江苏省仪征市月塘中学九年级数学下册《二次函数》单元综合测试(无答案) 新人教版

合集下载

人教版九年级数学《二次函数》单元测试题(含答案)

人教版九年级数学《二次函数》单元测试题(含答案)

人教版九年级数学《二次函数》单元测试题一、选择题(每题3分,共18分):1.下列函数中,是二次函数的为( )A.1(3)2y x x =- B.2(2)(2)y x x x =+--C.34y x =D.3y x =2.抛物线23(2)5y x =-+的顶点坐标是( )A.(2,5)-B.(2,5)--C.(2,5)D.(2,5)-3.将抛物线223y x x =-+向左平移1个单位,再向下平移3个单位,则所得的抛物线的解析式为( )A.21y x =+B.21y x =-C.21y x =-+D.21y x =--4.若二次函数2y x mx =+图象的对称轴是直线3x =,则关于X 的方程27x mx +=的解是( )A.120,6x x ==B.121,7x x ==C.121,7x x ==-D.121,7x x =-=5.如图,二次函数 2(0)y ax bx c a =++>的图象与直线1y =的交点坐标为(1,1),(3,1)两点,则不等式21ax bx c ++>的解集为( )A.1x >B.13x <<C.1x <或x>3D.x>3 (第5题图)6已知.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+的图象可能是下面四个图象中的( )A. B. C. D.二、填空题(每题3分,共18分):7.若抛物线2(2)y a x =-的开口向上,则a 的取值范围是 .8.将抛物线22y x =-的向上平移3个单位长度,所得到的抛物线解析式是 . 9.二次函数232y x x =-+的图象不经过第 象限.10.已知抛物线24y x x a =-+与坐标轴的有两个公共点,则a 的值是 . 11.已知二次函数23y ax bx =+-自变量X 的部分取值和对应的函数值如下表:则在实数范围内能使5y >成立的X 的取值范围是 .12.如图,在边长为6的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当E 到达B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小. (第12题)三、解答题(每题10分,共60分):13. 已知抛物线 2y x bx c =++经过点(1,4)-和(-1,2),求这条抛物线的解析式.14.已知抛物线2(3)2y a x =-+经过点(1,-2)。

(完整版)九年级二次函数综合测试题及答案,推荐文档

(完整版)九年级二次函数综合测试题及答案,推荐文档
3. 抛物线 y=2(x-3)2 的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上
2、4. 抛物线
的对称轴是( )
A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
21.已知:如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,其中 A 点坐标为(-1,0),点 C(0,5),另抛物线经过点(1,8),M 为它的顶点.
我去 人 (1也)求就抛物有线的人解!析式为; UR扼腕入站内信不存在向你偶同意调剖沙
(2)求△MCB 的面积 S△MCB.
6. 二次函数 y=ax2+bx+c 的图象如图所示,则点
A. 一 B. 二 C. 三 D. 四
在第___象限( )
7. 如图所示,已知二次函数 y=ax2+bx+c(a≠0)的图象
的顶
点 P 的横坐标是 4,图象交 x 轴于点 A(m,0)和点 B,且
m>4,那么 AB 的长是( )
10.把抛物线
的图象向左平移 2 个单位,再向上
平移 3 个单位,所得的抛物线的函数关系式是( )
A.
B.
C.
D.
二、填空题(每题 4 分,共 32 分) 11. 二次函数 y=x2-2x+1 的对称轴方程是______________.
12. 若将二次函数 y=x2-2x+3 配方为 y=(x-h)2+k 的形式,则 y=________.

九年级 二次函数单元综合测试(Word版 含答案)

九年级 二次函数单元综合测试(Word版 含答案)

九年级二次函数单元综合测试(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD =QE =2,DQ =A 1'E =﹣m ,∴点A 1'的坐标为(﹣m +1,m ﹣2),代入y =﹣x 2+2x +3中,解得,m =﹣3或m =2(舍),∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题:(1)填空:1a = ,1b = ;(2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值;(2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小.【详解】解:(1)y 1=0时,a 1x (x -b 1)=0,x 1=0,x 2=b 1,∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1,∴B 1(12b ,12b ),D 1(12b ,12b -), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2,∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1,故答案为1,2;(2)当20y =时,有()220a x x b -=,解得2x b =或0x =,()22,0A b ∴.由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-. 解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=,解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯.②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.3.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =-【解析】【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,q n <-得21n q -<,则当()2max B C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()max B C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1,则21:1C y x =+,(2)设(),0B q ,则()2,0C q -,∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦ 2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <- 21n q -<∴,∴()2max B C ''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-, 即()22220(21)20(1)B C n n ''=--=-,∴()max 1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭, ∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-,∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴, ∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解), 故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.4.如图,抛物线y =ax 2+bx +2经过点A(−1,0),B(4,0),交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在,请求出点D 坐标;若不存在,请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【答案】(1)213222y x x=-++(2)存在,D(1,3)或(2,3)或(5,3-)(3)10【解析】【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【详解】解:(1)∵抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),∴2016420a ba b-+=⎧⎨++=⎩,解得:1232ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:213222y x x=-++;(2)由题意可知C(0,2),A(-1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=12AB•OC=12×5×2=5,∵S△ABC=23S△ABD,∴S△ABD=315522⨯=,设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =; 当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3); (3)∵AO=1,OC=2,OB=4,AB=5,∴22125AC =+=,222425BC =+=,∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°,∴25CF BC ==∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0), 设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩, ∴直线BE 解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩,∴点E 坐标为:(5,3)-,∴BE == 【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.5.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a , ∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.6.如图1,在平面直角坐标系中,O 为原点,抛物线2y ax bx c =++经过、、A B C 三点,且其对称轴为1,x =其中点(C ,点()3,0B .(1)求抛物线的解析式;(2)①如图(1),点D 是直线CB 上方抛物线上的动点,当四边形DCAB 的面积取最大值时,求点D 的坐标;②如图(2),连接,CA 在抛物线上有一点,M 满足12MCB ACO ∠=∠,请直接写出点M 的横坐标.【答案】(1)23233=y x ;(2)①D 3532,,②233+2 【解析】 【分析】(1)根据点(3C ,点()3,0B ,利用待定系数法,可得函数解析式;(2)①先求出直线BC 的解析式,当直线m 与抛物线只有一个交点时,点D 到BC 的距离最远,此时△BCD 取最大值,故四边形DCAB 有最大值,求出b 的值代入原式即可得到答案; ②根据题干条件抛物线上有一点,M 满足12MCB ACO ∠=∠,通过利用待定系数法利用方程组求出直线BE 的解析式,可得答案. 【详解】解:(1)由题意得:120933baa b⎧-=⎪⎨⎪=++⎩解得323a,b故抛物线的解析式是23233=-++y x x.图(1)图(2)(2)①设直线BC的解析式为3.∵直线BC过点B(3,0),∴3则k=33-,故直线BC解析式为y=33设直线m解析式为3y x b,且直线m∥直线BC当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令23323b3+=+23-333330x x b当2Δ(-33)-43(333)0b时直线m与抛物线有唯一交点解之得:73,b代入原式可求得:32x = ∴D 353(,).24图(3)过D 作DP ∥y 轴交CB 于点P ,△DCB 面积=△DPC 面积+△DPB 面积,∴D 3532⎛ ⎝⎭②存在,点M 的横坐标为313+2 解题提示:如图3符合条件的直线有两条: CM 1和CM 2(分别在CB 的上方和下方) ∵在Rt △ACO 中,∠ACO=30°,在Rt △COB 中,∠CBO=30°, ∴∠BCM 1=∠BCM 2=15° ∵△BCE 中,∠BCE=∠BEC 2=15° ∴BC=BE=23则E (33+0)设直线CE 解析式为:3y kx =+ ∴0(323)3k解之得:32 ∴直线CE 解析式为:(32)3yx∴2323333(32)3y x x y x ⎧=-++⎪⎨⎪=⎩解得:x 1=0,x 23-1∵ 在Rt △OCF 中,∠CBO=30°,∠BCF=15°∴在Rt△COF中,∠CFO=45°∴OC=OF=3∴F(3,0)∴直线CF的解析式为-3y x∴23233-3y x xy x⎧=-++⎪⎨⎪=+⎩解之得:30x=(舍去),43+2x即点M的横坐标为:23-1或3+2【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式,理解坐标与图形性质是解题关键.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或(舍去0和),故x=3,则x2﹣2x﹣3=2﹣,故点P(3,2﹣).综上,点P的坐标为:(2,﹣3)或(3,2﹣).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.定义:在平面直角坐标系中,O为坐标原点,设点P的坐标为(x,y),当x<0时,点P的变换点P′的坐标为(﹣x,y);当x≥0时,点P的变换点P′的坐标为(﹣y,x).(1)若点A(2,1)的变换点A′在反比例函数y=kx的图象上,则k= ;(2)若点B(2,4)和它的变换点B'在直线y=ax+b上,则这条直线对应的函数关系式为,∠BOB′的大小是度.(3)点P在抛物线y=x2﹣2x﹣3的图象上,以线段PP′为对角线作正方形PMP'N,设点P 的横坐标为m,当正方形PMP′N的对角线垂直于x轴时,求m的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或;(4) n=﹣8,n=﹣2,n=﹣3. 【解析】 【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论; (2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可. 【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =kx中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中.得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+.∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°. 故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:121122m m ==(不合题意,舍去).所以m =③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ). 将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:1232132122m m +-==,(不合题意,舍去). 所以321m +=. 综上所述:m 的取值范围是m <0,m =113+或m =321+. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称. ∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ). ①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ). 代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8. ②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3. 综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3. 【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.9.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(12-+,32)或(12--,32) 【解析】 【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可. 【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3), ∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,.∴抛物线的解析式为y=-x 2-2x+3. 设直线AC 的解析式为y=kx+n . 将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1. (2)过点P 作PQ ∥y 轴交AC 于点Q . 设点P(m ,-m 2-2m+3),则Q(m ,-m+1). ∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2. ∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++.∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154).(3)能.∵y=-x 2-2x+3,点D 为顶点, ∴点D(-1,4),令x=-1时,y=-(-1)+1=2, ∴点E(-1,2). ∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形. ∵点M 在直线AC 上,点N 在抛物线上, ∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3). ①当点M 在线段AC 上时,点N 在点M 上方,则 MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2. ∴-t 2-t+2=2,解得:t=0或t=-1(舍去). ∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:t=117-+或t=117--. ∴此时点M 的坐标为(117-+,317-)或(117--,317+). 综上所述,满足条件的点M 的坐标为:(0,1),(1172-+,3172-)或(1172--,3172+). 【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t =【解析】 【分析】 (1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114,∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-, ∴251(2)PF t =•+-, 在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴512t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

〖人教版〗九年级数学下册第二章二次函数单元测试卷

〖人教版〗九年级数学下册第二章二次函数单元测试卷

〖人教版〗九年级数学下册第二章二次函数单元测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 二次函数的一次项系数是()A. B. C. D.2. 比较二次函数与的图象,下列结论错误的是()A.对称轴相同B.顶点相同C.图象都有最高点D.开口方向相反3. 已知:二次函数,下列说法错误的是()A.当时,随的增大而减小B.若图象与轴有交点,则C.当时,不等式的解集是D.若将图象向上平移个单位,再向左平移个单位后过点,则4. 如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为,两侧距离地面高处各有一个挂校名横匾用的铁环,两铁环的水平距离为,则校门的高约为(精确到,水泥建筑物的厚度忽略不计)()A. B. C. D.5. 设二次函数,当时,总有,当时,总有,那么的取值范围是()A. B.C. D.6. 已知二次函数,当从逐渐变化到的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动7. 如图,二次函数的图象开口向上,对称轴为直线,图象经过,下列结论:①,②,③,④,其中正确的是()A.①②③④B.①③④C.①③D.①②8. 二次函数的图象通过和两点,但不通过直线上方的点,则其顶点纵坐标的最大值与最小值的乘积为()A. B. C. D.9. 坐标平面上,若移动二次函数的图象,使其与轴交于两点,且此两点的距离为个单位,则移动方式可为()A.向上移动个单位B.向下移动个单位C.向上移动个单位D.向下移动个单位10. 如果抛物线经过点,和,则的值为()A. B. C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 将抛物线向右平移个单位后,得到的新抛物线解析式是________.12. 一根长为的铁丝围成一个矩形框,要想使铁丝框的面积最大,边长分别为________.13. 在边长为的正方形中间挖去一个边长为的小正方形,如果设剩余部分的面积为,那么关于的函数解析式为________.14. 已知二次函数,当,取得最小值为,则________,________.15. 已知二次函数的图象经过点,且与轴交于点,若,则该二次函数解析式中,一次项系数为________,常数为________.16. 某果园有棵枇杷树.每棵平均产量为千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量千克,若设增种棵枇杷树,投产后果园枇杷的总产量为千克,则与之间的函数关系式为________.17. 二次函数的图象是由的图象向左平移个单位,再向下平移个单位得到的,则________,________.18. 某商店从厂家以每件元的价格购回一批商品,该商店可自行定价.若每件商品售价为元,则可卖出件,但物价部门限定每件商品加价不能超过进价的,如果要使商店获得利润最多,每件商品定价应为________元.19. 已知抛物线与轴交于点、,与轴交于点,则能使为等腰三角形的抛物线的条数是________.20. 在边长为的正方形中间剪去一个边长为的小正方形,剩下的四方框形的面积为,与之间的函数关系是________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 已知一个二次函数的图象经过点,,,求这个二次函数的解析式.22. 已知二次函数.求函数图象的对称轴和顶点坐标;求这个函数图象与轴的交点坐标.23. 已知抛物线的顶点为,经过原点且与轴另一交点为.求点的坐标;若为等腰直角三角形,求抛物线的解析式;现将抛物线绕着点旋转后得到抛物线,若抛物线的顶点为,当,且顶点在抛物线上时,求的值.24. 某商店购进一批单价为元的商品,如果按每件元出,那么每天可销售件,经调查发现,这种商品的销售单价每提高元,其销售量相应减少件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?25. 鹏鹏童装店销售某款童装,每件售价为元,每星期可卖件,为了促销,该店决定降价销售,经市场调查反应:每降价元,每星期可多卖件.已知该款童装每件成本元.设该款童装每件售价元,每星期的销售量为件.(1)求与之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得元的利润?②若该店每星期想要获得不低于元的利润,则每星期至少要销售该款童装多少件?26. 某种蔬菜的销售单价与销售月份之间的关系如图所示,成本与销售月份之间的关系如图所示(图的图象是线段,图的图象是抛物线)(1)已知月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益售价-成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜、两个月的总收益为万元,且月份的销售量比月份的销售量多万千克,求、两个月的销售量分别是多少万千克?答案1. D2. C3. B4. B5. B6. C7. D8. B9. B10. C11.12. ,13.14.15. 或或16.17.18.19.20.21. 解:设二次函数解析式为,把三点分别代入得,,,联立方程组解得,,,故这个二次函数的解析式.22. 解:∵,∴对称轴为,顶点坐标为;令得,解得或,∴函数图象与轴的交点坐标为和.23. 解:∵抛物线经过原点,∴,∴当时,则,解得:或,∴抛物线与轴另一交点坐标是;∵抛物线,(如图)∴顶点坐标为,∵为等腰直角三角形,∴,∵抛物线过原点,∴,解得:,∴抛物线;∵,抛物线过原点,(如图)∴,∴,设,又因为点,∴,∴即点的坐标是,∵顶点在抛物线上,∴,解得:或.24. 解:设销售单价定为元,每天所获利润为元,则•所以将销售定价定为元时,每天所获销售利润最大,且最大利润是元25. .设每星期利润为元,.∴时,最大值.∴每件售价定为元时,每星期的销售利润最大,最大利润元.①由题意:解得:或,∴当每件童装售价定为元或元时,该店一星期可获得元的利润.②由题意::,解得:,∵.,∴每星期至少要销售该款童装件.26. 当时,,,∵,∴月份出售这种蔬菜每千克的收益是元.设,.将、代入,,解得:,∴;将代入,,解得:,∴.∴.∵,∴当时,取最大值,最大值为,即月份出售这种蔬菜,每千克的收益最大.当时,.设月份的销售量为万千克,则月份的销售量为万千克,根据题意得:,解得:,∴.答:月份的销售量为万千克,月份的销售量为万千克.。

江苏省仪征市第三中学九年级下数学第5章《二次函数》同步测试

江苏省仪征市第三中学九年级下数学第5章《二次函数》同步测试

九年级下数学第5章《二次函数》同步测试一、选择题:1、抛物线y=ax2与y=2x2形状相同,则a为()A.2B.-2C.1D.1/22、已知抛物线,若点(,5)与点关于该抛物线的对称轴对称,则点的坐标是()A.(4,5)B.(-1,2)C.(-3,3)D.(4,-2)3、函数y=kx与y=−kx2+k(k≠0)在同一直角坐标系中的图象可能是()4、若二次函数y=mx2-3x+2m-m2的图像过原点,则m的值是()A.2B.-2C.1D.0或25、抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6、如图所示的二次函数y=ax2+bx+c的图象中,小琪同学观察得出了下面四条信息:(1)c>1;(2)2a-b<0;(3)a+b+c<0;你认为其中错误..的有()A.2个B.3个C.4个D.1个7、如图,抛物线的对称轴是直线,且经过点P(3,0),则的值为()A.0B.3C.1D.0或28、对于二次函数y=ax 2,已知当x 由1增加到2时,函数值减少4,则常数a 的值是()A.-4/3 B.-2/3 C.1 D.1/29、若点A(m,y 1),B(m+1,y 2)都在二次函数y=ax 2+4ax+2(a>0)的图象上,且y 1<y 2,则m 的取值范围是()A.m>-5/2 B.m<-2/5 C.1<m<5/2 D.0<m<210、二次函数y=ax 2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax 2+bx+c﹣3=0有两个不相等的实数根11、二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >3b ;(3)8a+7b+2c >0;(4)若点A(﹣3,y 1)、点B(﹣,y 2)、点C(,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确结论()A.(1)(3)(5)B.(1)(2)(4)C.(3)(4)D.(2)(5)12、如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题:13、抛物线y=-2x2+1的对称轴是.14、将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是.15、若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.16、如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是.17、如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.18、已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点、、,19、已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为。

〖人教版〗九年级数学下册26章二次函数单元考试题

〖人教版〗九年级数学下册26章二次函数单元考试题

〖人教版〗九年级数学下册26章二次函数单元考试题 创作人:百里灵明 创作日期:2021.04.01 审核人: 北堂正中创作单位: 北京市智语学校一、选择题(每题4分,共48分)1、已知函数 y=(m+2)是二次函数,则m 等于( ) A .±2 B .2 C .﹣2 D .±1 2、图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( ) A . y=﹣2x 2 B .y=2x 2 C .y=﹣x 2 D . y=x 23、若A ( )1,413y -,B ( )2,45y -,C ( )3,41y 为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( )A 、123y y y <<B 、213y y y <<C 、312y y y <<D 、132y y y <<4、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( )A. 0B. -1C. 1D. 2第4题 第6题 第9题5、下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )x 6.17 6.18 6.19 6.202y ax bx c =++ 0.03- 0.01- 0.02 0.04A .6C .6.18 6.19x <<D .6.19 6.20x <<6、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图5所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个7、若函数y=mx 2+(m+2)x+m+1的图象与x 轴只有一个交点,那么m 的值为( )A.0 B.0或2 C.2或﹣2 D.0,2或﹣28、下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④9、如图,已知二次函数y=﹣x2+2x,当﹣1<x<a时,y随x的增大而增大,则实数a的取值范围是()A.a>1 B.﹣1<a≤1 C.a>0 D.﹣1<a<210、向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒11、如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.12、如图,点A(a,b)是抛物线上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=﹣bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)13、如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为.第13题第14题第15题14、如图,抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,则不等式ax2+bx<kx的解集为.15、如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.16、如图,将2个正方形并排组成矩形OABC,OA和OC分别落在x轴和y轴的正半轴上.正方形EFMN的边EF落在线段CB上,过点M、N的二次函数的图象也过矩形的顶点B、C,若三个正方形边长均为1,则此二次函数的关系式为.17、二次函数y=x2+(2+k)x+2k与x轴交于A,B两点,其中点A是个定点,A,B分别在原点的两侧,且OA+OB=6,则直线y=kx+1与x轴的交点坐标为.18、已知有9张卡片,分别写有1到9这就个数字,将它们的背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,若数a使关于x不等式组有解,且使函数在的范围内y随着x的增大而增大,则这9个数中满足条件的a的值的概率是;三、解答题(6分+8分=14分)19、通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标(1)y=x2-4x+5 (2) y=-3x2+2x-120、求下列函数的解析式(1)抛物线y=x2-2x-4向左平移5个单位长度,再向上平移3个单位长度;(2)抛物线经过点(2,0),(0,-2),(-2,3)三点。

九年级数学下册 第26章二次函数单元综合测试卷 人教新课标版

九年级数学下册 第26章二次函数单元综合测试卷 人教新课标版

第二十六章 二次函数综合测试卷一、填空:(30分) 1.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x 2上.3.已知二次函数y=x 2-2(k+1)x+k 2+2的x 轴交点的横坐标分别为x 1,x 2,且(x 1+1)(x 2+1)=8,则k 的值为__________.4.如果y 与x 2成正比例,并且它的图象上一点P 的横坐标a 和纵坐标b 分别是方程x 2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x 2-4x+11的对称轴是直线________,顶点坐标为________. 6.如果抛物线y=-23x 2+(m+2)x+27m 的对称轴为直线x=32,则m 的值为_________. 7.把函数y=5x 2+10mx+n 的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x 2+30x+44,则m=_______,n=_______.8.二次函数y=ax 2+bx+c 中的a 、b 、c 满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a (x+1)(x-4)与x 轴交于A 、B 两点,与y•轴交于点C .•若∠ACB=90°,则a 的值为________.10.如图,二次函数y=x 2-ax+a-5的图象交x 轴于点A 和B ,交y 轴于点C ,当线段AB•的长度最短时,点C 的坐标为________.二、选择题:(20分)11.在同一直角坐标系内,二次函数y 1=ax 2+bx+c 与y 2=cx 2+bx+a 的图象大致为( )12.在同一直角坐标系内,函数y=ax 2+bx 与y=bx(b ≠0)的图象大致为( )13.给出下列四个函数:y=-2x ,y=2x-1,y=3x(x>0),y=-x 2+3(x>0),其中y 随x•的增大而减小的函数有( )A .3个B .2个C .1个D .0个14.当m取任何实数时,抛物线y=-2(x-m)2-m的顶点所在的直线为()A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2(x+m)2-m2的顶点所在的曲线为()A.y=x2 B.y=-x2 C.y=x2(x>0) D.y=-x2(x>0)16.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于x轴对称,则a、b、c•的值分别是()A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c 的解析式为()A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在()A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,如果用x作为这条路线长度的近似值,当x=p时,(x-x1)2+(x-x2)2+…+(x-x n)2最小,则p的值为()A.1n(x1+x2+…+x n) B.1n(x1-x2-…-x n)C.1nn+(x1+x2+…+x n) D.1nn+(x1+x2+…+x n)20.已知函数y=-(x-1)2-(x-3)2-(x-5)2-(x-7)2,当x=p时,函数y取得最大值,则p•的值为()A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.(1)写出以自变量为t的函数y的解析式;(2)画出(1)中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE 和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.已知一个二次函数的图象过点A(-1,10),B(1,4),C(2,7),点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公共点D的直线?如果存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.(1)求n的值;(2)求此抛物线的解析式;(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,若存在,求出此圆的半径;若不存在,说明理由.5.某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.如果超过x度,这个月除了要交10元用电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过部分应交的电费(元);(2)下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出6.如图(1),平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为(10,0),C点坐标为(0,6).D是BC边上的动点(与点B、C不重合),现将△COD沿OD 翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图②,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;(3)一般地,请你猜想直线DE与抛物线y=-124x2+6的公共点的个数,•在图②的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-124x2+6始终有公共点,请在图①中作出这样的公共点.附加题: (10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ①得y=(x-m )2+3m-2 ②抛物线的顶点坐标为(m ,3m-2),即32x my m =⎧⎨=-⎩当m 的值变化时,x ,y 的值也随之变化,•因而y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不论m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x 2-4mx+4m 2-2m•的顶点的纵坐标y 和横坐标x 之间的关系式.答案:一、填空:1.y=-16x 2+56x-1 (52,124) 2.13±.14.y=-29x 2和y=34x 25.x=2 (2,7) 6.0 7.1 18.a 、c 异号,b 为任何实数 9.-10.(0,-3)(设A (x 1,0),B (x 2,0).(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2-4a+20=(a-2)2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为(0,-3) 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.(1)y=22(01)2)2)2t t t ≤≤⎨⎪--≤≤⎪⎩(2)如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12(2R-x )2. 两个正方形面积之和为y=12x 2+12(2R-x )2=x 2-2Rx+2R 2=(x-R )2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2,此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为(12,4).与抛物线只有一个公共点D 的直线有两条:(1)平行于y 轴,即直线x=12. (2)不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,(8-2b )x+b=2x 2-3x+5.2x 2+(2b-11)x+5-b=0.方程有两个相等的实数根,△=(2b-11)2-8(5-b )=0,解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.(1)设A (x 1,0),B (x 2,0),则OA=-x 1,OB=x 2.因为AB 是直径,OC⊥AB,所以CO 2=OA·OB,•即n 2=-x 1x 2.又x 1x 2=n ,所以n 2=-n ,n=-1,n=0(舍去). (2)11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2,所求的抛物线的解析式为y=x 2-2x-1.(3)由(2)得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 则点F•的坐标为(1+│a │,a ),点F 在抛物线上,a=(1+│a │)2-2(1+│a │)-1,即a 2-a-2=0,a 1=2,a 2=-1, 所求的圆的半径为1或2,故存在以EF 为直径的圆,恰好与x 轴相切. 5.(1)100x(90-x )元 (2)表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x (80-x )=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的标准是30度.6.(1)解:根据题意,可知D (6,6),E (10,2),直线DE 的函数关系式为y=-x+12. (2)解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE COBE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16(a-5)2+116. 当a=5时,b 最小值=116.(3)猜想:直线DE 与抛物线y=-124x 2+6只有1个公共点. 证明:由(1)可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0.直线DE与抛物线y=-124x2+6只有1个公共点.作法一:延长OF交DE于点H,作法二:在DB上取点M,使DM=CD,过M作MH⊥BC,交DE于点H.附加题:配方法; 消元法; y=-4x.。

九年级数学下册第26章二次函数单元测试卷 (1)

九年级数学下册第26章二次函数单元测试卷 (1)

九年级数学下册第26章二次函数单元测试卷一、选择题(每小题2分小题,共40分)1. 抛物线y=x−12−3的对称轴是 ( )A. y轴B. 直线x=−1C. 直线x=1D. 直线x=−32. 已知抛物线y=x2−x−1与x轴的一个交点为m,0,则代数式m2−m+2014的值为 ( )A. 2012B. 2013C. 2014D. 20153. 下列函数中,不属于二次函数的是 ( )A. y=x−22B. y=−2x+1x−1C. y=1−x−x2D. y=1x−14. 二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是 A. m≥−2 B. m≥5 C. m≥0 D. m>45. 下列函数关系中,不可以看做二次函数y=ax2+bx+c a≠0模型的是 ( )A. 圆的面积和其半径之间的关系B. 我国人口年自然增长率为x,两年中人口数量从12亿增加到y亿,则y与x之间的关系y=121+x2C. 掷铅球高度与水平距离的关系D. 等腰三角形顶角A与底角B的关系6. 某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高度为(精确到0.1米,水泥建筑物厚度忽略不计).A. 9.2米 B. 9.1米 C. 9米 D. 5.1米7. 在同一平面直角坐标系内,将函数y=2x2+4x−3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是 ( )A. −3,−6B. 1,−4C. 1,−6D. −3,−48. 二次函数y=x2+2x−7的函数值是8,那么对应的x的值是 ( )A. 3B. 5C. −3和5D. 3和−59. 二次函数y=−2x2+4x+1的图象如何移动就得到y=−2x2的图象 ( )A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位+2=0,若a为正实数,则下列判断正确的是 ( ) 10. 已知关于x的方程x2−4x+5+a⋅1xA. 有三个不等实数根B. 有两个不等实数根C. 有一个实数根D. 无实数根二、填空题(每小题2分小题;共40分)11. 在同一坐标平面内,下列四个函数:①y=2x+12−1;②y=2x2+3;③y=−2x2−1;x2−1的图象不可能由函数y=2x2+1的图象通过平移变换、轴对称变换得到其图象④y=12的函数是(填序号).12. 已知二次函数y=ax2+bx+c a≠0的顶点坐标为−1,−3.2及部分图象如图所示,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别为x1=1.3和x2=.13. 已知二次函数y=ax2+c,当x分别取m,n(m≠n)时,函数值相等,则当x=m+n时,函数值等于.14. 写出下列二次函数的二次项系数a,一次项系数b,常数项c:(1)y=x2−2x+3;a=,b=,c=;x2+5x;a=,b=,c=;(2)y=−12(3)y=3−x2;a=,b=,c=;(4)y=0.4x2;a=,b=,c=.15. 已知函数y=ax2+bx+c(a,b,c是常数).(1)若它是二次函数,则系数应满足条件;(2)若它是一次函数,则系数应满足条件;(3)若它是正比例函数,则系数应满足条件.16. 如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y m与水平距离x m之间x−42+3,由此可知铅球推出的距离是m.的关系为y=−11217. 已知抛物线y=ax2+bx+c a≠0与x轴交于A,B两点,若点A的坐标为−2,0,抛物线的对称轴为直线x=2,则线段AB的长为.18. 飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t−1.5t2.飞机着陆后滑行秒才能停下来.19. 如图,抛物线的顶点为P−2,2,与y轴交于点A0,3.若平移该抛物线使其顶点P沿直线移动到点P′2,−2,点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.20. 已知当x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m−n+2≠0,则当x=6m+n+1时,多项式x2+4x+6的值等于.三、解答题(共6小题;共60分)21:一知一个二次函数,当x=-2或3时,y=0.且函数图像最高点纵坐标为2.求此二次函数解析式22:已知:一抛物经过点A(0.3/2).B(1.2).C(-1.0)三点(1).求抛物线的解析式(2)画出此函数图象(3)求出抛物线的顶点坐标。

新人教版九年级下数学二次函数单元试题及答案

新人教版九年级下数学二次函数单元试题及答案

新人教版九年级下数学二次函数单元试题及答案内容:26.1 满分:100分一、选择题(本大题共10小题;每小题3分;共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2;-1)B.(-2;1)C.(-2;-1)D.(2; 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2;1)B .(-2;1)C .(2;-1)D .(-2;-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点;则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定6. 二次函数y =x 2的图象向右平移3个单位;得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中;当x>0时;y 随x 的增大而增大B .二次函数y=-6x 2中;当x=0时;y 有最大值0 C .a 越大图象开口越小;a 越小图象开口越大D .不论a 是正数还是负数;抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图;小芳在某次投篮中;球的运动路线是抛物线y =-错误!x 2+3.5的一部分;若命中篮 圈中心;则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示;下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题2.53.05m xyO二、填空题(本大题共4小题;每小题3分;共12分)11.一个正方形的面积为16cm 2;当把边长增加x cm 时;正方形面积为y cm 2;则y 关于x 的函数为 。

九年级数学下册《二次函数》单元测试1 (含答案)

九年级数学下册《二次函数》单元测试1  (含答案)

第二章 二次函数单元测试一、选择题(精心选一选,每题4分,共24分) 1、下列函数中,是二次函数的有( )。

①231x y -= ②21x y = ③()x x y -=1 ④()()x x y 2121+-= A 、1个B 、2个C 、3个D 、4个2、抛物线2x y -=不具有的性质是( )。

A 、开口向下B 、对称轴是y 轴C 、与y 轴不相交D 、最高点是原点3、二次函数222+-=x x y 有( )。

A 、最小值1 B 、最小值2 C 、最大值1D 、最大值24、已知点A ()1,1y 、B ()2,2y -、C ()3,2y -在函数()21122-+=x y 上,则1y 、2y 、3y 的大小关系是( )。

A 、321y y y >>B 、131y y y >>C 、213y y y >>D 、312y y y >>5、二次函数()02≠++=a c bx ax y 图象如图所示,下面五个代数式:ab 、ac 、c b a +-、ac b 42-、b a +2中, 值大于0的有( )个。

A 、2B 、3C 、4D 、56、二次函数c bx ax y ++=2与一次函数c ax y +=在同一直角坐标系中图象大致是( )。

xO y xBO yxO y xDO yx二、填空题(细心填一填,每题3分,共36分) 7、二次函数()223+-=x y 的对称轴是__________。

8、当=m _____时,函数()222-+=mx m y 为二次函数。

9、若点A ()m ,2在函数12-=x y 上,则A 点的坐标为_______。

10、函数()132+--=x y 中,当x _____时,y 随x 的增大而减小。

11、抛物线x x y 622+=与x 轴的交点坐标是_______________。

12、抛物线2x y =向左平移4个单位,再向上平移3个单位可以得到抛物线__________________的图像。

九年级数学二次函数单元测试题与答案

九年级数学二次函数单元测试题与答案

九年级数学二次函数单元测试题及答案(试时间:60分钟,总分值:100分)一、选择题(每题3分,共30分)1.以下关系式中,属于二次函数的是(x为自变量)()A.B.C.D.2-2x+3的图象的顶点坐标是()2.函数y=xA.(1,-4)B.(-1,2)C.(1,2)D.(0,3)3.抛物线y=2(x-3)2的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.抛物线的对称轴是()A.x=-2B.x=2C.x=-4D.x=42+bx+c的图象如下图,那么以下结论中,正确的选项是()5.二次函数y=axA.ab>0,c>0B.ab>0,c<0C.ab<0,c>0D.ab<0,c<02+bx+c的图象如下图,那么点在第6.二次函数y=ax___象限()A.一B.二C.三D.四2+bx+c(a≠0)的图象的顶点7.如下图,二次函数y=axP的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A.4+mB.mC.2m-8D.8-2m2+bx8.的图象只可能是()19.抛物线和直线在同一直角坐标系中的图象如下图,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,那么y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.B.C.D.二、填空题(每题4分,共32分)2-2x+1的对称轴方程是______________.11.二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,那么y=________.12.假设将二次函数y=x2-2x-3与x轴分别交于A、B两点,那么AB的长为_________.13.假设抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,那么这条抛物线的解析14.抛物线y=x式为_____________.2+bx+c的图象交x轴于A、B两点,交y轴于C点,15.二次函数y=ax且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在2).假设v0=10m/s,那么该物体在运动过程中最高点距地面中g是常数,通常取10m/s_________m.217.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.2+x+b2经过点,那么y1的值是_________.18.抛物线y=x三、解答以下各题(19、20每题9分,21、22每题10分,共38分)19.假设二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.321.:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.4答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由2+k的形式,顶点坐标即为(h,k),一般形式转换为顶点式,即y=a(x-h)y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.2的顶解析:可以直接由顶点式形式求出顶点坐标进展判断,函数y=2(x-3)点为(3,0),所以顶点在x轴上,答案选C.4.2+bx+c的图象为抛物线,其对称轴为考点:数形结合,二次函数y=ax.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,5在第四象限,答案选D.7.考点:二次函数的图象特征.2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以解析:因为二次函数y=ax抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,2+bx的图象开口方向向下,对称轴在y轴左侧,所以二次函数y=ax交坐标轴于(0,0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.考点:二次函数性质.2-2x+1,所以对称轴所在直线方程.解析:二次函数y=x答案x=1.12.6考点:利用配方法变形二次函数解析式.2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.解析:y=x13.考点:二次函数与一元二次方程关系.2-2x-3与x轴交点A、B的横坐标为一元二次方程解析:二次函数y=xx2-2x-3=0的两个根,求得x1=-1,x2=3,那么AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,2-2x-3.答案为y=x15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三2-1.角形,但没有确定哪个角为直角,答案不唯一,如:y=x16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.2-4x+3.解析:如:y=x18.考点:二次函数的概念性质,求值.答案:.三、解答题19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:2-3x-4为所求∴y=x7(3)20.考点:二次函数的概念、性质、图象,求解析式.2+(k-5)x-(k+4)=0的两根解析:(1)由x1,x2是x又∵(x1+1)(x2+1)=-8∴x1x2+(x1+x2)+9=0∴-(k+4)-(k-5)+9=0∴k=52-9为所求∴y=x(2)由平移后的函数解析式为:2-9y=(x-2)且x=0时y=-5∴C(0,-5),P(2,-9).21.解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)由,得M(2,9)作ME⊥y轴于点E,8那么可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应到达某种平衡,才能保证利润最大.因为中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5)这时商品的销售量是(500+200x)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,假设是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).9即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元10。

(最新)数学九年级下册《二次函数》单元综合检测试题(含答案)

(最新)数学九年级下册《二次函数》单元综合检测试题(含答案)

《二次函数》单元测试卷一.选择题1.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2D.y=2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x23.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.4.如图,一次函数y1=﹣x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c的图象可能为()A.B.C.D.5.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6.对于函数y=5x2,下列结论正确的是()A.y随x的增大而增大B.图象开口向下C.图象关于y轴对称D.无论x取何值,y的值总是正的7.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5) C.(2,5)D.(2,﹣5)8.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+2上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y29.下列各点中,抛物线y=x2﹣4x﹣4经过的点是()A.(0,4)B.(1,﹣7)C.(﹣1,﹣1)D.(2,8)10.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+411.如果将抛物线y=﹣2x2向上平移1个单位,那么所得新抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2﹣1D.y=﹣2x2+112.2011年5月22日﹣29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2+bx+c 的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O 点的距离是4m,那么这条抛物线的解析式是()A.y=﹣x2+x+1 B.y=﹣x2+x﹣1C.y=﹣x2﹣x+1 D.y=﹣x2﹣x﹣1二.填空题13.抛物线y=x2+8x﹣4与直线x=﹣4的交点坐标是.14.如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=.15.已知抛物线y=﹣x2﹣2x+3,当﹣2≤x≤2时,对应的函数值y的取值范围为.16.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.17.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确的是.18.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为.19.已知二次函数y=mx2+(m2﹣3)x+1,当x=﹣1时,y取得最大值,则m =.20.用配方法把二次函数y=﹣x2﹣2x+4化为y=a(x﹣h)2+k的形式为.21.如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则一元二次方程ax2+bx+c=0的另一根为.22.若函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,则m的值为.23.已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.24.二次函数y=ax2+bx+c的部分对应值如下表:①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(2,0);④当x=﹣1时,对应的函数值y为﹣5.以上结论正确的是.25.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x 的取值范围是.26.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是(不写定义域).三.解答题27.已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.28.已知抛物线y=ax2+bx+3过A(﹣3,0),B(1,0)两点,交y轴于点C.(1)求该抛物线的表达式.(2)设P是该抛物线上的动点,当△PAB的面积等于△ABC的面积时,求P点的坐标.29.已知二次函数y=x2+4x+3.(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象.30.某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A 与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?31.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案一.选择题1.解:A、y=﹣4x+5为一次函数;B、y=x(2x﹣3)=2x2﹣3x为二次函数;C、y=(x+4)2﹣x2=8x+16为一次函数;D、y=不是二次函数.故选:B.2.解:A、当a=0时,y=bx+c不是二次函数;B、y=x(x﹣1)=x2﹣x是二次函数;C、y=不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1为一次函数.故选:B.3.解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选:D.4.解:∵一次函数y1=﹣x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b+1)x+c=0有两个不相等的根,∴函数y=ax2+(b+1)x+c与x轴有两个交点,∵﹣<0,a>0∴﹣=﹣﹣<0∴函数y=ax2+(b+1)x+c的对称轴x=﹣<0,∵a>0,开口向上,与y轴交点在正半轴.故选:B.5.解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.6.解:∵二次函数解析式为y=5x2,∴二次函数图象开口向上,当x<0时y随x增大而减小,当x>0时y随x增大而增大,对称轴为y轴,无论x取何值,y的值总是非负.故选:C.7.解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.8.解:∵A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+2上的三点,∴y1=﹣(﹣2+1)2+2=1,y2=﹣(1+1)2+2=﹣2,y3=﹣(2+1)2+2=﹣7,∵1>﹣2>﹣7,∴y1>y2>y3,故选:A.9.解:当x=0时,y=x2﹣4x﹣4=﹣4;当x=1时,y=x2﹣4x﹣4=﹣7;当x =﹣1时,y=x2﹣4x﹣4=1;当x=2时,y=x2﹣4x﹣4=﹣8,所以点(1,﹣7)在抛物线y=x2﹣4x﹣4上.故选:B.10.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.11.解:∵将抛物线y=﹣2x2向上平移1个单位,∴平移后的抛物线的解析式为:y=﹣2x2+1.故选:D.12.解:∵出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,∴B点的坐标为:(0,1),A点坐标为(4,0),将两点代入解析式得:,解得:,∴这条抛物线的解析式是:y=﹣x2+x+1.故选:A.二.填空题(共14小题)13.解:∵当x=﹣4时,y=(﹣4)2+8×(﹣4)﹣4=﹣20,∴抛物线y=x2+8x﹣4与直线x=﹣4的交点坐标是(﹣4,﹣20).14.解:∵二次函数y=x2﹣8x+m﹣1的顶点在x轴上,∴==0,即4m﹣68=0,∴m=17.故答案为:17.15.解:y=﹣x2﹣2x+3=﹣(x+1)2+4,∵x=﹣1时,y=4,x=2时,y=﹣4﹣4+3=﹣5,∴当﹣2≤x≤2时,﹣5≤y≤4.故答案为:﹣5≤y≤4.16.解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故答案为①②⑤.17.解:根据图象可知:①a<0,c>0∴ac<0,故此选项正确;②∵顶点坐标横坐标等于,∴﹣=,∴a+b=0,故此选项正确;③∵顶点坐标纵坐标为1,∴=1;∴4ac﹣b2=4a,故此选项正确;④当x=1时,y=a+b+c>0,故此选项错误.正确的有3个.故答案为:①②③.18.解:∵关于x的二次函数y=ax2+a2的最小值为4,∴a2=4,a>0,解得,a=2,故答案为:2.19.解:根据题意知,﹣=﹣1,且m<0,整理该方程可得m2﹣2m﹣3=0,解得:m=﹣1或m=3(舍),故答案为:﹣1.20.解:∵y=﹣x2﹣2x+4=﹣(x2+2x)+4=﹣(x+1)2+5.故答案为:y=﹣(x+1)2+5.21.解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x =﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∴方程ax2+bx+c=0的另一个解是x=3;故答案是:x=3.22.解:当m=0时,原函数解析式为y=3x﹣4,令y=0,则有3x﹣4=0,解得:x=,∴此时函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,∴m=0符合题意;当m≠0时,∵二次函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,∴△=[﹣(m﹣3)]2﹣4×(﹣4)m=0,即m2+10m+9=0,解得:m1=﹣1,m2=﹣9.综上所述:m的值为0、﹣1或﹣9.故答案为:0、﹣1或﹣9.23.解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.24.解:根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(4,0);④当x=﹣1时,对应的函数值y为﹣5.故答案为:①②④.25.解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.26.解:设平行于墙的一边为(10﹣2x)米,则垂直于墙的一边为x米,根据题意得:S=x(10﹣2x)=﹣2x2+10x,故答案为:S=﹣2x2+10x三.解答题(共5小题)27.解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC=∴S△AOB=S△AOC+S△BOC=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=28.解:(1)把A与B坐标代入得:,解得:,则该抛物线的表达式为y=﹣x2﹣2x+3;(2)由抛物线解析式得:C(0,3),∴△ABC面积为×3×4=6,∴△PAB面积为6,即×|y P纵坐标|×4=6,即y P纵坐标=3或﹣3,当y P纵坐标=3时,可得3=﹣x2﹣2x+3,解得:x=﹣2或x=0(舍去),此时P坐标为(﹣2,3);当y P纵坐标=﹣3时,可得﹣3=﹣x2﹣2x+3,解得:x=﹣1±,此时P坐标为(﹣1+,﹣3)或(﹣1﹣,﹣3).29.解:(1)y=(x2+4x)+3=(x2+4x+4﹣4)+3=(x+2)2﹣1;(2)如图:30.解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.31.解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3P2(0,3﹣3);∴P②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第7题)o x
13O
y
x
2米
1米
2.5米 0.5米
一、选择题
1.已知抛物线2
1y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( )A .2006 B .2007 C .2008 D .2009 2. 如图,抛物线)0(2
>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( )
A. 0
B. -1
C. 1
D. 2
3.抛物线y=x 2
-8x+c 的顶点在x 轴上,则c 等于( )
A.-16
B.-4
C.8
D.16
4.若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( )
A.开口向上,对称轴是y 轴
B.开口向下,对称轴平行于y 轴
C.开口向上,对称轴平行于y 轴
D.开口向下,对称轴是y 轴
5.一次函数y=ax+b 与二次函数y=ax 2
+bx+c 在同一坐标系中的图像可能是 ( )
6.已知抛物线y=-x 2
+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( )
A.2,4
B.-2,-4
C.2,-4
D.-2,0
7.对于函数y=-x 2
+2x-2使得y 随x 的增大而增大的x 的取值范围是 ( )
A.x>-1
B.x ≥0
C.x ≤0
D.x<-1
8.抛物线y =x 2
-(m+2)x+3(m-1)与x 轴( )
A.一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点
9.二次函数y=2x 2+mx-5的图像与x 轴交于点A (x 1, 0)、B(x 2,0), 且x 12+x 22
=
29
4
,则m 的值为( ) A.3 B.-3 C.3或-3 D.以上都不对
10. 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )
二、填空题
11.抛物线y=-2x+x 2
+7的开口向 ,对称轴是 ,顶点是 .
12.若二次函数y=mx 2-3x+2m-m 2
的图像过原点,则m 的值是 .
13. 已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .
14. 抛物线在y=x 2
-2x-3在x 轴上截得的线段长度是 .
15.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 .
16. 已知函数2
2y x x c =-++的部图象如图所示,c=______,
当x______时,y 随x 的增大而减小. 17.设矩形窗户的周长为6m ,则窗户面积S(m 2
)与窗户宽x (m)之间的函数关系式是 ,自变量x
的取值范围是 .
18. 如图,小明的父亲在相距2米的两棵树间拴了一根绳
子,给他做了一个简易的秋千,拴绳子的地方距地面高都
是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距 较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的 x A D C
B
y x
10
O 100 y x
10 O 100 y x
10 O 100 5 y
x 10 O 100
最低点距地面的距离为 米.
19. 一名男生推铅球,铅球行进高度y (单位:m )与水 平距离x (单位:m )之间的关系是21251233
y x x =-++. 则他将铅球推出的距离是 m
20. 初三数学课本上,用“描点法”画二次函数2
y ax bx c =++的图象时,列了如下表格: x

2- 1-
0 1 2 … y … 162- 4- 122- 2- 1
22
- …
根据表格上的信息回答问题:该二次函数y ax bx c =++在3x =y = .
三、解答题
21. 徐州.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5) ①求该函数的关系式;
②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.
22.把抛物线y=ax 2+bx+c 向左平移2个单位,同时向下平移l 个单位后,恰好与抛物线y=2x 2
+4x+1重合.请求出a 、b 、c 的值,并画出一个比较准确的示意图.
23.已知二次函数2
y x bx c =++中,函数与自变量x 的部分对应值如下表:
x

1- 0 1 2 3 4 …
y … 10 5 2 1 2
5 … (1(3)若1()A m y ,,2(1
)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.
24.二次函数y=ax 2
+bx+c 的图像的一部分如下图,已知它的顶点M 在第二象限,且该函数图像经过点A (l,0)和点B(0,1).
(1)请判断实数a 的取值范围,并说明理由;
(2)设此二次函数的图像与x 轴的另一个交点为c ,当△AMC 的面积为△ABC 面积的1.25倍时,求a
的值.
25.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房
间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式.
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?
桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线的顶点C与X轴垂直的直线为Y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米
(1)求经过A、B、C三点的抛物线的解析式。

(2)求柱子AD的高度。

25.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件
70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;(4分)
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?(6分)
26.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m 时间t (天) 1 3 6 10 36 …
日销售量m (件)
94
90
84
76
24

未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为25t 4
y 1+=(20t 1≤≤且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为40t 2
1y 2+-=(40
t 21≤≤且t 为整数)。

下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a<4)给希望工程。

公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围。

相关文档
最新文档