系统是根据最大负荷和增加的裕度设计的,实际上,在整个负荷中几乎大部分时间都小于70%。

通常在中央空调制冷主机负载系统可以自动调节温度随季节变化,负载,和匹配制冷主机冷冻泵、冷却泵不能自动调整负载,只要中央空调主机,泵浦功率频率,一直在全负荷工作条件,造成严重浪费能源。

采用变频调速技术可以大大降低泵电机运行的频率,从而降低电机转速,根据空调机房的需要和制冷能力的适当实时匹配来降低循环水流的流量,是节能降耗的一部分。

2中央空调节能控制的必要性分析据调查,中央空调能耗占建筑总能耗的50%左右,超过60%的商场和综合楼。

目前,大多数建筑的中央空调系统的空调负荷没有得到合理的计算,因此冷源和热源单元的容量过大,无法形成“大卡车”状态。

中央空调系统的设计是粗糙的,甚至没有考虑到。

固定泵流;系统管理不当导致严重的能源浪费。

众所周知,最间接的,如中央空调系统、冷却循环水系统和冷却水系统的循环水系统终端,都是制冷剂、制冷剂和制冷剂。

系统的效率是由系统中设备的负荷和实际情况决定的。

中央空调系统控制的目标是在适当的水平控制室内温湿度,使系统的能耗最小化。

由于各种不同的制造商提供设备系统,该系统主要控制制冷主机控制器和控制方案制造商为主,关键是主机负载和工况参数控制、冷却水系统控制,也很少考虑冷冻循环水参数在空调系统中,几乎没有考虑冷却循环水系统和空气系统设备工作状态,这导致了中央空调系统设备的工作条件,系统参数并不是在最好的条件下,造成能源浪费。

基于PLC的公共建筑暖通空调系统节能控制方法

基于PLC的公共建筑暖通空调系统节能控制方法

产业科技创新 Industrial Technology Innovation54Vol.2 No.25基于PLC的公共建筑暖通空调系统节能控制方法韩 荣(山西建筑职业技术学院,山西 太原 032699)摘要:为解决公共建筑暖通空调功耗高、负载大的问题,将公共建筑暖通空调的系统中引入PLC算法,对基于PLC 的公共建筑暖通空调系统节能控制方法进行研究。

通过控制系统动力能耗,在湿度一定条件下,控制风水输送系统,进行公共建筑暖通空调系统节能控制。

并将PLC系统应用于暖通空调系统中,设计PLC系统在暖通空调系统的控制流程。

最后设计仿真实验,建立公共建筑暖通空调系统的仿真模型,将文章设计的节能方法与传统的围护结构设计节能方法进行对比,确定文章方法是否更具备实用性。

关键词:PLC;暖通空调;公共建筑;节能控制中图分类号:X383 文献标识码:A 文章编号:2096-6164(2020)25-0054-02随着化石能源的不断消耗,节能成为了当前社会最热门的话题之一。

尤其是占据世界年消耗能源比例极大的建筑行业,对于供暖系统节能控制的关注度极高。

暖通空调作为一种能够调节室内外温差、为室内外的空气交流搭建通道并为建筑提供供暖服务的机械设备,为人们带来了极大的便利,因此在公共建筑中,暖通空调的建设十分普遍。

极大的便利也伴随着极大的能源消耗,根据数据统计,在公共建筑中,尤其是在冬冷夏热地区,暖通空调的年平均耗能量占公共建筑总耗能量的60%以上,因此对于公共建筑中暖通空调的节能方法就十分具有现实意义。

文章提出了基于PLC的公共建筑暖通空调系统节能控制方法,使用PLC 技术对公共建筑暖通空调系统添加了自动化控制程序,使公共建筑暖通空调达到了节能效果。

1 暖通空调系统节能控制研究由于我国大部分地区的气候条件都不太理想,更有很多地方存在冬冷夏热的情况,因此在目前我国的很多大型公共建筑中,暖通空调都是必不可少的设施。

常年开启暖通空调对于能源的消耗量极其惊人,所占据的能耗比也十分巨大。

毕业论文设计:PLC、变频器在中央空调冷却水泵节能循环控制中的应用

毕业论文设计:PLC、变频器在中央空调冷却水泵节能循环控制中的应用

本科生毕业论文( 2012 届)学生姓名张公平院(系)武汉理工大学独立本科段专业机电一体化学号014210110813导师祁小波王生软论文题目 PLC、变频器在中央空调冷却水泵节能循环控制中的应用摘要在传统的中央空调系统中,冷冻水、冷却水循环用电约占系统用电的12%~14%,并且在冷冻主机低负荷运行中,其耗电更为明显,冷冻水、冷却水循环用电约达30%~40%。

因此对冷冻水、冷却水循环系统的能量自动控制是中央空调节能改造的重要组成部分。

本文着重介绍PLC、变频器在冷却水泵节能循环方面的应用。

中央空调采用变频调速技术,使电机在很宽范围内平滑调速,可将所有节流阀去掉,使管道畅通,可免去节流损耗。

通过改变电机转速而改变水的流速,从而改变水的流量,达到制冷机的正常工作要求和平衡热负荷所需冷量要求,从而达到节能的目的,电机的变频调速系统是由PLC控制器进行切换和控制的。

关键词:PLC 变频器冷却水泵节能ABSTRCTIn the traditional central air conditioning system, freezing water, cooling water circulation electricity accounts for about 12% ~ 14% of the ele ctricity system, and in the frozen host low-load running, the power consumption is more apparent, freezing water, cooling water circulation electricity about to reach30% ~ 40%.So to freezing water, cooling water circulation system of energy automatic control is central air conditioning is an important part of the energy saving transformation. This paper introduces the P L C, inverter in cooling water pump energy saving circulation applications. The central air conditioning by inverter technology, make motor in a wide range smooth speed, can remove the entire throttle, make the pipeline flow, can free throttling loss. Through the change the motor speed and change in water velocity to change the flow of water to the normal work of the chiller requirements and heat load balance required cold quantity requirements, so as to achieve the purpose of saving energy. The motor is variable frequency speed regulation system by PLC controller and the control of the switch.Keywords:PLC converter cooling wa t er pump energy saving引言经济的发展和人民生活水平的日益提高,中央空调系统已广泛应用于工业与民用建筑域,如宾馆、酒店、写字楼、商场、厂房等场所,用于保持整栋大厦温度恒定。

PLC(西门子)制冷机组控制系统开发

PLC(西门子)制冷机组控制系统开发

PLC(西门⼦)制冷机组控制系统开发1 引⾔本项⽬制冷机组控制系统主要⽤于对印刷⾏业及其他⼯业场所发热设备进⾏冷却,以满⾜这些设备能够正常运⾏。

本制冷系统采⽤的是循环冷⽔对印刷机uv灯进⾏冷却,⾃动调节冷⽔流量、⾃动调度制冷机运⾏台数以及对⽔泵的变频控制。

项⽬应⽤西门⼦s7-300系列plc以及西门⼦公司的触摸屏、变频器来设计的制冷机组⾃动控制系统。

2 制冷机组集控原理2.1 ⼯艺原理制冷系统⽔循环流程如图1所⽰,将10台制冷机组集中安置,其中有⼀台制冷机组功率为30kw,其余9台为相同的制冷机组。

我们新增了⼀个⽔箱⽤于循环⽔的热交换,⽔箱的⽔可以通过外来补⽔管进⾏补给以保证⽔箱的正常⽔位,⽔箱还有⼀排污管⽤于污⽔的排放。

被制冷机组制冷的⽔全部由我们⽔箱的⽔供给,并且制冷完后的冷⽔⼜全部送回⽔箱以存储。

10台制冷机组之间的⽔流⽀管道并联连接通过⼀总⽔流管道与⽔箱之间进⾏⽔交换。

因此,⽔箱的⽔是⼀定温度的冷⽔。

接下来,我们⽤⼀输⽔总管通过⽔泵的变频控制来将⽔箱的冷⽔引出来通过⽀路⽔管的连接来对我们的8台印刷机的uv灯进⾏循环⽔冷冷却。

然后各⽀路冷却完的⽔⼜由⼀总⽔管输回到⽔箱。

这样我们就完成了制冷机组⽔循环流程图。

很显然,这其中就涉及到⼀个所谓的出⽔(冷⽔输出)、出⽔温度;回⽔(热⽔输回)、回⽔温度。

要检测他们的温度我们就在出⽔和回⽔处分别安装有⼀温度传感器来检测出⽔温度和回⽔温度。

变频⽔泵可以⽤来控制⽔管⽔流量和⽔管管压。

2.2 电控原理制冷机系统主要调节控制的物理参数分别为循环⽔的温度和⽔管⽔流量。

循环⽔温度的调控主要通过开启制冷机组的台数来实现,从⽽使其温度到达设定温度。

⽽⽔管的⽔流管压根据所开启的印刷机的台数通过⽔泵的变频控制来达到所需的⽔流量。

循环⽔温度、流量调控过程如下所⽰。

⽔温调控过程:10台制冷机组在⽔温的制冷调控过程中,我们⼈为地分为四档,如图2所⽰。

在制冷机组控制系统中我们先设定⼀个合适的出⽔温度,然后根据传感器检测的回⽔温度与出⽔温度差值进⾏⽐较,确定哪⼀档制冷机组的开启。

基于PLC的变频恒压供水系统设计

基于PLC的变频恒压供水系统设计

摘要随着科学技术的迅速发展, 传统供水方式存在着出水量时大时小、耗能大的各种缺点日益突显。

为了提高供水质量, 随着科学技术的迅猛发展,我们的设备也随着更进,我搜索文献学习后设计了一种基于PLC的恒压供水系统, 它及先进的自动化控制技术、变频调速技术、以及通信技术为一体,采用PID闭环控制的方式大大提高供水的稳定性及可靠性。

该系统的基本原理是用压力传感器检测管网中的水压,把测得的压力传入到PLC内部的PLD模块后进行计算,得出偏差信号再进行调整输出频率,从而调节水泵的转速,使得管网的水压稳定在设定值。

关键词:PLC 恒压供水变频调速Design of Constant Pressure Water Supply SystemBased on PlcAbstract:With the rapid development of science and technology, the traditional water supply method is unstable, energy consumption and other shortcomings become increasingly prominent.In order to improve the quality of water supply, this paper designs a constant pressure water supply system based on PLC.which integrates advanced automatic control technology, frequency conversion speed control technology and communication technology in one, using PID closed-loop control mode, greatly improving the water supply stability Sex and reliability.The basic principle of the system is to use the pressure sensor detects the water pressure in the pipe network and feeds back the measured pressure to the PLC inside the PID module to calculate the deviation signal to adjust the frequency of the inverter output frequency, thus adjusting the pump speed, So that the pipe network pressure stability in the vicinity of the set value.Keyword:PLC ,Constant Pressure Water Supply ,Frequency Control目录1 引言 (1)2 恒压供水系统的选择 (2)3 PID控制 (3)4 恒压供水系统的特性分析 (4)5 PLC恒压供水系统设计方案 (5)5.1 信号检测 (5)5.2 PLC恒压供水系统的主要控制部分 (5)6 系统的整体设计及工作原理 (6)6.1 变频恒压供水系统硬件设计 (8)6.2变频恒压供水系统软件设计 (11)7 供水系统的分类 (14)7.1无负压 (14)7.2供水系统无塔 (16)7.3供水系统超静音 (18)7.2供水系统屏蔽式 (19)7.2供水系统双模变频 (19)结语 (22)致谢 (23)参考文献 (24)1.引言在我们的日常生活中,供水系统在用水需求较高时,供水管道中的水压会出现下降的情况,不能再满足用户的生活需求;用水量较低时,供水管道中的水压将升高,远超出了用户的需求,这种情况不仅浪费珍贵的水能源,而且还会对供水管道及用水设施造成损坏。

PLC控制中央空调节能改造设计

PLC控制中央空调节能改造设计

毕业论文题目PLC控制中央空调节能改造设计专业班级学生姓名指导教师答辩日期目录摘要 (1)第一章绪论 (2)1.1课题背景 (2)1.2问题的提出 (2)1.2.1原系统简介 (2)1.2.2原系统的运行及存在问题 (3)第二章中央空调系统节能可行性分析 (4)2.1中央空调原理图及各结构的作用 (4)2.1.1 制冷主机: (4)2.1.2 冷冻水泵: (4)2.1.3 冷却水泵: (5)2.1.4 冷却塔: (5)2.1.5 风机盘管: (5)2.2中央空调现状 (5)2.3 节能的可行性分析 (6)第三章中央空调系统主控制器 (7)3.1 PLC的发展 (7)3.2 PLC的特点 (8)3.2.1 编程方法简单易学,指令丰富 (8)3.2.2功能强,性能价格比高 (8)3.2.3 硬件配套齐全,用户使用方便,适应性强 (8)3.2.4 无触点面配线,可靠性高,抗干扰能力强 (8)3.2.5 系统的设计、安装、调试工作量少 (8)3.2.6 维修工作量小,维修方便 (8)3.2.7 体积小,功耗低 (9)3.3 PLC的应用领域 (9)3.3.1 开关量逻辑控制 (9)3.3.2 运动控制 (9)3.3.3 闭环过程控制 (9)3.3.4 数据处理 (9)3.3.5 通讯联网 (9)3.4 PLC的组成 (10)第四章基于PLC控制的中央空调系统 (12)4.1 PLC控制系统I/O配置表 (15)4.2 冷冻水系统控制 (16)4.2.1 冷冻水系统逻辑控制: (16)4.2.2 冷冻水系统PID控制: (17)4.2.3 冷冻水系统电量监控: (17)4.2.4冷冻水系统通讯控制: (17)4.3冷却水系统控制 (19)4.3.1 冷却水系统逻辑控制: (19)4.3.2 冷却水系统PID控制: (19)4.3.3 冷却水系统电量监控: (19)4.3.4冷却水系统通讯控制: (19)4.4冷却塔系统控制 (20)4.4.1 冷却塔系统逻辑控制: (20)4.4.2 冷却塔系统PID控制: (21)4.4.3冷却塔系统电量监控: (21)4.4.4 冷却塔系统通讯控制: (21)第五章PLC 与变频器控制设计 (22)5.1三菱FR-F540-37K-CH变频器主要参数的设定 (22)5.2三菱PLC FX2N-64MR与FR-F540-37K-CH变频器的接线以及I/O分配 (22)5.2.1 I/O分配: (22)5.2.2 PLC与变频器接线图: (23)5.2.3 完整梯形图: (27)5.2.4 指令表: (30)第六章节能改造前后运行效果比较 (37)6.1 节能效果及投资回报 (37)6.2 对系统的正面影响 (37)结论: (38)参考文献: (38)致谢: (38)PLC控制中央空调实现节能摘要中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。

基于PLC的水源热泵节能控制系统

基于PLC的水源热泵节能控制系统
触摸屏 系统主要包括 系统初始化设 置、运行模式选择 、PID 参数设置、温度 显示 、故障报警及 复位等界面组成 ,其结构如 图 6所 示 。
l 引 言
水源热泵作为一种用地下恒温水源代替冷却塔的高效 节能 空调 ,在实 际应 用中,为 了进一步提 高节能效果 ,还 应尽 可能 减 少主机 冷冻水泵和冷却水泵等主要耗能设备 的用能。传统 的空调水 系统使 用定 流量 的运 行方式 ,水源热泵主机本 身具有 能量调节机构 ,根据 负载变化输出的能量可以在额定值的25%一 100%的范 围内调整 。但是 ,冷冻水泵和冷却水泵却不随着 负载 变化做 出相应 的调节 ,流量保持不变 ,导致水系统经 常在大流 量 、小温差 的工况下运行 ,电能浪费很大 。采用定温差变流量 的水系统控制 ,可以避免这种 浪费。
Abstract:W ater Source Heat Pum p,w hich is an efficient energy—saving air— conditioning m ethod,is used for an alternative ofcooling tow er.This altern ative is achieved through the exploitat ion of heated underground water sources.In actual application,w e should consider fully the energy—saving issues of big energy including refr igeration com pressors、 f reezing w ater pum ps and cooling water pum ps.This article focuses on the f requency energy conservation pr inciple of the freezing w ater and cooling w ater system s,the control program m ing of energy— saving closed—loop,and the design of control system in W SHP.The experim ents proved that t h e cont rol system achieves the m ost ef i ciency cont rol from the circuits a n d w ater system s. K ey w ords:W ater Source H eat Pum p; Energy—savi n g; PLC ; Cont rol system
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (2)前言 (3)第一章实际中的应用 (4)第二章主要任务 (6)第三章具体设计要求 (7)第四章系统软件设计 (8)4 . 1设备名称 (8)4 . 2控制方案 (8)4.2.1 控制功能 (8)4.2.2 具体控制方案 (9)4.2.3 PLC输入、输出分配表 (10)4.2.4 控制综合接线 (11)4.2.5 变频器参数设置...................... .11 4.2.6 软件设计 (13)总结................................................. . 14 致谢词.............................................. . 15 参考文献 (16)中央空调冷却水循环节能控制系统设计摘要在现代工厂企业、办公大楼、商厦、酒店等环境中,中央空调系统是不可缺少的,因此,中央空调的节能也是有待解决的关键技术问题。

中央空调系统除主机的耗能外风机、冷冻、冷却泵进行调节,这就需要有较好的自动控制模块。

现在,随着电力电子技术、微电子技术的发展,应用变频调节技术与PLC自动控制系统可以大幅度节约电能和提高系统的自动程度,并使系统具有运行可靠、结构简化、维护维修方便等优点。

本文简单阐述了中央空调系统的工作原理,并具提研究冷却水循环控制系统在节能方面的自动控制模块。

主要对冷却水进出温差和进水温度进行混合控制,最终使中央空调冷却水循环节能控制系统达到节能的目的。

中央空调系统足大型建筑物小町缺少的配套设施之一,其电能的消耗非常大。

由变频器、PLC构成的控制系统应用在中央空调的冷却水泵的节能改造中,使冷却水泵能随宅调负荷的变化而自动变速运行,达到显著节能效果。

关键词:PLC自动控制系统;自动控制;设计。

前言在传统的中央空调系统中,冷冻水、冷却水循环用电约占系统用电的12%“14%,并且在冷冻主机低负荷运行中,其耗电更为明显,冷冻水、冷却水循环用电约达30%’40%。

因此对冷冻水、冷却水循环系统的能量自动控制是中央空调节能改造的重要组成部分。

本文着重介绍PLC、变频器在冷却水泵节能循环方面的应用。

中央空调采用变频调速技术,使电机在很宽范围内平滑调速,可将所有节流阀去掉,使管道畅通,可免去节流损耗。

通过改变电机转速而改变水的流速,从而改变水的流量,达到制冷机的正常工作要求和平衡热负荷所需冷量要求,从而达到节能的目的。

电机的变频调速系统是由PLC控制器进行切换和控制的。

第一章实际中的应用在实际生活中,大部分建筑的中央空调在一年当中,只有几十天时间处于最大负荷。

中央空调负荷,始终处于动态变化之中,如每天早晚,每季交替,每年轮回,环境及人文,实时影响中央空调冷负荷。

一般,冷负荷在5%-60%范围内波动,大多数建筑物每年至少70%是处于这种情况。

而大多数中央空调,因系数设计多数以最大冷负荷为最大功率驱动。

这样,造成实际需要冷负荷与最大功率输出之间的矛盾,实际造成巨大能源浪费,给使用方造成巨额电费支出,增加经营者的成本,降低经营竞争力。

本文以中央空调冷却水控制系统的工作机理和工作特点为依据,实时跟踪制冷机的排热需求和冷却塔排热能力的动态变化,建立系统节能的复合控制方案。

通过采集冷却水温度信息,实现跟踪制冷机排热需求变化的优化节能,最大限度地降低冷却水泵的耗能。

作为建筑内部重点耗能设备,中央空调系统的耗电一般要占整座建筑电耗的60%以上。

由于设计时,中央空调系统必须按天气最热、复活最大时设计,并且留10-20%设计余量,然而实际上绝大部分时间空调是不会运行在满复活状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。

因此空调系统采用变水量控制可以节约大量泵输送能耗,中央空调的节能改造显得尤为重要。

水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大载流损失和打流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。

为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。

再因水泵采用Y-△起动方式时,电机的起动电流均为其饿定电流的3-4倍,如一台90KW的电动机其起动电流将达到500A,在如此大的电流冲击下,接触器,电动机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水锤现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作和备晶、备件费用。

综上,为了节约能源和费用,中央空调系统的节能改造是势在必行。

中央空调冷却水控制系统属建筑物冷热电联产系统中的一个子系统,该控制方式已经应用于中央空调节能控制装置——变频调速智能控制节能工作站中,该装置应用中实现了中央空调控制,经检测:通过各智能控制子系统,在保证向用户提供优质安全的空调服务同时,d45中央空调的转换效率、系统耗能指标进行优化,使系统设备的运行状况获得极大改善。

第二章主要任务本文设计的是冷却水循环控制系统。

该系统由冷冻机、冷却水泵、冷却水管、冷却塔和冷却塔风机组成。

冷却水在通过冷冻主机后,吸收了冷冻主机释放的热量使自身温度升高。

冷却泵将升了温德冷却水压入冷却塔进行热交换而降温,降了温德冷却水又流过冷冻机,如此不断循环。

设计的主要任务是当中央空调冷却水出水温度高时(可事先设置),加大冷却水流量,当中央空调冷却水出水温度低时,减少冷却水流量,从而达到节能目的,当中央空调冷却水出水温度超过某一限值时(通常为37度左右),整个系统必须保护性跳闸停机。

中央空调冷却水系统节能混合控制的要求是:实时跟踪制冷机的排热需求和冷却塔排热能力(即冷却水的进水温度)的动态变化。

最大限度地降低冷却水泵的耗能。

系统实施节能控制的策略和算法,以其工作过程的热力和动力学机理为基本依据第三章具体设计要求1、三台冷却水泵电动机,5.5KW,380V。

1号水泵先单台变频运行,当频率上限信号(相对于进出水设定温差上限值)动作后转为工频运行,并起动2号水泵变频运行;当频率下限信号(相对于进出设定温差下限值)动作后,1号水泵停机,2号泵继续变频运行,当频率上限信号又动作时,2号泵转换为工频运行,起动3号泵作变频运行,不断地如此循环转换。

2、变频工频运行时,为保证安全,应先让变频器约0.3秒后才断开变频接触器,再延迟时0.5秒后闭合工频接触器,再延时0.5秒后投入另一台变频器工作。

3、采用PLC或单片机+变频器的控制结构,或继电器+变频器的结构均可。

4、系统中应具有“手动”及“自动”操作功能,各种保护,确保系统的安全运行,例如,变频与工频接触器应设置电气和机械两种互锁,水泵电动机主电路应接有各种保护装置等第四章冷却水泵节能循环运行控制1、设备名称中央空调有3台冷却水泵,其型号是TS一200_150315,配用功率是37KW;采用一台变频器的方案进行节能控制,变频器及PLC控制系统都采用三菱的,型号分别是FR—A540及FX2N一64MR(1)。

2、控制方案(1)冷却水泵节能循环控制主电路接线图(图1)图1冷却水泵节能循环控制主电路接线图(2)控制功能先确定冷却水泵变频器工作的最小工作频率(15HZ)及最大工作频率(48HZ),将其设定为下限频率和上限频率并锁定;变频冷却水泵的频率是取冷却水塔的出水温度信号进行调节,当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,频率无极下调;按温度变化来调节频率,出水温度越高,变频器的输出频率越高,出水温度越低,变频器的输出频率越低。

冷却水塔出水温度由温度传感器PTl003850RPM/oC电压型温度传感器采集,将温度变化反映到相应的电阻变化,通过电阻的变化改变电压并送到变频器的输入2、5脚,达到实现温度控制的目的。

具体控制方案:1)先合KMl起动1号泵,单台变频运行;2)当1号泵的工作频率上升到48HZ上限切换频率时,1号泵将切换到KM2工频运行,然后再合KM3将变频器与2号泵相接,并进行软启动,此时l号泵工频运行,2号泵变频运行;3)当2号泵的工作平频率下降到设定的下限切换频率15HZ时,则将KM2断开,l号泵停机,此时由2号泵单台变频运行;4)当2号泵的工作频率上升到48HZ上限切换频率时,2号泵将切换到KM4工频运行,然后再合KM5将变频器与3号泵相接,并进行软启动,此时2号泵工频运行,3号泵变频运行;5)当3号泵的工作平频率下降到设定的下限切换频率15HZ时,则将KM4断开,2号泵停机,此时由3号泵单台变频运行;6)当3号泵的工作频率上升到48HZ上限切换频率时,3号泵将切换到KM6工频运行,然后再合KMl将变频器与1号泵相接,并进行软启动,此时3号泵工频运行,l号泵变频运行;7)当1号泵的工作频率下降到设定的下限切换频率15HZ时,则将KM6断开,3号泵停机,此时由1号泵单台变频运行;如此循环运行;8)水泵投入工频运行时,电动机的过载由热继电器保护,并有报警信号指示;9)每台泵的变频接触器和工频接触器外部电气互锁及机械联锁;10)变频与工频切换的过程:首先MRS接通(变频器输出停止)一延时0.2秒后断开变频接触器一延时0.5秒后合工频接触器,一再延时0.5秒合下一台变频接触器一断开MRS触点,实现从变频到工频的切换,11)变频与工频切换的条件:由变频器的上限切换频率(FU)和下限切换频率(su)控制。

(3)PLC输入、输出分配表(见表1)表1 I/O端口分配表(4)控制综合接线图:(见图2)图2冷却水泵节能循环运行控制综合接线图(5)变频器参数设置Pr.42=48HZ(上限切换频率FU信号);Pr.50=48HZ(下限切换频率FU2信号,标记为SU端子);Pr.191=5(标记为SU端子的功能为FU2信号);Pr.76=2(报警代码选择);Pr.79=2(操作模式为外部操作须外接电位器);(6)软件设计[3](见图3、4)根据控制要求进觥编程,下面给出参考程序顺控图。

图3 停止及热保护程序程序补充说明:在程序设计中为避免变频器在启动过程中SU信号动作,使T10、Tll、T12的定时时间大于变频器加速时间。

图4 冷却水泵节能循环运行控制程序总结本文介绍了可编程控制器、变频器在空调冷却水泵节能循环控制系统中的应用。

该系统利用了可编程控制器与变频器相结合组成的控制系统,满足了对冷却水泵节能循环控制的要求。

采用变频器、PLC对中央空调冷却水泵的改造,使冷却水泵能随空调负荷的变化而自动变速运行,从而达到节能的目的,其节电效率可达40%左右。

由于冷却水泵采用变频器软启动、软制动,大大降行噪音减小,温升降低、震动减少、负载运行顺滑平衡,电气故障比原来降低,电机的使用寿命也相应延长。

相关文档
最新文档