1自动控制理论的一般概念

合集下载

自动控制原理--第1章 自动控制理论的一般概念

自动控制原理--第1章 自动控制理论的一般概念

1-3 典型控制系统
恒值系统:
也称镇定系统。输出量以一定的精度等于 给定值,而给定值一般不变化或变化很缓慢, 扰动可随时变化的系统称为恒值系统,在生产 过程中,这类系统非常多。例如:恒温系统, 恒压系统等。
例 锅炉空气预热器密封间隙控制系统
系统通过间隙传感器实时测量出密封间隙值并送入计算 机,与设定值比较后,发出控制指令至电动机提升机构,调 整密封板的位置,达到维持密封间隙值恒定的目的。
u
~220V
开关闭合后,不同 的输入电压u对应于 不同的温度t。
炉温开环控制系统
扰动量
输入量 (电源 )
开关
加热电 阻丝
控制装置
电炉恒 温箱
受控对象
输出量 (温度)
炉温开环控制系统方框图
扰动
给定值
控制器
被控制 对象
典型开环控制的方框图
输出量
系统框图帮助理解系统的构成和性质
开环控制系统特点: 信号从输入到输出无反馈,单向传递. 结构简单. 控制精度不高,无法抑制扰动.
第1章 自动控制理论的一般概念
1-1 自动控制发展史 1-2 自动控制的基本方式 1-3 典型控制系统 1-4 对于自动控制系统的要求
1-1 自动控制发展史
经典控制理论(20世纪40年代及其以前)
主要研究单输入单输出线性定常系统 时域、频域和复域分析和设计问题。
现代控制理论(20世纪60年代)
主要研究多输入、多输出、时变参数、高精度复杂系统 分析和设计问题;最优控制问题。
(c)
五、复合控制
它是把按偏差控制与按扰动控制结合起来,对于主
要扰动采用适当的补偿装置实现按扰动控制,同时再组
成反馈控制系统实现按偏差控制,以消除其余扰动产生

自动控制理论

自动控制理论

1、什么是自动控制?自动控制就是应用控制装置自动的、有目的地控制或调解机器设备或生产过程,使之按照人们规定的或者是希望的性能指标运行。

2、参数值(给定值输入):电动机转速就有一定值,故电位器的变化3、自动控制系统:电动机转速变化的测速发电机电压的发至输入端与电位器电压进行比较,两者的差值(又称偏差信号)控制功率放大器(控制器),控制器的输出控制电动机的转速。

4、扰动:当电源变化、负载变化等将引起转速变化,也称受控对象。

5、人工控制系统:当发现电动机转速高于给定值时,马上调节电位器的动点,使电动机的电枢电压减少,降低转速,使之恢复到给定值。

6、开环控制系统:一个系统,如果在其控制器的输入信号中不包括含受控对象输出端的被控量的反馈信号。

7、开环控制系统:一个系统,如果在其控制器的输入信号中包括含受控对象输出端的被控量的反馈信号。

8、多回路反馈控制系统:一个复杂的控制系统(实际生产过程往往是很复杂的,因而构成的控制系统也往往是很复杂的)也可能有多个反馈信号(除被控量的反馈信号外,还有其他的反馈信号),组成多个闭合回路。

9、恒值控制系统:的任务是保持被控量恒定不变,也即是被控量在控制过程结束在一个新的稳定状态时,被控量等于给定值。

(发电机电压控制,电动机转速控制,电力网的频率(周波))10、随动控制系统(随动系统):他是被控量的给定值随时间任意变化的控制系统,随动控制系统的任务是在各种情况下使被控量跟踪给定值的变化。

(运动目标的自动跟踪、跟踪卫星的雷达天线控制系统,工业控制中的位置控制系统,工业自动化仪表中的现实记录等)11、控制系统的性能要求:稳定性、快速性、准确性12、建立系统微分方程步骤:1. 确定系统输入量(给定量和扰动量) 与输出量(被控制量, 也称系统响应2. 列写系统各部分3. 消去中间变量,求出系统的微分方程 4. 将微分方程整理成标准形式。

13、顺馈控制:按扰动控制的开环控制系统,是利用可测量的扰动量,产生一种补偿作用,以减小或抵消扰动对输出的影响。

自动控制原理1-7章学习指导、典型题解

自动控制原理1-7章学习指导、典型题解

第一章:自动控制的一般概念1.1学习指导1.1.1、课程内容(1)自动控制理论发展概况;(2)自动控制的基本概念与方式;(3)自动控制系统分类;(4)对自动控制系统的基本要求;(5)自动控制系统组成和方框图。

本章是本课程的入门章节,通过学习应理解自动控制的基本概念和分类,控制系统组成和方框图,会根据实际控制系统绘制系统方框图。

1.1.2内容概述1、自动控制的基本概念自动控制:在没人直接参与的情况下,利用控制装置使被控对象或过程自动地按预定规律或数值运行。

自动控制系统:能够对被控对象的工作状态进行自动控制系统。

一般由控制器(含测量元件)和控制对象组成。

2、两种基本控制方式1)开环控制方式控制装置与被控对象之间只有顺向作用没有反向联系。

2)闭环控制方式:把输出量直接或间接地反馈到系统的输入端,形成闭环,参与控制。

3、闭环系统的基本组成(1)给定元件设定被控量的给定值;(2)测量元件对系统被控量(输出置)进行测量;(3)比较元件对系统输出量与输入量进行代数运算并给出偏差信号,起综合、比较变换作用。

(4)放大元件对微弱的偏差信号进行放大,使其有足够的幅但与功率5)执行元件根据放大后的偏差信号,对被控对象执行控制任务,使输出量与希望值起子一致。

(6)被控对象指自动控制系统需要进行控制的机器、设备或生产过程。

被控对象要求实现自动控制的物理量称为被控量或输出量。

(7)校正元件用以改善系统性能4、自动控制系统的分类1)按系统性能分类:(1)线性系统:满足叠加性和齐次性。

(2)非线性系统:不满足叠加性和齐次性。

2)按信号类型分类:(1)连续系统:系统中各元件的输入量和输出量均为时间t的连续函数。

(2)离散系统:系统中某一处或几处的信号是以脉冲系列或数码的形式传递的系统。

3)按给定信号分类(1)恒值控制系统给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。

(2)随动控制系统给定值按未知时间函数变化,要求输出跟随给定值的变化。

自动控制理论第四版夏德钤翁贻方版

自动控制理论第四版夏德钤翁贻方版
第一章 自动控制的一般概念
1-1 自动控制的基本原理与方式
1、自动控制技术及应用 (1)什么是自动控制
无人直接参与 利用外加设备或装置(控制器) 使机器、设 备或生产过程(被控对象)的某个工作状态或参数(被控量) 自动按预定的规律运行
外作用
控制器
被控对象
被控量
(2)自动控制技术的应用
工业、农业、导航、核动力 理和其它许多社会生活领域
(3)智能控制理论 (发展方向) 以控制论、信息论、仿生学为基础
3、反馈控制理论 (1)自动控制系统
被控对象、控制器按一定的方式连接所组成的系统
最基本的连接方式是反馈方式,按该方式连接的系统 称为反馈控制系统
(2)反馈控制原理 控制器对被控对象施加的控制作用取自被控
量的反馈信息,用来不断修正被控量与输入量之间的 偏差,从而对被控对象进行控制。
输入
输出
(电扇调档)
按扰动控制:利用可测量的扰动量,产生一种补偿作用,
(顺馈控制) 以减少或抵消扰动对输出量的影响。
(3) 复合控制方式 按偏差控制与按扰动控制相结合
1-2 自动控制系统举例
飞机示意图
给定电位器
反馈电位器
给 θ0 定
装 置
飞机方块图 扰动
放 大
舵 机

反馈电 位器
垂直 陀螺仪
飞 θc 机
f (t) A Sin(t )
第二章 控制系统的数学模型
1、线性连续控制系统 用线性微分方程描述 P11 定常、时变
a0
d nc(t) dt n

a1
d n1c(t) dt n1

an1
dc(t) dt

an c(t )

第一章 自动控制理论概述

第一章 自动控制理论概述
第一章 自动控制基本概念
第一章 自动控制基本概念
§1-1 §1-2 §1-3 §1-4 引言 自动控制的基本概念 自动控制系统的组成和分类 自动控制系统的基本要求
控制工程基础
第一章 自动控制基本概念
本章重点
1. 自动控制的含义; 自动控制的含义; 反馈和反馈控制的概念、反馈控制的特点; 2. 反馈和反馈控制的概念、反馈控制的特点; 3. 控制系统的组成和分类和特点。 控制系统的组成和分类和特点。
控制工程基础
第一章 自动控制基本概念
• 自动控制技术在工农业生产、国防、航空航天等 各个领域中起着重要的作用! • 广泛应用于各种工程学科领域,并扩展到生物、医 学、环境、经济管理和其它许多社会生活领域。 • 独立的学科并与其它学科相互渗透、相互促进。
• 《自动控制理论》是自动控制技术的基础理论,是 一门理论性较强的工程科学。 现代的工程技术人员和科学工作者, 现代的工程技术人员和科学工作者,必须具备 一定的自动控制理论基础知识! 一定的自动控制理论基础知识!
输入r(t) 输出c(t) 实际 1 2 1 0 t 0 t 控制工程基础 理想的 调节过程
本章难点
1. 深刻理解反馈的概念和思想; 深刻理解反馈的概念和思想; 2. 确定控制系统的被控对象、被控量、给定量 确定控制系统的被控对象、被控量、 等等,绘制方块图, 等等,绘制方块图,分析实际控制系统的基 本原理。 本原理。
控制工程基础
第一章 自动控制基本概念
§1-1 引言 -
以系统论、信息论和控制论为代表的科学方法论; 系统论、信息论和控制论为代表的科学方法论; 为代表的科学方法论 是一门新兴的学科, 是一门新兴的学科,为人类认识世界和改造世界提 供了强有力的武器。 供了强有力的武器。 关于控制论的几种说法 说法一: 控制论”是关于机器的理论。 说法一:“控制论”是关于机器的理论。 说法二: 控制论”是电子计算机和电子学的理论。 说法二:“控制论”是电子计算机和电子学的理论。 说法三: 控制论”是类似于数学的一门学科。 说法三:“控制论”是类似于数学的一门学科。 说法四: 控制论” 说法四:“控制论”是关于动物和机器中控制和通 信的科学。(维纳定义) 。(维纳定义 信的科学。(维纳定义)

自动控制一般概念与基本要求

自动控制一般概念与基本要求
徐寿
黄鹄号自复原动图控制的一般
华蘅芳
➢ 1866年,英国J.M. Gray设计出第一艘明轮驱 动的全自动蒸汽轮船“东方”号
自动控制的一般
3.2 劳斯-赫尔维茨稳定判据—第三章 ➢ 1877年,英国E.J. Routh提出根据
多项式的系数决定多项式在右半平 面的根的数目,从而将当时各种有 关稳定性的孤立的结论和非系统的 结果统一起来,开始建立有关动态 稳定性的系统理论。
自动控制的一般概念和基本要 求
自动控制的一般
第一章 自动控制的一般概念
1-1 自动控制的基本原理与方式 1-2 自动控制系统示例 1-3 自动控制系统的分类 1-4 对自动控制系统的基本要求 1-5 自动控制系统的分析与设计工具
2
自动控制的一般
1-1 自动控制的基本原理与方式
一.自动控制科学的发展
➢ 1770年,他利用离心式飞锤调速器构 建了蒸汽机的转速自动控制系统,此 系统在锅炉压力和负荷变化的条件下, 通过离心式调速器自动调节进气阀门 的开度,使蒸汽机转速维持在一定的 詹姆斯·瓦特 范围内。
7
自动控制的一般
转速自动控制原理
缺点:调速系统会出 现振荡问题,当振荡 过大时会造成系统的 不稳定。(稳态性能及 动态性能差,存在稳 态误差——第三章)
自动控制的一般
劳斯
14
➢ 1895年,瑞士A. Hurwitz在不了 解Routh工作的情况下,独立给出 了根据多项式的系数决定多项式的 根是否都具有负实部的另一种方法。
这两种判据实质是一样的,都是根 据特征方程的系数来判断高阶系统 的稳定性。
赫尔维茨
15
自动控制的一般
3.3 李雅普诺夫稳定判据—第九章 ➢ 1892年,俄国A.M.Lyapunov在其

最新自动控制原理.pdf

最新自动控制原理.pdf

第一章自动控制的一般概念1.1 引言自动控制理论是研究关于自动控制系统组成、分析和设计的一般性理论,是研究自动控制共同规律的技术科学。

自动控制理论的任务是研究自动控制系统中变量的运动规律以及改变这种运动规律的可能性和途径,为建立高性能的自动控制系统提供必要的理论根据。

1.2 自动控制和自动控制系统的基本概念1.2.1自动控制问题的提出在许多工业生产过程或生产设备运行中,往往需要对某些物理量(如温度、压力、流量、液位、电压、位移、转速等)进行控制,使其尽量维持在某个数值附近,或使其按一定规律变化。

如图1-l所示是锅炉给水人工控制示意图。

人工调节是一个“检测偏差、纠正偏差”的过程。

可以用一整套自动控制仪表(自动调节器)来代替操作人员的作用。

图1-2所示是锅炉给水汽包水位自动控制示意图。

图1-2 汽包锅炉给水自动调节示意图1—过热器;2—汽包;3—省煤器;4—给水凋节阀;5—水位计任何一个控制系统,都包含着被控对象和控制器两个组成部分。

1.2.2 开环控制系统常见的控制方式有三种:开环控制、闭环控制和复合控制。

系统的控制输入不受输出影响的控制系统称为开环控制系统。

图1-3所示的烘箱温度控制系统是一个开环控制系统。

烘箱是被控对象,烘箱的温度是被控量,也称为系统输出量。

开关设定位置为系统的给定量或输入量,电阻及加热元件可看成是调压器(控制器)。

该系统中只有输入量对输出量的单向控制作用,输出量对输入量没有任何影响和联系。

烘箱温度开环控制系统可用图1-4所示的方框图表示。

1.2.3 闭环控制系统在图1-3所示的烘箱温度开环控制系统中,加入一些装置,构成了如图1-5所示的烘箱温度闭环控制系统。

系统中,烘箱是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征烘箱温度的希望值)。

系统方框图如图1-6所示。

通常,把从系统输入量到输出量之间的通道称为前向通道;从输出量到反馈信号之间的通道称为反馈通道。

自动控制理论概述

自动控制理论概述
上一页 下一页 返回
8.1 传感器的选用
• 8.1.2 传感器选择的一般步骤 选择传感器总的原则是:在满足对传感器所有要求的情况
下,力求成本低、工作可靠且便于维修的原则,即性能价格 比要高的原则。一般可按下列步骤进行: 1 .借助于传感器分类表。即按被测量的性质,从典型应用中可 以初步确定几种可供选用的传感器的类别。 2 .借助于常用传感器比较表。即按测量的范围、测量精度及环 境要求等进一步确定传感器的类别。 3 .借助于传感器的产品目录。根据所选的传感器的类别,借助 产品目录,选出传感器的规格、型号、性能和尺寸。
图1-3 直流电动机转速闭环控制方框图
闭环控制特点
循环控制, 路径闭合
系统精度高, 抗干扰能力强
结构复杂,元 件和参数配置 要求较高
第一章 自动控制的基本概念
1.4 自动控制系统的分类
定值、随动和程序控制系统
定值控制系统 系统给定值(参考输入)为恒定常数,这种控制系统称为定值控制
系统,这种系统可通过反馈控制使系统的被控参数(输出)保持恒定、 希望的数值。
返回
8.1 传感器的选用
由于传感器精度的高低、性能的好坏直接影响到检测的 结果,影响到自动检测系统的品质和整个系统的运行状态 ,因此,选择合适的传感器是一个很重要环节。
• 8.1.1 传感器的选择要求 传感器的选择要求是全面的、严格的,是选用传感器的依
据。具体要求主要有以下几点: 1)技术指标要求。
如绝缘电阻、耐压等级及接地保护等。
上一页 下一页 返回
8.1 传感器的选用
5)可靠性要求 如抗干扰、使用寿命、无故障工作时间等。
6)维修及管理要求 如结构简单、模块化、有自诊断能力、有故障显示等。 上述要求又可分为两大类:一类是共同的要求,如线性度

自动控制原理知识点

自动控制原理知识点

第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。

◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。

◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。

除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。

•测量元件:用以测量被控量或干扰量。

•比较元件:将被控量与给定值进行比较。

•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。

参与控制的信号来自三条通道,即给定值、干扰量、被控量。

2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。

而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。

◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。

◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。

◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。

◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。

◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。

◎放大元件:放大偏差信号的元件。

◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。

自动控制理论 ___

自动控制理论 ___

自动控制理论 ___自动控制理论是一门研究自动化系统行为和设计控制策略的学科,具有广泛的应用领域和重要性。

自动控制理论的研究对象是各种自动化系统,包括机械系统、电气系统、化工系统等。

通过研究自动化系统的动态特性和响应,我们可以设计合适的控制策略来实现系统的稳定性、精确性和优化性能。

自动控制理论不仅在工业领域得到广泛应用,也在生活中各种自动化设备和系统中发挥着重要作用。

例如,自动驾驶汽车、智能家居系统、工业生产自动化线等都依赖于自动控制理论的研究成果。

在本文中,我们将详细介绍自动控制理论的重要性和研究对象,探讨其在实际应用中的意义和挑战。

通过深入理解自动控制理论,我们可以应用合适的控制方法来优化系统的性能,提高工作效率和质量,推动技术的进步和创新。

本文探讨自动控制理论的基本原理和主要概念。

自动控制理论是研究如何通过系统的设计和调整,使得系统能够自动地对外界变化做出相应的调节和控制的一门学科。

它是现代科学技术中的重要部分,被广泛应用于工业、交通、航空、航天等领域。

自动控制理论的核心原理是反馈控制。

通过测量系统的输出,并与预定的输入进行比较,然后根据差异来调整系统的行为,以使系统输出与预期目标保持一致。

这种反馈过程是实现自动控制的关键。

在自动控制理论中,有一些重要的概念需要理解。

首先是系统模型,它描述了系统的动态行为和性能。

系统模型可以是数学方程、图表或仿真模拟等形式。

其次是控制器,它是根据系统模型和目标要求设计的,用于调节系统行为的装置或算法。

还有传感器和执行器,它们分别用于测量系统输出和对系统进行控制。

除了基本原理和概念,自动控制理论还涉及许多方法和技术。

例如,经典控制理论包括比例、积分、微分控制等方法。

现代控制理论则包括状态空间方法、最优控制、自适应控制等方法。

不同的方法适用于不同的系统和控制需求。

总之,自动控制理论是一门重要的学科,它提供了对系统进行智能调节和控制的方法和工具。

通过理解自动控制理论的基本原理和主要概念,我们可以更好地设计和优化系统,提高系统的稳定性和性能。

自动控制的一般概念

自动控制的一般概念

自动控制的一般概念1.1 自动控制的基本原理1.2 自动控制系统的分类1.3 对控制系统的基本要求1.4 自动控制的发展简史自动控制的一般概念1.1自动控制的基本原理自动控制作为一种技术手段已经广泛地应用于工业、农业、国防乃至日常生活和社会科学许多领域。

所谓自动控制就是指在脱离人的直接干预,利用控制装置(简称控制器)使被控对象(如设备生产过程等)的工作状态或简称被控量(如温度、压力、流量、速度、pH 值等)按照预定的规律运行。

实现上述控制目的,由相互制约的各部分按一定规律组成的具有特定功能的整体称为自动控制系统。

从物理角度上来看,自动控制理论研究的是特定激励作用下的系统响应变化情况;从数学角度上来看,研究的是输入与输出之间的映射关系;从信息处理的角度来看,研究的是信息的获取、处理、变换、输出等问题。

随着科学技术的进步,自动控制的概念也在扩大,政治、经济、社会等各个领域也越来越多地被认为与自动控制有关。

现在已发展成为一门独立的学科——控制论。

其中包括:工程控制论、生物控制论和经济控制论。

直流电动机速度自动控制的原理结构图如图1-1所示。

图中,电位器电压为输入信号。

测速发电机是电动机转速的测量元件。

图1-1中,代表电动机转速变化的测速发电机电压送到输入端与电位器电压进行比较,两者的差值(又称偏差信号)控制功率放大器(控制器),控制器的输出控制电动机的转速,这就形成了电动机转速自动控制系统。

电源变化、负载变化等引起转速变化,称为扰动。

电动机被称为被控对象,转速称为被控量,当电动机受到扰动后,转速(被控量)发生变化,经测量元件(测速发电机)将转速信号(又称为反馈信号)反馈到控制器(功率放大器),使控制器的输出(称为控制量)发生相应的变化,从而可以自动地保持转速不变或使偏差保持在允许的范围内。

自动控制系统至少包括测量、变送元件、控制器等组成的自动控制装置和被控对象,它的组成方框图如图1-2所示。

1.2 自动控制系统的分类1.2.2 按系统输入信号的变化规律不同来分1、恒值控制系统(或称自动调节系统)这类系统的特点是输入信号是一个恒定的数值。

自动控制理论

自动控制理论

一、自动控制:是指在没有人直接参与的情况下,利用控制装置使被控对象的一个或数个物理量自动的按照预定的规律运行或变化二、自动控制系统:是指能够对被控对象的工作状态进行自动控制的系统三、反馈:把从被控对象输出端获得的信息通过中间环节送回输入端四、开环控制与闭环控制的区别:开环控制是指被控制量(输出量)只受控于控制作用,而对控制作用不能反施任何影响的控制方式;闭环被控制量(输出量)与控制作用之间从在这负反馈的控制方式五、控制理论的基础1、经典控制理论是以反馈理论为基础的自动调节原理;2、现代控制理论:以线性代数理论和状态空间分析法为基础;3、大系统理论:a现代频域法:以传递函数矩阵为数学模型b自适应控制理论和方法:以系统辨识和参数估计为基础c鲁棒控制方法:系统在最不利的情况下仍能够稳定工作六、控制系统的分类:1、按输入信号的形式:恒值系统和随动系统2、按组成元件特性:线性系统和非线性系统3、按系统中信号的特征:连续系统和离散系统七、对控制系统的基本要求及含义1、稳定性:系统在受到扰动作用后自动返回原来的平衡状态的能力2、动态性能:系统在受到扰动的影响或是参考输入发生变化时,被控量会随之发生变化,经过一段时间后,被控制量恢复到原来的平衡状态或到达一个新的给定状态3、稳态性能:稳定的系统在过渡过程结束后,其稳态输出偏离希望值的程度,用稳态误差来度量,这是系统精度的衡量指标八、数学模型的定义:描述系统内部物理量或变量之间关系的数学表达式九、模型的定义:基于对系统的知识所建立的关于系统某一方面属性的描述十、建立模型的两种方法:一是根据系统的运动学或动力学的规律和机理,如机械系统中的牛顿定律、电系统中的克希霍夫定律建立系统的数学表达式,这种模型为机理模型;二是根据系统输入输出数据,通过辨识的方法建立模型,为实验模型。

十一、线性定长系统的传递函数的定义:在零值初始条件下,系统或元件输出拉氏变换与输入拉氏变变换之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究系统的共性问题
实际 系统
物理 模型
数学 模型
方法(系统组成 分析、设计)
第一章 自动控制理论的一般概念
1.1 自动控制系统一般概念 1.2 自动控制的基本方式 1.3 典型控制系统举例 1.4 对控制系统的基本要求
教学重点
• 了解自动控制系统的基本结构和特点及其 工作原理;
• 了解闭环控制系统的组成和基本环节; • 掌握反馈控制系统的基本要求-稳定性、
● 放大环节: 由于经过计算机处理的信号通常是标准化的 弱信号,不能驱动被控对象,因此需要加以放大。放大环 节的输出必须有足够的能量,一般需要幅值的放大和功率 的放大,才能实现驱动能力。
● 执行环节: 其作用是产生控制量,直接推动被控对象的 控制量发生变化。如电动机、调节阀门等就是执行元件。
常用的名词术语
线性定常 传递函数 频域法
系统
根轨迹法
多输入-多 线性代数、 输出变系 矩阵理论 数,非线 性等系统
状态 空间法
对复杂多变量 系统、时变和 非线性系统无
能为力比较Leabharlann 琐(但由于计算机技术的
迅速发展,已 克服)
3.大系统理论和智能控制
● 关系:前者是控制理论在广度上的开拓,后者是控制理 论在深度上的挖掘。
自动控制原理
课程的性质和特点
• 自动控制是一门技术学科,它是从方法论的角 度来研究系统的建立、分析与设计。
• 《自动控制原理》是本学科的专业基础课,是 自动控制理论的基础课程,该课程与其他课程 的关系如下:
信号与系统 电路理论
复变函数、拉普拉斯变换 模拟电子技术
电机与拖动
自动控制理论
线性代数
大学物理(力学、热力学)
● 干 扰: 又称为扰动信号,是指由某些因素(外部和内 部)引起的、对系统被控量产生不利影响的信号。
● 反馈: 是系统的输出量从被控量端(输出)经变换、处 理到达系统的给定量端(输入)。若是从系统输出端到系 统输入端,这种反馈称为主反馈;而其他反馈称为局部反 馈。
● 给定量: 又称为参考输入,是指人为给定的并且要求系 统输出量参照变化的外部指令信号。给定量与期望的输 出量之间一般存在着物理量纲转换关系。给定量可以是 常值,也可以是随时间变化的已知函数或未知函数。
● 被控量: 又称为输出量,是指被控对象中某个需要被控 制的物理量。它与给定量之间存在一定函数关系。
动态和稳态性能指标; • 学会自动控制系统的类型及本质特征。
教学难点
自动控制系统的基本工作原理,自动控制 系统的结构及特点、组成和基本环节,自 动控制系统的性能指标,自动控制系统的 类型。
• 概述:在人类社会走向信息化的今天,计算机、 通信、信息处理技术的发展对社会经济以及人类 生活产生了巨大影响。其中,自动控制作为一种 技术手段已经广泛地应用于工业、农业、国防以 及日常生活和社会科学的各个领域。
• 自控理论:自动控制理论就是研究自动控制共同 规律的科学技术,自动控制原理仅是工程控制论 中的一个分支,是研究控制系统分析和设计的一 般理论。
• 本章内容:本章是自动控制技术及应用的基础, 主要介绍自动控制的基本原理和概念,自动控制 系统的组成和分类,以及自动控制系统的性能指 标等。
1.1 自动控制理论的发展
自动控制系统组成:由被控对象以及为完成控制任 务而配置的控制装置两大部分构成。
图1-1 自动控制系统框图
● 被控对象: 是控制系统所控制和操纵的对象,它接受控 制量并输出被控量。可以是一套装置或设备,也可以是 一个动态过程(被控制的运行状态)。如化工行业中从 原料到产品的生产工艺流程。
● 测量环节: 其作用是检测被控对象的控制量(温度、压 力、流量、位移等),并且一般需要转换为标准的电信 号(如0~5V直流电压或0~10mA直流电流),以便于处 理。为了保证控制精度,测量环节应当测量准确,并且 牢固、可靠,受环境条件影响小。
● 比较环节: 其作用是将测量环节的实际输出值与给定量 进行比较,求出它们之间的偏差。通常采用的比较元件 有差动放大器、电桥、机械的差动装置等。
● 计算环节: 它是控制装置的核心,决定着控制系统性能 的好坏。其作用是根据控制要求,对偏差信号进行各种计 算并形成适当的控制作用。校正装置就是可以实现某种 “控制规律”的计算环节,从而改善系统的动态、稳态性 能。对于复杂的运算可以利用计算机完成。
控制理论的发展过程一般可分为三个阶段: ● “经典控制理论”时期 ● “现代控制理论”时期 ● “大系统理论”和“智能控制”时期
1.经典控制理论
● 研究对象:单输入-单输出系统(线性定常系统) ● 研究方法:以传递函数、频率特性、根轨迹为基
础的频域分析方法。 ● 代表人物:维纳(《控制论》)、伯德(伯德图
微积分(含微分方程)
课程的性质和特点
自动控制理论已经发展为理论严密、 系统完整、逻辑性很强的一门学科。 从基本反馈控制原理发展到自适应控 制、优化控制、鲁棒控制、大系统控 制、智能控制。
课程的性质和特点
● 讨论的对象: 因果系统、工程系统
● 系统的广义性: 经济、社会、工程、生物、环境、医学
● 课程特点:
● 研究内容: “大系统理论” 通过采用控制和信息的观点,研究各种大 系统的结构方案、总体设计中的分解方法和协调等问题。 “智能控制”通过模拟人类智能活动及其控制与信息传递 过程的规律,研究具有某些仿人智能的工程控制与信息 处理系统。
1.2 自动控制系统的基本原理
1.自动控制系统的基本概念
● 自动控制:没有人的直接干预,利用控制装置使被控对 象(如生产设备)的工作状态或被控制量按照预定的规 律运行。
法)和伊文思(根轨迹法) 。
2.现代控制理论
● 研究对象:多输入-多输出系统(线性定常或非 线性时变)
● 研究方法:状态空间方法 ● 代表人物:庞特里亚金(极大值原理)、贝尔曼
(动态规划原理)、卡尔曼(卡尔曼滤波)等
研究对象 数学工具 分析方法
局限性
经典 控制 理论
现代 控制 理论
单I/O 微分方程, 时域法
● 自动控制系统:实现上述自动控制的目的,由相互联系 和制约的各部件组成的具有特定功能的整体称为自动控 制系统。
2.自动控制系统的组成
基本工作原理: 通过测量装置随时监测被控量,并与给定 值进行比较,产生偏差信号;根据控制要 求对偏差进行计算和信号放大,并且产生 控制量,驱动被控制量维持在期望值附近。
相关文档
最新文档