角函数的化简方法总结
三角函数的化简教学方法总结
三角函数的化简教学方法总结三角函数在高中数学中是一个重要的概念,它们在数理化以及工程学等领域有着广泛的应用。
化简三角函数是解决三角方程、三角恒等式和证明等问题的基础技巧。
本文将总结几种常见的三角函数化简教学方法,帮助学生更好地理解和运用三角函数。
一、借助特殊角的性质1. 利用正弦和余弦的周期性质:正弦函数和余弦函数的周期都是2π。
当我们需要化简一个三角函数时,可以将大角度化为小角度来简化计算。
2. 利用正弦和余弦的对称性质:正弦函数和余弦函数都具有关于y轴对称和关于原点对称的特点。
在化简时,可以利用这些性质来得到简化后的表达式。
3. 利用正弦和余弦的同一性质:正弦函数和余弦函数具有正负号的变化规律。
通过改变角度的正负号,可以得到等价的三角函数表达式。
二、利用三角函数的基本关系1. 正弦函数与余弦函数的关系:利用三角函数的基本定义,我们可以得到sin^2θ + cos^2θ = 1的恒等式。
在化简三角函数表达式时,可以利用这个关系来消去一个三角函数,从而简化计算。
2. 正切函数与余切函数的关系:通过定义和基本关系,可以得到tanθ = sinθ / cosθ和cotθ = cosθ / sinθ的恒等式。
在化简时,我们可以将正切和余切转化为正弦和余弦的形式。
三、使用三角函数的和差化积公式1. 正弦函数的和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB。
当需要化简含有正弦函数的表达式时,可以利用这个公式将和差形式转化为积的形式。
2. 余弦函数的和差化积公式:cos(A ± B) = cosA cosB ∓ sinA sinB。
同样地,当需要简化一个含有余弦函数的表达式时,可以利用这个公式将和差形式转化为积的形式。
四、将三角函数化简为指数函数1. 欧拉公式:e^(ix) = cosx + isinx。
利用欧拉公式,可以将三角函数表示为指数函数,从而简化计算。
三角函数求值与化简的三种常用方法
. .
化
成
鼻
參
# 參 麝 參
蘑
罄I 张
菌子 璇
_
3 ^ (
Q si
n
—
c o s ^
) 1 2' =
—
2 s i nQ
?
4 9
7
.
co
s
^
=
s
i
n
〇
—
co
s 夕
=
。
Z b b
评 析 由 + 求 出 :
si n 夕
co s 夕
^ n s i
?
co s 6 是 解 题 的 突 破 口 。
,
s i n夕 co s0
0
,
s i n夕
0
,
倒 化 简 + + 5
/
1
s in 2
/ n 2 I s —
i
0
解 易 知 > :
si n l
c o s 1 。
故 + + / l
s i n 2
/ I
—sΒιβλιοθήκη in 2 =
/ + + ( s i n1
c o s l
)
2
/(
o n c s i
种 常 用 方 法 是 : 弦 切 互 化 法 , 和 积 转
换法
和
巧用“
” 1
的
变
换法
。
下 面 举 例
分 析 , 供 大 家 学 习 与 参考 。 一 、 弦 切 互 化 法
例 已 知 + 1
t a n ( 2 0 1 9 兀
? 2
)=
,
(完整版)三角函数化简求值证明技巧
第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。
练习:已知sin(α+β)=,cos(α-β)=,求的值。
2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
三角函数的化简公式
三角函数的化简公式三角函数是数学中常见的一类函数,主要包括正弦函数、余弦函数、正切函数等。
在数学的计算和分析中,经常需要对三角函数进行化简和简化,以便更方便地进行运算和推导。
本文将介绍三角函数的一些常见的化简公式。
1. 正弦函数的化简公式正弦函数是三角函数中最常见的函数之一,其常用的化简公式包括:(1)正弦函数的和差化简公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)(2)正弦函数的倍角化简公式:sin(2x) = 2sin(x)cos(x)(3)正弦函数的平方化简公式:sin^2(x) = (1 - cos(2x))/2(4)正弦函数的和差的平方化简公式:sin^2(x ± y) = (1 - cos(2x ± 2y))/22. 余弦函数的化简公式余弦函数也是三角函数中常用的函数之一,其常用的化简公式包括:(1)余弦函数的和差化简公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)(2)余弦函数的倍角化简公式:cos(2x) = cos^2(x) - sin^2(x)(3)余弦函数的平方化简公式:cos^2(x) = (1 + cos(2x))/2(4)余弦函数的和差的平方化简公式:cos^2(x ± y) = (1 + cos(2x ± 2y))/23. 正切函数的化简公式正切函数是三角函数中与正弦函数和余弦函数密切相关的函数,其常用的化简公式包括:(1)正切函数的和差化简公式:tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))(2)正切函数的倍角化简公式:tan(2x) = (2tan(x))/(1 - tan^2(x))(3)正切函数的平方化简公式:tan^2(x) = (1 - cos(2x))/(1 + cos(2x))(4)正切函数的和差的平方化简公式:tan^2(x ± y) = ((1 - tan(x)tan(y))/(1 + tan(x)tan(y)))^2综上所述,三角函数的化简公式包括了正弦函数、余弦函数和正切函数的常见变换和简化形式。
化简三角函数式的常用方法
数学部分•知识结构与拓展高一使用2021年6月解:原式=化简三甬函懿述的\f3sin12°—3cos12°2sin12°cos12°(2cos212°—1)2^3sin(12°—60°)4V3o當用冇法■廖庆伟三角函数式的化简的常用方法有:直用公式,变用公式,化切为弦,异名化同名,异角化同角,高次化低次等。
下面举例分析,供大家学习与参考。
一、直用公式例1设函数/(rc)=sin 兀7C—sin48°评注:先化切为弦,再利用倍角公式进行转化,最后逆用两角差的正弦公式即可求值。
四、异名化同名例4已知tan0=2,则sin20+sin Ceos0—2cos2^._h亠sin20+sin^cos0一2cos'。
解:原式sin2+cos2tan20+tan Q—2_4+2—2_4tar?e十1=4+1=T°评注:先把分母用sir?。
+cos2。
代换,再把分子、分母同除以cos20即得结果。
五、异角化同角例5函数(乞)=cos(2z+詈)+sin2gTT2cos2—+1,则/X h)的最小正周期为的最大值为解:因为函数/(rc)=sin于工一解:因为jf(;r)=cos2^ccos——sin2h•-|-cos晋:r=sin7T7T,故函数/(工)sin令+—c;s2j*_欝鈕,所以函数的最小正周期为丁=弐=8。
T评注:直接利用差角公式、二倍角的余弦公式即可得到结果。
二、变用公式例2当函数夕=sin工—</3"cos h(0W 鼻V2tc)取得最大值时,jc____o解:由》=sin jc一43cos h2(cos守sin工一sin专cos町—2sin h—訂,可知当'7Tsin=1时,此函数取得最大值。
又0W h V2jt,所以rr=警o评注:三角函数公式既可正用,也可变用,变用公式是三角恒等变换的难点。
三角函数化简技巧
三角函数化简技巧将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似B x A y ++=)sin(ϕω)的标准形式;2、一元二次(即类似y=A(cosx+B)2+C )的标准形式。
二、三角化简的通性通法:1、切割化弦;2、降幂公式;3、用三角公式转化出现特殊角;4、 异角化同角;5、异名化同名;6、高次化低次;7、辅助角公式;8、分解因式。
三、例题讲解: (例1)f(x)=2cosxsin(x+3π)-3sin 2x+sinxcosx 解:f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x −−−−−→用三角公式展开2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x −−−−→降幂公式sin2x +3cos2x −−−−→辅助角公式2sin(2x +3π).(例2)y =2cos 2x -2a cos x -(2a +1) 解:y =2cos 2x -2a cos x -(2a +1) −−−→配方2(cos x -2a )2-2242+-a a . (例3)若tan x =2,则xx x x cos sin 1sin 2cos 22+--=_______.(例4)sin 4α+cos 4α=_______.解:sin 4α+cos 4α−−→(sin 2α+cos 2α)2-2sin 2αcos 2α−−→1-21sin 22α−−→1-11-cos222α⋅ =13cos 244α+. (例5)函数y =5sin x +cos2x 的最大值是_______.(例6)函数y =sin (3π-2x )+sin2x 的最小正周期是(例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2π]上的最小值为-4,那么a 的值等于 A.4 B.-6 C.-4D.-3(例8)求函数f (x )=xx x x x 2sin 2cos sin cos sin 2244-++的最小正周期、最大值和最小值.(例9)f (x )=-sin 2x +sin x +a(例10)函数y =sin 4x +cos 2x 的最小正周期为( ) A.4π B.2π C.π D.2π y =sin 4x +cos 2x −−−−−−−−−−→异角化同角+高次化低次+异角化同角(22cos 1x -)2+22cos 1x +−−→432cos 2+x −−−−→高次化低次424cos 1x++43=81cos4x +87(例11)2、函数22y sin x x =-的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π(例12)化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+(例13)设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值。
三角函数的化简详解
三角函数的化简1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
一、化简 【例1】求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2.【变式】1、求值()︒+︒︒+︒+︒10cos 110tan 60tan 110cos 40cos 2【变式】2、求0020210sin 21)140cos 1140sin 3(⋅-。
【例2】(三兄弟)已知23523sin cos παπαα<<=-,且,求αααtan 1sin 22sin 2-+的值【变式】(05天津)已知727sin(),cos 241025παα-==,求sin α及tan()3πα+.【例3】(最值辅助角)已知函数f (x )=2a sin 2x -23a sin x cos x +a +b -1,(a 、b 为常数,a <0),它的定义域为[0,2π],值域为[-3,1],试求a 、b 的值。
初中数学 如何求解三角函数的倍角化简问题
初中数学如何求解三角函数的倍角化简问题在初中数学中,求解三角函数的倍角化简问题是一个常见且重要的内容。
倍角化简是指将一个三角函数的倍角表示为一个三角函数的形式。
在本文中,我们将介绍几种常见的方法来求解三角函数的倍角化简问题。
方法1:利用三角函数的倍角公式三角函数的倍角公式是常见的三角函数恒等式,可以用来将一个角度的三角函数表示为另一个角度的三角函数的形式。
通过利用倍角公式,我们可以将一个三角函数的倍角表示为一个三角函数的形式。
例如,如果我们需要将sin(2x)表示为一个三角函数的形式,我们可以利用sin(2x) = 2sin(x)cos(x)的倍角公式,将sin(2x)表示为2sin(x)cos(x)。
方法2:利用三角函数的平方公式三角函数的平方公式是常见的三角函数恒等式,可以用来将三角函数的平方表示为其他三角函数的形式。
通过利用平方公式,我们可以将三角函数的平方表示为其他三角函数的形式,从而进行倍角化简。
例如,如果我们需要将sin^2(x)表示为一个三角函数的形式,我们可以利用sin^2(x) = (1 - cos(2x))/2的平方公式,将sin^2(x)表示为(1 - cos(2x))/2。
方法3:利用三角函数的和差公式三角函数的和差公式是常见的三角函数恒等式,可以用来将两个三角函数的和或差表示为一个三角函数的形式。
通过利用和差公式,我们可以将一个三角函数的和或差表示为一个三角函数的形式,从而进行倍角化简。
例如,如果我们需要将sin(x + y)表示为一个三角函数的形式,我们可以利用sin(x + y) = sin(x)cos(y) + cos(x)sin(y)的和差公式,将sin(x + y)表示为sin(x)cos(y) + cos(x)sin(y)。
方法4:利用三角函数的倒数关系三角函数的倒数关系是常见的三角函数性质,可以用来将一个三角函数的倒数表示为另一个三角函数的形式。
通过利用倒数关系,我们可以将一个三角函数的倒数表示为一个三角函数的形式,从而进行倍角化简。
三角函数化简求值的技巧
三角函数化简与求值常用技巧
三角函数在高考中通常以中低档题型出现,难度不大,但由 于三角公式的特殊性,解题中往往也涉及一些小的变换技 巧,如果处理得当,往往可以事半功倍,快速而准确地得到 正确结论.通常情况下,三角变换应从“角度、函数、常数、 次数、结构”等几方面着手解决.
一、三角变换,角为先锋 三角函数作为一种特殊函数,其“角”的特殊性不容忽视,因此我们在三角函数恒等变换 中,应该首先注意角的形式,从统一角的角度出发,往往能够达到事半功倍的效果.
【例 1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
【变式演练】已知 sin
x-π
4
=3,则
sin
2x 的值为(
)
5
A.- 7 25
B. 7 25
C. 9 25
D.16 25
【解析】法一、sin 2x=cos(2x- π )=1-2sin2(x- π )=1-2×(3)2= 7 ,选 B.
2
4
5 25
法二、依题意得 2(sin x-cos x)=3,1(sin x-cos x)2= 9 ,1-sin 2x=18,sin 2x= 7 ,选
C、
9 13
D、
13 9
【例
1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
C、
9 13
D、
13 9
【分析】依题意,可求得 tan α=
三角函数式的化简.docx
三角函数式的化简三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将 较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出 数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量 不含根式等.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成 同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降 低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中 的差异,再选择适当的三角公式恒等变形.(一) 知识点 1、辅助角公式tzsin a+bcos a =yja + /72sin(«+cp),"cos (p= _______________ ,其中v si“0= ------------------------ ,btan 一, V Y a2、降幕公式:・2sins= _________________, cos a= _________________ (二)例题讲解⑴求./(X )的最小正周期;(2)当«e[0,兀]时,若./(«) = 1,求a 的值.审题视角(1)在/(X )的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、 降幕等转化方法.(2)当/(x )=dsinx+方cosx 的形式时,可考虑辅助角公式.=-\/3cos 2r+sin xcos x —萌 siiFx+sin xcos 兀所以最小正周期T=n.(2)由 /((X )— 1,得 2sin (2a+守=1,厂 *7又 aW[0,兀],所以 2c (+je 专,-y 所以2a+|=y 或2°+申=晋,角卩称为辅助角.sin a cos a - ___________xcos x.[2分][6分][8分]例1、(12分)已知函数y (x )=2cosin 2x+sin ⑴因为X%)=2cossin 2x+sin xcosx1 • (2010-福建)计算 sin 43°cos 13°B 誓—cos 43°sin 13。
三角函数的运算与化简
三角函数的运算与化简三角函数是数学中常见的一类函数,用于描述角度与边长之间的关系。
它们在几何学、物理学、工程学等众多领域有着广泛的应用。
在本文中,我将讨论三角函数的运算与化简。
在三角函数中,最常见的三个函数是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数可以通过定义、图像和特性来进行研究。
首先,我们来看一下这些函数的定义。
正弦函数表示角度与对应的纵坐标之间的关系,其定义为:sinθ = y / r,其中θ是角度,y是对应角度下的纵坐标,r是半径。
余弦函数则表示角度与横坐标之间的关系,其定义为:cosθ = x / r,其中x是对应角度下的横坐标。
正切函数定义为:tanθ = y / x,可以看作是正弦函数与余弦函数的比值。
接下来是三角函数的图像。
正弦函数的图像是一条连续的波浪线,振幅在-1到1之间,周期为2π。
余弦函数的图像与正弦函数相似,但是平移了一个四分之一个周期。
正切函数的图像也是波浪形状,但是它有垂直渐近线,即在90度和270度处有不连续点。
三角函数还有一些特性需要了解。
例如,正弦函数和余弦函数是周期函数,它们的周期是2π。
正切函数也是周期函数,但它的周期是π。
此外,这些函数都有特定的定义域和值域。
在运算和化简三角函数时,我们可以利用它们的周期性、对称性和特殊角的数值来简化计算过程。
例如,我们可以利用正弦函数和余弦函数的和差公式来处理一些复杂的三角函数表达式。
其中,正弦函数的和差公式为:sin(A ± B) = sinAcosB ± cosAsinB;余弦函数的和差公式为:cos(A ± B) = cosAcosB ∓ sinAsinB。
此外,我们还可以利用双角公式和半角公式来进行三角函数的化简。
双角公式包括正弦函数的双角公式、余弦函数的双角公式和正切函数的双角公式。
半角公式则可以将正弦函数和余弦函数表示为较小角的函数。
除了以上提到的运算和化简方法,我们还可以借助计算工具如计算器或数学软件来进行三角函数的具体计算和化简。
三角函数辅助角公式化简
三角函数辅助角公式化简三角函数辅助角公式是三角函数中的基本公式之一,它可以帮助我们化简和简化复杂的三角函数表达式。
在三角函数辅助角公式中,我们可以利用角度和距离的关系来简化三角函数的计算。
辅助角公式包括正弦函数的辅助角公式,余弦函数的辅助角公式以及正切函数的辅助角公式。
下面分别对这三个公式进行详细讲解。
1.正弦函数的辅助角公式正弦函数的辅助角公式是sin(a+b) = sin a cos b + cos a sin b。
该公式可以用来化简正弦函数的和角。
要使用这个公式,我们需要确定两个角度a和b,并且知道这两个角度的正弦和余弦值。
首先,我们可以使用sin(a) = cos(90°-a)和cos(a) = sin(90°-a)的关系,来得到a或90°-a的正弦和余弦值。
之后,我们可以使用sin(a+b) = sin a cos b+ cos a sin b来合并这两个角度的正弦和余弦值。
最终,我们可以得到sin(a+b)的值,从而简化和角的计算。
2.余弦函数的辅助角公式余弦函数的辅助角公式是cos(a+b) = cos a cos b - sin a sin b。
该公式可以用来化简余弦函数的和角。
与正弦函数的辅助角公式类似,我们需要确定两个角度a和b,并且知道这两个角度的正弦和余弦值。
首先,我们可以使用cos(a) = sin(90°-a)和sin(a) = cos(90°-a)的关系,来得到a或90°-a的正弦和余弦值。
之后,我们可以使用cos(a+b) =cos a cos b - sin a sin b来合并这两个角度的正弦和余弦值。
最终,我们可以得到cos(a+b)的值,从而简化和角的计算。
3.正切函数的辅助角公式正切函数的辅助角公式是tan(a+b) = (tan a + tan b) / (1 - tan a tan b)。
该公式可以用来化简正切函数的和角。
三角函数的化简详解.docx
A B C B【例4] 在中,若sin2_2 +sin2y +sin2y =cos2_2 ,tan—• tan —=-.2 2 3B 满足关系式:V3 (tan a • t^n B +a) +tan a =0,则tan B 二c- f(1+a)D- T(1~a) A. V3 (1+a) B. V3 (1 —爲)三角函数的化简1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如& =(© + "丿—0,2Q =(Q +"丿+ (©-0丿等,把所求角用含己知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察, 发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
一、化简[例求值.2sin2(P + cosl0o + tan20。
sin 10°esc 40° + cot 80°2 cos 40° + cosl 0°(1 + tan60°tanl 0°) Jl + cosl0°【例2】(三兄弟)已知s 阮普,"罟,求畔翥卫的值【变式】(05天津)已知sin (&) =晋,COS 2*£,【例3](最值辅助角)已知函数A^)=2asin 2T —273 asinxcosA+a+b —1,(弘b 为常数,a<0),它的定 义域为[0,兰],值域为[ — 3,1],试求禺b 的值。
三角函数的化简与求值
1.三角恒等变换的两原则(1)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式。
(2)消除异差:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构式等方面的差异。
2.三角函数式的化简 (1)化简要求①三角函数名称尽量少;②次数尽量低;③能求值的尽量求值; ④尽量使分母不含三角函数;⑤使被开方数不含三角函数. (2)化简思路对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用,另外,还可以用切割化弦、变量代换、角度归一等方法 (3)化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂,和差化积,积化和差等。
3.三角恒等式的证明 (1)证明三角恒等式的方法观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),确定从该等式的哪些证明(也可两边同时化简),当从解决差异方面不易入手时,可采用转换命题法或用分析法等。
(2)证明三角条件等式的方法首先观察条件与结论的差异,从解决这一差异入手,确定从结论开始.通过变换,将已知表达式代入得出结论,或通过变换已知条件得出结论,如果这两种方法都证不出来,可采用分析法;如果已知条件含参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法等。
1. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),如 (1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ (答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729); (3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)(2)三角函数名互化(切化弦),如 (1)求值sin 50(13tan10)+(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
三角函数的化简求值
三角函数的化简求值一.主要公式:1.诱导公式:=-)sin(απ =-)c o s (απ =+)s i n (απ=+)cos(απ =-)s i n (α =-)cos(α=-)2sin(απ =-)2c o s (απ =+)2sin(απ =+)2c o s (απ2.和、差角公式: =+)sin(βα =-)s i n (βα ; =+)cos(βα =-)c o s (βα ; =+)tan(βα =-)t a n (βα ; 3.二倍角公式:=α2sin =α2c o s = = =α2tan ; 4.降幂公式: =2sin 2α=2c o s2α=2t a n2α;5.半角公式sin 2α= c o s 2α= t a n 2α= ;6.升幂公式:=+αcos 1 ,=-αcos 1 ;=+αsin 1 ,=-αsin 1 。
7.万能公式:=αsin =αcos =αtan ; 8.三角形ABC 中的相关公式:=+)sin(B A =+)cos(B A =+)t a n (B A =+2sinBA =+2cosB A =+2tan B A ; 9.常用公式结论:=+ααcot tan =ααcos sin =-α2sin 1 =+α2sin 1 =+βαtan tan =-βαt a n t a n ;sin 3α= cos3α= 1tan 1tan αα+=-10.辅助角公式:=+ααcos sin = =+ααcos 3sin ==+x b x a cos sin = 。
二、例题分析:例1已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值.例2.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan的值.((Ⅱ)求β. ( π3β=)例3.已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.例 4.是否存在锐角,αβ,使得①223παβ+=;②22tantan αβ=同时成立?若存在,求出,αβ;若不存在,说明理由。
三角函数化简的方法技巧
三角函数化简的方法技巧三角函数是数学中常见的函数,它们在许多领域中都有广泛的应用。
化简三角函数是数学中的重要技巧,它可以简化复杂的表达式,使计算更加简单和直观。
以下是一些常用的三角函数化简方法和技巧。
1. 基本公式使用三角函数的基本公式是化简的基础。
例如,正弦函数的基本公式是:$$\sin^2\theta + \cos^2\theta = 1$$这个公式可以用来化简包含正弦函数的表达式。
根据需要,还可以使用余弦函数、正切函数和余切函数的基本公式。
2. 和差化积公式和差化积公式是一种常见的化简方法。
对于两个角度$\alpha$ 和 $\beta$,我们有以下的和差化积公式:$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha\sin\beta$$$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha\sin\beta$$这些公式可以用来化简包含和差角的三角函数表达式,并将它们转化为乘积形式。
3. 二倍角公式二倍角公式是化简三角函数的另一种常用方法。
对于角度$\theta$,我们有以下的二倍角公式:$$\sin2\theta = 2\sin\theta\cos\theta$$$$\cos2\theta = \cos^2\theta - \sin^2\theta$$这些公式可以用来将包含二倍角的三角函数表达式转化为简单的乘积形式。
4. 三倍角公式类似于二倍角公式,三倍角公式也是化简三角函数的方法之一。
对于角度 $\theta$,我们有以下的三倍角公式:$$\sin3\theta = 3\sin\theta - 4\sin^3\theta$$$$\cos3\theta = 4\cos^3\theta - 3\cos\theta$$这些公式可以用来将包含三倍角的三角函数表达式转化为简单的表达形式。
利用数轴化简三角函数
利用数轴化简三角函数引言数轴是一种重要的数学工具,可以用来可视化数值的大小关系和运算。
在解决三角函数的简化问题时,利用数轴能够更直观地理解和操作三角函数的性质。
本文将介绍如何利用数轴简化三角函数。
数轴上的角度首先,我们需要了解如何在数轴上表示角度。
在数轴上,正方向为向右,负方向为向左。
以原点为起点,沿数轴顺时针方向为正角度,逆时针方向为负角度。
每个角度单位(如度、弧度)对应数轴上的一定长度。
三角函数的性质三角函数包括正弦函数(sin),余弦函数(cos),正切函数(tan)等。
这些函数在数轴上具有特定的性质,可以利用这些性质来简化计算。
例如,在一个单位圆上,对于任意一个角度θ,其正弦值等于数轴上与该角度相对应的点的纵坐标,余弦值等于横坐标,正切值等于纵坐标除以横坐标。
利用数轴简化三角函数在利用数轴简化三角函数时,可以按照以下步骤进行:1. 确定要简化的角度或三角函数表达式。
2. 将角度用数轴表示,确定其所在的位置和方向。
3. 利用三角函数的性质,利用数轴上相应位置的纵坐标或横坐标来替代三角函数。
4. 进行相应的计算和化简。
示例以下是一个简化三角函数的示例:给定角度θ = 30°,要简化sin(θ)。
1. 使用数轴表示角度θ,在数轴上找到 30°对应的位置,确定其为正方向。
2. 观察数轴上该位置的纵坐标,发现其对应的正弦值为 0.5。
3. 替代sin(θ) 为 0.5。
4. 简化后的表达式为sin(θ) = 0.5。
结论通过利用数轴,我们可以更直观地理解和操作三角函数。
借助数轴,可以简化三角函数的计算和化简过程。
利用数轴化简三角函数在解决数学和物理问题中具有重要的应用价值。
参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法归纳:
化简三角函数的方法:
①切割化弦法
②异角化同角
③角的变换
④分式的三角函数式要将分子、分母进行通分,整理
⑤根式利用平方关系及倍角公式去根号
⑥遇到同角的正弦和余弦的和或者差考虑利用辅助角公式
⑦遇到1考虑用常值代换
例1.化简22sin tan cos cot 2sin cos cot θθθθθθθ⋅+⋅+⋅-
例2. 化简2sin()2sin()cos()333
x x x πππ+
+--
例3. 已知5sin 2sin 2α=o ,则tan(1)tan(1)αα+=-o o
例4.
=
例5. 化简
1sin cos 2sin cos 1sin cos αααααα
+++++
例6.
例7. 求值cot 20cos10tan 702cos 40⋅-o o o o o
例8. 化简1tan151tan15+-o
o
函数与数列的综合题:
已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈满足
()()(),f ab af b bf a =+ (2)2f =,(2)n n f a n =()n N +∈,(2)2
n n n f b = ()n N +∈。
下列结论:①(0)(1)f f = ,②()f x 是偶函数 ,③数列{}n a 为等比数列 ,④数列{}n b 为等差数列,其中正确的是 。